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CHEMICAL DEFENSES OF APLYSIA CALIFORNICA AND SENSORY PROCESSING BY 

PREDATORY FISHES 

 

 

by 

 

 

MATTHEW NUSNBAUM 

 

 

Under the Direction of Charles Derby 

 

ABSTRACT 

In predator-prey interactions, prey species have complex defensive behaviors to protect 

themselves from predators.  Chemical defenses are one tool that is employed to protect against 

predators, especially for slow-moving or otherwise susceptible prey.  Many of these chemical 

defenses have been studied and the effective compounds identified, but few studies were 

performed on their mechanisms of detection.   

In my research, I used the sea hare, Aplysia californica, as chemically defended prey.  

This slow moving mollusk is soft-bodied with no external shell, but it has adapted a number of 

defenses including chemical defenses.  Ink is a sticky mixture of the products of the ink gland 

and the opaline gland which are mixed in the mantle cavity and released toward an attacker.  I 

show that this ink secretion protects the sea hare from predation by a fish predator.  



 

Because many deterrent compounds taste bitter, bitter taste receptors are thought to 

protect predators from ingesting harmful compounds in prey.  Studies of deterrent taste detection 

have commonly utilized bitter compounds from human hedonics to study the responses in 

animals, such as fruit flies, fishes, rats, and monkeys.  In my dissertation, I argue that the study 

of chemical defenses allows us to ask more questions about detection of relevant deterrents and 

interactions between predators and prey at the individual and population levels.  My results show 

that diet-derived pigments in Aplysia ink, aplysioviolin and phycoerythrobilin, are strongly 

deterrent to fish predators.  Electrophysiological analyses of the gustatory system show that these 

compounds are equipotent and cross-adapt each others‘ responses completely.    Aplysioviolin 

and phycoerythrobilin produced incomplete reciprocal cross-adaptation with amino acids and 

adapted bile salt responses but were not significantly adapted by these latter stimuli.  These 

results showed multiple pathways that are sensitive to aplysioviolin and phycoerythrobilin, 

which may have different effects on the physiology and behavior of the predatory fish.  My 

findings demonstrate the value to the fields of chemical ecology and chemosensory biology of 

studying sensory processing of relevant deterrent compounds.  This work lays the foundation for 

how a diet-derived photopigment is adapted by a species to protect itself from predators by 

stimulating their chemosensory systems. 

 

INDEX WORDS: Aplysia californica, Aplysioviolin, Ariopsis felis, Catfish, Chemoreception, 

Deterrence, Electrophysiology, Fish, Gustation, Ink, Phycoerythrobilin, Predator-Prey, 

Sea hare,  Thalassoma bifasciatum, Wrasse 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

In predator-prey interactions, prey species use various evasive tactics against attacking 

and threatening predators.  Chemical defenses are used by many organisms to avoid predators, 

and some of the effector molecules are identified (Pawlik 1995; McClintock and Baker 2001; 

Matz et al. 2008).  Many studies demonstrated that chemical defenses protect prey species from 

predation (Eisner and Meinwald 1966; Whittaker and Feeny 1971; Janzen 1977; Tachibana 

1988; Paul 1992; Pawlik 1993; Berenbaum 1995; McClintock and Baker 2001; Kelley et al. 

2003; Cruz-Rivera and Villareal 2006).  The mechanisms behind these effects, however, have 

received less attention.  Anti-predatory chemical defenses function as irritants, toxins, deterrents, 

or distracters.  If an animal can prevent a predator from eating it, whether through toxins or 

deterrents, it enhances its likelihood to survive to increase its reproductive output.  Being able to 

detect and respond to these defenses can protect predators from ingesting potentially harmful 

prey items.  My dissertation is a study of the chemical defenses of the sea hare, Aplysia 

californica, their effectiveness against fish predators, the identity of the deterrent components, 

and the mechanisms by which these deterrents have their effects.  Studying sea hare chemical 

defenses and fish chemoreception provides insight into the sensory processing of behaviorally 

relevant deterrent signals, which has not been well-studied in aquatic vertebrates. 
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1.1 Chemical defenses in the marine environment 

Chemical defenses are widespread in marine systems and are especially concentrated in 

small, slow moving or otherwise unprotected species.  The sources and effects of these chemical 

defenses are many and varied and depend on the evolutionary history of the producer as well as 

that of their potential consumers.  Thousands of marine secondary metabolites were identified in 

sponges, ascidians, soft corals, bryozoans, annelids, algae, marine microbes, and many other 

benthic and pelagic organisms, and many of these secondary metabolites were behaviorally 

identified as chemical defenses (Faulkner 1991, 1993). Chemical defenses include compounds 

that are irritants, toxins, venoms, or deterrents, and they may have general effects or be targeted 

towards specific classes of predators.  Sponges synthesize and maintain an enormous diversity of 

chemical defenses in their tissues, many of which are feeding deterrents to fishes and crustaceans 

(Albrizio et al. 1995; Chanas and Pawlik 1995; Pawlik et al. 1995; Wilson et al. 1999).  These 

defenses are considered passive and constitutive because the predator has to come into direct 

contact with the deterrent-containing tissue in order for it to be exposed to significant 

concentrations of the active compounds.  However, passive defenses from one species can be 

sequestered in the diet of a consumer, and the effect can be enhanced by the alteration or 

concentration of these compounds.  One example is the nudibranch Hexabranchus sanguineus, 

which feeds preferentially on Halichondria sponges; the sponges produce oxazole macrolides 

that deter fish feeding (Pawlik 1993). The nudibranch alters these compounds and concentrates 

them in its dorsal mantle and egg masses where they serve as defenses against the nudibranch‘s 

predators.  The concentrations of these deterrent compounds are relatively low in the sponge, 

concentrated in the nudibranch tissue, and are significantly greater in the egg masses, but even 

the lowest occurring concentrations produce strong deterrent responses in fish (Pawlik 1993). 
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Having constitutive deterrents is an effective way to avoid predation; however, if the prey 

can avoid any of its tissue being damaged, it may enhance its likelihood of surviving an 

encounter (Endler 1986, 1991; Skelhorn and Rowe 2005). To avoid any contact, the prey must 

release their defenses in such a way that the predator will encounter and respond to it prior to 

taking tissue from the prey.  These active defenses can be synthesized de novo or sequestered 

from the diet and concentrated in such a way that they are ready for release during a predatory 

encounter.  An efficient mechanism of action for these defenses is to take advantage of 

predators‘ existing chemical senses to produce an avoidance or rejection response.  While a great 

deal of research has been performed in identifying compounds that function as deterrents, little is 

known concerning the predators‘ ability to detect ecologically relevant aversive cues (Hara 1994; 

Hay 1996; Kicklighter et al. 2005; Hayden et al. 2007; Kamio et al. 2007; Cohen et al. 2008).  In 

this dissertation, I take advantage of the ink secretion of A. californica to study how it protects 

the sea hare from predators, how the aversive chemicals are detected and how this detection may 

be coded in the periphery in a predatory fish. 

1.2 Aplysia californica chemical defenses 

A. californica is a familiar species to many neurobiologists, chemical ecologists, and 

natural products chemists, as it is a rich source of biologically active chemistry and its nervous 

system has been well-studied (Kandel 1979; Kinnel et al. 1979; Walters and Erickson 1986; 

Gillette et al. 1991; Yamazaki 1993; Pennings 1994; Frost and Kandel 1995; Wright and Carew 

1995; de Nys et al. 1996; Painter et al. 1998; Gallimore and Scheuer 2000; Ginsburg and Paul 

2001; Cummings et al. 2005).  A. californica is not known to have any natural predators, but 

some generalist predators will attack it on occasion (Johnson and Willows 1999).  Like A. 
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californica, many prey species have to deal with the complex problems of defending themselves 

against a diversity of predators with a limited number of defenses (Endler 1986; Pearson 1989).  

Sea hares are well-suited for the study of chemical defenses, as they are generally lacking other 

types of protection, such as speed, cryptic coloration, or hard outer shells and must rely on 

defensive chemistry for protection. 

Aplysia californica is a bottom dwelling shell-less gastropod mollusk that can be found in 

subtidal and intertidal waters in the Pacific Ocean from Northern California to Baja, California.  

A. californica can release ink when disturbed as early as the 1-mm long, post-metamorphic 

juvenile stage (Kriegstein 1977).  The sea hare produces an ink consisting of secretions from its 

ink and opaline glands.  Sea hares of the genus Aplysia obtain a variety of secondary plant toxins 

and pigments exclusively from a red algae diet (Winkler and Dawson 1963; Darling and 

Cosgrove 1966; Irie et al. 1969; Chapman and Fox 1969; Winkler 1969; Watson 1973; 

Blankenship et al. 1975; Kinnel et al. 1979; MacColl et al. 1990; Kamio et al. 2010a, 2010b).  

The two glandular products, ink and opaline, are typically released simultaneously (Tritt and 

Byrne 1980; Prince et al. 1998; Nolen and Johnson 2001).  Ink is diffusible and purple, while 

opaline is cloudy and highly viscous.  Ink contains red-algal derived pigments, secondary 

metabolites, proteins, free amino acids, and other chemicals (MacColl 1990; Pennings and Paul 

1993; Johnson and Willows 1999; Petzelt et al. 2002, Kicklighter et al. 2005).  Opaline contains 

algal secondary metabolites, proteins, free amino acids, and other compounds (Johnson and 

Willows 1999; Rogers et al. 2000, Kicklighter et al. 2005). 

Mechanisms of chemical defense by ink of A. californica were previously described for 

two potential predators, the California spiny lobster, Panulirus interruptus, and a Pacific sea 

anemone, Anthopleura sola (Nolen et al. 1995; Kicklighter et al. 2005; Kicklighter and Derby 



 5 

2006).  A. californica ink deters predation by P. interruptus through a variety of mechanisms 

including unpalatability, sensory disruption, and phagomimicry.  In spiny lobsters, stimulation 

by the ink and opaline secretions occurs in both the gustatory and olfactory systems, as 

demonstrated by electrophysiological recordings (Kicklighter et al. 2005).  Injection of ink from 

Aplysia dactylomela into pieces of fish fillet caused rejection by 95% of laughing gulls Larus 

atricilla (DiMatteo 1981).  Of the 37 species of Aplysia, 30 have an ink gland that can release ink 

when the animal is attacked by a predator (reviewed in Nolen et al. 1995; Johnson and Willows 

1999).  Recent work identified compounds in A. californica ink that are deterrent to blue crabs, 

Callinectes sapidus (Kamio et al. 2010a, 2010b). Further, these same compounds, Aplysioviolin 

(APV) and Phycoerythrobilin (PEB), are deterrent to fish at natural concentrations and in serial 

dilutions to 0.01% full strength.  Chapter 2 of this dissertation examines the deterrent effects of 

the components of the ink secretion, ink and opaline, against a group of predatory fishes 

representing a variety of predatory styles and habitats.  Chapter 3 tests the fish chemosensory 

systems affected by ink and the effectiveness of the ink secretion in protecting the sea hare from 

predatory fishes.  

 

1.3 Chemical Senses 

Vertebrates can possess a number of chemosensory structures, including taste buds, 

olfactory organs, vomeronasal organs, septal organs, the Grüneberg ganglion and solitary 

chemoreceptor cells.  Gustation is defined as the chemical sense that is mediated by taste 

receptor cells within taste buds. Olfactory responses are mediated through specific protein 

receptors expressed in the dendrites of primary olfactory receptor neurons (ORNs).  The other 

chemosensory organs are not as well-studied for their physiological or behavioral effects and 
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will not be a focus in this dissertation.  The behaviors mediated by olfaction and gustation can 

often discriminate the two systems.  Gustation mediates simple and reflexive behaviors, most 

commonly consummatory feeding behaviors, whereas olfaction is often involved in more 

complex behaviors, such as searching for distant chemical sources, courtship behavior, and 

chemosensory learning behaviors (Atema 1977).   

Olfactory systems are involved in the detection and discrimination of a vast number of 

biologically relevant compounds used to identify and locate prey, conspecifics, mates, or 

spawning habitats (Sorensen and Caprio 1998). Initially, the olfactory system detects odorants 

with an assortment of olfactory receptor molecules (ORs) located within the dendritic 

membranes of ORNs.  The majority of vertebrate ORs are members of the superfamily of seven-

transmembrane domain G-protein coupled receptors, but small groups of ORNs that do not 

express ORs were identified that express trace amine-associated receptors (TAARs), transient 

receptor potential (TRP) channels or V1R receptors in addition to GC-D neurons which express 

the receptor guanylyl cyclase GC-D and utilize a cGMP-mediated cascade to transduce 

chemosensory stimuli (Buck and Axel 1991; Munger et al. 2009).  Canonical ORNs generally 

express one of ~1,000 OR genes in mammals (Buck and Axel 1991) or one of ~100 in fish (Ngai 

et al. 1993; Barth et al. 1996) which encode for molecular receptors. Evidence indicates a 

correlation exists in the species of teleosts investigated between the anatomical shape of ORN, 

the class of molecular receptor expressed, the type of biologically relevant odorant detected, the 

signal transduction cascade activated, and the portion of the olfactory bulb (OB) that processes 

the odorant information (Friedrich and Korsching 1998; Hansen et al. 2003; Hara and Zhang 

1996; Nikonov and Caprio 2001; Sato et al. 2005).  Though Chapter 4 focuses on processing of 

defenses by the gustatory system, the olfactory system in fishes is important for food search and 



 7 

learned behaviors and may play an important role in the detection and processing of chemical 

defenses (Valentinčič et al. 2000; Valentinčič 2005; Derby and Sorensen 2008).   

Taste information is transmitted from peripheral gustatory receptors to the central 

nervous system via cranial nerves VII, IX and X.  Gustatory receptor molecules are expressed by 

taste cells organized into structures called taste buds in the epithelium of the oropharyngeal 

cavity and, in the case of many fishes, on the surface of the body.  Gustatory receptor cells 

express T1R and T2R molecular receptors which are G-protein coupled receptors (Ishimaru et al. 

2005).  In fishes, T1Rs function as dimers and detect amino and nucleic acids while T2Rs have 

not been shown to form dimers and detect aversive compounds (Oike et al. 2007).  Brockhoff et 

al. (2010) showed that individual T2Rs are broadly-tuned to respond to a wide variety of bitter 

and toxic compounds, allowing taste cells possessing a small number of T2R receptor types to 

respond to a broad spectrum of aversive compounds.  Vertebrate gustatory receptor cells are 

different from olfactory receptor cells that are primary neurons in that taste cells are modified 

epithelial cells and therefore synapse on specific cranial nerves to relay taste information to the 

central nervous system.  Some taste cells express more than one receptor type, which also 

distinguishes them from ORNs (Ishimaru 2005).  In fishes, taste buds lying within the 

oropharyngeal cavity are innervated by cranial nerves IX and X, while those positioned on the 

exterior are innervated by cranial nerve VII (Atema 1971). Cranial nerve VII innervated 

extraoral taste buds are implicated in the localization of food, whereas those within the oral 

cavity are innervated by IX and X cranial nerves and are involved in ingestion and rejection 

behaviors (Atema 1971; Finger and Morita 1985; Morita and Finger 1985).  Both systems are 

highly sensitive to amino acids and contain specific selective fibers that in channel catfish are 

most responsive to L-arginine (L-arg), L-alanine (L-ala), and L-proline (L-pro), and these fibers 
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are in different proportions in the IX and VII systems (Ogawa and Caprio 2010).  The fish 

gustatory system not only has high specificity for amino acids, but exhibits diverse sensitivities 

to organic and inorganic chemicals including bile acids, polyamines, nucleotides, quinine and 

carbon dioxide (Yoshii et al. 1979, 1980; Hara et al. 1984; Yamamori et al. 1988; Yamashita et 

al. 1989, 2006, Michel et al. 2003; Rolen et al. 2003; Caprio and Derby 2008).  Many amino 

acids, polyamines and nucleotides are thought to be attractive, food related stimuli for fishes 

(Carr et al. 1996; Kasumyan and Døving 2003).  The behavioral relevance of gustatory detection 

of bile salts and the mechanisms underlying detection of deterrents have not been well studied to 

date.  Taste information, detected at the periphery, is transmitted to the dorsal parts of the facial 

and vagal lobes, the primary gustatory nuclei of the CNS, for further processing and eventual 

translation into appropriate behavioral responses (Atema 1971).  In Chapter 4, I show that the 

catfish gustatory system is sensitive to components of the sea hare ink secretion and that these 

components also reduce responsiveness to a blend of stimulatory amino acids.   

 

1.4 Detection of deterrents 

Because many toxic metabolites taste bitter, bitter gustatory receptors are thought to 

protect predators against the ingestion of poisonous compounds in prey (Garcia and Hankins 

1975; Glendinning 1994; Glendinning et al. 1999).  Studies examining aversive taste 

discrimination found differences between invertebrate systems and vertebrate systems. In 

vertebrate systems, most commonly studied in mice and rats, a bitter sensitive gustatory receptor 

cell expresses many different T2Rs, which allows it to respond to a broad range of bitter 

compounds (Chandrashekar et al. 2000; Mueller et al. 2005).  Behavioral studies have come to 

different conclusions on whether animals can discriminate between different bitter stimuli (Dahl 
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et al. 1997; Aspen et al. 1999; Scott et al. 1999; Spector and Kopka 2002).  The current 

prevailing notion is that each T2R-expressing cell functions as a separate broadly-tuned bitter 

detector that can respond to a wide diversity of compounds but is not necessarily able to 

discriminate among them. Each cell expresses a subset of the bitter T2Rs, so that the population 

can differentially express all of the bitter receptor proteins.  With this receptor expression pattern 

vertebrates may not be able to discriminate deterrents at the gustatory receptor cell level, but 

neuronal innervation and activation patterns may serve as a mechanism by which deterrent 

identity can be assessed.  Two types of gustatory nerve fibers in channel catfish are affected by 

quinine; Group I fibers fire action potentials after quinine presentation and Group II fibers lose 

responsiveness to amino acids when they are mixed with the deterrent compound (Ogawa et al. 

1997).  The behavioral consequences of the observed activity patterns in gustatory fiber types are 

not currently known, but it is possible that they reinforce each others‘ effects so that the animal is 

deterred by aversive compounds and has reduced sensitivity to attractive compounds.  In 

invertebrate systems, evidence is accumulating that the gustatory system functions differently.  

Invertebrate gustatory receptors are expressed in primary gustatory neurons as opposed to the 

modified epithelial cells found in vertebrates (Derby and Sorensen 2008).  Some of these 

gustatory neurons are broadly tuned, as in vertebrates, but others are narrowly tuned to specific 

relevant compounds and may function as part of a labeled line for those compounds (Clyne et al. 

2000; Moon et al. 2006; Weiss et al. 2011). 

Studies in invertebrates revealed a great deal about their detection and processing of 

chemical defenses and the pathways involved in these processes.  Drosophila behaviorally 

discriminate between bitter tastants because the population of gustatory receptor molecules is 

differentially expressed in different types of taste neurons (Meunier et al. 2003; Weiss et al. 
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2011).  Meunier et al. (2003) showed that specific sensilla on Drosophila prothoracic legs 

respond with dose-dependent latency to bitter compounds and identified the responding cells as 

S, W, and L2 cells.  These cells responded with similar latencies, but had opposite activity 

patterns.  The behavioral effects of these different cell types are not known, but they could 

reinforce each other to ensure an effective deterrent response.  Weiss et al. (2011) found that the 

specificity and sensitivity of different classes of taste neurons differed, which could allow for a 

combinatorial code for identification of specific bitter tastants.  These activity patterns may aid 

in differentiating the identity of deterrent compounds and determining the appropriate contextual 

behavioral response.  Thus, deterrents, which are a class of molecules that are behaviorally 

important, are robustly detected through very different systems in vertebrates and invertebrates.  

A great deal more needs to be done to understand the detection of behaviorally relevant deterrent 

compounds by vertebrates.   Chapter 4 takes what I have learned about the chemical defenses of 

A. californica and uses this information to examine mechanisms of detection of ecologically 

relevant deterrents by an electrophysiological model for vertebrate gustation, the sea catfish 

Ariopsis felis. By using identified natural compounds to study the detection and response to 

deterrents I can begin to ask a number of questions that allow me to not only characterize the 

function of the chemosensory systems, but also to address ecological interactions at many other 

levels of organization from chemical synthesis to population dynamics.  I propose that the study 

of chemosensory pathways involved in the detection of chemical defenses should be the focus of 

sensory biologists who wish to understand the evolution and function of chemosensory systems 

as well as chemical ecologists interested in the evolution and population dynamics of secondary 

metabolites.  
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CHAPTER 2 

EFFECTS OF SEA HARE INK SECRETION AND ITS ESCAPIN-GENERATED  

COMPONENTS ON A VARIETY OF PREDATORY FISHES 
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2.1 Introduction 

Predator-prey interactions can exert strong selection pressure that affects the evolution of 

anti-predation defenses (McClintock and Baker 2001; Paul et al. 2007; Zimmer and Ferrer 2007; 

Hay 2009). These defenses include behavioral adaptations, body coloration, mechanical 

defenses, and chemical defenses. To be effective, an anti-predator defense must disrupt the 

predation event at the point of detection, approach, capture, or acceptance of the prey (Endler 

1986). Chemical defenses can be either passive, such as compounds constitutively found in 

tissues, or actively released, as in the nematocysts of a sea anemone. The adaptations are 

restricted by the natural history of the species, and they control the relationship that prey species 

have with their potential predators. Prey species that may encounter a variety of predators must 

be adapted for protection against a variety of predation methods and must have defenses that 

affect organisms with very different sensory systems and adaptations of their own. 

Mollusks in general, and opisthobranch mollusks in particular, have an impressive array 

of defenses against a broad range of predators from diverse taxa, including sea anemones, 

sea stars, crustaceans, fishes, and humans (Kinnel et al. 1979; Denny 1989; Avila et al. 1991; 

Cimino and Ghiselin 2001; Cimino and Gavagnin 2006). Opisthobranchs, which include sea 

hares, are soft-bodied and slow-moving benthic snails that live in many marine habitats 

(Carefoot 1987; Wägele and Klussmann-Kolb 2005). No predator is known to make a regular 

meal of them, but a number of generalist predators, notably fish, crustaceans, and sea anemones, 

have been reported in field studies to occasionally consume them (Winkler and Tilton 1962; 

Pennings 1990; Paul and Pennings 1991; Johnson and Willows 1999; Ginsburg and Paul 2001; 

Pennings et al. 2001). Sea hares would be highly vulnerable to predators if not for the possession 

of a variety of defenses that include escape behaviors, large size, crypsis, and chemicals 
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(Carefoot 1987; Johnson and Willows 1999). Chemical defenses of sea hares include both 

passive and active forms. Passive chemical defenses include deterrent and toxic molecules in the 

skin and other tissues that are highly effective against many predators (Winkler 1969; Watson 

1973; Stallard and Faulkner 1974a, b; Ambrose et al. 1979; Kinnel et al. 1979; Paul and 

Pennings 1991; Pennings and Paul 1993; de Nys et al. 1996; Pennings et al. 1999; Ginsburg and 

Paul 2001; Wägele and Klussmann-Kolb 2005; Kamiya et al. 2006; Wägele et al. 2006; Derby 

2007), but can also include having flesh of low nutritional value (Pennings 1990; Penney 2002). 

Inking is an active chemical defense that is used as a late line of deterrence during attacks. Sea 

hare ink secretion is a sticky, purple mixture of the products of two glands (Nolen et al. 1995; 

Johnson and Willows 1999): ink, a product of the ink gland, is a deep purple color; opaline, a 

product of the opaline gland, is white and highly viscous. Ink and opaline are co-secreted, mixed 

in the mantle cavity, and released toward the source of the attack. 

 Ink secretion has been shown to protect sea hares against a number of predators, 

especially invertebrates such as crustaceans and sea anemones, though the identity of bioactive 

molecules and mechanisms of its effects are largely unexplored (see reviews by Carefoot 1987; 

Johnson and Willows 1999; Derby 2007). Mechanisms of action of sea hare ink secretion are 

best studied for Aplysia californica and two of its invertebrate predators, the spiny lobster 

Panulirus interruptus, and the sea anemone Anthopleura sola. Ink secretion reduces predation by 

P. interruptus through a variety of mechanisms including unpalatability, sensory disruption, and 

phagomimicry (Kicklighter et al. 2005; Shabani et al. 2007; Aggio and Derby 2008). Against sea 

anemones, ink secretion is an unpalatable deterrent that causes tentacular withdrawal (Nolen et 

al. 1995; Kicklighter and Derby 2006). Recent work on the blue crab Callinectes sapidus, has 
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determined that one of ink‘s purple pigments, aplysioviolin, is a chemical deterrent (Kamio et al. 

2010).  

Much less is known about the effects of sea hare ink secretion on another dominant class 

of predators in marine habitats—predatory fishes. Ink secretion from Dolabella auricularia is 

unpalatable to reef fishes (Pennings et al. 1999), and ink secretion from Aplysia dactylomela 

induced increased swimming activity in a puffer and goby (Carefoot et al. 1999). Ink, but not 

opaline, from A. californica is unpalatable to the sea catfish Ariopsis felis (Sheybani et al. 2009). 

In fact, opaline and its amino acid fraction are appetitive to sea catfish, suggesting that opaline 

might contribute to the effect of the ink secretion through sensory disruption or phagomimicry 

(Sheybani et al. 2009).  

The current study had two goals. The first was to evaluate the efficacy of sea hare ink 

secretion as a chemical deterrent against fish, with a future aim of examining mechanisms of its 

effect on this group of predators.  I examined five species of fishes, which represent a variety of 

predation styles and habitats, since these variations might influence the effectiveness of a 

particular defensive strategy. The second goal was to test the deterrent effects of a set of 

components in ink—those produced by the escapin pathway— on these fish predators. Escapin is 

an L-amino acid oxidase that oxidizes its substrates, L-lysine and L-arginine in opaline, when ink 

and opaline are secreted simultaneously, and produces a complex set of compounds that are mild 

deterrents against Panulirus interruptus and Callinectes sapidus (Yang et al. 2005; Johnson et al. 

2006; Kamio et al. 2007, 2009; Aggio and Derby 2008) (Fig. 1). 
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2.2 Materials and Methods 

Animals 

To test for the effects of the Aplysia californica ink secretion on predatory fishes, I 

performed an ingestion assay on five species of fishes with different feeding styles, ranging from 

those that engulf prey whole to those that peck small pieces from larger prey items.  I included in 

my study species that are strongly suspected of being predators of sea hares as well as some that 

are practical laboratory models that can be used in future mechanistic studies.  

The bluehead wrasse Thalassoma bifasciatum represents a good laboratory model as well 

as a potential predator of the sympatric sea hare Aplysia dactylomela, and I have performed 

further experiments with this species to examine mechanisms of deterrent effects (Nusnbaum and 

Derby 2010). Bluehead wrasses are found in the waters around Florida and the Caribbean islands 

(Feddern 1965). The advantages of using this species for aquarium bioassays have been detailed 

previously (Pawlik et al. 1987). It is a common fish species for testing anti-predatory chemical 

defenses because it is easy to maintain and train to feed on artificial diets (Lindquist and Hay 

1996; Hay et al. 1998; Kubanek et al. 2000; Odate and Pawlik 2006). For my study, juvenile 

animals, 5–10 cm long, in the yellow phase were wild-caught in south Florida and maintained at 

Georgia State University in individual 40-liter glass aquaria (50 cm x 25 cm x 30 cm) containing 

filtered and aerated (Whisper Filters Tetra, Blacksburg, VA) seawater (Instant Ocean, Aquarium 

Systems, Mentor, OH) at a salinity of 28 ppt and a temperature of about 21 °C. Fish were fed 

shrimp and brine shrimp ad libitum twice daily. Fish were kept on a 14:10 light/dark cycle and 

maintained in the same aquaria in which they were tested.  

The other fishes that I tested are señorita wrasses (Oxyjulis californica), bonnethead 

sharks (Sphyrna tiburo), mummichogs, or killifish (Fundulus heteroclitus), and pinfish (Lagodon 
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rhomboides). Señorita wrasses are sympatric with A. californica at intermediate depths in the 

Pacific (Bray and Ebeling 1975). Although there are no records of predation events between 

these species, it is possible for adult señorita wrasses, which can reach 25 cm in total length, to 

eat juvenile sea hares. Bonnethead sharks are found along the east and west coasts of North and 

South America and could potentially encounter one of a number of Aplysia species including A. 

californica (Enric et al. 1996). This shark is a bottom-feeding predator that eats a wide variety of 

molluscs and crustaceans. Mummichogs are small generalist predators that typically feed on 

insect larvae, small crustaceans, and molluscs, and live in intertidal waterways or salt marshes 

throughout the Atlantic coastal areas (Bigelow and Schroeder 1953). It is unlikely that this 

species would encounter a sea hare or attack one in nature, but it represents a generalist predator 

that can easily be trained to feed on artificial diets. Pinfish are unlikely to attack a sea hare, but 

they represent a predatory fish species with a variable diet and have been used in studies of the 

efficacy of chemical defenses (Huang et al. 2008).  

Señorita wrasses, each about 15 cm long, were wild-caught by Marinus Inc. (Garden 

Grove, CA), shipped to my laboratory, and kept individually in aquaria in the same conditions as 

bluehead wrasses. Pinfish averaging 12 cm in length were obtained by dropping lines and hooks 

off a dock into waters near the Whitney Laboratory (St. Augustine, FL). Mummichogs were also 

obtained from the Whitney Laboratory; 10 cm long fish were caught in traps in shallow marshy 

areas. Pinfish and mummichogs were kept individually in 20-liter (40 cm x 20 cm x 20 cm) 

plastic containers supplied with flowing seawater and fed pieces of shrimp throughout the 

experiment. Bonnethead sharks were caught by personnel at Mote Marine Laboratory (Sarasota, 

FL) and held in that facility. The bonnethead sharks, about 20–90 cm long, were housed in a 

single group of 20 animals in a 227,000-liter aquarium (15 m in diameter and 3 m in depth) and 
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fed ad libitum on a combination of shrimp and fish during an acclimation period. The 

acclimation period lasted until the fish fed reliably on introduced food for between 3 and 5 days 

for all species tested. For the assays, they were fed sparingly on shrimp to maintain hunger 

levels. After completion of these studies, which took 1–2 weeks, pinfish and mummichogs were 

returned to the waters where they were caught, and bonnethead sharks were used for further 

behavioral analyses by other researchers at the Mote Marine Laboratory. Señorita wrasses and 

bluehead wrasses were maintained for 1–3 months and tested in multiple behavioral assays 

before being euthanized because they could not be returned to the waters where they were 

caught. 

 

Collection of sea hare secretions 

 

Ink and opaline were collected from adult sea hares wild-caught by Marinus Inc. (Garden 

Grove, CA) immediately after their arrival in my laboratory. The diet of these wild-caught 

individuals is not known, but the presence of purple ink indicated that their diet included red 

algae. Secretions were collected from the dissected ink and opaline glands. Ink glands were 

gently squeezed to release ink. Opaline glands were centrifuged at 30,000 x g for 1 h at 4° C to 

separate opaline secretion from gland tissue. Secretions collected from individual animals were 

pooled to reduce any effect of individual variability in contents of glands. Secretions were frozen 

at -80 °C until needed. 

 

Preparation of other stimuli 

Escapin, an L-amino acid oxidase in ink of A. californica, was purified from ink by using 

an AKTA 100 Automate fast protein liquid chromatography (FPLC; Amersham Pharmacia 

Biotech, Piscataway, NJ). A preparative grade Hi-load Superdex 200 16/60 column (Amersham 
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Pharmacia Biotech) was used for initial size separation, with fractions collected in an automated 

fraction collector. The mobile phase consisted of 50 mmol l
-1

 potassium phosphate buffer at pH 

7.6. Fractions containing escapin had a yellow color and eluted separately from the purple 

pigments in the ink (Yang et al. 2005). To make escapin end products for L-lysine or L-arginine 

(Fig. 1), escapin was incubated with 145 mmol l
-1

 L-lysine or 350 µmol l
-1

 L-arginine at 30 °C in 

50 mmol l
-1

 potassium phosphate buffer for 48–72 h. These are the natural concentrations of L-

lysine and L-arginine found in opaline of wild-caught animals (Kicklighter et al. 2005; Derby et 

al. 2007), and therefore products were tested at these maximal concentrations. Production of 

escapin intermediate products for lysine or arginine (Fig. 1) followed the same protocol as for 

escapin end product except that 4 mg/ml of catalase (C1345, Sigma- Aldrich, St. Louis, MO) 

was added to the solution to scavenge H2O2 and prevent the completion of the reaction. Escapin 

and catalase were removed from the solution by filtration, and the solution was lyophilized for 

storage at -20°C. H2O2 and ammonia were tested at 145 mmol l
-1

, since L-lysine is present at this 

concentration in A. californica ink (Derby et al. 2007) and therefore 145 mmol l
-1

 is the highest 

concentration that H2O2 and ammonia could reach in a reaction. The combination of lysine 

intermediate products + H2O2 is much more bactericidal than either alone (Yang et al. 2005; Ko 

et al. 2008).  I tested this mixture, as well as mixtures of other escapin products + H2O2 or 

ammonia, to determine if they are more effective deterrents than their components. 
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Ingestion assay 

 

Preparation of pellets.  

Pellets were created to test the effect of added stimuli on feeding behavior, especially the 

acceptance of the food, as described in Hay et al. (1998) and as used previously in Sheybani et 

al. (2009). To make the pellets, shrimp purchased at a local seafood market were freeze-dried, 

then ground into a powder using a mortar and pestle. Powdered shrimp and alginate (Sigma-

Aldrich) were combined in a 5:3 ratio by weight, and 8 g of this mixture was added to 100 ml of 

deionized water. Opaline, seawater, and uncolored escapin products were colored with 0.1% red 

food color (McCormick & Co., USA: listed contents are water, propylene glycol, FD&C reds 40 

and 3, and propylparaben). The addition of food color to these stimuli was intended to control for 

the color and intensity of ink. This shrimp-alginate solution was drawn into a 50 µl pipette and 

exuded into a 0.25 mol l-1 CaCl2 solution, creating a solid cylinder of 1 mm diameter that was 

cut into pellets 3 mm long. Unflavored alginate pellets were produced by following the same 

procedure except that shrimp was not added. Preliminary behavioral tests showed that shrimp-

alginate pellets were attractive to fish, whereas unflavored alginate pellets were not. Shrimp-

alginate pellets could be treated with test solutions by combining 1 ml of test solutions per 

3 ml of alginate gel, to create test pellets. This creates pellets containing 25% full-strength test 

stimulus, which is likely in the range of secretion concentrations that fish are likely to encounter 

when attacking live, juvenile sea hares. 
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Behavioral testing.  

For bluehead wrasses, señorita wrasses, pinfish, and mummichogs, individually held 

animals were acclimated to hand feeding with a food stimulus, and only those fish that ate were 

used in subsequent testing. During the experiment, each individual of these four species was 

presented once with each of the 16 test substances and the control. The time between consecutive 

stimulus presentations was at least 20 min. Fish were tested no more than eight times each day to 

maintain high hunger levels. Food was fed to fish between each test, and data for a test were not 

used if the fish rejected or ignored the food. Alginate pellets flavored with freeze-dried shrimp 

powder were used in all ingestion assays except for those requiring immediate feeding after 

mixing of the stimuli, since the formation of the pellets requires time to gel. In these cases, 2-mm 

cubes of freeze-dried shrimp were treated with test substances. Using freeze-dried shrimp was 

especially important in tests mixing escapin intermediate products with H2O2, because these two 

products combine in a non-enzymatic reaction. The kinetics of that reaction (Kamio et al. 2009) 

requires that these stimuli be fed to the fish immediately upon mixing. Some unstable and 

transient products from the reactions are hypothesized to be involved in the deterrent effects, and 

they could be at undetectable levels within 1 min of mixing. Therefore, all of the experiments in 

which escapin intermediate products were mixed with H2O2 or NH3 used freeze-dried shrimp, as 

did experiments with ink and opaline mixed together (ink + opaline). In these cases, the 

substances were applied dropwise onto the pieces of freeze-dried shrimp and immediately 

presented to fish. Ink and opaline were applied together in this manner, with two pipettes 

simultaneously releasing secretions onto the same piece of shrimp to allow mixing. 
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Bonnethead sharks were fed freeze-dried shrimp soaked in test substances, rather than 

pellets, because pellets could not be formed that would be large enough to be bite-size. Each 

shrimp (ca. 32 mm long) was peeled and saturated with test substances applied dropwise onto the 

flesh before being immediately presented to the sharks with a pair of forceps. Each of the nine 

test substances and the control were presented eight times to the group of 20 sharks, and each test 

substance was followed by a piece of food to ensure normal feeding by the sharks. At least 15 

min was allowed to pass between presentations of consecutive test substances. Control and test 

substances were presented in a randomized order, and no more than 10 presentations were given 

to the sharks in a single day. The experimenter could not discriminate the identity of the sharks 

in the group, and thus we cannot exclude multiple treatments of a substance with the same shark. 

Fish were hand-fed food held in a pair of forceps. The food items, which contained 

different substances as described below, were presented in a random order to avoid order effects, 

and they were presented blind to protect against observer bias; however, due to the deep color of 

ink it was not possible to completely hide its nature from the researcher. I used acceptance or 

rejection of food as a measure of its palatability. Acceptance is defined as taking the food into 

the mouth, followed by swallowing it during test. Rejection is defined as the food not being 

swallowed and remaining in the aquarium at the end of the test period. When encountering a 

piece of food, the fish typically brought it into its mouth and flushed water through the mouth 

and out the gills. If the food was palatable, the fish kept the item in its mouth and swallowed it. If 

the food was strongly aversive, the fish either did not take it into the mouth or took it in and 

immediately ejected it. If the food was not strongly aversive, the fish often repeatedly brought it 

into its mouth and ejected it. The outcome was rated ―rejection‖ if the food had not been 

swallowed by the end of the test period. The fish would generally take the food into its mouth 
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immediately upon presentation and then would either swallow it or spit it out. The fish was 

observed for about 30 s after ingestion to ensure that it did not later reject a previously accepted 

food item. A satiety control was presented after each test sample; if the fish did not accept a 

control food sample, the prior response was not used in the data analysis. Responses were 

recorded as either ―rejection‖ or ―acceptance,‖ and were analyzed using Cochran‘s Q test with 

post hoc testing employing one-tailed McNemar‘s tests. 

2.3 Results 

Responses to food treated with sea hare ink or opaline 

Four species of fishes – señorita wrasses, bluehead wrasses, mummichogs, and pinfish – 

were tested with alginate pellets of different composition. All fish were tested individually (see 

Fig. 2 for number of animals for each species), and all individuals used in the study accepted 

shrimp-flavored pellets (a positive control) and rejected unflavored pellets (a negative control). 

All individual fish of each species also rejected shrimp-flavored pellets containing either ink or 

ink + opaline, and they accepted shrimp-flavored pellets containing opaline (Fig. 2 A-D). Thus, 

ink or ink + opaline cause significant rejection of otherwise palatable food in these four species 

of fish (see statistics in Fig. 2 A-D).  

Bonnethead sharks were tested as a single group of 20 animals rather than individually 

because of housing limitations. Sharks were fed freeze-dried shrimp rather than alginate pellets 

because pellets could not be made of sufficiently large size for the sharks. The group of sharks 

was presented eight times with each test substance.  The group accepted all eight presentations of 

shrimp or shrimp containing opaline (Fig. 2E). The group accepted 5 of 8 presentations (62.5%) 

of shrimp containing either ink or ink + opaline. Overall, there was a significant effect of 
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treatment (Cochran‘s Q test, Q=9, df=3, P=0.029). Pair-wise testing failed to reveal a significant 

difference between any test substance and the control, although there was a strong but non-

significant trend (P=0.06) for shrimp treated with ink or ink + opaline to be rejected more than 

the control.  My behavioral observations revealed that those sharks that ate ink-treated shrimp 

handled them differently from plain shrimp: they repeatedly spit them out and took them back in 

their mouth before finally accepting and swallowing them.   

Thus, four of the five tested species of fishes showed clear and statistically significant 

rejection of ink-treated food, and the other species showed a strong tendency towards rejection as 

well as qualitative differences in handling of ink-treated food. 

 

Responses to food treated with escapin products 

Two of the five fish species – bluehead wrasses and señorita wrasses – significantly 

rejected shrimp-flavored pellets or shrimp containing some of the products of escapin‘s activity 

on lysine and arginine (Fig. 3 A, B). Pellets with lysine intermediate products + H2O2 were 

rejected by 26% of bluehead wrasses and 26% of the señorita wrasses. Pellets with arginine 

intermediate products alone were rejected by 22% of bluehead wrasses. H2O2 alone did not 

significantly deter feeding by any of the species tested (Fig. 3 A-E). Mummichogs, pinfish, and 

bonnethead sharks were not significantly deterred by any escapin products (Fig. 3 C-E). Since 

the concentrations of escapin‘s intermediate and end products tested were near the theoretically 

highest concentrations that they might occur in the secretions, these results indicate that for the 

two species of wrasses, escapin products are at most minor contributors to the deterrence of sea 

hare secretions, and for pinfish, mummichogs, and bonnethead sharks, escapin products do not 

contribute to the deterrence. 
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2.4 Discussion 

Animals have a diversity of defenses against predators (Endler 1986; McClintock and 

Baker 2001; Paul et al. 2007; Zimmer and Ferrer 2007; Hay 2009).  These defenses function to 

disrupt the sequence of a predatory attack at the point of detection, approach, capture, or 

acceptance of the prey.  Prey animals can utilize multiple mechanisms of protection from 

different predators and in different contexts (Endler 1986).  Molluscs have an impressive array of 

defenses to protect themselves from a broad host of predators from diverse taxa including sea 

anemones, sea stars, crustaceans, fishes, and humans.  Some molluscs are protected by shells, but 

many are not.  Some, such as the squid, take advantage of speed and acute vision for protection.  

Chemical defenses are used extensively by both shelled and shell-less mollusks.  The mucus 

secreted by molluscs can function as a mechanical and a chemical defense as well as a carrier for 

defenses (Branch 1981; Rice 1985; Avila et al. 1991; Ehara et al. 2002; Kicklighter et al. 2005).  

The skin of marine gastropods has deterrent chemicals, many of which are diet derived (Stallard 

and Faulkner 1974; Pennings and Paul 1993; Pennings 1994; de Nys et al. 1996; Ginsburg and 

Paul 2001).  Mucus and deterrent-rich skin and egg masses are examples of passive defenses, but 

molluscs also possess a variety of active chemical defenses that are only released upon predatory 

attack.  These chemical defenses include the ink of gastropods such as the sea hare Aplysia 

californica but also include ink of cephalopods which may act as a visual mimic, distracter, or 

smoke screen in addition to its potential chemosensory effects (Caldwell 2005; Derby et al. 

2007; Wood et al. 2008).   
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Sea hare ink secretion as a chemical defense against a diversity of predators 

Chemical defenses play a large role in the life of sea hares.  Inking is a defense used only 

when sea hares are severely disturbed (Leonard and Lukowiak 1985).  My observations show 

that sea hares will tolerate physical manipulation without inking, for example, pecking by 

bluehead wrasses, poking and biting by crustaceans, ingesting by sea anemones, and handling by 

humans.  Thus, inking is a high threshold behavior, typically only produced in severe attacks, 

such as when taken into the mouth of a large fish or following vigorous pecking by smaller 

fishes.  This would be expected if acquisition and sequestration of the active compounds in ink is 

energetically costly. 

A. californica ink is broadly effective as a chemical defense against an array of predators.  

I have not found a species that does not show some aversive response to ink secretion, and many 

and diverse species, including cnidarians, crustaceans, and fishes are known to be affected by 

external presentation of ink (DiMatteo 1982; Nolen et al. 1995; Rogers et al. 2000).  Ink is even 

a powerful antimicrobial agent (Ko et al. 2008) or a toxin for some animals (Flury 1915).  An 

animal that would otherwise be vulnerable to attack from a variety of predators must have 

defenses that protect them from this same variety.   A chemical defense that affects sensory 

systems of members of many different phyla functions as a good broad spectrum protection.   

Our study examined the use of ink by sea hares as a chemical defense against vertebrate 

predators, based on an ingestion assay with five species of predatory fishes:  bluehead wrasses 

Thalassoma bifasciatum, señorita wrasses Oxyjulis californica, pinfish Lagodon rhomboides, 

mummichogs Fundulus heteroclitus, and bonnethead sharks Sphyrna tiburo.  My results 

demonstrate that sea hare ink secretion is unpalatable to all five species.  All species showed 

aversive responses to otherwise palatable food when it was impregnated with the sea hare ink 
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secretion (Fig. 2).  This was clearest with bluehead wrasses, señorita wrasses, pinfish, and 

mummichogs, which significantly rejected food laced with ink.  The aversion of bonnethead 

sharks to ink secretions was weaker but still evident, as indicated by a statistically significant 

effect of secretions on acceptance of food and a change in handling of food treated with ink.  The 

lower rejection rates in the feeding assay in sharks may be explained by the fact that these 

experiments were performed with whole freeze dried shrimp rather than shrimp-flavored pellets 

as in the other fishes.  Palatability and attractiveness of potential food sources are controlled by 

many factors including hunger level, the presence and concentration of attractant molecules such 

as amino acids, the presence and concentration of deterrent molecules, and the perceived 

nutritional value of the food (McClintock and Baker 2001; Cruz-Rivera and Hay 2003).  My 

ability to discern finer levels of deterrence may be affected by hunger level, concentration of 

attractive molecules and the predation style of the fish species. 

Our test species included fish with predation styles ranging from those that would likely 

engulf a sea hare (bonnethead shark) to others that would likely attack sea hares by pecking 

small pieces from it (wrasses, pinfish, mummichogs).  Some are more likely than others to be 

predators of sea hares (bonnethead sharks, wrasses, pinfish) (Bigelow and Schroeder 1953; Bray 

and Ebeling 1975; Enric et al. 1996; Huang et al. 2008). Some are proven behavioral models in 

studies of chemical defenses and good candidates for future physiological mechanistic studies 

(bluehead wrasses) (Pawlik et al. 1987; Lindquist and Hay 1996; Hay et al. 1998; Kubanek et al. 

2000; Odate and Pawlik 2006).  

Similar effects of sea hare ink secretion on food acceptance were observed with sea 

anemones (Nolen et al. 1995; Kicklighter and Derby 2006), spiny lobsters (Kicklighter et al. 

2005; Aggio and Derby 2008), crabs (DiMatteo 1982), reef fishes (Pennings et al. 1999), sea 
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catfish (Sheybani et al. 2009), and sea gulls (DiMatteo 1981).  Together, these results 

demonstrate that ink secretion is unpalatable to a broad array of marine predators. 

Chemical defenses, such as sea hare ink, can have effects on different phases of attack by 

predators.  The process of predatory attack involves two phases: approach and capture of food, 

when the prey is taken into the mouth, and the acceptance phase, when the prey is swallowed and 

consumed (Endler 1986; Ritson-Williams and Paul 2007). When ink is presented as a cloud, as 

might happen before a predator actually bites or attempts to ingest sea hares, it can cut off an 

attack (Nolen et al. 1995; Kicklighter et al. 2005; Nusnbaum and Derby in press).  When 

presented in food, as might happen when a predator takes a bite of a sea hare and simultaneously 

gets a mouthful of ink, it causes egestion (DiMatteo 1982; Rogers et al. 2002; Kicklighter et al. 

2005; Nusnbaum and Derby in press). In bluehead wrasses, these varied effects are due to 

responses by the olfactory system and the gustatory system respectively (Nusnbaum and Derby 

in press).  Understanding how a potential chemical defense is detected by the predators‘ sensory 

systems gives insight into both the co-evolution of these signals and the sensory biology of 

deterrence.  There are many examples of plant chemical defenses against insects and the identity 

of the insects‘ sensors that detect them (e.g. Stowe et al. 1995; Bernays et al. 1989; Glendinning 

et al. 1990).  For example, some tannins produce deterrent effects on herbivores, mediated by 

taste receptors on mouthparts, and at high concentrations tannins can produce systemic toxicity 

(Mueller-Harvey 2006).  Herbivores‘ detection of deterrent compounds and association of this 

effect with the tannin source can help it to avoid toxic effects and protect the tannin producer 

from predation.  Alternatively, toxic or aversive plants can produce volatiles (which may or may 

not be directly associated with the toxic effects) that herbivores may associate with the 

somatosensory or gustatory experiences and learn to avoid such defended prey (Woolfson and 
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Rothschild 1990; Rothschild et al. 1994).  The deterrent responses that fishes and other predators 

display toward sea hare ink may function as both a protection from immediate predation as well 

as a chemical stimulus for learned aversion (Long and Hay 2006).   

 

Identity of the components in sea hare ink secretion that are deterrents against fish 

Sea hare ink secretion is a mixture of ink from the ink gland and opaline from the opaline 

gland.  When combined, ink and opaline form a more persistent, sticky secretion than ink alone.  

To determine whether the defensive chemicals in ink secretion are present in ink, opaline, or 

some of the identified components of the ink secretion, I used the same five species of predatory 

fishes.  I show that it is ink, not opaline, that is highly unpalatable (Fig. 2).  When these two 

secretions combine, at least one enzyme and its substrate are combined: escapin in ink is mixed 

with high concentrations of L-lysine and L-arginine in opaline (Yang et al. 2005; Johnson et al. 

2006).  There are likely other compounds formed by the mixing of the two secretions, which may 

contribute to the efficacy of ink.  So far, escapin compounds have been tested on several species 

of predators, and they have proven to be relatively unimportant contributors to overall 

deterrence.  Escapin‘s reaction products, which constitutes a complex mixture (Fig. 1; Kamio et 

al. 2009a), had limited effects on palatability of food for my test fishes (Fig. 3). For señorita 

wrasses and bluehead wrasses, shrimp containing a mixture of lysine intermediate products and 

H2O2, which are products of escapin‘s activity on lysine, was rejected significantly more than 

plain shrimp, though rejected less than shrimp containing ink secretion.  This mixture of lysine 

intermediate products and H2O2 is also responsible for the secretion‘s powerful bactericidal 

effects (Yang et al. 2005; Ko et al. 2008).  Blue crabs and spiny lobsters are also deterred by high 

levels of H2O2 which is released during the enzyme catalyzed reaction (Aggio and Derby 2008; 
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Kamio and Derby unpublished).  While escapin reaction products are likely not the major 

deterrents against species that have been tested, they may contribute to the overall effectiveness 

of the secretion and may be maximally effective against other predators. 

Thus, having a defensive secretion composed of many active compounds is useful for a 

species that is potentially so vulnerable to so many predators.  Some compounds may be fairly 

specific to certain predators, so the prey species may benefit from possession of many 

compounds of diverse functional types.  Other compounds may be broadly effective such as 

H2O2 or phagomimetic levels of amino acids (Kicklighter et al. 2005).  The molecular identities 

of the compounds accounting for most of the unpalatability of ink to any predatory species are 

mostly unknown, though the purple pigment aplysioviolin has recently been identified as being 

effective against both invertebrate and fish predators (Kamio et al. 2010).  This complement of 

chemical defenses, combined with other (non-chemical) defenses, results in a well-defended 

animal. 
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Figure 2.1 Summary of the compounds of the escapin/L-lysine pathway in the ink and opaline 

secretion of sea hares. Escapin is an L-amino acid oxidase in ink that is mixed with its substrates, 

L-lysine and L-arginine in opaline, when ink and opaline are secreted simultaneously, producing 

a complex set of compounds (Yang et al. 2005; Johnson et al. 2006; Kamio et al. 2009). First, 

escapin oxidatively deaminates L-lysine (1) to form ―escapin intermediate products‖ of lysine; 

these products are a mixture of α-keto-ε-aminocaproic acid (2), Δ
1
-piperidine-2-carboxylic acid 

(3), Δ
2
-piperidine-2-carboxylic acid (4), 6-amino-2-hydroxy-hex-2-enoic acid (7), 6-amino-2,2-

dihydroxy-hexanoic acid (8), 2-hydroxy-piperidine-2-carboxylic acid (9), ammonium, and 

hydrogen peroxide. Then, these components non-enzymatically react with hydrogen peroxide to 

form ―escapin end products‖ of L-lysine, composed of a mixture of δ-aminovaleric acid (5) and 

δ-valerolactam (6). The concentration of escapin‘s products of lysine can be in the millimolar 

range. Escapin intermediate and end products of L-arginine are also formed but to a much lesser 

degree since L-arginine is 300 times less concentrated than L-lysine in the secretion. Escapin‘s 

products of lysine are known to have bacteriostatic and bactericidal effects (Ko et al. 2008), but 

their effects on predators have been reported for only three species. Hydrogen peroxide evoked 

aversive behaviors from spiny lobsters Panulirus interruptus, including mouthpart rubbing, tail 

flipping, and deterring of feeding (Aggio and Derby 2008). Hydrogen peroxide is also a mild 

deterrent against blue crabs Callinectes sapidus (Kamio et al. 2007). Escapin‘s products were 

reported as having no deterrent effects on sea anemones Anthopleura sola (Kicklighter and 

Derby, 2006). Adapted from figure 1 of Kamio et al. (2009), with permission from Chemistry 

(see References for complete reference). 
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Figure 2.2 Responses of five fish species in ingestion assay using ink and opaline. Ink and 

opaline were collected and presented as described in the Materials and Methods. Responses in 

A–D represent the percentage of fish that rejected shrimp-flavored alginate pellets or freeze-

dried shrimp to which the indicated substance had been added, where n = number of individual 

fish on which each substance was tested. Responses in E represent the percentage of trials in 

which a single group of 20 sharks rejected freeze-dried shrimp to which the indicated substance 

had been added, where n = number of trials in which each substance was tested on the group of 

sharks. Rejection of shrimp-flavored pellets or shrimp containing the indicated substance was 

statistically compared to rejection of shrimp-flavored pellets or shrimp without an additive 

(which all fish ate before and after the experimental pellet or shrimp), using Cochran‘s Q test and 
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post hoc one-tailed McNemar‘s tests. Ink or ink + opaline produced significant rejection (P = 

0.0001), as indicated by asterisks, in A–D: (A) señorita wrasses, Q = 51.08, df = 3, P = 0.0001; 

(B) bluehead wrasses, Q = 61.23, df = 3, P = 0.0001); (C) pinfish, Q = 30, df = 3, P = 0.0001); 

(D) mummichogs, Q = 33.90, df = 3, P = 0.0001. For bonnethead sharks (E), there was an 

overall difference in the responses to the substances (Q = 9, df = 3, P = 0.029); however, none of 

the test substances was significantly different from the seawater control, although there was a 

strong but non-significant trend (P = 0.06) for shrimp treated with ink or ink + opaline to be 

rejected more than the control. For all five species of fishes A–E, opaline did not cause rejection 

(P = 0.05). 
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Figure 2.3 Responses of five fish species in ingestion assay using the reaction products of the 

enzyme escapin, found in ink. The reaction products and pathway are shown in Fig. 2.1, and how 

I produced them is described in the Materials and Methods. They include Lys Int = lysine 

intermediate products, Arg Int = arginine intermediate products, Lys End = lysine end products, 

Arg End = arginine end products, H2O2 = hydrogen peroxide, and NH3 = ammonia. Responses in 

A–D represent the percentage of fish that rejected shrimp-flavored alginate pellets or freeze dried 
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shrimp to which the indicated substance had been added, where n = number of individual fish on 

which each substance was tested. Responses in E represent the percentage of trials in which a 

single group of 20 sharks rejected freeze-dried shrimp to which the indicated substance had been 

added, where n = number of trials in which each substance was tested on the group of sharks. 

Cochran‘s Q test and then post hoc testing with one-tailed McNemar‘s tests were used to 

compare rejection of shrimp-flavored pellets or shrimp containing the indicated substance with 

rejection of shrimp-flavored pellets or shrimp without an additive (which all fish ate before and 

after the experimental pellet), with an asterisk indicating significance at P = 0.05. Cochran‘s Q 

test values: A: Q = 23.64, df = 12, P = 0.023; B: Q = 23.37, df = 12, P = 0.025; C: Q = 12, df = 

12, P = 0.446; D: Q = 12.36, df = 12, P = 0.417; E: Q = 6, df = 6, P = 0.423. For señorita wrasses 

(A), lysine intermediate products + H2O2 (P = 0.032) produced significant rejection. For 

bluehead wrasses (B), lysine intermediate products + H2O2 (P = 0.016) and arginine intermediate 

(P = 0.032) produced significant rejection. 
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CHAPTER 3 

INK SECRETION PROTECTS SEA HARES BY ACTING ON THE OLFACTORY AND 

NONOLFACTORY CHEMICAL SENSES OF A PREDATORY FISH 
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3.1 Introduction 

Animals use a wide variety of defences against predators, including speed, stealth, 

crypsis, size, physical defenses, and chemicals (Pawlik 1993; McClintock & Baker 2001; Hay 

2009).  Opisthobranch mollusks, which include sea hares, are soft bodied and slow moving, and 

thus would be highly vulnerable to predators if not for the possession of a variety of defences. 

These include cryptic coloration and behaviour, large size, ability to produce copious mucus, 

and, most notably, chemical defences (Carefoot 1987; Johnson & Willows 1999; Wägele and 

Klussmann-Kolb 2005).  Chemical defenses of sea hares include passive ones, which are 

constitutively present, and active chemical defenses, which are released only when the animal is 

attacked by a predator (Nolen et al. 1995; Johnson & Willows 1999).  One active chemical 

defense is inking, which is the release of a purple, sticky secretion.  The ink secretion of sea 

hares is the product of two glands that co-release their contents: the ink gland, which releases a 

purple fluid; and the opaline gland, which releases a white, highly viscous substance.  These 

secretions are mixed in the sea hare‘s mantle cavity and squirted out of the body through the 

muscular pumping of the mantle. 

Sea hares use ink to defend themselves from a diversity of predators using a variety of 

mechanisms.  Mechanisms of chemical defense by ink of Aplysia californica have been 

described for two potential predators, a Pacific sea anemone, Anthopleura sola, and the 

California spiny lobster, Panulirus interruptus.  Ink reduces predation by P. interruptus through 

a variety of mechanisms including unpalatability, sensory disruption, and phagomimicry 

(Kicklighter et al. 2005; Shabani et al. 2007; Aggio & Derby 2008).  Against sea anemones, ink 

is an unpalatable deterrent that causes tentacular withdrawal (Nolen et al. 1995; Kicklighter & 

Derby 2006).  Injection of ink from Aplysia dactylomela into pieces of fish fillet resulted in 
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rejection by laughing gulls Larus atricilla (DiMatteo 1981).  Studies on a number of sea hare 

species indicate that diets consisting of chemically depauperate plants alter the ink secretion and 

reduce its efficacy as an feeding deterrent, indicating that some chemical defenses are diet 

derived (Pennings & Paul 1993; Nolen et al. 1995; Prince et al. 1998; Ginsburg & Paul 2001; 

Pennings et al. 2001).  Thus, ink has the potential to chemically defend sea hares from predatory 

invertebrates, fish, birds, and perhaps even marine or terrestrial vertebrates.  

To expand our understanding of sensory mechanisms of chemical defense by sea hare 

ink, the current study was undertaken to examine a fish predator.  Fish occupy the niche of top 

predators in most marine systems and represent a potentially strong selective pressure for the 

slow-moving, soft-bodied sea hares.  There is little evidence of fish predation on sea hares in the 

wild, likely due to a combination of defenses including chemical defenses such as ink release 

during an attack (Carefoot 1987; Johnson & Willows 1999).  Fish are good model systems to 

study mechanisms of chemical senses, as their chemosensory systems are well characterized and 

they can be effectively studied both behaviorally and electrophysiologically (Nikonov & Caprio 

2001; Rolen et al. 2003; Sato & Sorensen 2003; Caprio & Derby 2008; Cohen et al. 2008; 

Sheybani et al. 2009).  The process of predatory attack, in general and by fish, involves two 

phases: approach and capture of food, when the prey is taken into the mouth, and the acceptance 

phase, when the prey is swallowed and consumed (Endler 1986; Ritson-Williams & Paul 2007).  

The approach and capture of prey by fish can be controlled by many senses.  Of the chemical 

senses, the olfactory system is often involved in this phase, but other extra-oral chemical senses, 

such as external gustatory systems, can also control this behavior in some fish (reviewed in 

Caprio & Derby 2008).  The acceptance and consumption of food is controlled by intra-oral 

gustation (Valentinčič & Caprio 1994; Kasumyan & Døving 2003; Caprio & Derby 2008).  
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Chemical defenses might function at either or both of these phases and be effective in protecting 

potential prey species (Ritson-Williams & Paul 2007).  Deciphering the phases in predation in 

which chemical defenses function will allow further identification of the chemosensory 

modalities involved and therefore further elucidation of the functional mechanisms of the 

defenses. 

I chose to use the bluehead wrasse Thalassoma bifasciatum in my study because it is a 

good laboratory model as well as a potential predator of the sympatric sea hare A. dactylomela.  

Bluehead wrasses are found in the waters around Florida and the Caribbean islands, often 

associated with reefs but also found in inshore non-reef areas and sea grass beds (Feddern 1965; 

Clifton & Motta 1998).  A. dactylomela occupies a similar ecological niche as A. californica.  

Like A. californica, A. dactylomela releases purple ink and white opaline, and its ink and opaline 

contain many of the same or similar diet-derived and metabolized defensive compounds, 

including ammonia, amino acids, the enzyme escapin and the pigment phycoerythrobilin (which 

can act as phagomimics and sensory disruptors), and L-amino acid oxidases (dactylomelin P in 

A. dactylomela and escapin in A. californica), aplysioviolin and phycoerythrobilin, which are or 

generate aversive compounds (Melo et al. 2000; Kicklighter et al. 2005; Derby et al. 2007; 

Kamio et al. submitted).  The advantages of using the bluehead wrasses for aquarium bioassays 

have been detailed previously (Pawlik et al. 1987).  It is a common fish species for testing anti-

predatory chemical defenses, since it is easy to maintain and train to feed on artificial diets 

(Lindquist & Hay 1996; Kubanek et al. 2000; Odate & Pawlik 2006).  In other studies, I found 

that ink of A. californica is an effective deterrent against five other fish species, including 

wrasses sympatric with A. californica, señorita wrasses Oxyjulis californica, as well as pinfish 

Lagodon rhomboides, mummichogs Fundulus heteroclitus, and bonnethead sharks Sphyrna 
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tiburo.  All of these fish responded to presentation of A. californica secretions in the same way 

as T. bifasciatum and sea catfish Ariopsis felis (Sheybani et al. 2009; Nusnbaum & Derby 

submitted). 

To test the protective capabilities of the ink secretion, I presented either normal or de-

inked Aplysia californica to bluehead wrasses and observed if inking affected predatory attacks.  

To test if ink acts extra-orally as a chemical defense to prevent fish from taking sea hares into 

their mouths, I presented food to bluehead wrasses in a cloud of ink and examined if that 

condition reduced food capture.  To test for phagomimicry, I added to an alginate pellet a 

mixture of amino acids at concentrations identical to those in natural ink and opaline to 

determine if this increased acceptance.  To test for unpalatability, I added ink and/or opaline to 

shrimp-flavored alginate pellets and examined if this affected whether or not bluehead wrasses 

accepted the pellets. I inferred palatability, or lack thereof, from the results of the pellet assays.  

To examine the role of olfaction in the effect of ink on fish, I performed nares occlusions and 

tested anosmic fish in cloud assays as well as pellet assays. 

 

3.2 Materials and Methods 

Animals 

Juvenile yellow phase bluehead wrasses (Thalassoma bifasciatum), 5-10 cm long, were 

wild caught in south Florida and maintained at Georgia State University in individual 40-liter 

glass aquaria (50 cm x 25 cm x 30 cm) containing 28 ppt sea water (Instant Ocean, Aquarium 

Systems, Mentor, OH) that was filtered and aerated (Whisper Filters: Tetra, Blacksburg, VA) 

and ca. 21
o
 C.  Fish were fed frozen shrimp and brine shrimp ad libitum twice daily.  Fish were 
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kept on a 14:10 L:D cycle and maintained in the same aquaria in which they were tested.  Small 

(~ 1 g) specimens of Aplysia californica were obtained from the NIH National Resource for 

Aplysia (Miami, FL) and kept in separate 40-liter glass aquaria before being used in the feeding 

assay.  Sea hares were raised on an exclusive diet of laboratory-grown Gracilaria ferox prior to 

being shipped to my laboratory and were not fed during the 1-week period following their arrival 

at my laboratory prior to experimentation.  Wrasses were kept in captivity for no longer than 3 

months during behavior assays and were euthanized at the end of the study.   

 

Collection of sea hare secretions 

Ink and opaline were collected from adult sea hares caught in waters off the coast of 

California by Marinus Inc. (Garden Grove, CA) immediately after their arrival in my laboratory. 

The diet of these wild-caught individuals is not known, but the presence of purple ink indicated 

that their diet included red algae.  Secretions were collected from dissected ink and opaline 

glands.  Ink glands were gently squeezed to release ink.  Opaline glands were centrifuged at 

30,000 × g for 1 hr at 4°C to separate opaline secretion from gland tissue.  Secretions collected 

from individual animals were pooled to reduce any effect of individual variability in contents of 

glands.  Secretions were frozen at −80°C until needed. 

 

Feeding assay using live sea hares 

Small specimens of A. californica, ~ 1 g and 2.5 cm in length, were fed to bluehead 

wrasses to examine effects of inking on attacks by predatory fish.  The fish were food deprived 

for one week to ensure that they would readily attack the unfamiliar prey item.  Twenty-nine 

individual fish were each tested with a single sea hare that was either normal (i.e., with ink) or 
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de-inked.  Each fish was tested once to avoid biasing the data due to predator experience.  

Fifteen sea hares were de-inked by repeatedly applying high concentrations of sea salt to the 

containing water, which induced head retraction and ink release.  These sea hares were rinsed in 

sea water and allowed to rest for 5 min between salt applications and allowed at least 1 hr to rest 

before being used in feeding assays.  If a de-inked sea hare did not return to normal mobility and 

behavior, it was not used in the feeding assay.  Fourteen sea hares were fed to the fish without 

de-inking, four of which did not release ink during the encounter, likely due to low intensity of 

attack by the fish, and thus were not included in the analysis. 

During the feeding assay, either a normal or a de-inked sea hare was placed in the 

aquarium with a bluehead wrasse and the behavior was observed for 2 min.  The sea hare was 

taken out of a holding aquarium by a researcher wearing latex gloves and slowly placed into the 

bottom of an aquarium containing one fish.  The trial began after the hand was removed and the 

sea hare remained on the aquarium floor.  During the encounter, if the fish did not approach the 

sea hare within 30 sec, then the trial was concluded.  Measurements included the number of 

times the sea hare was struck, whether or not an inking episode occurred, and the damage to the 

sea hare.  Since the bluehead wrasse pecks at food that is larger than its mouth (Clifton & Motta 

1998), I observed that without a strong and prolonged attack period it was unlikely that the sea 

hare was killed by the fish.  There is evidence to demonstrate that sea hares have multiple lines 

of defense, including potential chemical defenses that make the flesh distasteful (Carefoot 1987; 

Johnson & Willows 1999; Kamiya et al. 2006; Wägele & Klussmann-Kolb 2005; Derby 2007).  

Therefore, I assumed that the number of times the pecking predator struck the sea hare represents 

an approximation of the intensity of the attack and therefore the likelihood of significant damage 

to the prey species.  To determine the effects of the lack of ink, I calculated the number of fish 
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strikes in an encounter in which the sea hare could not release ink.  A one-tailed Mann-Whitney 

U test was performed to determine if the median number of strikes was greater toward de-inked 

sea hares (N = 15) compared to control sea hares (N = 10) (α = 0.05).   

 

Cloud assay 

The cloud assay was performed to determine the effect of a cloud of ink on a fish‘s 

response to a piece of food.  This was accomplished by injecting 1 ml of one of four test stimuli 

into the water between the fish and an attractive food.  The test stimuli were ink+opaline, ink, or 

opaline, each at full-strength, or sea water.  Opaline and sea water were colored with 0.1% red 

food color (McCormick & Co., USA: listed contents are water, propylene glycol, FD&C reds 40 

and 3 and propylparaben).  The addition of food color to these two stimuli was intended to 

control for the color and intensity of ink.  UV-visual spectral analysis of ink and food color 

showed that ink and food color had similar though non-identical spectra, both with peak 

absorbance at 510-570 nm and 330-340 nm (Supplemental Figure 1), thus serving my purpose of 

having controls with roughly the same color and intensity as ink. 

A stimulus was drawn into a pipette and the pipette was lowered into the aquarium.  The 

experimenter simultaneously placed a 3 mm x 3 mm piece of shrimp into the aquarium while 

releasing a cloud of 1 ml of stimulus between it and the fish.  The cloud was ca. 4 cm in diameter 

when first introduced, reached ca. 15 cm after 30 sec which was wide enough to cover the width 

of the aquarium, and spread over half of the aquarium with considerable dilution by the 

conclusion of the experiment.  During this time, the small piece of shrimp typically sank in the 

water column but remained behind the spreading cloud relative to the fish.  Each trial lasted until 

a fish touched the food or took the food into its mouth (i.e. capture), with a maximum trial 
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duration of 2 min if the fish never touched the food.  At the end of the trial, if the fish had not 

reached and eaten the shrimp, the shrimp remained on the aquarium bottom.  Fifteen blue head 

wrasses were tested once on each of the four stimuli, presented individually in random order. I 

attempted to present these stimuli in a blind fashion, i.e., using a code for the stimuli, the nature 

of which the experimenter was unaware.  But because of differences in color and/or viscosity of 

the stimuli, the blind procedure was not successful in all cases.  Between trials, the filtration of 

the aquarium was sufficient to remove the substance from the water within 15 min, as indicated 

by color changes.  Time to reach the shrimp averaged 7.2 sec and for those fish that reached it 

ranged from 2 to 20 sec.  Recorded data included if the fish touched, captured, or accepted (i.e. 

consumed) the food, and the amount of time for the fish to touch the food.  Cochran‘s Q test, 

followed by one-tailed McNemar post-hoc tests, was used to determine which substances 

impaired the ability of bluehead wrasses to touch and capture food, with the assumption that a 

substance will decrease the food-finding ability of fish (N = 15, α = 0.05). Friedman‘s test, 

followed by one-tailed Wilcoxon matched-pairs post-hoc tests, was used to determine which 

substances caused animals that found the food to take a significantly greater time to reach it (N = 

10, α = 0.05). In addition, I recorded descriptions of the fish‘s movements and its position and 

behavior relative to the cloud of ink and to a control cloud of food color. 

 

Pellet assay 

 

Preparation of pellets.  

Pellets were created to test the effect of added stimuli on feeding behavior, as described 

in Hay et al. (1998) and as used previously in Sheybani et al. (2009).  To make the pellets, 
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shrimp purchased at a local seafood market were freeze dried, then ground into a powder using a 

mortar and pestle.  Powdered shrimp and alginate (Sigma-Aldrich) were combined in a 5:3 ratio 

by weight, and 8 gm of this mixture was added to 100 ml deionized water.  Red food color 

(McCormick& Co. USA, as described above and in Supplemental Figure 1) was added to the 

mixture to allow the normally uncolored pellets to be visualized by the researcher as well as to 

control for the deep color in ink.  This shrimp-alginate solution was drawn into a 50-μl pipette 

and exuded into a 0.25 M CaCl2 solution, creating a solid matrix that could be cut into 3-mm 

long and 1-mm wide pellets.  Unflavored alginate pellets were produced by following the same 

procedure except that shrimp was not added.  Preliminary behavioral tests showed that shrimp-

alginate pellets were attractive to fish, whereas unflavored alginate pellets were not.  Shrimp-

alginate pellets and unflavored pellets were treated with ink, opaline, ink+opaline, a mixture of 

the amino acids in ink (AAI, Supplemental table 1), a mixture of the amino acids in opaline 

(AAO, Supplemental table 1), or sea water, by combining 1 ml of full-strength secretion, AAI, 

AAO, or sea water per 3 ml of alginate gel, to create test pellets.  This creates pellets containing 

25% full-strength ink, opaline, AAI, or AAO, which is in the range of secretion concentrations 

that fish are likely to encounter when attacking live, juvenile sea hares. 

 

Behavioral testing  

The fish were acclimated to hand feeding with a food stimulus, and only those fish that 

ate were used in subsequent testing.  Alginate pellets flavored with freeze-dried shrimp powder 

were used as food.  Hand feeding was performed using a pair of forceps.  Food was presented to 

each fish and behavior was observed.  I used acceptance of food, indicated by the fish 

swallowing and consuming it, and the converse, rejection of food (i.e. fish took the food into the 
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mouth, did not consume it, but rather spit out the food) as a measure of its palatability.  When a 

fish encountered a piece of food, the fish typically captured it and flushed water through the 

mouth and out the gills.  If the food was palatable, the fish accepted it.  If the food was strongly 

unpalatable, the fish either did not capture it, or if it did, immediately rejected it.  If the food was 

not strongly unpalatable, the fish often repeatedly captured and spit it out.  The outcome was 

rated ‗rejection‘ if at the end of the test period the food was not consumed.  Responses were 

recorded as either ‗rejection‘ or ‗acceptance‘, and analyzed using Cochran‘s Q test with post-hoc 

testing using one-tailed McNemar‘s tests (α = 0.05). 

 

Nares occlusion 

An occlusion of the olfactory system of bluehead wrasses was performed by plugging the 

nares with petroleum jelly (Vaseline, Chesebrough-Ponds, USA) a procedure used by others 

(Wisby & Hasler, 1954; Hasler & Scholz, 1983; Yano & Nakamura, 1992; Mitamura et al., 

2005).  To perform the plugging procedure, the fish was restrained in a moistened Kim-Wipe and 

loosely held in the researcher‘s hand.  The front of the head was then patted dry and a cotton 

swab coated in petroleum jelly was gently rubbed across the nares.  This applied the jelly to the 

nares and left a thin coating across the immediate surrounding region.  Fish were returned to the 

aquarium to recover, and the procedure lasted no longer than 2 min.  Sham animals were 

subjected to the exact same procedure, except the cotton swab was moistened with sea water.  

This method had no effect on swimming or feeding behavior in black rockfish (Mitamura et al., 

2005) and did not alter these behaviors in my experiments.  Following the procedure, fish were 

given a day to recover and then caught and visually inspected to verify that petroleum jelly 

remained in place before behavioral assays were performed.  To examine if nares blockage had 
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any effects on behavior, I examined how nares occluded animals vs. sham animals responded to 

food.  Fish were fed following the procedure and experiments were not performed until they fed 

normally.  Sham and occluded animals took the same amount of time (one day) to return to 

normal feeding behavior and fish were able to orient toward food pellets dropped into the 

aquarium and immediately swam to them, captured and swallowed them.  Cloud and pellet 

assays were performed with occluded and sham animals.  The procedure for these assays was 

identical to that outlined above, except that fish were tested with ink but not opaline, as opaline 

was shown to be inactive in prior experiments. I also tested sea water and the mixture of amino 

acid components of ink (AAI, Supplementary table 1) as control stimuli. 

3.3 Results 

Responses of bluehead wrasses to live sea hares 

I examined the behavior of 25 bluehead wrasses, with 10 fish exposed to a normal (i.e. 

ink-containing) sea hare that released ink during the encounter, and 15 fish exposed to a de-inked 

sea hare and thus did not release ink during the encounter.  During a typical encounter, the fish 

approached the sea hare and swam around it for a number of seconds before making its first 

strike.  If the strike was hard and the sea hare contained ink, the sea hare released its ink 

secretion by squeezing the mantle cavity rhythmically.  Typically, there were 1 to 5 squeezes of 

the mantle lasting from 5 to 30 sec.  Each squeeze released approximately 0.25 ml ink, based on 

visual comparison with release of sea hare ink of known volumes using a pipette.  The ink 

released by a sea hare trailed out of the mantle cavity and slowly diluted in the water column 

within 2-3 cm from the sea hare. No strikes were forceful enough to seriously damage the sea 

hare.  In only one trial (with a de-inked sea hare) was a small piece removed from the mantle and 
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in this case the fish mouthed and rejected the flesh multiple times but did not continue its attack 

on the sea hare.  In none of the 25 interactions was a sea hare killed. An example of an encounter 

between a bluehead wrasse and sea hare, including inking, is shown in Supplemental video 1.   

The protective effect of ink was examined by comparing the number of times a wrasse 

struck a sea hare during an encounter with an ink-releasing sea hare vs. during an encounter with 

a de-inked sea hare (Fig. 1).  In encounters of fish with sea hares that released ink (N = 10), there 

was a median of 1 strike, with a range of 1 to 3 strikes.  In five of these encounters, the sea hare 

released ink after the first strike and was then not struck again.  The five other inking episodes 

occurred following the second or third strike.  In only four cases was the sea hare struck after it 

released ink, and it was never more than once.  On the other hand, in encounters of fish with sea 

hares lacking ink (N = 15), the median number of strikes was 3, with a range of 2 to 7.  This 

value is significantly greater than the number of strikes during encounters with ink-releasing sea 

hares (Fig. 1).  This demonstrates that inking decreases the likelihood that a sea hare will be 

attacked. 

 

Cloud assay 

Responses of bluehead wrasses to extra-oral ink.   

In this assay, a cloud of full-strength ink, colored full-strength opaline, or colored sea 

water was presented between a fish and a piece of food, the fish was scored according to whether 

or not it reached the food during the 2-min trial and the time required to reach the food, and 

qualitative descriptions of the fish‘s behavior in relation to the cloud were recorded.  Opaline and 

sea water had food color added to them, as described in the Methods, to simulate the color of ink.  

Significantly fewer fish reached the food when an ink cloud was present compared to a sea water 
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cloud: 10 of 15 fish reached the shrimp with an ink cloud while 14 of 15 succeeded with a 

colored sea water cloud (Fig. 2A).  The animals that succeeded in reaching the food in the 

presence of an ink cloud required a significantly longer time than in the presence of a sea water 

cloud, with median times of 15 sec and 6 sec respectively (Fig. 2B).  A cloud of colored opaline 

did not affect the ability of bluehead wrasses to reach the shrimp and did not produce any 

noticeable change in behavior compared to a cloud of colored sea water (Fig. 2).   

Behavioral observations revealed that fish presented with a colored cloud always spent 1-

2 sec attending to and swimming in front of the cloud before performing one of four behaviors:  

1) swim into and through the cloud without pausing before reaching the food; 2) swim into and 

through the cloud, but pausing for 1-2 sec before reaching the food; 3) avoid the cloud while 

moving toward the food and moving around the cloud until it reached the food; or 4) swim away 

from the cloud and never reaching the food.  These behaviors were generally exclusive and a fish 

would display only one of them during a trial.  When presented with a cloud of colored sea 

water, fish commonly (53%) swam into and through the cloud without pausing before reaching 

the food (Fig. 2C).  Less often (20%), they swam around avoiding the cloud to reach the food. 

Unlike in the colored sea water cloud, fish presented with the ink cloud frequently (67%) swam 

away from the cloud and never reached the food.  If a fish reached the shrimp, it usually (20%) 

did so by avoiding the cloud while moving toward the food, bending its body to keep its head 

toward the food and moving around the cloud until it reached the shrimp.  The distribution of 

responses to a cloud of colored sea water significantly differed from that to a cloud of ink (Fig. 

2C).  A cloud of colored opaline produced a set of behaviors similar to a cloud of colored sea 

water (Fig. 2C).  
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Pellet assay 

Responses to plain pellets treated with ink, opaline, or their amino acid components.   

Bluehead wrasses did not accept plain alginate pellets.  I added ink, opaline, or a mixture 

of ink and opaline to these plain alginate pellets to determine if ink and/or opaline increases the 

pellets‘ palatability by causing them to be accepted and consumed, and thus is a ‗phagomimic‘.  

Neither ink + opaline, ink, nor opaline at full strength led to an increase in acceptance of 

unflavored pellets as no pellets were eaten with any of these treatments (N = 23).  Thus, the 

secretions of sea hares cannot make neutral stimuli palatable.  Pellets containing the amino acid 

components in ink or opaline (AAI and AAO respectively in Supplemental table 1) were 

palatable to bluehead wrasses, which accepted these pellets as frequently as shrimp pellets (20 

out of 23 individuals for all three types of pellets).  Pellets containing AAI or AAO were 

accepted more often than pellets containing ink (McNemar test: N = 23, P < 0.0001). 

 

Responses to food treated with ink or opaline.   

I examined the feeding responses of bluehead wrasses to shrimp-alginate pellets treated 

with ink, opaline, or a combination of these secretions to determine if these added chemicals 

decrease palatability.  Results are shown in Figure 3 and are expressed as a percentage of 

animals rejecting the food items (N = 23).  Fish were only used in assays if, prior to 

experimentation, they ate a shrimp-alginate pellet.  Ink+opaline caused rejection of these 

otherwise palatable food items.  The rejection was clear and strong:  pellets with ink+opaline 

were rejected in 100% of the trials.  Rarely did any fish take a pellet with ink+opaline into its 

mouth a second time.  Ink alone also caused all individuals to reject otherwise palatable pellets.  
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Opaline alone did not cause rejection of palatable food items.  Thus, ink is responsible for the 

secretion‘s unpalatability.   

 

Nares Occlusion 

Cloud Assay.   

Each fish, whether sham or occluded, was tested with clouds of three concentrations (1%, 

10%, and 100% of full strength) of ink, clouds of the same three concentrations of AAI 

(Supplemental table 1), and a cloud of sea water (Fig. 4A).  The AAI and sea water clouds were 

colored with food color, as described above.  When presented with 100% ink, 8 of 10 occluded 

animals reached the shrimp; with 10% ink, 9 of 10 occluded fish reached the shrimp; and with 

1% ink, 8 of 10 occluded fish reached the shrimp.  In all other stimulus and treatment 

combinations, all 10 fish reached and ate the shrimp.  Thus, nares occlusion did not affect the 

percentage of fish that reached and captured the shrimp.  However, nares occlusion did affect the 

time it took for fish to reach shrimp.  Compared to sham fish, fish with occluded nares took 

significantly less time to reach and capture food when in the presence of an ink cloud (repeated 

measures ANOVA: df = 13, P < 0.0001).  This was the case for all three ink concentrations 

(Bonferroni test: 1% ink P = 0.001, 10% ink P = 0.01, 100% ink P = 0.001).  Occlusion did not 

affect the fish‘s ability to find food in a cloud of colored AAI or sea water.  Occluded fish did 

not show any noticeable change in behavior aside from their response to the otherwise deterrent 

cloud of ink: there was no qualitative difference in feeding, swimming behavior, or head 

shaking, and there were no overt displays of distress in treated fish. 
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Pellet Assay.   

Sham and occluded animals were fed shrimp-alginate pellets with no additives (sea 

water), with ink at four concentrations (0.01%, 0.1%, 1%, 10% and 100% full-strength ink), and 

with the mixture of amino acids in ink (AAI, Supplemental table 1) at the same four 

concentrations (Fig. 4B).  Sham animals only rejected pellets containing ink, at any 

concentration.  Nares occlusion did not affect the fish‘s rejection of pellets containing ink at any 

concentration: sham and nares occluded animals rejected ink-containing food pellets at all 

concentrations tested, but they did not reject control food pellets.  At the lowest concentration of 

ink tested (0.01%), 60% of the sham and nares occluded fish rejected ink-laced food pellets. 

 

3.4 Discussion 

The goal of my study was fourfold.  First, I wanted to determine if the ink secretion of 

sea hares Aplysia californica protects sea hares during attacks by a predatory fish, the bluehead 

wrasse Thalassoma bifasciatum.  Second, I wanted to test which of the ink secretion‘s two 

glandular components – ink or opaline – is responsible for the activity and whether 

phagomimicry plays a role in the defense.  Third, I wanted to determine whether the defensive 

chemicals function extra-orally or intra-orally, including the role of the olfactory system.    

 

The release of ink protects sea hares during predatory attacks 

To test for the protective effects of the ink secretion in interactions between sea hares and 

predatory fish, I manipulated small sea hares so that they could not secrete ink and placed them 

with bluehead wrasses, and I determined whether inking decreases the number of predatory 
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strikes.  I found that a sea hare was struck significantly less frequently if it released ink (Fig. 1).  

This demonstrates a reduction in predatory attacks as a result of inking.   My results are 

supportive of similar studies of interactions between sea hares and predatory sea anemones 

(Nolen et al. 1995) or spiny lobsters (Kicklighter et al. 2005).  There are other known sources of 

chemical defenses in sea hares and other opisthobranch molluscs besides ink.  These include 

sequestered secondary metabolites in the skin and digestive glands (Paul & Pennings 1991; Paul 

& Van Alstyne 1988; Pennings & Paul 1993; Kamiya et al. 2006).  Undoubtedly, such non-ink 

chemical defenses contribute to the protection of sea hares against fish in my assay, and they 

probably explain why the number of predatory strikes by fish was relatively low and why none 

of the sea hares were killed in my experiments.  Nonetheless, I demonstrated that inking adds a 

layer of chemical protection against predatory fish, perhaps when other defenses are not 

completely effective (Pearson 1989). 

 

Ink acts as a chemical defense during different phases of predatory attacks  

I examined whether ink or opaline functions by preventing fish from taking sea hares into 

their mouth (i.e. extra-orally) or by increasing rejection of sea hares once taken into the mouth 

(i.e. intra-orally) by performing two assays.  Using a cloud assay, in which 1 ml of ink or opaline 

was presented between the fish and a piece of food and the behavior toward the food was 

examined, I found that bluehead wrasses were able to detect ink from a distance and actively 

avoid it (Fig. 2).  My observations of live sea hares releasing ink indicated that ca. 0.25 ml of ink 

would be released during each of the 1-5 pumps of the mantle, as compared by eye to known 

volumes of ink, indicating that 1 ml of ink is a realistic volume that a predator would encounter 

from a 1 g sea hare.  Ink was so effective that in some instances the fish would not reach the food 
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as a result of exposure. Opaline did not have an effect.  Ink was effective as a deterrent in the 

cloud assay at concentrations from full strength to a 100 times dilution (Fig. 4). Thus, ink should 

be effective in various contexts and distances, from close to full strength as when a predator 

takes the sea hare into its mouth at which time ink is released, to a dilution as when a predator 

approaches an inking sea hare from a distance.  Furthermore, my results indicate that the 

deterrent effects of ink are able to function through distance chemoreception, such as olfaction or 

extra-oral gustation.  A similar conclusion about extra-oral effects was drawn by Ritson-

Williams & Paul (2007) from field studies of the effects of chemicals from marine invertebrates 

on reef fish.   

Using a pellet assay, in which food-flavored alginate pellets were treated with ink or 

opaline and rejection of the food was quantified, I demonstrated that ink, but not opaline, is 

highly unpalatable (Fig. 3).  Bluehead wrasses rejected otherwise palatable food when it was 

impregnated with ink or a combination of ink and opaline, but not opaline alone.  Ink caused 

significant rejection of food at concentrations as low as 10,000 times dilutions of full-strength 

ink (Fig. 4).   

The results of the pellet assay do not support the hypothesis that ink as a whole defends 

through phagomimicry, since wrasses did not eat plain alginate pellets containing ink or opaline. 

However, wrasses did eat plain alginate pellets containing the amino acid component of either 

ink or opaline.  This is not surprising, given that free amino acids evoke feeding responses in 

many fishes, and several amino acids, including proline, alanine, and arginine, can evoke 

reflexive biting at concentrations as low as 0.1 mM (Valentinčič & Caprio 1994; Valentinčič et 

al., 1999).  Thus, my results suggest that ink and opaline contain appetitive components for 

wrasses, but that the deterrent compounds in ink and opaline overcome these appetitive 
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components, resulting in a deterrence.  While the bluehead wrasse is not a sympatric predator of 

A. californica, I found that the señorita wrasse Oxyjulis californica responds in the same way to 

pellets treated with ink and opaline and is sympatric with juvenile California sea hares, which 

remain in the deeper waters where they are born before moving into shallower regions as adults. 

O. californica is found at depths from tidepools to 42 m, and in kelp beds, reefs and rocky 

bottoms where A. californica congregates in red algae (Goodson 1988).  Bluehead wrasses feed 

on a diverse selection of prey, including small molluscs and crustaceans similar in size to 

juvenile sea hares (Carefoot 1987).  Similar effects of the ink secretion and its components were 

observed with sea anemones (Nolen et al. 1995 ; Kicklighter & Derby 2006), spiny lobsters 

(Kicklighter et al. 2005; Aggio & Derby 2008), sea gulls (DiMatteo 1981), and a number of fish 

species including wrasses, bream, and goatfish (DiMatteo 1981, 1982; Pennings et al. 1999, 

2001).  This demonstrates that the deterrent effects of the ink secretion can function through 

intra-oral chemoreception. Thus, my experiments suggest that both extra-oral and intra-oral 

chemoreceptors mediate the effects of the ink defensive compounds.   

 

Ink acts through both olfactory and intra-oral chemical senses of fish 

I followed this set of experiments with a series in which I temporarily inactivated the 

olfactory system of the fish through nares occlusion, and repeated the cloud and pellet assays.  

These experiments demonstrate that both extra-oral and intra-oral chemoreception function in the 

detection of chemical defenses and behavioral aversion, but these two sets of receptors function 

in different phases of the predation event.  Nares occlusion reduced ink‘s effect on the capture of 

food, but it had no effect on ink‘s ability to cause rejection of food once taken into the fish‘s 

mouth.  The occluded fish took less time to reach food than the sham fish when an ink cloud, but 
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not a colored opaline or sea water cloud, was present, indicating that removal of olfactory 

stimulation results in a behavioral insensitivity to external presentations of ink.  Thus, the 

olfactory system is responsible for behavioral deterrence from a cloud of ink, and non-olfactory 

chemical senses, likely intra-oral, possibly gustation, are responsible for rejection of ink-treated 

food if taken into the mouth.  Fish rejected ink impregnated pellets only after they were taken 

into the mouth and fish do not possess retro-nasal connections to the oral cavity. Together with 

the results of the nares occlusion assays, these considerations lead me to hypothesize that an 

intra-oral chemical sense, probably gustation, is responsible for this rejection.  My results also 

show that a single chemical defense can function through multiple sensory channels to affect 

predator behavior and protect the prey species at different stages in the predatory encounter. 

 

Principles derived from studies of sea hare chemical defenses 

The sea hare is a soft-bodied, slow-moving animal that takes advantage of a number of 

defenses to protect itself from a variety of predators.  Why should a sea hare, or any animal, have 

so many chemical defenses?  The answer to this question is likely evolutionary: the animal uses 

different levels of defenses to protect itself from different predators and different stages of a 

predatory encounter.  These defenses have different degrees of cost and effectiveness as well.  In 

the case of the sea hare, passive chemical defenses such as those found in the skin and mucous 

have a different cost: benefit than active chemical defenses such as ink released only after a 

sustained predatory encounter (Nolen & Johnson 2001).  These multiple lines of defense can 

affect different predators, and some compounds may work on olfactory pathways and others 

through gustatory pathways.  The different chemicals may affect the behavior of the predator 
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through different sensory pathways and in different ways as in the nares occlusion experiments 

(Fig. 4). 

 Chemical defenses may also act multimodally by affecting chemosensory systems while 

also functioning as visual cues.  Coloration of the body or secretions is used by many animals 

(Young & Bingham 1987; Harvey et al. 1988; Vences et al. 2003), including marine gastropods 

(Becerro et al. 2006; Ritson-Williams & Paul 2007), as aposematic cues.  I did not find evidence 

that ink functions as an aposematic indicator of the snail's distastefulness.  My experiments 

showed that a cloud of purple ink negatively affected approach of food by wrasses, but a 

similarly colored cloud of sea water or amino acids did not, a result contrary to the expectation if 

ink were an aposematic signal (Figs. 2, 4). Furthermore, sea hares A. californica and A. 

dactylomela are cryptically colored, which would seem to be at odds with an aposematic ink.  

The function of the coloration of ink may in fact be other than as a visual signal to predators: the 

purple color of ink is largely due to the compound aplysioviolin, which is a chemical deterrent 

against predatory crabs and possibly other predators (Kamio et al. submitted).  All together, my 

results favor the idea that ink functions as a secondary chemical defense to deter predators that 

may otherwise not be deterred by all of the sea hare‘s other lines of defense. 
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Figure 3.1 Median (±25
th
 and 75

th
 interquartile intervals) number of feeding strikes by bluehead 

wrasses towards sea hares that released ink (intact, N = 10 events) and towards sea hares that 

were prevented from releasing ink (de-inked, N = 15 events). *P < 0.05. 
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Figure 3.2 Responses of bluehead wrasses to extraoral presentations of ink and opaline in the 

cloud assay. (a) Percentage of fish (out of 15 tested) that reached the food (shrimp pellet) 

presented behind a 1 ml cloud of the indicated stimulus. Ink and opaline were presented at full 

strength. (b) Median time (horizontal line) and the 25
th
 and 75

th
 percentile ranges (lower and 

upper limits of the box) to reach the food. (c) Responses of bluehead wrasses to a cloud of the 

indicated stimulus. *P < 0.05; **P < 0.001; ***P < 0.0001. 
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Figure 3.3 Responses of bluehead wrasses in the pellet assay. Percentage of fish that rejected 

shrimp-flavored alginate pellets treated with ink, opaline or ink + opaline. *P < 0.001. 
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Figure 3.4 Effect of nares occlusion on feeding responses of bluehead wrasses: (a) median time 

(horizontal rule) and 25
th
 and 75

th
 interquartile ranges (lower and upper limits) to reach the food 

in the cloud assay and (b) percentage of fish that rejected pellets in the pellet assay. : nares 

occluded (N = 10); : sham (N = 10). In (a), symbols denote either a significant difference 

from colored sea water ( P < 0.01), or a significant difference from sham (*P = 0.001). In (b), an 

asterisk denotes a significant difference from sea water (*P < 0.01). 
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CHAPTER 4 

TASTE-MEDIATED BEHAVIORAL AND ELECTROPHYSIOLOGICAL RESPONSES TO 

DETERRENT PIGMENTS FROM THE INK OF THE SEA HARE APLYSIA CALIFORNICA 

BY A PREDATORY FISH ARIOPSIS FELIS 
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4.1 Introduction 

Anti-predator defenses can take many forms, including behavioral adaptations (e.g. 

stealth and speed), visual defenses (e.g. camouflage and aposematic coloration), mechanical 

defenses (e.g. spines, claws and exoskeletons), and chemical defenses (e.g. venoms, irritants, and 

deterrents) (Endler 1986; Hay et al. 1998; Caro 2005).  Chemical defenses are used by many 

organisms to deter predators, and some of the effector molecules have been identified (Pawlik 

1993; McClintock and Baker 2001).  Chemical defenses can protect prey species from predation 

by acting on the predator‘s chemosensory systems (Eisner and Meinwald 1966; Tachibana and 

Gruber 1988; Paul and van Alstyne 1992; Pawlik 1993; Berenbaum 1995; McClintock and Baker 

2001; Kelley et al. 2003).  To be effective, chemical defenses must act on the attacking predator, 

and activating the predator‘s chemosensory systems is a direct way to produce a desired 

response.  Selection/rejection of food by some fish is influenced by their detection of deterrent 

molecules, such as alkaloids and acids (Derby and Sorensen 2008).  Chemical defenses are well-

studied by chemical ecologists (Hay 1996; Kicklighter et al. 2005; Hayden et al. 2007), but much 

less is known about their detection by chemosensory systems (Hara 1994; Kamio et al. 2007; 

Cohen et al. 2008). 

Sea hares of the genus Aplysia obtain a variety of secondary plant compounds as well as 

ink pigments exclusively from a red seaweed diet (Winkler and Dawson 1963; Darling and 

Cosgrove 1966; Irie et al. 1968; Chapman and Fox 1969; Winkler 1969; Watson 1973; Kinnel et 

al. 1979; Blankenship et al. 1983; MacColl et al. 1990).  Aplysia californica is a bottom dwelling 

gastropod mollusk with a reduced and internalized shell which lives in subtidal and intertidal 

waters in the Pacific Ocean from Northern California to Baja, California.  Aplysia californica can 

release ink when disturbed as early as post-metamorphic juveniles, around 1-mm long 
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(Kriegstein 1977).  Mechanisms of chemical defense by ink of A. californica have been 

described for two potential predators, the California spiny lobster, Panulirus interruptus, and a 

Pacific sea anemone, Anthopleura sola (Nolen et al. 1995; Kicklighter et al. 2005; Kicklighter 

and Derby 2006).  Ink from A. californica deters predation by P. interruptus through a variety of 

mechanisms, including unpalatability, sensory disruption, and phagomimicry (i.e. chemically 

stimulating the feeding pathway to distract a predator‘s attention).  In spiny lobsters, ink and 

opaline secretions stimulate gustatory and olfactory systems as demonstrated by 

electrophysiological recordings (Kicklighter et al. 2005).  However, the identity and response 

properties of the deterrent compounds in ink and opaline secretions were not examined for P. 

interruptus.  In previous work, I found that ink, but not opaline, is deterrent to fishes (Nusnbaum 

and Derby 2010a, 2010b).  Here, I test components of ink that were identified through bioassay 

guided fractionation that were deterrents to blue crabs, Callinectes sapidus, (Kamio et al. 2010a, 

2010b). 

Gustation is a well-studied chemosensory modality for eliciting aversive responses to 

chemical stimuli (Garcia et al. 1968; Smith and Theodore 1984; Wiggins et al.1989; Kang et al. 

2010).  Responding with aversion upon tasting a deterrent stimulus is an adaptive response that 

can protect the predator from ingesting a toxic or noxious prey item.  In mammals, the perception 

of deterrent compounds is mediated by a family of gustatory receptors, T2Rs, and these 

compounds include a broad spectrum of unrelated chemical structures that share only the 

behavioral response they elicit, namely aversion (Meyerhof 2005; Behrens and Meyerhof 2006; 

Roper 2007).  Individual T2Rs are broadly tuned to respond to a wide variety of deterrent and 

toxic compounds, allowing taste cells possessing a small number of T2R receptor types to 

respond to a broad spectrum of aversive compounds (Brockhoff et al. 2010).  Behavioral 
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aversion to stimuli that taste bitter to humans is well-documented among vertebrates, including 

fishes, amphibians, and mammals (Hidaka et al. 1978; Jones and Hara 1985; Brining et al. 1991; 

Takeuchi et al. 1994; Lamb and Finger 1995; Caicedo et al. 2002).  Animals have the capacity to 

detect and respond to aversive compounds that may be toxic or taste bad.  These behavioral 

responses to deterrents can broadly be described as aversion or rejection. 

  Chemosensory systems in fishes convey information about food sources, conspecifics, 

and other environmental factors (Sorensen and Caprio 1998).  An important difference between 

chemosensation in fishes and terrestrial vertebrates is that the stimuli for fishes are dissolved in 

their aqueous environment.  The compounds that were behaviorally tested in fishes are 

predominantly attractive and most were studied because they elicited ingestive behaviors.  The 

classes of compounds found to be effective gustatory stimuli amongst fishes include small, 

water-soluble molecules, such as amino acids, nucleotides, polyamines, and bile salts (Michel et 

al. 2003; Rolen et al. 2003; Yamashita et al. 2006; Caprio and Derby 2008).  Most of the 

knowledge gained on fish gustation over the past 30 years of research has focused on the 

transduction and discrimination of amino acid stimuli (Michel and Caprio 1991; Caprio et al. 

1993; Valentinčič and Caprio 1994; Valentinčič et al. 1999; Caprio and Derby 2008).  In many 

fishes, taste buds are located not only in the oropharyngeal cavity, as in mammals, but also over 

the external portions of the head and lips, and in catfishes, taste buds are located on barbels as 

well as distributed over the entire external body surface.  These taste buds are innervated by 

branches of the facial nerve (cranial nerve VII) which form gustatory neural pathways that are 

broadly- or narrowly-tuned to specific classes of molecules, such as L-amino acids, which are 

involved in food search behaviors (Caprio et al. 1993).  Integrated multi-unit and single-unit 

recordings show that different populations of nerves can be broadly or narrowly tuned to groups 
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of amino acids (Michel and Caprio 1991; Kohbara and Caprio 1996; Ogawa and Caprio 1999; 

Yamashita et al. 2006).  The neural processing of bile salt gustatory information occurs through 

relatively independent neural pathways as well as fibers that can also be responsive to amino 

acids (Rolen et al. 2003; Yamashita et al. 2006).  Some studies have been performed to 

understand the receptors and pathways involved in detection of deterrents, however much of this 

work used well-known, but behaviorally irrelevant, stimuli, such as quinine and denatonium 

(Ogawa et al. 1997, Caicedo et al. 2002, Oike et al. 2007).  The chemosensory systems of 

animals are constrained by their evolutionary history and are best suited for detecting compounds 

that are behaviorally relevant.  Quinine, a compound with unknown ecological relevance for 

fishes, activates a population of gustatory fibers and suppresses amino acid responses in another 

population of fibers (Ogawa et al. 1997).  Both, or either, of these neural mechanisms may be 

involved in the signals leading to the aversive response elicited by quinine. 

To learn how animals detect and respond to deterrent compounds, it is logical to test 

ecologically and behaviorally relevant stimuli.  Aplysioviolin (APV) and phycoerythrobilin 

(PEB) are two structurally related deterrent compounds that were purified from the ink secretion 

of A. californica (Kamio et al. 2010a, 2010b) (Fig. 1 and Suppl. Fig. 1).  A. californica derives 

PEB from phycobilin, a photosynthetic pigment found in its red algal diet. The sea hares convert 

most of the PEB into APV and store both in the ink gland, with APV being ten times more 

concentrated than PEB in the ink secretion (Kamio et al. 2010a, 2010b). The present report 

describes electrophysiological and behavioral research using sea catfish, Ariopsis felis, a 

chemosensory model, to investigate the detection and signal processing of identified deterrent 

compounds from the chemical defenses of A. californica.  Ariopsis felis are found in the Gulf of 
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Mexico and are sympatric with Aplysia dactylomela, which also possess APV and PEB in their 

ink (Kamio et al. 2010a). 

4.2 Materials and Methods 

Animals 

Sea catfish, Ariopsis felis (male and female, 12-30 cm), were collected by Gulf Specimen 

Marine Laboratory (Panacea, FL) and the Whitney Marine Laboratory (St. Augustine, FL).  They 

were maintained at Georgia State University in individual 40-liter glass aquaria containing 

filtered and aerated sea water (ASW, Instant Ocean, Aquarium Systems, Mentor, OH) at a 

salinity of 28 ppt.  They were kept on a 12:12 L: D cycle and fed frozen shrimp ad libitum.  

Adult sea hares, Aplysia californica (15-30 cm), were collected in California by Marinus 

Scientific (Garden Grove, CA, USA). 

 

Collection and purification of sea hare secretions 

Upon arrival in the laboratory, sea hares were placed in ice water and then injected with 

isotonic MgCl2 to anesthetize them prior to dissection.  Ink glands were dissected and 

immediately frozen at -80
o
C and stored until used.  Ink was collected by gently squeezing 

defrosted ink glands in a Petri dish with the blunt end of a scalpel handle; the resultant is 

considered full strength, or 100%, ink.  To extract APV and PEB from the ink secretion, methods 

were adapted from Kamio et al. (2010).  Briefly, ink glands (86.43 g wet weight) were freeze-

dried in a lyophilizer (Labconco, Kansas City, MO), macerated in 100% MeOH, and centrifuged 

to remove insoluble tissue, proteins, and polar compounds.  The resulting pellet had a purple 

color, and the purple extract was washed from the pellet with 100% MeOH until the pellet 
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became white.  The purple supernatant was separated using HP-20SS (Diaion, Mitsubishi 

Chemical USA Inc, Japan) in an open column with a H2O/MeOH stepwise gradient.  The 100% 

MeOH fraction was further separated by RP-HPLC on a C18 (Phenomenex Luna, Torrance, CA) 

column (10x250 mm) and a gradient of 40–100% MeOH in H2O; 8.0 ml/min.  In this scheme, 

PEB elutes at 3-4 min and APV at 4-6 min (Fig. 4.1).  A mixture called Ink – (APV+PEB) was 

created by recombining the fractions of the ink secretion that were taken from these steps except 

for APV and PEB.  This includes the pellet removed in the MeOH wash, the other fractions from 

HP-20SS separation, and the HPLC fractions that did not include the peaks of APV and PEB 

(Fig. 4.1).  Following HPLC separation, samples of the fractions containing APV and PEB were 

analyzed for free amino acid content (AminoAcids.com, St. Paul, MN USA), to ensure that any 

behavioral or electrophysiological response to these fractions was not due to free amino acids.  

 

Preparation of pellets  

Shrimp-flavored pellets were created to examine the effect of test stimuli on catfish 

feeding behavior, especially the ingestion of food, as described in Hay et al. (1998) and as used 

previously in Nusnbaum and Derby (2010a, 2010b).  To make the pellets, shrimp purchased at a 

local seafood market were freeze dried and ground into a powder using a mortar and pestle.  

Powdered shrimp and alginate (Sigma-Aldrich) were combined in a 5: 3 ratio by weight, and 8 

gm of this mixture was added to 100 ml deionized water. Red food color, 0.1% by volume 

(McCormick & Co., USA), was added to the mixture to allow the normally uncolored pellets to 

be visualized by the researcher as well as to simulate the deep color in ink.  This shrimp-alginate 

solution was drawn into a 50-μl pipette and exuded into a 0.25 M CaCl2 solution, creating a solid 

matrix that could be cut into 3-mm long pellets.  Shrimp-flavored pellets and unflavored alginate 
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pellets (which lacked shrimp powder) were also treated with different concentrations of test 

stimuli by combining those stimuli with the alginate gel, to create ‗test pellets‘. 

 

Pellet Assay 

A pellet assay was performed as previously described in Nusnbaum and Derby (2010a, 

2010b) and commonly used to test deterrence of natural products against predatory fishes 

(Kubanek et al. 2000; Pawlik 1987, 1993; Pawlik et al. 1987, 1995).  Briefly, shrimp-flavored 

pellets were used as positive controls. I used acceptance of food, indicated by the fish 

swallowing and consuming it, and the converse, rejection of food, as positive and negative 

measures, respectively, of its palatability.  Hand-feeding was performed using a pair of forceps.  

The outcome was rated ‗rejection‘ if at the end of the test period the pellet was not consumed.  

Responses were recorded as either ‗rejection‘ or ‗acceptance‘, and analyzed using Cochran‘s Q 

test with post-hoc testing using one-tailed McNemar‘s tests (α = 0.05).  Thirteen sea catfish were 

tested with all test pellets and were given control pellets before and after each test pellet.  Fish 

were tested no more than eight times each day to maintain high hunger levels.  Control pellets 

were fed to fish between each test, and data for a test were not used if the fish rejected or ignored 

the control.  Time between test pellets was at least 20 min. The pellet assay tested the palatability 

of ink, APV, PEB, and ink – (APV+PEB) at log-step concentrations from 100% to 0.0001% ink 

in ASW.  Due to the deep color of ink, APV, and PEB, it was not possible to present these 

stimuli with the experimenter completely unaware of their identity. 
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Barbel Assay 

The results of the pellet assay for sea catfish were similar to previous studies with several 

other fish species that demonstrated that ink is a deterrent to food ingestion (Nusnbaum and 

Derby 2010a, 2010b).  Consequently, a barbel assay was performed to determine (a) if the 

barbels mediate the sea catfish‘s detection of the deterrent compounds in ink, and (b) if an 

electrophysiological recording from the barbel nerve could be used to study the detection of 

these compounds.  Cubes of freeze dried shrimp (8 mm
3
) were used in this assay to test the 

effectiveness of the test stimuli (ink, APV, PEB, and ASW) on contact with the barbel of the 

catfish.  The shrimp cubes were treated with 250 μl of the full-strength concentration of each test 

stimulus, which was enough to saturate the shrimp.  The cube was held in the water column with 

a pair of forceps for the fish to approach.  When the fish approached, the cube, the cube was 

slowly moved to brush across the barbel.  The intensity and speed of the brush were maintained 

as qualitatively consistent as possible and the binary nature of the responses indicates that this 

motion did not significantly affect the fishes‘ responses to the test stimuli.  The fish either turned 

towards the food and ingested it or turned and swam away.  The number of fish performing these 

behaviors was compared using Cochran‘s Q test with post-hoc testing using one-tailed 

McNemar‘s tests (α = 0.05).  Due to the deep color of ink, APV, and PEB, it was not possible to 

present these stimuli with the experimenter completely unaware of their identity. 

 

Electrophysiological Methods 

Fish were immobilized with an intramuscular injection of gallamine triethiodide 

(Flaxedil, ~1.0 mg/kg body weight, Sigma-Aldrich, St. Louis, MO), covered with wet tissue 

paper, and secured to a wax block.  Gill irrigation was provided by a flow of ~50 ml/min aerated 
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ASW into which the general anesthetic (2-phenoxyethanol (0.2 ml/l: Sigma-Aldrich) was added.  

Supplemental Flaxedil was added as necessary to maintain animal immobility.  The maxillary 

barbel was inserted into a tube and fixed in place so that it was continuously bathed with a flow 

of 10 ml/min ASW (without 2-phenoxyethanol) from a pressurized reservoir during the 

experimental period.  This flow provided a carrier flow for test stimuli during recordings.  

Procedures for the surgical exposure of the facial/trigeminal nerve complex to the maxillary 

barbel, surgical isolation, and electrophysiological recording of integrated taste activity were 

previously described (Wegert and Caprio 1991). Briefly, tetracaine (3%) was used as a local 

anesthetic on the skin 5 min prior to surgery to expose the branches of the facial-trigeminal nerve 

complex that innervates the rostral portion of the head.  A branch of the facial-trigeminal nerve 

complex, which innervates the maxillary barbel, was isolated and carefully cleaned of connective 

tissue.  Neural activity was recorded with a glass pipette suction electrode with an Ag-AgCl 

wire, AC amplified (P511, Grass Instruments, Quincy, MA), connected to an audio monitor, and 

the signals were recorded on a computer‘s hard drive for analysis using Spike2 software 

(Cambridge Electronic Design, Cambridge, England).  Multifiber signals were integrated with a 

0.1 s time constant and measured as the maximum amplitude of the signal above the baseline 

pre-stimulus level.  The amplitude of the response above baseline was normalized by subtracting 

the amplitude of the signal following ASW presentation and dividing by the pre-stimulus 

amplitude to account for baseline activity and possible artifacts.   

 

Stimulus Delivery 

Stimuli were delivered using an injection loop with a gravity-feed ASW flow.  A 

maxillary barbel was inserted into a silicone tube and continuously bathed in ASW (8-10 
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ml/min) without anesthetic, or continuously bathed in adapting solution during cross-adaptation 

experiments (described below).  A loop was filled with 0.5 ml of stimulus solution that was then 

introduced to the maxillary barbel by diverting the flow through the loop via a 3-way solenoid 

valve (MTV Series, Takasago Electric, Nagoya, Japan).  Background ASW flow and flow 

through the loop were maintained at the same rate by a pinch valve.  The electric valve was 

controlled by software, and stimulation periods were aligned with response recordings for later 

analysis.  With the exception of the period when stimuli were being delivered, the barbel was 

continuously bathed in ASW to prevent desiccation and avoid introducing mechanical artifacts 

during stimulus delivery.  The tube was flushed with ASW for at least 1 min between stimulus 

applications.  An amino acid blend (AAs: 10
-4

 M L-ala, D-ala, L-arg, gly, and L-pro), which are 

the most stimulatory amino acids to the gustatory system of sea catfish (Michel and Caprio 

1991), was presented at least every four presentations to check the stability of the recording.  If 

responsiveness changed by more than 20%, no data from the preceding recordings were used for 

analysis.  Stimuli were presented to the barbel for as long as the recorded response amplitude to 

AAs remained within 20% of initial response values.  Multiple nerve branches were tested within 

a preparation, but no more than three branches were tested in one preparation, and data presented 

here represent 28 recordings taken from 11 individuals. 

 

Cross-Adaptation Experiments 

Electrophysiological cross-adaptation experiments were performed to analyze the relative 

independence of the neural pathways for APV, PEB, and other test stimuli.  These experiments 

consisted of three recording phases.  1) In Pre-adaptation, ASW continuously bathed the 

maxillary barbel, and stimuli were introduced as indicated in the previous method section.  The 
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bile salts, sodium taurolithocholate (TLC), sodium taurocholate (TCA), sodium 

chenodeoxycholate (CDC), and sodium glycochenodeoxycholate (GDC), were chosen because 

of their effectiveness as taste stimuli in channel catfish (Rolen and Caprio 2008). Bile salts and 

AAs were tested at 10
-4

 M each. Further experiments with AAs were performed using L-ala and 

D-ala because these amino acids were identified as being most stimulatory to independent 

populations of facial taste fibers in the sea catfish (Michel and Caprio 1991).  2) During 

adaptation, an adapting solution replaced ASW and continuously bathed the maxillary barbel.  

The adapting solution was allowed to flow for at least 2 min before any test stimuli were 

presented.  Adapting and test stimuli were diluted to test concentration in ASW.  If responses to 

the test stimuli were suppressed by the adapting stimulus to baseline activity the test and 

adapting stimuli were considered to share the same neural pathway(s) and possibly the same 

molecular receptors.  If responses to the test stimuli during adaptation remained significantly 

above baseline but below unadapted levels the test and adapting stimuli bound to at least some 

partially independent receptor sites and were processed by some relatively independent 

peripheral neural pathways. If the adapting stimulus failed to reduce the response to a test 

stimulus, the test stimulus was determined to be completely independent and therefore bound to 

molecular receptors independent from those to the adapting stimulus and also did not share 

peripheral neural pathways.  3) During Post-adaptation, ASW replaced the adapting solution and 

continuously bathed the maxillary barbel for at least 5 min before stimuli were tested again. 

Stimuli were identical to those in pre-adaptation and data were not used unless the pre- and post-

adaptation response amplitudes were within 20% of each other.  This standard for consistency 

ensured that recordings were only taken while the signal was stable (Ogawa and Caprio 1999).  

The degree of adaptation was calculated with the following formula:  
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where Rb is the response to a stimulus before adaptation, Da is the response during adaptation, 

and Ra is the response after recovery from adaptation (Sheybani et al. 2009).  Each nerve branch 

was tested with one or two adapting stimuli and four or five test stimuli.  To test whether an 

adapting stimulus affected the amplitude of the response to each test stimulus, ANOVA followed 

by post-hoc Dunnett‘s tests compared cross-adaptation to self-adaptation (α = 0.05).  Responses 

to self-adaptations were statistically compared to an expected 100% adaptation using a single 

sample t-test.  For those cross-adaptations that were significantly different from self-adaptation, 

one sample t-tests determined whether the percent adaptation was significantly different from the 

unadapted control (i.e. 0% adaptation) (GraphPad Prism version 4.04, GraphPad Software, San 

Diego CA USA).   

4.3 Results 

Behavioral Responses 

Pellet Assay 

Thirteen fish were tested individually, and all individuals used in the study accepted 

untreated shrimp pellets.  Ink, APV, and PEB were each tested at log-step dilutions from 100% 

to 0.001% full strength (Fig. 4.2).  To assess additive effects and necessity of APV and PEB for 

the ink‘s deterrence, APV+PEB and ink – (APV+PEB) were also tested.  Ink and APV+PEB 

were significantly deterrent from 100% to 0.01% full strength (McNemar‘s test, n = 13, p < 

0.01), APV and PEB were significantly deterrent from 100% to 0.1% (McNemar‘s test, n = 13, p 
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< 0.05), and ink – (APV+PEB) was significantly deterrent from 100% to 1% full strength 

(McNemar‘s test, n = 13, p= 0.03).   

 

Barbel Assay 

When a sea catfish‘s barbel was touched with freeze dried shrimp that had been soaked 

with ASW, the fish turned towards the shrimp and took it into its mouth (12/12).  When the 

shrimp was treated with Ink, APV, or PEB at full-strength, fish turned away from the contact and 

did not ingest the shrimp (McNemar‘s test, n = 12, p ≤ 0.001) (Fig. 4.3). 

 

Electrophysiological Responses 

Concentration-Response Functions for APV and PEB 

Integrated multiunit responses to APV and PEB were recorded from branches of the 

facial-trigeminal complex innervating the maxillary barbel, of which the facial nerve components 

contain taste fibers.  The responses from each nerve branch were normalized to the 

responsiveness to APV at 10
-3 

M to account for variations in signal amplitude and responsiveness 

between branches.  Phasic responses were recorded for APV and PEB as well as AAs and bile 

salts, and these recordings were used for analysis (Fig. 4.4).  Neural activity increased as stimuli 

came into contact with the barbel and returned to baseline levels following stimulation.  APV 

and PEB were strongly stimulatory and had equivalent concentration-response curves 

(RMANOVA, n = 7, F = 0.629, df = 3, p > 0.05) (Fig. 4.5).  Concentration had an effect on 

response magnitude to APV and PEB (RMANOVA Within-Subject Contrasts, n = 7, F =25.27, 

df = 3, p < 0.05).  Responses to 10
-4 

M AAs were 95.5±15.6% of 10
-3 

M APV.  Purified APV and 

PEB fractions were tested for free amino acid content, because these compounds are known to be 
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stimulatory and attractive and could affect the behavioral and electrophysiological results. These 

analyses were sensitive to amino acid concentrations as low as 1-4 µM.  The only free amino 

acid (taurine) above measurement threshold was found in the APV fraction at 2.4 µM.  After 

dilution for electrophysiological analyses, the final concentration of taurine was 24 nM, which is 

four log units below the test concentrations of AAs (10
-4

 M).  Further, taurine was the least 

effective stimulus in the sea catfish from a group of 28 amino acids tested in single unit 

recordings (Michel et al. 1993) 

 

Cross-Adaptation Experiments 

Cross-adaptation experiments were performed with approximately equi-effective 

concentrations of each of the adapting and test stimuli.  Tested were 10
-4 

M bile salts, 10
-4 

M 

AAs, 10
-4 

M APV, 10
-4 

M PEB, 10
-4 

M L-ala, and 10
-4 

M D-ala.  Table 1 shows the response 

amplitudes of integrated recordings during continuous application of the adapting stimulus, 

represented as a percent of the unadapted response for each test stimulus (Fig 4.6. a-f).  Results 

of statistical analyses of these data are presented in the figure legend.  Post-adaptation responses 

had to return to within 20% of pre-adaptation amplitude for the recordings to be used for 

analysis.  All adapting stimuli significantly cross-adapted at least one test stimulus.  APV and 

PEB showed complete reciprocal cross-adaptation in which adapted responses were reduced to 

control levels.  AAs completely adapted responses to APV and PEB, but APV and PEB 

adaptation only partially adapted responses to amino acids, indicating cases of incomplete 

reciprocal cross-adaptation.  Bile salts as an adapting stimulus had little effect on responses to 

APV and PEB and only slightly cross-adapted responses to amino acids.  PEB significantly, but 

incompletely, adapted responses to bile salts.  APV adapted bile salt responses to a similar 
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degree as PEB; however, the small sample size (n = 2) for this cross-adaptation resulted in a lack 

of statistical significance.  L-ala cross-adapted responses to APV, PEB, and the mixture of AAs 

by ~50% and D-ala by ~75%. 

4.4 Discussion 

The ability to detect and respond appropriately to noxious or potentially dangerous 

stimuli is an important adaptation for a predator to survive in an environment filled with 

defended prey species.  The sea hare Aplysia californica produces a sticky, purple secretion that 

is deterrent to a variety of predators including spiny lobsters, blue crabs, sea anemones, sea gulls, 

and several species of fishes including sea catfish (DiMatteo 1981; Nolen et al. 1995; Kicklighter 

et al. 2005; Kamio et al. 2010a, 2010b; Nusnbaum and Derby 2010a, 2010b).  Aplysioviolin 

(APV) and phycoerythrobilin (PEB) are purple components of the ink secretion that are derived 

from the algal photopigment phycobilin and are deterrent to blue crabs, Callinectes sapidus, and 

bluehead wrasses, Thalassoma bifasciatum (Kamio et al. 2010a, 2010b; Nusnbaum unpublished 

observation).  In this report, I show that: (a) APV and PEB are deterrent to sea catfish; (b) APV 

and PEB are detected by taste buds on the barbels of the sea catfish and that this barbel gustatory 

system mediates avoidance behavior by these deterrents; and (c) APV and PEB are processed by 

both independent and shared gustatory neural pathways, including some that are also sensitive to 

behaviorally important amino acids. 

The catfish is well-studied as a chemosensory model because of its sensitive gustatory 

system and numerous and distributed taste buds.  Gustatory systems of catfishes and other fishes 

are highly sensitive to amino acids as well as nucleotides, polyamines, and bile salts (Michel et 

al. 2003; Rolen et al. 2003; Yamashita et al. 2006; Caprio and Derby 2008).  Most of these 
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stimulatory compounds are involved in food acquisition and acceptance, though there are likely 

other classes of gustatory stimuli, including deterrents and bile salts, whose behavioral and 

electrophysiological effects have not yet been analyzed.  The gustatory system of fishes is 

organized similarly to other vertebrate taste systems, with a notable exception being the 

increased extra-oral taste bud distribution (Caprio et al. 1993).  Within taste buds, taste cells 

synapse onto primary gustatory fibers, with each fiber typically receiving input from cells in 

multiple taste buds.  Numerous studies using receptor binding and electrophysiological cross-

adaptation indicate that several independent receptors and transduction pathways exist for amino 

acids and other compounds in fish taste systems (Caprio 1978; Kumazawa et al. 1990; Wegert 

and Caprio 1991; Rolen et al. 2003; Rolen and Caprio 2008).  In catfish, receptor binding and 

single fiber studies demonstrated independence in the pathways for detecting L-alanine and L-

arginine in channel catfish (Teeter et al. 1991; Caprio et al. 1997) and L-alanine, D-alanine and 

glycine in sea catfish (Michel and Caprio 1991; Michel et al. 1993; Kohbara and Caprio 1996), 

highly stimulatory feeding attractants.  The expression and connectivity properties of taste cells 

result in gustatory fibers that respond to multiple classes of chemical stimuli but still with 

specificity.  This study represents some of the first evidence for pathways that respond 

specifically to natural deterrents. 

 

APV and PEB, major feeding deterrents in sea hare ink, are detected through multiple gustatory 

pathways in sea catfish 

APV and PEB are relevant deterrents to sea catfish.  The pellet and barbel assays 

demonstrate that sea catfish rejected food or food-flavored pellets treated with low 

concentrations of whole ink, APV, and PEB, respectively (Fig. 4.2, 4.3).  In addition, APV and 



 78 

PEB represent the most dominant and potent deterrent compounds in ink.  Ink lacking only APV 

and PEB (i.e. ink – [APV + PEB]) was deterrent, but when diluted it lost activity significantly 

more than whole ink (Fig. 4.2). The behavioral response threshold of sea catfish to ink in the 

pellet assay is similar to that of bluehead wrasse which significantly reject ink at 0.01% dilutions 

(Nusnbaum and Derby 2010b).  I then used the sea catfish to examine mechanisms involved in 

the detection of deterrents using APV and PEB. 

 

Deterrent specific sensory pathway 

The electrophysiological results indicated that APV and PEB are detected by the same 

gustatory nerve pathways and are equally effective as deterrents.  APV and PEB produce spiking 

activity in the facial-trigeminal nerve complex innervating the maxillary barbels, and APV and 

PEB have similar concentration-response relationships (Fig. 4.5).  APV and PEB also show 

complete reciprocal cross-adaptation (Fig. 4.6a, b).  This result is expected due to the close 

structural similarity of these two compounds (Fig. 4.1).  APV and PEB activated at least two sets 

of gustatory pathways as indicated by cross-adaptation experiments. Cross-adaptation with bile 

salts, L-ala, and D-ala did not completely eliminate responses to APV or PEB (Fig 4.6 d-f).  

These results indicate that there are fibers specific for APV and PEB, and therefore taste 

receptors and taste receptor cells, which are independent from the other taste stimuli tested in 

these experiments.  Amino acid independent fibers stimulated by deterrents are found in channel 

catfish, where quinine specifically activates a group of taste fibers (Ogawa et al. 1997), as well 

as in a number of other species (Frank 1991; Danilova et al. 2002; Geran and Travers 2006).  

Fibers specific for APV/PEB may function as a labeled-line for processing deterrent signals, 

resulting in rejection or avoidance behaviors.  In catfish, the facial taste nerve innervates taste 
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buds in the anterior portion of the mouth and on the external surface of the animal and projects to 

the facial lobe, whereas glossopharyngeal and vagal taste fibers innervate taste buds located in 

the oropharyngeal cavity and project to the vagal lobe which is involved in determination of 

ingestion, reflex swallowing, or rejection (Atema 1971; Morita and Finger 1985; Whitehead and 

Finger 2008).  The function of APV/PEB specific facial nerve fibers innervating the maxillary 

barbel may be to produce the avoidance response observed in the barbel assay (Fig 4.3).  Though 

not directly tested in this dissertation, similarly tuned taste fibers in the vagal or 

glossopharyngeal nerves innervating the oral cavity may play a role in the rejection response in 

the pellet assay (Fig 4.2).  A subset of quinine specific rat glossopharyngeal fibers projecting to 

the nucleus of the solitary tract are involved in reflex rejection responses, but not in behavioral 

avoidance which is eliminated by decerebration (Travers et al. 1987; King et al. 1999). This 

study represents some of the first evidence in fishes for neural pathways that respond specifically 

to natural deterrents.  The subset of fibers whose response properties indicated shared pathways 

may also contribute to behavioral rejection/avoidance, or they may have different functions.  

 

Shared neural pathways between deterrents and other classes of taste stimuli 

Cross-adaptation with APV or PEB reduced, but did not eliminate, responses to AAs and 

bile salts (Fig. 4.6 a, b), indicating that there are at least some pathways sensitive to amino acids 

and bile salts that are affected by presentation of APV or PEB.  This adaptation was not 

complete, indicating that there are amino acid and bile salt sensitive fibers that are insensitive to 

APV and PEB (Fig. 4.6 c, d).  Incomplete reciprocal cross-adaptation could be due to differential 

effects of APV and PEB on the pathways that are sensitive to different amino acids.  APV and 

PEB were significantly cross-adapted by L-ala, but not by D-ala, and may interact differentially 
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with other neural pathways for untested AAs (Fig. 4.6 d, e).  Adaptation with bile salts did not 

reduce responses to APV or PEB, suggesting that APV and PEB bind mostly to receptors 

independent of those to bile salts; however, some bile salt responsive fibers were affected by 

APV and PEB (Fig. 4.6 a, b).  Though the integrated multi-unit recordings showed significant 

effects on response magnitude between APV/PEB and AAs, I cannot determine whether APV 

and PEB function as activators or suppressors without presentation of mixtures and single fiber 

analyses.  My recordings do show that amino acids, which are feeding stimuli for fishes, share 

some sensory fibers with APV and PEB and these shared pathways with food stimuli may 

enhance APV/PEB‘s behavioral effectiveness as deterrents (Michel and Caprio 1991; Caprio et 

al. 1993).  The existence of a shared pathway between bile salts and  AAs, APV, and PEB 

indicates a difference in signal processing that could have behavioral implications (Rolen et al. 

2003).  

Behavioral results demonstrate that APV and PEB affect responses to stimuli that would 

otherwise induce ingestion.  These results indicate that APV and PEB affect the fishes‘ normal 

feeding behavior towards palatable stimuli, likely amino acids, which produce snapping and 

swallowing behavior in fishes (Valentinčič and Caprio 1994; Valentinčič et al. 1999).  There are 

two testable hypotheses for how APV, PEB, and amino acids interact at the sensory level.  First, 

they could share signal transduction mechanisms, such as shared gustatory receptor molecules or 

second messenger cascades in the same gustatory receptor cells.  Second, the activity of one 

signal transduction pathway could inhibit the activity of another.  Cross-adaptation between L-

alanine and either APV or PEB was incomplete in both directions, suggesting that there are at 

least two pathways that respond to APV and PEB – L-alanine sensitive and L-alanine insensitive.  

The same is likely for bile salts, which partially cross-adapted with AAs, APV and PEB.  If APV 
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and PEB function as receptor antagonists, the activities of amino acid-shared and -independent 

pathways could be additive in their behavioral effects, with one transmitting deterrent 

information while another reduces the predator's ability to detect attractive amino acids.  The 

behavioral responses to the gustatory detection of bile salts have not yet been determined (Rolen 

and Caprio 2008), but their shared neural fibers with APV and PEB is an interesting result that 

should be examined further. 

Because many toxic metabolites taste bitter, bitter taste receptors are thought to protect 

the predator against the ingestion of poisonous food compounds (Garcia and Hankins 1975; 

Glendinning 1994; Glendinning et al. 1999).  It is, therefore, evolutionarily advantageous for 

predators to be able to detect and respond to these compounds, and redundancies in this system 

may be conserved.  In vertebrates, individual gustatory receptor cells express many different 

T2Rs and function as broadly tuned bitter detectors that are sensitive to many different classes of 

bitter compound (Chandrashekar et al. 2000; Mueller et al. 2005). Multiple nerve fibers receive 

input from these bitter-detecting taste cells and these fibers can be most responsive to bitter 

substances and also receive significant input from receptors that mediate other classes of tastes.  

Single taste fibers responding to structurally, and behaviorally, different classes of stimuli were 

demonstrated by activity in a variety of species including vertebrates and invertebrates (Zeng and 

Hidaka 1990; Kitada et al. 1998; Li et al. 2001; Frank et al. 2005; Lemon and Smith 2005).  Two 

groups of gustatory nerve fibers in channel catfish respond with excitation to both amino acids 

and low concentrations (~10
-4 

M) of quinine.  Quinine (10
-2 

M) suppresses the amino acid 

responses of Group II fibers by 89-100%, whereas Group I fibers are significantly less affected 

(Ogawa et al. 1997).  APV and PEB may similarly activate and inactivate pathways that enhance 

their behavioral effectiveness as deterrents.  The behavioral consequences of the observed 
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activity patterns in gustatory receptor cells and gustatory fiber types are not currently known, but 

it is possible that they reinforce each others‘ effects.  These patterns may aid in differentiating 

the identity of deterrent compounds and determining the appropriate contextual behavioral 

response.    
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Table 4.1 Cross-adaptation data from electrophysiological recordings from the maxillary barbel of A. felis.  Adaptation data are 

presented as mean percentage ± standard deviation of the unadapted response for each adapting stimulus-test stimulus pair (see text 

for formula). Sample size for each data set is in parentheses.   

 

  
Test 

Stimulus 
AAs Bile Salts APV PEB L-ala D-ala 

Adapting 

Stimulus        
AAs  1±7% (10) 59±7% (4) 15±19% (10) 12±14 % (9) -- -- 

Bile Salts  69±19% (4) 0±2% (4) 97±6% (4)  96±10% (4) -- -- 

APV  29±21% (10) 21 ±14 % (2) 7±11% (10) 12±18% (10) -- -- 

PEB  32±28% (10) 24±26% (9) 0±6 % (9) 1±3% (8) -- -- 

L-ala  48±9% (4) -- 46±6% (4) 49±5% (4) 1±4% (4) 25±12% (4) 

D-ala  62±15% (4) -- 85±13% (4) 85±8% (4) 54±17% (4) 1±5% (4) 
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Figure 4.1 Schematic diagram of separation of deterrent compounds in A. californica ink, 

aplysioviolin (APV) and phycoerythrobilin (PEB).  Ink was extracted from glands by 

lyophilization followed by grinding in 100% MeOH.  The resulting purple supernatant was dried 

down, dissolved in 40% MeOH, and passed through an HP20SS column.  The column was then 

flushed with 100% MeOH to release the purple components.  The 100% MeOH fraction was 

further separated by RP-HPLC on a C18 column (10x250 mm) and a 40–100% MeOH in H2O 

gradient; 8.0 ml/min.  Peaks for PEB and APV eluted around 15 and 21 min respectively.  

Asterisks denote the portions of the extract that were recombined to form ink – (APV + PEB).  

See Supplementary Figure 1 (Online Resource 1) for UV-Visual spectral analysis of the 

fractions. 
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Figure 4.2 Behavioral analysis of the concentration-response relationship of ink fractions.  Each 

stimulus was incorporated into shrimp-alginic acid pellets and offered to thirteen fish.  Ink and 

APV+PEB were significantly deterrent at 0.01% full strength and higher.  APV and PEB were 

significantly deterrent at 0.1% full strength and higher. Ink – (APV+PEB) was deterrent at full 

strength but not at 1%. .  - response is significantly above 0%.  Inset: Concentration-response 

relationship between APV and PEB at log molar concentration steps.  APV and PEB were not 

significantly differently deterrent at equimolar concentrations. 
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Figure 4.3 Behavioral responses in the barbel assay demonstrate that 100% full strength ink, 

APV, and PEB are detected by the barbels.  All 12 fish tested turned away from freeze dried 

shrimp soaked in ink and PEB, and 11/12 turned away from APV. * - response is significantly 

different from ASW. 
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Figure 4.4 Electrophysiological recordings from a branch of the facial-trigeminal nerve 

complex.  Each box represents a single representative recording from one branch of this nerve 

following presentation of a stimulus (A: AAs, B: APV, C: ASW).  The upper trace depicts raw 

recordings for each stimulus, and the lower trace shows the same data transformed through 

integration with a 0.1 sec time constant.  The numbers represent the maximum amplitude above 

the baseline for each integrated recording.  These data were used to analyze relative responses of 

each nerve branch to each stimulus. Bars represent 2-sec stimulation period. 
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Figure 4.5 Electrophysiological concentration-response curve for APV and PEB.  Integrated 

multi-unit recordings were taken from bundles of the facial-trigeminal nerve complex while 

presenting the maxillary barbel with different concentrations of APV and PEB.  The integrated 

signal amplitudes (± SD) are displayed relative to the maximal response for APV.  Response 

amplitude increased with concentration for APV and PEB, and the stimuli are not differentially 

stimulatory at similar concentrations.  Concentration affected response magnitude for APV and 

PEB.   
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Figure 4.6 Cross-adaptation effects of different stimuli presented to the maxillary barbel.  

Results are depicted as the percent amplitude of the unadapted response, and values are mean ± 

SD. * - Adapted response is significantly different from 100% unadapted response.  # - Cross-

adapted response is significantly different from control (self-adaptation = the test response to the 

adapting stimulus).  All adapting stimuli showed significant cross-adaptation of at least one test 

stimulus (ANOVA, APV: n = 10, F = 3.161, df = 3, p < 0.05; PEB: n = 9, F = 6.402, p < 0.05; 

AAs: n = 10, F = 13.77, p < 0.05; bile salts: n = 4, F = 52.35, p < 0.05; L-ala: n = 4, F = 30.48, p 

< 0.05; D-ala: n = 4, F = 29.32, p < 0.05). Statistical values for each figure are presented below. 

(a) Adaptation with APV reduced responses to APV, PEB, and AAs and showed a trend towards 

reduction of responses to bile salts.  Adapted responses were reduced to control levels for APV 

and PEB, but not AAs. (b) Adaptation with PEB reduced responses to APV, PEB, AAs, and bile 

salts.  Adapted responses were reduced to control levels for APV and PEB, but not AAs or bile 

salts. (c) Adaptation with AAs reduced responses to APV, PEB, and AAs.  Adapted responses 
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were reduced to control levels for APV, PEB, and AAs. (d) Adaptation with bile salts was 

effective in self-adaptation and showed a low level of adaptation of AAs.  Adapted responses 

were only reduced to control levels for bile salts. (e) Adaptation with L-ala reduced responses to 

APV, PEB, AAs, L-ala, and D-ala. Adapted responses were only reduced to control levels for L-

ala. (f) Adaptation with D-ala reduced responses to AAs, L-ala, and D-ala.  Adapted responses 

were only reduced to control levels for D-ala. 

(a) APV adaptation: t-test against 100% unadapted response, APV: n = 10, t = 27.96, p < 0.001; 

PEB: n = 10, t = 15.36, p < 0.001; AAs: n = 10, t = 14.10, p < 0.001; bile salts: n = 2, t = 7.92, p 

> 0.05. t-test against control levels, APV: n = 10, t= 2.02, p > 0.05; Dunnett‘s test, PEB: n = 10, 

q = 0.64, p > 0.05; AAs: n = 10, q = 2.91, p < 0.05. (b) PEB adaptation: t-test against 100% 

unadapted response, APV: n = 9, t = 46.88, p < 0.001; PEB: n = 9, t = 98.61, p < 0.001; AAs: n = 

10, t = 19.55, p < 0.001; bile salts: n = 8, t = 8.36, p < 0.001. t-test against control levels, PEB: n 

= 9, t = 0.77, p > 0.05; Dunnett‘s test, APV: n = 9, q = 0.08, p > 0.05; AAs: n = 9, q = 3.44, p < 

0.05. (c) AAs adaptation: t-test against 100% unadapted response, APV: n = 10, t = 10.53, p < 

0.001; PEB: n = 9, t = 7.174, p < 0.001; AAs: n = 10, t = 44.59, p < 0.001. t-test against control 

levels, AAs: n = 10, t = 0.44, p > 0.05; Dunnett‘s test, APV: n = 10, q = 1.74, p > 0.05; PEB: n = 

10, q = 1.36, p > 0.05. (d) Bile salts adaptation: t-test against 100% unadapted response, APV: n 

= 4, t = 0.98, p > 0.05; PEB: n = 4, t = 0.75, p > 0.05; AAs: n = 4, t = 3.22, p < 0.05; bile salts: n 

= 4, t = 87.82, p < 0.001. t-test against control level, bile salts: n = 4, t = 0.04, p > 0.05.  (e) L-ala 

adaptation: t-test against 100% unadapted response, APV: n = 4, t = 19.61, p < 0.001; PEB: n = 

4, t = 21.05, p < 0.001; AAs: n = 4, t = 11.48, p < 0.05; L-ala: n = 4, t = 50.67, p < 0.001; D-ala: 

n = 4, t = 12.87, p < 0.001.  t-test against control level, L-ala: n = 4, t = 0.63, p > 0.05. (f) D-ala 

adaptation t-test against 100% unadapted response, APV: n = 4, t = 2.29, p > 0.05; PEB: n = 4, t 

= 3.01, p > 0.05; AAs: n = 4, t = 5.19, p < 0.05; L-ala: n = 4, t = 5.27, p < 0.05; D-ala: n = 4, t = 

36.39, p < 0.001.  t-test against control level, D-ala: n = 4, t = 0.79, p > 0.05. 

 

 

 

 

 

 

 

 

 

 

 



 91 

CHAPTER 5 

GENERAL DISCUSSION 

5.1 Chemosensory mechanisms of chemical defenses  

Many plants and animals use chemical defenses against herbivores and predators, which 

may act through those animals‘ sensory systems to produce aversion responses or by being toxic 

or harmful (Berenbaum 1995; McClintock and Baker 2001; Kelley et al. 2003; Cruz-Rivera and 

Villareal 2006; Derby 2007; Glendinning 2007). Plants often produce secondary metabolites that 

function in these ways against herbivores.  As a result of our knowledge of these complex 

systems, most studies on the mechanisms of chemical defenses are concerned with herbivores 

and particularly insects (Stowe et al. 1995; Schar et al. 2001; Glendinning et al. 2002; Bernays 

and Singer 2005; Conner et al. 2007; Glendinning 2007).  Many defensive chemicals in plants 

are known, as are their sensory mechanisms of action (Mustaparta 2002; Glendinning 2007). 

However, in aquatic environments, although many defensive chemical compounds are known, 

our knowledge of their mechanisms of action at the sensory level is limited. Chemical defenses 

can induce immediate aversion responses through olfactory and/or taste organs. Olfactory organs 

can detect low concentrations of deterrent compounds at a distance from the source (Glendinning 

2007; Kobayakawa et al. 2007). Poisonous insects and plants sometimes generate unique odors 

that are detected through olfaction which may facilitate persistent memories in predators 

(Rothschild et al. 1994; Rowe and Guilford 1999). The effects of chemical defenses on behavior 

at the sensory level are better characterized for taste systems (Glendinning 2007).  Taste organs 

play a major role in the decision as to whether to ingest or reject food.  In vertebrates, taste 

organs mediate mostly reflexive behaviors (Lamb and Finger 1995; Scott 2005; Derby and 
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Sorensen 2008).  Poisonous or toxic compounds are often deterrent (i.e. they are distasteful or 

unpalatable) even though there is considerable variation in the chemical structures and therefore 

the predicted shape of the active site of the receptor (Scott 2005; Chandrashekar et al. 2006).  

Cells that detect these aversive compounds are broadly-tuned and induce aversion responses 

(Meyerhof 2005). A family of approximately 30 types of G-protein coupled receptors (known as 

T2Rs) mediate bitter taste in mammals (Mueller et al. 2005). Taste cells frequently express more 

than one receptor type, allowing them to respond to all of the compounds that their suite of T2Rs 

detect (Ishimaru 2005). Thus, bitter taste cells detect a large number of aversive compounds 

without necessarily discriminating among them. 

The use of chemical defenses by marine plants and animals is well documented by 

chemical ecologists, including demonstrations that defensive chemicals can have enormous 

impacts on communities and ecosystems (Hay 1996; Hay and Kubanek 2002; Kicklighter et al. 

2004; Parker et al. 2005; Kicklighter and Hay 2006; Long and Hay 2006; Derby 2007; Pohnert at 

al. 2007). Chemical defenses of marine plants are often secondary metabolites. These 

metabolites are shown through feeding assays to affect palatability to herbivores and predators. 

However, limited studies in marine systems have revealed the sensory mechanisms through 

which these deterrent compounds function (Kem and Soti 2001).  Chemical defenses of marine 

animals have been extensively studied in predatory fish and arthropods (Kicklighter et al. 2003; 

Long and Hay 2006; Ritson-Williams and Paul 2007).  Usually chemical compounds are isolated 

from chemical defenses and tested for deterrence through feeding assays. Chemical compounds 

are mixed with known feeding stimulants and tested for feeding suppression (Cruz-Rivera and 

Hay 2003). These tests are highly effective in testing feeding suppression (Lindquist 2002), but 

the mechanisms responsible for the deterrence are generally unknown.  To test how a compound 
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functions as a chemical defense, it must be isolated and tested on its own.  I demonstrated that 

sea hare ink not only suppresses intake of normal feeds by fish, but that the ink is also rejected 

when presented alone (Chapter 3).  Further behavioral and electrophysiological analyses allowed 

me to begin to understand the mechanisms by which ink deters feeding and may protect the sea 

hare from fish predators. 

 

5.2 Mechanisms of action of the chemical defenses of Aplysia californica 

The sea hare, Aplysia californica, employs both active and passive chemical defenses in 

its arsenal of anti-predatory adaptations (Faulkner and Ghiselin 1983; Pennings 1994; Frost and 

Kandel 1995; Wright and Carew 1995; de Nys et al. 1996; Painter et al. 1998; Gallimore and 

Scheuer 2000; Ginsburg and Paul 2001; Cummings et al. 2005).  For my dissertation research, I 

focused on the actively released ink secretion, because its release and biological activity are 

well-studied in other predator-prey interactions (Nolen et al. 1995; Kicklighter et al. 2005; 

Kicklighter and Derby 2006) and because its active release is more amenable to studying 

behavioral effects.  Sea hare ink is composed of the secretions of two separate glands which 

generally release their products simultaneously into the mantle cavity where they are mixed 

together before being expelled in the direction of the attacking predator.  Both secretions are 

complex mixtures containing secondary metabolites, proteins, free amino acids, and other 

chemicals; however, the purple ink secretion also contains high concentrations of red algal 

derived pigments (MacColl 1990; Pennings and Paul 1993; Johnson and Willows 1999; Rogers 

et al. 2000; Petzelt et al. 2002, Kicklighter et al. 2005).  As demonstrated by electrophysiological 

recordings, ink and opaline secretions stimulate both the gustatory and olfactory systems of spiny 
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lobsters (Kicklighter et al. 2005).  These secretions are also highly stimulatory to the gustatory 

and olfactory systems of the sea catfish, and this stimulation is not solely explained by the free 

amino acid composition of the secretions (Sheybani et al. 2008).  Results from my experiments 

(Chapter 2) demonstrated that the product of the ink gland, but not that of the opaline gland, is 

deterrent to fish predators, and release of the ink secretion reduces the intensity of predatory 

attacks on sea hares.  Further study (Chapter 3) showed that both the gustatory and olfactory 

systems are affected by the ink secretion.  Gustation is generally involved in the ingestion and 

acceptance phases of predation, so the behavioral implications of deterrent effects in this system 

are relatively clear.  However, the role of olfactory detection of the ink secretion is an open 

question whose answer could address the complementary roles of the two chemical sensory 

systems in the marine environment.   

The two major deterrent components of the ink secretion, aplysioviolin and 

phycoerythrobilin, were identified following bio-assay guided fractionation using the blue crab 

as a predator model (Kamio et al. 2010a).  PEB is a light-harvesting phycobilin chromophore 

found in red algae and cyanobacteria.  In the algae, PEB is covalently linked to a 

phycobiliprotein to form phycoerythrin (PE) (Rüdiger 1994; Adir 2005).  The sea hare acquires 

PE from dietary red algae then cleaves PEB from PE in the digestive gland where it is then 

carried in the hemolymph to be stored in the ink gland (Coelho et al. 1998; Prince et al. 1998; 

Kamio et al. 2010b).  APV is the monomethyl ester of PEB and has only been found in members 

of the genus Aplysia (Figure 4.1) (Kamio et al. 2010b).  My demonstration of deterrent activity 

by APV and PEB, here and in other work in the lab, is some of the first research showing 

chemical defensive functions for pigmented molecules (McClintock and Baker 2001; Miyake et 
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al. 2001, 2004; Matz et al. 2008).  It is also the first demonstration of an animal converting plant 

photosynthetic pigments into antipredatory chemical defenses.   

My electrophysiological studies in sea catfish demonstrated that APV and PEB are 

similarly potent stimuli of the gustatory system and that they completely cross-adapt the 

responses to each other as would be expected from their structures and behavioral dose-response 

analyses (Chapter 4).  Cross-adaptation with APV and PEB reduced, but did not eliminate, 

responses to AAs and bile salts, indicating that there are at least some amino acid and bile salt 

sensitive neural pathways that are relatively independent from that to APV and PEB; these 

relatively independent pathways likely mediate the aversive responses observed in behavioral 

assays.  Adaptation with AAs greatly reduced responses to APV and PEB, demonstrating 

incomplete reciprocal cross-adaptation.  Adaptation with bile salts also reduced responses to 

APV and PEB but to a lesser degree.  These results indicate that APV and PEB share pathways 

with other stimuli at the molecular receptor, receptor cell, or primary afferent neuron level that 

affect the amplitude of the integrated gustatory response in primary gustatory fibers.  Without 

further analyses with single fiber or receptor binding techniques, one cannot identify the level at 

which this interaction is occurring.  The multiunit electrophysiological recordings I performed 

show that there are multiple independent pathways involved in the detection of APV and PEB, 

but for those pathways that do interact with both amino acids and APV/PEB my methods cannot 

identify where in the pathway the interaction occurs, the receptor molecule, receptor cell, or 

primary afferent fiber. 

Since ink and opaline contain high concentrations of free amino acids and amino acids 

are potent feeding stimuli in fishes (Wegert and Caprio 1991; Kohbara et al. 1992; Kicklighter et 

al. 2005), it is interesting to consider the behavioral implications of cross-adaptations between 



 96 

AAs and APV/PEB.  From my results, I cannot determine whether APV and PEB function as 

activators or inactivators in the amino acid sensitive pathways.  If they function as activators they 

would activate the shared pathways and possibly be perceived as AAs.  If they are inactivators, 

then they would inhibit responses to AAs and reduce perception of AAs.  If they function as 

inhibitors, then the high degree of cross-adaptation between APV/ PEB and AAs may enhance 

the behavioral aversion to APV and PEB by reducing gustatory fibers‘ ability to respond to AAs 

which are attractive stimuli (Michel and Caprio 1991; Caprio et al. 1993).  Inhibiting the ability 

to detect AAs may reduce the sea hare‘s attractiveness by reducing the predators‘ ability to 

detect the stimuli it uses to identify prey.  Presenting the stimuli in mixtures and recording from 

single fibers may help us to differentiate between these two potential mechanisms of action.  In 

nature, feeding animals encounter complex mixtures of nutrients and other substances. The 

responses of the gustatory receptor cells are thus greatly affected by interactions between 

chemicals (Schoonhoven et al. 1992; Smith et al. 1994; Chapman 2003; Jørgensen et al. 2007).  

Complex stimulatory and inhibitory responses could be important in the sensory coding and 

behavioral response to mixtures of stimuli.  The suppression of appetitive gustatory receptor cell 

activity by bitter substances, such as quinine, is a common phenomenon in several species 

(Dethier and Bowdan 1989, 1992; Chapman et al. 1991; Formaker et al. 1997; De Brito Sanchez 

et al. 2005).  Similar interactions were seen in gustatory fiber studies testing quinine in channel 

catfish, where Group I fibers fire action potentials after quinine presentation and Group II fibers 

lose responsiveness to amino acids when they are mixed with the deterrent compound (Ogawa et 

al. 1997).  These studies have not identified the mechanisms by which quinine affected responses 

to appetitive compounds.  It is possible that the sensory interaction of deterrents with attractive 
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stimuli is a common principle in gustatory systems but further study, both at the cellular and 

molecular level with APV and PEB and with other isolated deterrent compounds, is needed.   

5.3 Neurethology, neuroecology and the study of chemical defenses 

Neuroethology is the evolutionary and comparative approach to the study of animal 

behavior and the underlying neural mechanisms.  Neuroecology connects animal behaviors and 

the nervous mechanisms underlying those behaviors to the broader consequences to populations 

and communities.  As examined by Derby and Zimmer (2007), the field of neuroecology seeks to 

allow researchers to connect the neural bases of behaviors to
 
the study of how behavior affects 

population and species distributions in natural systems.  Chemical ecology, and the study of 

chemical defenses, is a separate but overlapping lens through which to observe trophic 

interactions.  The field of chemical ecology historically focused on the production of secondary 

metabolites, the behaviors in animals that detect these chemicals, and often the community level 

interactions and population dynamics that are consequences of the production of these 

compounds.  Recent work exemplifies this approach which provides information about the 

identity, source, and effects of secondary metabolites, but stops short of examining the 

mechanisms by which the metabolites have their effects on the nervous system (Parker et al. 

2006; Lane et al. 2009; Rasher and Hay 2010).  Despite
 
the crucial ecological importance of 

these secondary metabolites, the underlying
 
mechanisms are lacking for most processes that 

utilize them and impact the structure of communities.  Conversely, the field of chemosensory 

biology and most specifically deterrent taste has made use of bitter compounds from hedonic 

human experiments to study the responses in a variety of animals including fruit flies, fish, rats, 

and monkeys (Dahl et al. 1997; Ogawa et al. 1997; Scott et al. 1999; Chandreshekar et al. 2000; 
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Weiss et al. 2011).  This approach has answered many questions about the transduction 

mechanisms involved in behavioral responses to deterrent compounds, but it does not allow the 

researcher to ask questions about the evolutionary or ecological relationships between the 

producers of these compounds and the behaviors that detection elicits in the consumers.  To 

study chemical defenses, I tested Aplysia californica ink secretions to determine how they 

affected fish predators, and then used identified components from that ink to analyze the sensory 

perception of these deterrents in fish.   

By first identifying compounds that the consumer encounters in its habitat and would 

need the capacity to detect and to respond to, one can ask a number of sequential questions that 

characterize the function of the chemical sensory system and also address interactions at many 

other levels of organization from chemical synthesis to population dynamics.  The chemosensory 

systems of fish, for example, evolved to be sensitive to behaviorally relevant stimuli within its 

environment. It makes no more sense from an ecological perspective to test the chemoresponses 

of fishes to volatile odorants than it does to test their responses to quinine (Davenport and Caprio 

1982; Kanwal and Caprio 1983; Lamb and Finger 1995; Ogawa et al. 1997; Yamashita et al. 

2006) whose only known natural source is the bark of the cinchona tree.  The study of chemical 

defenses is the ideal vehicle to pursue knowledge of chemosensory detection of relevant stimuli.  

One can study the production and costs of making the defensive compounds, the behavioral 

responses elicited by these compounds, the electrophysiological responses elicited by them, 

pathways involved in processing and responding to them, population dynamics resulting from 

possession, or lack, of them, and the ecological impact that these species have on each other and 

their environment.  To fully understand the role of APV and PEB in the defense of A. 

californica, these compounds need to be tested against other common marine predators such as 
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the spiny lobster, which is a crustacean chemosensory model species with which a great deal of 

work has been done on sea hare chemical defenses (Johnson and Willows 1999; Nolen et al. 

1995; Kicklighter et al. 2005; Shabani et al. 2007).  My dissertation begins to examine the 

mechanisms by which APV and PEB stimulate the fish gustatory system in the periphery, but 

further questions must be asked to understand the coding of deterrent compounds in fish 

gustation.  What is the identity of the receptors that detect APV and PEB, and what is the 

sensitivity and specificity of these receptors?  Do APV and PEB interact with amino acid 

receptors directly or at some point in the signal transduction pathway?  Further study is needed to 

understand the behavioral implications of simultaneous activation of deterrent receptors as well 

as the inhibition of attractive molecule receptors.  The connection that deterrents make from 

molecule to individual to population to species and ecosystem provides a many tiered approach 

to understanding the natural world. 
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