
Micromelum minutum (Rutaceae) is used for the treatment
of fever and giddiness and as a poultice for ringworm and
ague in Malaysia.2) Also it is used in the traditional folk med-
icine of Fiji.2) Some coumarins,3—9) a flavanone,9) a
quinolone alkaloid,5) and a carbazole alkaloid,9) have been re-
ported as constituents of plants of the genus Micromelum. In
our search for anti-tumor promoters from medicinal plants,
an acetone extract of the stems of M. minutum WIGHT et ARN

(Rutaceae), collected in Nakorn-Rachasima province in Thai-
land, was found to exhibit anti-tumor-promoting activity.
This paper describes the isolation and structural elucidation
of six new coumarins named micromarin-A (1), -B (2), -C
(3), -F (4), -G (5), and -H (6) from the stems of M. minutum.

An acetone extract of stems of the plant was chro-
matographed on silica-gel, eluting with hexane-acetone, fol-
lowed by repeated preparative TLC to afford six new
coumarins along with six known ones. 

Structure of Micromarin-A (1) Micromarin-A (1),
[a]D 13.44° (CHCl3), was obtained as a colorless powder.
The molecular formula C20H22O6 was established by analysis
of high resolution (HR)-MS. The UV spectrum [lmax (log e):
209 (4.82), 256 (4.14), 267 (4.03), 321 (4.60) nm], IR band
[nmax 1732, 1606 cm21], and 1H-NMR spectra [d 3.96 (3H,
s, OCH3), 7.62 (1H, d, J59.5 Hz), 6.26 (1H, d, J59.5 Hz),
7.43 (1H, d, J58.4 Hz), and 6.87 (1H, d, J58.4 Hz)], coupled
with a nuclear Overhauser effect (NOE) enhancement
between the 7-OCH3 (d 3.96) and H-6 (d 6.87), indicated the
presence of a 7-methoxy-8-substituted coumarin nucleus 
in this molecule.10) The existence of an isovaleryloxy group
in the molecule was confirmed by EI-MS [m/z 257
(M2·OCOCH2CH(CH3)2)

1] and 1H-NMR spectrum [d 2.25
(2H, d, J57.3 Hz), 2.13 (1H, m), 0.95 (6H, d, J56.7 Hz)].
Furthermore, in the 1H-NMR spectrum, AB-type signals at d
4.78 and 4.72 (each 1H, d) having a geminal coupling
constant (J513.2 Hz), two methine proton signals at d 4.03
and 4.05 (each 1H, d, J52.2 Hz), and two 1H-singlets at d
5.54 and 5.37 assignable to methylene protons attached to an
ester moiety, vicinal methines of an epoxide, and an exo-
methylene group, respectively, were observed, indicating the 

presence of the partial structure .

trans-Orientation of the epoxide ring was proposed from the
value of the coupling constant (J52.2 Hz) of two vicinal pro-
tons, the same as that in the case of phebalosin.11,12)

Finally, connectivities of these structural units were estab-
lished from the results of analyses of the 1H-detected het-
eronuclear multiple bond connectivity (HMBC) spectrum
shown by arrows in Fig. 1. The significant C–H long-range
correlations for structure determination are described below.
A carbon signal at dC 161.81 (C-7) showed three-bond corre-
lations with proton signals at dH 7.43 (H-5), 3.96 (7-OCH3),
and 4.03 (H-19), indicating the presence of a side-chain at C-
8 on the coumarin nucleus. One of the carbonyl carbons at
dC 172.69 (C-10) showed three-bond correlations with the
methylene protons at dH 4.72 and 4.78 (H-59) on the side-
chain which correlated with the methine carbon at dC 58.07
(C-29) on the epoxide. The exo-methylene carbon at dC

115.84 (C-49) correlated with the methine proton at dH 4.05
(H-29) and the methylene protons at dH 4.72 and 4.78 (H-59).
On the basis of the foregoing spectral data, structure 1 was
assigned for micromarin-A.

Structures of Micromarin-B (2) and -C (3) These new
coumarins were isolated as pale yellow oils, [a]D 21.64°
(CHCl3) and [a]D 28.11° (CHCl3), respectively, and had the
same molecular formula C20H24O7 based on the HR-FAB-MS
spectra of both compounds. The UV and IR spectra of these
compounds closely resemble each other. In the 1H-NMR
spectra, both compounds showed characteristic signals as-
signable to a 7-methoxy-8-substituted coumarin nucleus and
an isovaleryloxy group (Table 1). Moreover, the presence of
an exo-methylene group [d 5.02 (2H, br s); d 5.34 (1H, br s),
5.33 (1H, br s)], two adjacent methines [d 5.32, 4.65 (each
1H, d, J58.4 Hz); d 5.43 (1H, dd, J58.1, 11.0 Hz), 4.64 (1H,
dd, J58.1, 6.6 Hz)] attached to a hydroxyl group [d 3.79,
3.32 (each 1H, br); d 3.68 (1H, d, J511.0 Hz), 2.41 (1H, d,
J56.6 Hz)], and an allylic methylene [d 4.57 (2H, br s); d
4.77 (1H, d, J513.2 Hz), 4.80 (1H, d, J513.2 Hz)] bearing
an ester group were suggested in each of the coumarins.
These spectral data clearly show that both coumarins have the
partial structure [–CH(OH)–CH(OH)–C(5CH2)–CH2–O–].
These spectral data and analyses of HMBC spectrum (see
Experimental) suggested that these coumarins were di-
astereoisomeric isomers of each other involving their two
oxygenated carbons. In order to confirm the structure of
these coumarins, treatment of micromarin-A (1) with 1 N

H2SO4 in dioxane at room temperature gave two glycols 29
and 39. One (29) of them was found to be identical with nat-
ural 2 and the other with natural 3 by IR, 1H-NMR, and co-
TLC comparisons. Furthermore, treatment of these glycols

[–C–C–C(5CH2)–CH2–O–]
_ _O
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with acetone in the presence of a catalytic amount of toluene-
p-sulphonic acid (p-TsOH) gave the corresponding ace-
tonides, (2a) and (3a), respectively. For the reciprocal differ-
ential NOEs between H-19 (d 6.13) and H-29 (d 5.13) in mi-
cromarin-C acetonide (3a), 13 and 11% enhancements were
observed. On the other hand, in the case of micromarin-B
acetonide (2a), no NOE enhancement was observed, neither
by irradiation of H-19 at d 5.57 nor of H-29 at d 5.21. Since
this spectral evidence shows clearly that the vicinal protons
adjacent to the oxygen atoms of the acetonide ring in the mi-
cromarin-C acetonide (3a) molecule should be cis, the struc-
ture of micromarin-C must be in the erythro form (3). Thus,
micromarin-B should be in the threo form (2). The absolute
stereochemistry of these coumarins remains undetermined.

Structure of Micromarin-F (4) Micromarin-F (4) was
obtained as a colorless oil, C15H16O4. The 7-methoxy-8-sub-

stituted coumarin nucleus in this compound was also con-
firmed by the typical UV bands (see Experimental), and two
pairs of AB-type doublets [d 7.62 (H-4), 6.24 (H-3) (each
1H, d, J59.5 Hz) and d 7.31 (H-5), 6.84 (H-6) (each 1H,
d, J58.4 Hz)] and a 3H-singlet at d 3.92 (7-OCH3) in the
1H-NMR spectrum.10) The remaining 1H-NMR signals at d
3.60 (2H, d, J57.0 Hz), 5.50 (1H, m), 1.89 (3H, s), and 3.99
(2H, s) and mass fragment peaks at m/z 229 (M2 ·CH2–OH)1

and 175 (M2 ·CH2–CH5C(CH3)–CH2–OH)1 suggested the
presence of [–CH2–CH5C(CH3)–CH2–OH] in the side-
chain. Based on these spectral data, coupled with the appear-
ance of NOE enhancement between the benzyl proton signal
(H-19, d 3.60) and a vinyl methyl proton signal (H-49, d
1.89), and the results of the HMBC experiment (see Experi-
mental), the structure of micromarin-F was concluded to be
4. 
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Fig. 1. C–H Long-Range Correlations in the HMBC Spectrum of Micro-
marin-A (1) in CDCl3

Table 1. 1H-NMR Data for the New Coumarins in CDCl3

1 2 3 4 5 6

H-3 6.26 (d, 9.5) 6.25 (d, 9.5) 6.27 (d, 9.5) 6.24 (d, 9.5) 6.24 (d, 9.5) 6.28 (d, 9.5)
H-4 7.62 (d, 9.5) 7.62 (d, 9.5) 7.64 (d, 9.5) 7.62 (d, 9.5) 7.65 (d, 9.5) 7.63 (d, 9.5)
H-5 7.43 (d, 8.4) 7.41 (d, 8.8) 7.42 (d, 8.8) 7.31 (d, 8.4) 7.37 (d, 8.4) 7.32 (d, 8.4)
H-6 6.87 (d, 8.4) 6.88 (d, 8.8) 6.90 (d, 8.8) 6.84 (d, 8.4) 6.88 (d, 8.4) 6.87 (d, 8.4)
7-OCH3 3.96 (3H) 3.95 (3H) 3.97 (3H) 3.92 (3H) 3.95 (3H) 3.97 (3H)
H-19 4.03 (d, 2.2) 5.32 (br d, 8.4) 5.43 (dd, 11.0, 8.1) 3.60 (2H, d, 7.0) 6.42 (d, 12.2) 7.44 (d, 17.1)
H-29 4.05 (d, 2.2) 4.65 (d, 8.4) 4.64 (dd, 6.6, 8.1) 5.50 (m) 6.41 (d, 12.2) 7.00 (d, 17.1)
H-49 5.54 (br) 5.02 (2H, br) 5.34 (br) 1.89 (3H) 4.87 (d, 1.7) 5.41 (d, 1.5)

5.37 (br) 5.33 (br) 4.72 (d, 1.7) 5.36 (d, 1.5)
H-59 4.78 (d, 13.2) 4.57 (2H, br) 4.80 (d, 13.2) 3.99 (2H) 4.22 (2H) 4.53 (2H)

4.72 (d, 13.2) 4.77 (d, 13.2)
Others 2.25 (2H, d, 7.3, H-20) 2.19 (2H, d, 7.3, H-20) 2.28 (2H, d, 7.3, H-20)

2.13 (m, H-30) 2.07 (m, H-30) 2.14 (m, H-30)
0.95 0.93 0.98
(6H, d, 6.7, 30-CH3) (6H, d, 6.7, 30-CH3) (6H, d, 6.7, 30-CH3)

3.79 (br, 11-OH) 3.68 (d, 11.0, 11-OH)
3.32 (br, 12-OH) 2.41 (d, 6.6, 12-OH)

Values in (d) ppm. The coupling constants (J) in parentheses are in Hz. All signals correspond to 1H, and were observed as a singlet, unless otherwise stated.

Table 2. 13C-NMR Data for the New Coumarins in CDCl3

1 2 3 4 

C-2 160.14 (s) 159.90 (s) 160.01 (s) 161.28 (s)
C-3 113.50 (d) 113.45 (d) 113.54 (d) 113.03 (d)
C-4 143.32 (d) 143.61 (d) 143.65 (d) 145.96 (d)
C-4a 112.85 (s) 113.13 (s) 113.25 (s) 112.98 (s)
C-5 129.10 (d) 128.78 (d) 128.60 (d) 127.23 (d)
C-6 107.55 (d) 107.78 (d) 107.87 (d) 107.31 (d)
C-7 161.81 (s) 160.09 (s) 160.37 (s) 160.22 (s)
7-OCH3 56.31 (q) 56.28 (q) 56.35 (q) 56.05 (q)
C-8 112.02 (s) 115.41 (s) 116.11 (s) 117.12 (s)
C-8a 153.97 (s) 152.88 (s) 153.25 (s) 152.87 (s)
C-19 53.01 (d) 70.24 (d) 69.15 (d) 21.46 (d)
C-29 58.07 (d) 75.90 (d) 75.89 (d) 122.50 (d)
C-39 140.27 (s) 142.60 (s) 144.08 (s) 135.75 (s)
C-49 115.84 (t) 115.17 (t) 116.59 (t) 13.83 (q)
C-59 63.19 (t) 63.39 (t) 64.34 (t) 68.75 (t)
C-10 172.69 (s) 172.68 (s) 172.97 (s)
C-20 43.34 (t) 43.26 (t) 43.33 (t)
C-30 25.65 (d) 25.64 (d) 25.67 (d)
30-CH3 22.38 (q32) 22.36 (q32) 22.42 (q 32)

Values in (d) ppm. 
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Structure of Micromarin-G (5) Micromarin-G (5) was
obtained as a colorless oil, C15H14O4. The presence of a 7-
methoxy-8-substituted coumarin nucleus was also suggested
by the UV, IR, and 1H-NMR spectra (see Table 1 and Experi-
mental). In the 1H-NMR spectrum, there were signals assign-
able to a Z-oriented disubstituted double bond [d 6.42 (H-19),
6.41 (H-29) (each 1H, d, J512.2 Hz)], an exo-methylene
group [d 4.87, 4.72 (each 1H, d, J51.7 Hz, H-49)], and a
methylene [d 4.22 (2H, s, H-59)] adjacent to a hydroxyl
group. Based on the aforementioned results, together with
mass fragment ions at m/z 227 (M2 ·CH2–OH)1 and 175
(M2 ·CH5CH(5CH2)–CH2–OH)1 in the EI-MS, the struc-
ture of micromarin-G was concluded to be 5.

Structure of Micromarin-H (6) Micromarin-H (6) was
obtained as a pale yellow oil. The molecular formula
C15H14O4 was found to be the same as that of 5 by HR-MS.
The presence of the side-chain [(E)–CH5CH–C(5CH2)–
CH2OH] at C-8 was suggested by the following spectral data:
observations of 1) exo-methylene proton signals [d 5.41,
5.36 (each 1H, d, J51.5 Hz, H-49)] and a 2H-singlet [d 4.53
(H-59)] adjacent to a hydroxyl group, 2) AB-type signals at d
7.44 and 7.00 (each 1H, d) having a large coupling constant
(J517.1 Hz) in the 1H-NMR spectrum, 3) mass fragment
ions at m/z 227 (M2 ·CH2–OH)1 and 175 (M2 ·CH5
CH(5CH2)–CH2–OH)1 in the EI-MS. Based on these re-
sults, we assigned the structure 6 to micromarin-H.

Known coumarins isolated from the same plant material
were characterised as micromelin (7),5,7,8) murralonginol
isovalerate (8),11,12) microminutinin (9),3) 6-methoxymi-
crominutinin (10),3) microminutin (11),5) and murrangatin
(12)11,12) by comparisons of 1H-NMR and IR spectra with
spectroscopic data reported in the literature.3,5,7,8,11,12)

Experimental
1H- and 13C-NMR, H–H correlation spectroscopy (COSY), NOE, and

HMBC (J58 Hz) spectra were recorded on an A-400 or A-600 (JEOL) spec-
trometer in CDCl3, unless otherwise stated. Chemical shifts are shown in d
values (ppm) with tetramethylsilane (TMS) as an internal reference. MS
were recorded on an M-80 (Hitachi), HX-110 (JEOL), or JMS-700 (JEOL)
spectrometer having a direct inlet system. UV spectra were recorded on a V-
550 UV/VIS spectrophotometer (JASCO) in MeOH, IR spectra on a FT/IR-
230 (JASCO) in CHCl3, and optical rotations on a DIP-370 (JASCO) in
CHCl3 at 25 °C. Preparative TLC was carried out on Kieselgel 60 F254

(Merck). 
Plant Material Stems of Micromelum minutum WIGHT et ARN (Ru-

taceae) were collected in Nakorn-Rachasima province, Thailand, in April,
1996. Voucher specimens have been deposited in the herbarium of the Fac-
ulty of Pharmaceutical Sciences, Chulalongkorn University. The plant mate-
rials were identified by Dr. Nijsiri Ruangrungsi and compared with herbar-
ium specimens at the Royal Forest Department, Ministry of Agriculture and
Cooperative, Bangkok.

Extraction and Isolation Dried stems of the plant (160 g) were ex-
tracted with acetone at room temperature. The acetone extract (2.36 g) was
subjected to silica-gel column chromatography eluting with hexane and
hexane–acetone (7 : 3, 3 : 2, 1 : 1, 1 : 4), successively, to give 6 fractions.
Each fraction was further subjected to silica-gel column chromatography
and preparative TLC with appropriate combinations of hexane, CH2Cl2, iso-
Pr2O, benzene, CHCl3, EtOAc, acetone, and MeOH as developing solvents
to give six new coumarins along with six known coumarins, as stated below.
The hexane–acetone (7 : 3) eluate gave micromarin-A (1) (57.9 mg), mi-
cromelin (7) (28.8 mg), murralonginol isovalerate (8) (0.4 mg), microminu-
tinin (9) (471.9 mg), 6-methoxymicrominutinin (10) (9.7 mg), micromarin-F
(4) (10.7 mg), and micromarin-G (5) (1.1 mg). The hexane–acetone (1 : 1)
eluate gave microminutin (11) (105.1 mg), micromarin-H (6) (1.0 mg), mi-
cromarin-C (3) (1.2 mg), and murrangatin (12) (0.5 mg). The hexane–ace-
tone (1 : 4) eluate gave micromarin-B (2) (7.5 mg). 

Micromarin-A (1); Colorless powder. [a]D 13.44° (c50.16, CHCl3). UV

lmax (log e) nm: 209 (4.82), 256 (4.14), 267 (4.03), 321 (4.60). IR nmax

cm21: 1732, 1606. EI-MS m/z (%): 358 (M1, 5), 274 (41), 257 (40), 256
(78), 245 (23), 229 (33), 213 (38), 211 (29), 205 (31), 203 (33), 190 (100),
185 (57), 175 (15). HR-MS Calcd for C20H22O6: 358.1414. Found:
358.1385. Differential NOE: irradiation at d 3.96 (7-OCH3) gave 15% en-
hancement at d 6.87 (H-6). 

Micromarin-B (2); Pale yellow oil. [a]D 21.64° (c50.22, CHCl3). UV
lmax (log e) nm: 207 (4.74), 247 (3.95), 258 (3.93), 322 (4.42). IR nmax

cm21: 3545 (br), 1732, 1606. EI-MS m/z (%): 257 (52), 206 (100), 205 (99),
189 (11), 175 (27). FAB-MS m/z : 377 (M1H)1. HR-FAB-MS Calcd for
C20H25O7: 377.1600. Found: 377.1591. Differential NOE: irradiation at d
3.95 (7-OCH3) gave 26% enhancement at d 6.88 (H-6). HMBC C–H corre-
lations: C-2→H-3, H-4; C-4→H-5; C-4a→H-3, H-6; C-5→H-4; C-7→H-5,
H-6, 7-OCH3; C-8→H-6, H-29; C-8a→H-4, H-5; C-19→H-29; C-29→H-49,
H-59; C-39→H-29, H-49, H-59; C-49→H-59; C-59→H-29, H-49; C-10→H-59,
H-20; C-20→H-30, 30-CH3; C-30→H-20, 30-CH3; 30-CH3→H-20, H-30.

Micromarin-C (3); Pale yellow oil. [a]D: 28.11° (c50.09, CHCl3). UV
lmax nm: 205, 248, 257, 321. IR nmax cm21: 3568 (br), 1732, 1608. EI-MS
m/z (%): 257 (3), 205 (100), 190 (7), 175 (13). FAB-MS m/z : 377 (M1H)1.
HR-FAB-MS Calcd for C20H25O7: 377.1600. Found: 377.1580. Differential
NOE: irradiation at d 3.97 (7-OCH3) gave 19% enhancement at d 6.90 (H-
6). HMBC C-H correlations: C-2→H-3, H-4; C-4→H-5; C-4a→H-3, H-6;
C-5→H-4; C-7→H-5, H-6, H-19, 7-OCH3; C-8→H-6, H-19, H-29; C-8a→H-
4, H-5, H-19; C-19→H-29, 19-OH, 29-OH; C-29→H-19, 29-OH, H-49, H-59;
C-39→H-29, 29-OH, H-49, H-59; C-49→H-59; C-59→H-29, H-49; C-10→H-
59, H-20; C-20→H-30, 30-CH3; C-30→H-20, 30-CH3; 30-CH3→H-20, H-30.

Treatment of Micromarin-A (1) with 1 N H2SO4 A solution of micro-
marin-A (1) (9.8 mg) in dioxane (2.5 ml) and 1 N H2SO4 (2.5 ml) was stirred
for 1.5 h at room temperature. The reaction mixture was treated in the usual
manner and the residue was subjected to preparative TLC (MeOH–CHCl3,
1 : 49) to yield glycols 29 (7.2 mg) and 39 (0.6 mg). Glycols 29 and 39 were
found to be identical with natural 2 and 3, respectively, by IR, 1H-NMR, and
co-TLC comparisons. 

Micromarin-B Acetonide (2a) A solution of micromarin-B (2) (2.1
mg) in acetone (1.0 ml) and a catalytic amount of p-TsOH were stirred for
20 min at room temperature. The mixture was then neutralized with Et3N
and the solvent was evaporated under reduced pressure. The residue was
subjected to silica-gel preparative TLC (MeOH–CHCl3, 1 : 49) to yield com-
pound (2a) (2.0 mg) as a colorless oil. UV lmax nm: 206, 219 (sh), 249, 258,
321. IR nmax cm21: 1732, 1608. EI-MS m/z (%): 416 (M1, 1), 401 (3), 257
(24), 246 (47), 212 (17), 205 (22), 189 (27), 160 (21), 127 (26), 110 (100).
1H-NMR d : 7.61 (1H, d, J59.5 Hz, H-4), 7.42 (1H, d, J58.4 Hz, H-5), 6.88
(1H, d, J58.4 Hz, H-6), 6.27 (1H, d, J59.5 Hz, H-3), 5.57 (1H, d, J58.8 Hz,
H-19), 5.31 (1H, s, H-49), 5.21 (1H, d, J58.8 Hz, H-29), 5.19 (1H, s, H-49),
4.56 (1H, d, J513.9 Hz, H-59), 4.54 (1H, d, J513.9 Hz, H-59), 3.93 (3H, s,
7-OCH3), 2.06 (2H, d, J57.3 Hz, H-20), 2.00 (1H, m, H-30), 1.71 (3H, s,
CH3), 1.54 (3H, s, CH3). 0.88 (6H, d, J56.6 Hz, 30-CH3).

Micromarin-C Acetonide (3a) Micromarin-C (3) (0.6 mg) was treated
with acetone and p-TsOH under the same conditions as for 2 to yield com-
pound (3a) (0.5 mg) as a colorless oil. UV lmax (log e) nm: 204, 224 (sh),
249, 259, 321. IR nmax cm21: 1732, 1606. EI-MS m/z (%): 416 (M1, 1), 401
(3), 258 (3), 246 (53), 212 (19), 205 (28), 189, (34), 160 (26), 127 (36), 110
(100). 1H-NMR d : 7.56 (1H, d, J59.5 Hz, H-4), 7.35 (1H, d, J58.4 Hz, H-
5), 6.80 (1H, d, J58.4 Hz, H-6), 6.22 (1H, d, J59.5 Hz, H-3), 6.13 (1H, d,
J58.8 Hz, H-19), 5.41 (1H, br s, H-49), 5.13 (1H, d, J58.4 Hz, H-29), 4.95
(1H, s, H-49), 4.19 (1H, d, J513.2 Hz, H-59), 4.11 (1H, d, J513.2 Hz, H-59),
3.88 (3H, s, 7-OCH3), 2.11 (2H, d, J57.3 Hz, H-20), 2.01 (1H, m, H-30),
1.81 (3H, s, CH3), 1.50 (3H, s, CH3), 0.89 (6H, d, J56.6 Hz, 30-CH3). Dif-
ferential NOE: irradiation at d 6.13 (H-19) gave 13% enhancement at d 5.13
(H-29); irradiation at d 5.13 (H-29) gave 11% enhancement at d 6.13 (H-19).

Micromarin-F (4); Colorless oil. UV lmax (log e) nm: 206 (4.61), 220 (sh)
(4.09), 249 (3.68), 257 (3.72), 322 (4.18). IR nmax cm21: 3535 (br), 1720,
1608. EI-MS m/z (%): 260 (M1, 27), 242 (17), 229 (12), 211 (24), 190 (58),
175 (19), 167 (69), 151 (100). HR-MS Calcd for C15H16O4: 260.1047.
Found: 260.1030. Differential NOE: irradiation at d 3.92 (7-OCH3) gave
15% enhancement at d 6.84 (H-6); irradiation at d 3.99 (H-59) gave 9% en-
hancement at d 5.50 (H-29) and 4% enhancement at d 1.89 (H-49); irradia-
tion at d 3.60 (H-19) gave 7% enhancement at d 5.50 (H-29) and 8% en-
hancement at d 1.89 (H-49); irradiation at d 1.89 (H-49) gave 4% enhance-
ment at d 3.60 (H-19) and 4% enhancement at d 3.99 (H-59). HMBC C–H
correlations: C-2→H-3, H-4; C-3→H-4; C-4→H-5; C-4a→H-3, H-6; C-
5→H-4; C-7→H-5, H-19, 7-OCH3; C-8→H-6, H-19, H-29; C-8a→H-4, H-5,
H-19; C-19→H-29; C-29→H-19, H-49, H-59; C-39→H-19, H-49, H-59; C-
49→H-29, H-59; C-59→H-29, H-49. 
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Micromarin-G (5); Colorless oil. UV lmax nm: 205, 264, 276, 315. IR
nmax cm21: 3508 (br), 1724, 1601. EI-MS m/z (%): 258 (M1, 100), 227 (23),
226 (40), 213 (25), 197 (46), 185 (25), 175 (16). HR-MS Calcd for
C15H14O4: 258.0891. Found: 258.0902. Differential NOE: irradiation at d
3.95 (7-OCH3) gave 10% enhancement at d 6.88 (H-6). 

Micromarin-H (6); Pale yellow oil. UV lmax nm: 205, 259, 274, 301, 315.
IR nmax cm21: 3534 (br), 1722, 1599. EI-MS m/z (%): 258 (M1, 100), 227
(19), 222 (30), 213 (24), 197 (34), 185 (24), 175 (17). HR-MS Calcd for
C15H14O4: 258.0891. Found: 258.0909. Differential NOE: irradiation at d
3.97 (7-OCH3) gave 17% enhancement at d 6.87 (H-6). 
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