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Abstract 

Palladium (Pd) plays an important role in numerous catalytic reactions, such as methanol and ethanol 

oxidation, oxygen reduction, hydrogenation, coupling reactions and carbon monoxide oxidation. Creating 

Pd-based nanoarchitectures with increased active surface sites, higher density of low-coordinated atoms and 

maximized surface coverage for the reactants is important. To address the limitations of pure Pd, various Pd-

based nanoarchitectures, including alloys, intermetallics and supported Pd nanomaterials have been 

fabricated by combining Pd with other elements with similar or higher catalytic activity for many catalytic 

reactions. Herein, the recent advances on the preparation of Pd-based nanoarchitectures through solution-

phase chemical reduction and electrochemical deposition methods are summarized. Finally, the trend and 

future outlook on the development of Pd nanocatalysts toward practical catalytic applications are discussed. 
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1. Introduction 

Noble metals (e.g., Pt, Pd, Ag, and Au) play significant roles in many catalytic reactions, including organic 

catalysis and electrocatalysis. Among noble metals, Pd is well-known to be highly active for various surface 

reactions, such as electrocatalysis of hydrogen oxidation, oxidation of small organic molecules, oxygen 

reduction, hydrogenation, coupling reactions and carbon monoxide oxidation.[1-9] Pd shows a remarkable 

activity toward the dissociation of hydrogen gas as well as small organic molecules (such as ethanol, 

methanol, formic acid, etc.). Furthermore, Pd is also capable of catalyzing the reduction reaction of oxygen 

with the presence of electrons and protons. In addition, Pd is known for its high selectivity for some 

heterogeneous (e.g., the hydrogenation of acetylene) and homogeneous catalytic reactions (e.g., Suzuki 

reaction, Sonogashira reaction, etc.). The high catalytic performance of Pd for these reactions renders them 

highly promising for many applications, such as fuel cells, pharmaceutical, automotive (catalytic converters) 

and electrochemical sensors.[6,10-18] In recent years, Pd has gained increasing attention as a substitute for Pt 

in many electrocatalytic applications. This is because Pd and Pt possess a number of similarities, for 

example, they belong to the same group in the periodic table and they both exhibit face-centered cubic (fcc) 

structures. Although the economical price of Pd has risen in the last three years due to the high demand from 

automotive industries (catalytic converters),[18] Pd remains as a promising substitute for Pt in electrocatalysis 

as it is fifty times more abundant on earth than Pt.[19-21] 

The nature of catalytic reactions catalyzed by Pd atoms involves a good understanding of the 

underlying chemistry at a molecular level. For this purpose, various techniques (such as Auger electron 

spectroscopy, low-energy electron diffraction, mass spectrometry and thermal desorption spectrometry) have 

been employed to characterize the surface chemistry of Pd.[22] Pd has three low Miller-index surfaces, i.e., 

(111), (100) and (110). The Pd(111) surface is a preferential site for CO adsorption, as proven by theoretical 

and experimental approaches.[23,24] In fact, Pd is the preferred catalyst for the oxidation of hydrogen or liquid 

fuels, rather than the reduction of oxygen.[26] However, CO is often found as an intermediate product during 

the electrochemical oxidation of hydrogen and liquid fuels and similar to Pt, Pd is also sensitive to CO 

poisoning.[26,27] 

Proper control over the shape and size of Pd nanoparticles can enable effective tuning of their 

properties and characteristics for the desired applications.[28-30] The size of the catalyst particles essentially 

determines the specific surface-active area.[31]  The smaller the size of the particles, the larger the specific 

surface-active area and vice versa. The catalytic performance of an electrooxidation catalyst is proportional 
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to its specific surface-active area. In the early development stage of Pd-based electrocatalysts, many 

scientists focused on the preparation of the smallest yet optimum size of Pd nanoparticles. However, to 

further enhance the stability of electrocatalysts upon chemical and mechanical deformations, recent studies 

have been aimed at controlling not only the size, but also the morphology of Pd by creating various 

nanostructures from 0D to 3D and exposing the active facets.[32-36]  

To date, many groups have reported the preparation of various Pd polyhedrons with specifically 

exposed facets: cubes with {100} facets, rhombic dodecahedron with {110} facets, and octahedron with 

{111} facets (Figure 1).[37]  For instance, Hoshi et al. carefully investigated the shape effect of Pd single 

crystal with different surface structure toward methanol oxidation reaction (MOR).[38] Their experiments 

revealed that the Pd(111) surface showed the lowest activity, while the Pd(100) surface showed the highest 

activity for MOR. Furthermore, the Pd(100) surface also exhibited the highest activity toward the formic 

acid oxidation reaction (FAOR) compared to the other low-index planes.[2] From a theoretical point of view, 

Wang and co-workers demonstrated for the first time that the activity and selectivity of Pd for the ethanol 

oxidation reaction (EOR) were highly structure-dependent and that the Pd(100) surface was best at 

promoting the dissociation of an ethanol molecule with a rather low energy barrier.[39] Furthermore, their 

DFT study also showed that complete ethanol oxidation could be achieved on the active Pd (100) surface in 

the presence of hydroxil (OH) group. 

Even though the control over the morphology of Pd nanocrystals with low-index planes has been 

widely explored, recent studies have expanded into the fabrication of 0D, 1D, 2D and 3D Pd 

nanoarchitectures enclosed with high-index facets.[40,41] In the case of electrooxidation of small organic 

molecules, catalyst particles with rough surface are preferred.  This is because the rough surface of the 

particles can be translated as having high-index facets, which improve the density of low-coordinated atoms, 

such as steps, terraces, and kinks.[42] The schematic illustration of low-coordinated atoms is given in Figure 

2.[43] The presence of a high density of  low-coordinated atoms is beneficial for enhancing the amount of 

active sites available for surface catalytic reactions. Noble metal nanoparticles enclosed with high-index 

facets have been shown to exhibit better stability and possess a higher density of dangling bonds on the 

surface, which are preferential for catalysis.[44] 

In addition to high activity, the design of highly stable Pd-based nanoarchitectures is also of 

significant interest. A good catalyst should possess excellent chemical, thermal and mechanical stabilities 

during the catalytic reactions. Therefore, some strategies have been developed to enhance the stability of Pd-
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based nanoarchitectures. The functionalization of Pd by forming alloys or intermetallics with non-noble 

metals or by dispersing it on support materials is often necessary to improve the stability of Pd. For example, 

the introduction of a secondary metal (e.g., Au, Ir, Cu, etc.) at a certain concentration to form alloys or 

intermetallics can improve not only the activity but also the chemical stability of the Pd-based catalysts 

through ensemble and electronic effects.[45-47] The improvement of thermal and mechanical stabilities can be 

achieved through the fabrication of Pd-based nanoarchitectures with higher dimensions (1D, 2D and 3D), 

since they have lower vulnerability to dissolution, the Ostwald ripening and aggregation during the reactions 

compared to 0D nanoparticles.[41,48,49] Apart from alloying, the incorporation of Pd-based nanoarchitectures 

into support materials, such as carbon and oxides, have also been utilized as a lucrative strategy to enhance 

their chemical, thermal and mechanical stabilities.[50] 

Although Pd-based nanomaterials have been reviewed to some extent in past literatures, these 

reviews mostly focused on their functional applications, whereas comprehensive reviews on the solution-

phase preparation of Pd nanoarchitectures are still limited. As of now, several synthetic strategies have been 

developed to create a wide variety of Pd-based nanoarchitectures for catalytic applications. This review will 

focus on the fabrication of various Pd-based nanoarchitectures through chemical reduction and 

electrochemical deposition methods due to their simplicity and cost-effectiveness.[32,51,52] 

The fundamental concepts of this review are illustrated in Figure 3. This review is divided into 

several sections. The first section deals with the nanoarchitectures of Pd catalysts with zero-dimensional to 

two-dimensional structures, including discussions on the shape and size effects toward some catalytic 

applications. The second section focuses on the creation of various 3D Pd-based nanoarchitectures, such as 

aerogels, dendritic and mesoporous structures. The third section explores the functionalization of Pd 

nanocatalysts (intermetallic, alloys and hybrid structures). Finally, the last section discusses some future 

directions and challenges related to the fabrication of Pd-based nanoarchitectures toward the development of 

high-performance electrocatalysts. 
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2. 0D to 2D Pd Nanoarchitectures 

In this section, various types of Pd nanostructures from zero-dimensional (0D) to two-dimensional (2D) 

nanoarchitectures are discussed. Basically, the 0D morphology refers to unsupported Pd nanoparticles with 

sizes less than 100 nm on each axis. Meanwhile, 1D morphology refers to Pd particles in which one axis 

dimension has a size greater than 100 nm (e.g., nanowires, nanotubes, and nanorods). Pd nanoplates, 

nanosheets, and nanodiscs are classified as 2D Pd nanoarchitectures. The preparation procedures of each 

kind of morphology and their corresponding properties toward some catalytic applications are discussed. 

 

2.1. 0D – Nanoparticles 

The rational design of Pd nanoparticles with exposed facets has been well-reported in the literatures.[53] The 

synthesis of unsupported colloidal 0D Pd nanoparticles is typically done through seed-mediated or direct 

(seedless) synthesis. The seed-mediated approach generally consists of two steps: the preparation of small 

Pd nanocubes as seeds, followed by the growth of polyhedral Pd nanoparticles via thermodynamically or 

kinetically-controlled reactions.[54] The synthesis of Pd seeds typically involves the reduction or 

decomposition of the Pd metal precursor, followed by nucleation and growth of a single-crystal structure 

with a particular facet. Directive seed nucleation is commonly assisted by the presence of bromide ions (Brˉ) 

in the reaction solution. For example, in a typical synthesis, Pd precursor (H2PdCl4) aqueous solution is 

added into the CTAB solution and heated at 95 oC under stirring. Then, the reduction of the Pd precursor 

into Pd(0) is achieved with the use of a mild reducing acid, such as ascorbic acid. This reaction then yields 

cubic Pd seeds which can be used to grow polyhedral Pd particles.[54] To control the growth of the cubic Pd 

seeds into the desired polyhedron structure, some key factors should be taken into consideration. Niu et al. 

suggested that there were three factors which governed spontaneous nucleation: 1) the amount of seeds 

added to the growth solution; 2) the reaction temperature and 3) the presence of halide ions (KI) in the 

growth solution. In particular, adsorbates, such as surfactants or halide anions are often used to alter the 

surface energy by selectively interacting with different metal crystal facets during the reaction.[55] The strong 

binding of halides on metallic Pd surfaces suggests that halides could potentially play an important role in 

the chemical synthesis of Pd nanocrystals by changing the surface energy of different Pd facets, which led to 

the formation of different final morphology of the Pd nanocrystals. For instance, the presence of Brˉ during 

the synthesis of Pd nanocrystals reported by Xia et al. led to the formation of Pd nanocubes and nanobars 
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enclosed by {100} facets, while in the absence of Brˉ, only Pd cubocathedrals enclosed by a mixture of 

{111} and {100} facets were obtained.[56] 

The fabrication of well-defined Pd nanocrystals with various exposed facets can also be achieved by 

direct (seedless) approaches. Unlike seed-mediated methods, the seedless methods require fewer steps and 

are easier to perform. For instance, Liu et al. employed a halide additive (KBr) to control the shape of Pd 

nanoparticles from cubic to octahedra (Figure 4).[57] Another direct approach to synthesize shape-controlled 

Pd nanocrystals was demonstrated by Zhang and co-workers through oxidative etching with hydrochloric 

acid (HCl).[58] They demonstrated that the concentration of HCl added to the reaction solution was crucial 

for controlling the morphology of the resulting Pd nanocrystals (Figure 5). In their report, Pd nanocubes 

were obtained in the absence of HCl due to the fast reduction rate. However, with the addition of a small 

quantity of HCl to the precursor solution, truncated nanocubes were formed instead. In contrast, the 

excessive addition of HCl slowed down the reaction rate even further, leading to the formation of Pd 

cuboctahedrons. The obtained Pd nanocrystals with three different morphologies were utilized as catalysts 

for formic acid oxidation. The results revealed that Pd nanocubes with {100} exposed facets showed the best 

catalytic activity, which was in good agreement with a previous report.[59]  

Pd nanoparticles with high-index facets (HIFs) have also been reported in past literatures, including 

concave nanocubes[60], concave disdyakis triacontahedra[61], concave tetrahedra[62], concave nanocubes[63] 

and arrow-headed tripods.[64] Pd concave nanocubes enclosed by {730} facets were previously synthesized 

by Xie et al. through a one-pot liquid method. According to their report, Pd nanoarchitectures with various 

high-index facets could be synthesized by tuning the reaction kinetics, such as temperature and 

concentration of reducing agent and capping agent.[60,65] At high reaction temperatures (75-80 oC), Pd 

nanocubes were obtained.  On the contrary, at lower reaction temperatures and high concentrations of the 

reducing agent (ascorbic acid), well-defined Pd concave nanocubes were achieved. The obtained Pd 

nanocubes and concave nanocubes were employed as catalysts toward MOR. It was shown that Pd 

nanocubes with exposed {100} facets exhibited the best catalytic activity for electrooxidation of alcohols or 

formic acid compared to other low-Miller index Pd nanocrystals. However, Pd nanocrystals enclosed with 

HIFs (concave nanocubes) displayed a significantly higher catalytic activity toward MOR by about 2.8 and 

50 times compared to Pd nanocubes and commercial Pd/C, respectively.  

Well-defined concave tetrahedra Pd nanocrystals were previously obtained through a simple 

solvothermal process with a high yield. Zhang and co-workers used polyvinylpyrrolidone (PVP) as a 
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surfactant and both iron(II) acetylacetonate (Fe(acac)2) and ascorbic acid as shape-directing agents.[62] The 

palladium precursor (Pd(acac)2) and all the other reagents were dissolved in N, N-dimethylformamide 

(DMF), which also served as a reducing agent. Following solvothermal reaction at 120 oC for 10 h and 

consecutive washing, concave tetrahedra Pd nanocrystals were obtained. Interestingly, the concave 

tetrahedra Pd nanocrystals exhibited 3 times higher activity than commercial PdB for formic acid oxidation. 

Concave disdyakis triacontahedra Pd nanocrystals (C-DTH Pd NCs) enclosed with {631} facets were 

prepared through electrochemical deposition on a working electrode from a deep eutectic solvent (DES).[61] 

The time-dependent experiments revealed that the unique C-DTH structure was evolved from octahedral and 

icosahedral structures (Figure 6). The adsorbed urea in the solvent at the upper limit potential (EU) of the 

square-wave potential applied during the electrochemical deposition played a crucial role in the formation of 

C-DTH Pd NCs. When tested for electrooxidation of ethanol, the C-DTH Pd NCs exhibited a superior 

specific activity than the Pd nanocrystals with mixed octahedron and icosahedron structures. The high 

activity of C-DTH Pd NCs was attributed to the presence of high-index facets with high density of low-

coordinated atoms, steps and kinks. Controlling the shape of nanoparticles can lead to a change in their 

molecule-sorption energies, and hence, their catalytic performance. This change typically arises from the 

modified d-band center of a metal nanoparticle as a result of a lattice strain.[66] A lattice strain is typically 

introduced by crystal twinning during the synthesis of metal nanoparticles, and this can lead to various 

distinct morphologies, such as decahedra and icosahedra.  

 

2.2. 1D – Nanorods, Nanotubes, Nanowires 

1D nanostructures possess several advantages for catalytic applications, due to the enhanced electron and 

mass transport and improved chemical stability compared to 0D nanoparticles.[48,67-69] Previously, Xu et al. 

reported the fabrication of a highly ordered array of Pd nanowires via electrochemical deposition.[70] The 

array deposition was carried out on the glassy carbon electrode (GCE) assisted by the anodized aluminum 

oxide (AAO) template. The deposited Pd nanowire array was well-isolated, standing vertically toward the 

electrode surface, and had a uniform diameter (ca. 80 nm) and length (ca. 800 nm). When tested for EOR, 

the Pd nanowire array showed both enhanced activity and stability compared to PtRu/C. It is worth noting 

that upon increasing the length of the nanowires (6 μm), the mass activity was significantly reduced. This 

was attributed to the increased diffusion resistance of reactants and products to and from the Pd nanowire 

array electrode. In contrast to the work by Xu et al., Wang and co-workers successfully prepared ultrathin 
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Pd nanowires through a polyol method.[71] In the initial growth stage of the nanowires, Pd nanoparticles with 

diameters of around 2-3 nm were created. To obtain such ultrathin nanowires, a proper control of the 

reaction kinetics during this initial stage was critical for ensuring the formation of small and 

thermodynamically unstable nanoparticles and then, the nanowires via the attachment growth (Figure 7). 

Although the Pd/C particles and ultrathin Pd nanowires have nearly similar geometrical size (2 nm in width 

for ultrathin Pd nanowires and 2-3 nm in diameter for Pd/C), the ultrathin Pd nanowires displayed 2.5 times 

higher catalytic activity than the commercial Pd/C catalyst for electrooxidation of formic acid due to the 

unique wire-like structure and abundance of twin defects. 

The synthesis of 1D Pd nanorods with exposed {110} facets via an electrochemical deposition has 

previously been reported by Xiao and co-workers.[72] When employed as an oxygen reduction reaction 

(ORR) catalyst,  these Pd nanorods were as catalytically active as bulk Pt. The superior ORR activity of 

these Pd nanorods was contributed by the exposed {110} facets, as also indicated by their theoretical study 

(DFT calculations), in which the O adatom was shown to weakly interact with Pd(110).  The morphology-

controlled growth of such nanorods was governed by the presence of appropriate halide ions, concentration 

of Pd precursors, and applied deposition potentials. In this case, the anisotropic growth of the Pd crystal 

during the synthesis process occurred due to the fast reduction rate. Das group has also reported the 

synthesis Pd nanorods with an average rod length of 150 nm via electrochemical deposition in the presence 

of nicotinamide adenine dinucleotide (NAD+) as a shape regulating agent.[73] The selection of appropriate 

applied pulse width during the electrochemical deposition and concentration Pd precursors in the electrolyte 

solution were important for ensuring the formation of the nanorods. These Pd nanorods were demonstrated 

to be highly sensitive and selective for hydrazine detection with low detection limit (LDL) of 5 nM, high 

sensitivity of 0.78 ± 0.02 μA mM-1 cm-2 and stable response without any interference from potential 

interferents, such as Na+, K+, NO2-, BrO3-, or Pb2+ ions.  

As highlighted in this section, 1D Pd nanoarchitectures possess good electronic conductivity. Aside 

from their intrinsic capability to oxidize several biological substances molecules, such as glucose, lactic acid, 

etc., these 1D Pd nanostructures have also shown excellent performance as non-enzymatic biosensors.[74] For 

instance, Wang et al. had examined porous Pd nanotubes synthesized through an in situ galvanic 

replacement reaction on glassy carbon electrode (GCE) for non-enzymatic glucose sensing.[75] In this work, 

Cu nanowires were used as a template, however after the galvanic replacement reaction, only pure Pd (no 

CuPd alloy) was detected in the product, indicating the complete removal of the template. Using an 
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amperommetric technique, the Pd nanowire sensor was found to generate a wide linear response range from 

5 μM to 10 mM for non-enzymatic glucose sensing, with a maximum sensitivity of 6.58 μA mM-1 cm-2 and 

a detection limit of 1 μM. 

 

2.3. 2D – Nanoplates, Nanosheets 

In recent years, 2D metal nanostructures have attracted increasing attention for catalytic applications.[49,76] 

This is because they possess abundant low-coordinated atoms at the perimeters, which provide many active 

sites for enhancing the catalytic activity. To date, several groups have successfully synthesized 2D Pd 

nanostructures with various distinct structures, such as nanoplates[77-79] and nanosheets[23,80-90]. For example, 

2D Pd nanoplates were previously fabricated using two different methods: templated self-assembly and 

template-free electrochemical deposition methods. Nadagouda et al. employed vitamin B1 as a capping 

agent for the synthesis of Pd nanoplates, motivated by the use of green chemistry.[77] Apart from its capping 

properties, vitamin B1 (reduction potential 0.4 V vs. Ag/AgCl) was also considered to be suitable for the 

reduction of Pd (0.915 V vs. SCE). Upon the appropriate selection of solvent and Pd precursor concentration, 

Pd nanoplates were successfully grown on a single nanorod backbone, generating a leaf-like structure with 

an average length of several microns. The resulting Pd nanoplates were utilized as effective catalysts for 

carbon-carbon cross-coupling reactions, such as Suzuki, Heck, and Sonogashira reactions.  

On the other hand, Jia group have successfully prepared Pd nanoplate array using an electrochemical 

route in the absence of any template.[78] The Pd nanoplate array was electrodeposited on a gold substrate by 

employing a constant potential or current. The key factors which determined the successful growth of these 

Pd nanoplates were the applied potential and the amount of the surfactant, cetyltrimethylammonium bromide 

(CTAB).. According to their report, the CTAB used in the electrolyte solution could influence the 

anisotropic growth of the Pd nanocrystals due its selective adsorption. Hence, with the assistance of uniform 

electric field between the working and counter electrodes, the initially deposited nanoparticles were able to 

grow into Pd nanoplates. Furthermore, the obtained Pd nanoplates were found to be superior compared to 

the flat Pd film electrode for MOR with several times higher catalytic activity. The roughness of the Pd 

nanoplates was suggested to greatly contribute toward their high surface-active area and consequently, their 

high catalytic activity for MOR. 

Compared to nanoplates, nanosheets are expected to possess higher specific surface area per mass due 

to their smaller thickness. Therefore, many research groups have reported the successful preparation of 
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ultrathin Pd nanosheets. For example, Zhang and co-workers reported the controllable synthesis of Pd 

nanocrystals with various structures ranging from tetrahedral, concave tetrahedral to 2D nanosheets through 

a direct wet-chemical method.[62] This innovative approach did not require the use of any toxic and/or 

explosive compounds, such as carbon monoxide or metal carbonyls to assist with the formation of the 

nanosheets. The fabricated Pd nanosheets had an average length of 124 nm and thickness of 2.3 nm (Figure 

8a). Their additional experiments revealed that several key factors governed the formation of these 

nanosheets, including the H2O/DMF ratio and the strength of the reducing agent (mild reducing agents, such 

as ascorbic acid were preferred compared to very strong ones, such as citric acid due to their weaker effect 

on the nucleation of the nanosheets) and the presence of Fe(acac)2 in the reaction solution. Formic acid 

electrooxidation and catalytic hydrogenation of styrene were selected as model reactions to showcase the 

excellent catalytic performance of these Pd nanosheets. From the electrooxidation tests, these Pd nanosheets 

were found to exhibit 3.5 times higher mass activity than the commercial PdB. Furthermore, even after 200 

sweeping CV cycles, the mass activity remained as high as 54% of the initial catalytic activity. In addition, 

these Pd nanosheets also displayed superior performance toward the hydrogenation of styrene with a high 

conversion rate of 88%, compared to only 38% for commercial PdB.  

Later, Qiu and co-workers synthesized free-standing porous Pd nanosheets through a facile one-pot 

chemical method.[89] Quite similar to Sial’s work,[76] the free-standing porous Pd nanosheets were 

constructed by the interweaving of long ultrathin nanowires (Figure 8b). The interweaving of these 

nanowires was achieved with the assistance of poly(diallyldimethylammonium chloride) (PDDA) and the 

obtained Pd nanosheets had a dimension of 2.5 μm in lateral length and 10 nm in thickness (Figure 8c). 

Interestingly, by changing the pH of the reaction solution, the sheet-like morphology was transformed into 

nanoflowers and nanochains at pH 9-10 and pH 12-13, respectively. Therefore, the electrostatic charge 

distribution on PDDA, hydrogen-bonding forces, electrostatic repulsion, steric forces, PDDA-PDDA 

interactions, and binding affinity of PDDA-Pd nanoparticles were affected by the variation in the pH value 

of the reaction solution. The model formic acid oxidation reaction was carried out to probe the superiority of 

these 2D Pd nanosheets compared to commercial PdB. As expected, the as-obtained Pd nanosheets exhibited 

a higher mass activity by almost two-fold compared to commercial PdB. Moreover, they also displayed a 

high stability upon chronoamperommetry (CA) test for 3000 s and accelerated durability test for 1000 cycles. 

SEM analysis of these Pd nanosheets after the stability test revealed that they successfully maintained the 

morphology without noticeable changes. In contrast, the commercial PdB particles suffered from severe 
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aggregation after the stability test. The above examples clearly demonstrate the superiority of 2D Pd 

nanoarchitectures for such electrocatalytic reactions due to: (1) their lower vulnerability to dissolution, the 

Ostwald ripening and aggregation during the reactions compared to Pd nanoparticles and (2) their high 

densities of coordinatively unsaturated atoms and (3) the high active surface area.[49] 

 

3. 3D Pd Nanoarchitectures  

In this section, the synthetic methods for the preparation of 3D Pd nanoarchitectures (aerogels, dendritic and 

mesoporous) are discussed. Pd aerogels are typically comprised of self-supported metallic backbone 

nanonetworks. The nanonetworks generally consist of a high density of (111) and (100) crystal facets. The 

interconnected nanonetwork allows Pd aerogels to have a large specific surface area, excellent conductivity, 

and hierarchical porosity.[91-93] In comparison, the dendritic structure typically shows a branched structure 

resembling a tree. This unique structure typically possesses large surface area, high mass transport and high 

density of low-coordinated atoms at their dendritic branches.[94] Furthermore, mesoporous Pd particles 

typically possess 3D structure (mostly spherical) with highly-ordered pores and pore size ranging from 2 to 

50 nm.[95,96] In addition, for certain applications, such as micro fuel cells, mesoporous films constructed by 

metallic frameworks are generally preferred.[97] In such fuel cells, the catalyst film (porous Pd films) and the 

current collector (gold layer substrate) are embedded together to form the anode. Moreover, mesoporous 

films with metallic framework structures are also highly desirable for non-enzymatic electrochemical 

sensing of specific biomolecules (e.g., glucose, dopamine, lactic acid, etc.) with high sensitivity and 

selectivity.[98]  

 

3.1. Aerogels 

Analogous to carbon aerogels, metal aerogels possess both high electrical conductivity and high surface 

area.[99]  Furthermore, due to their intrinsically high catalytic activity, noble metal aerogels are desirable for 

many electrochemical applications.[100,101] Generally, the preparation of metal aerogels can be achieved 

through two different strategies (Figure 9a), nonetheless both strategies require the formation of a hydrogel. 

To obtain the hydrogel, the first step involves the gelation of pre-formed noble metal nanoparticles. Next, 

the hydrogel is spontaneously formed from the metal ions via an in-situ gelation process.[93] For example, 

Wen and co-workers reported the controlled growth of porous Pd aerogels through a facile assembly 

induced by calcium ions (Ca2+) (Figure 9).[102] In their report, Ca2+ ions were employed as a destabilizing 
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agent for the preparation of Pd aerogels. Prior to the addition of Ca2+ ions, the Pd precursors were reduced 

with sodium borohydride (NaBH4) in hot water and capped with citrate ions. Here, citrate ions were used to 

impart electrostatic and steric repulsions to the metal nanoparticles. The addition of Ca2+ ions to the 

concentrated citrate-coated Pd nanoparticles then induced the formation of hydrogels. The aerogels were 

then formed after subjecting the hydrogels to supercritical drying. According to their report, the 

concentration of Ca2+ could control the volume (porosity) of the hydrogels. The Pd aerogels prepared using 

higher Ca2+ concentration were much denser and exhibited numerous mesopores. When tested for glucose 

oxidation in the range of 2 to 20 mM, the Pd aerogels with large pore size displayed a high sensitivity of 

1.11 μA mM−1, which was 125 and 3 times higher than those of GCE and Pd NPs, respectively.  

Later, Burpo et al. prepared Pd aerogels through a direct solution-based reduction by employing several 

combinations of Pd precursors (Na2PdCl4 and Pd(NH3)4Cl2) and reducing agents (sodium 

borohydride/NaBH4, dimethylamine borane/DMAB, and sodium hypophosphite/NaHPO2).
[103] From their 

screening, the combination which provided the best aerogel was Na2PdCl4 (concentration threshold of 5 

mM) and NaBH4 (0.1 M). The effectiveness of reducing agents in terms of forming aerogel was in the order 

of NaBH4 > DMAB > NaHPO2. The well-formed Pd aerogels had an average ligament diameter of 34.5 ± 

9.5 nm and an average pore size of 82.7 ± 57.7 nm (Figure 9c). More recently, Yazdan-Abad and Douk 

group successfully prepared Pd aerogels with electrochemical surface-active area as high as 56.1 and 133.3 

m2 g-1, respectively.[104,105] Moreover, their mass activity toward the electrooxidation of ethanol was 6-7 

times higher than that of commercial Pd/C. The superior catalytic performance of these Pd aerogels was 

attributed to their hierarchical porosity (macropores and mesopores), improved structural stability and 

enhanced transport of electrons. Here, the mesopores could provide more active sites and high surface-active 

area, while the macropores could ensure easier access for reactants to the active sites. The above examples 

clearly highlight the benefits of Pd aerogels for electrocatalytic applications. 

 

3.2. Dendritic Structure 

By nature, most metals, such as Ni, Pd, Pt, Cu, Ag and Au have a fcc crystal structure. As such, to form 3D 

dendritic structure from these metals, surfactants are usually required as shape-directing agents by 

preferentially adsorbing on specific crystal planes. Zhou et al. proposed the formation of Pd dendrites via a 

polyglycol-assisted oriented attachment process.[106] The polyglycol played a crucial role as a structure-

directing agent by promoting the structural evolution of small urchin-like particles formed during the initial 
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growth stage into dendrite-like particles. In addition, hydrazine hydrate (N2H4.H2O) and ammonia (NH3) 

were also utilized to reduce the Pd precursor (PdCl2) and to regulate the pH value of the reaction solution, 

respectively.  

Patra and co-workers previously synthesized Pd dendrites with a high density of surface steps by 

controlling the growth along the (110) direction.[107] In their work, the electrodeposition method (using AC 

impedance technique) was used to deposit branched Pd dendrites on the carbon paper electrode. The growth 

of these dendrites was greatly contributed by the instabilities induced by sinusoidal potential applied during 

the electrodeposition process, as such dendrites were not observed when DC potential was applied under 

similar conditions. The presence of many surface steps on these dendrites greatly contributed toward their 

enhanced activity for the formic acid oxidation. It is believed that the high step density provided many active 

sites for the adsorption of formic acid molecules. In other report, Pd dendrites had also been grown on 

carbon fiber cloth via electrochemical deposition with potential pulse technique in the presence of perchloric 

acid.[108] Moreover, Zhao and co-workers have also successfully synthesized Pd dendrites from the 

electrolyte solution (containing Pd precursor and hydrochloric acid) using electrodeposition technique.[109] It 

is worth noting that in both reports, acids were used to increase the ionic conductivity of the electrolyte 

solution as high ionic conductivity was essential for ensuring good transport of ions from the electrolyte to 

the working electrode.[110]  

More recently, Bai and co-workers prepared dendritic Pd nanoparticles through a facile chemical 

reduction process.[111] In their synthesis, CTAB was used as a shape-directing agent and ascorbic acid was 

used as a mild reducing agent. Interestingly, the presence of a small amount of nickel ions (Ni2+) was 

necessary to ensure the formation of these Pd dendrites, although their exact role is still unclear. A 

spectroscopy study (i.e., X-ray photoelectron spectroscopy or XPS study) on the electronic coordination 

state of dendritic Pd nanoparticles revealed that the binding energies of Pd0 and PdIIO were negatively 

shifted by ca. 0.86 eV compared to those of commercial Pd catalyst.[112] This implies that the dendritic 

morphology affected the electronic structure of Pd, leading to better electrocatalytic activity, enhanced 

stability and superior CO tolerance compared to the commercial Pd catalyst. 

 

3.3. Mesoporous Pd Particles and Films 

In general, the fabrication of well-ordered mesoporous metals can be performed through two main methods: 

hard-templating and soft-templating methods.[113-118] In the hard-templating method, mesoporous silica or 
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mesoporous carbon is commonly used as a hard template. Generally, the hard-templating method involves 

multiple steps: (1) the preparation of the template; (2) the deposition of metallic materials on the template 

and (3) the removal of the template (Figure 10a).[118] For instance, Ye et al. previously reported the 

preparation of 3D ordered mesoporous (3DOM) Pd network templated by silica super crystal.[120] The silica 

nanoparticles were self-assembled into super crystal by centrifugation. Then, the silica super crystal was 

impregnated with metal ions by adding the dried silica super crystal into the Pd precursor solution and 

hydrazine was used to reduce the Pd salt to metallic Pd. In the final step, the siliceous template was removed 

by dissolution in hydrofluoric acid (HF). The 3DOM Pd network replicated from the silica template 

exhibited pore wall thickness of ca. 3-8 nm and pore diameter of ca. 40 nm (Figure 10b). In their report, 

several parameters, such as the concentration of the Pd precursor, the volume ratio of the Pd precursor to the 

pore size of the silica super crystal template and the reduction rate could influence the formation of the 

3DOM Pd network. Since hydrazine could induce fast reduction of Pd, interconnected Pd network was 

observed. However, the 3DOM Pd network was not observed when the reduction process was carried out 

using either dimethylamine borane (DMAB) or hydrogen gas (H2). When tested as an electrocatalyst for 

formic acid oxidation, the 3DOM Pd network displayed both higher electroactivity and better 

electrochemical stability than commercial PdB.  

Pd nanoarrays with hexagonally-closed mesoporous structures were previously fabricated using SBA-

15 as a template (Figure 10c).[120] These nanoarrays exhibited an average pore size of ca. 3.2 nm and a 

moderate surface area of 29.5 m2 g-1. It is worth noting that the use of different template will lead to 

different arrangement of the mesoporous Pd structure. SBA-15-templated mesoporous Pd structure typically 

consists of hexagonally-arranged cylindrical Pd nanowires (the exact inverse replica of SBA-15) 

interconnected by self-supported shorter wires. This is because of the occupation of Pd in the channel-

interconnecting micropores within the SBA-15 wall.[121,122] The mesoporous silica KIT-6 has also been 

employed as a hard template for the synthesis of mesoporous Pd networks, as reported by Wang et al. 

(Figure 11).[123] The catalytic properties of these mesoporous Pd networks varied with the different topology 

in the enantioselective hydrogenation of acetophenone and its derivatives. The enantioselectivity over the 

mesoporous Pd catalysts increased in the sequence of double gyroid structure (Ia3d) > single gyroid 

structure (I4132) > 2D hexagonal structure (P6mm) > ultrafine Pd black. The double gyroid structure was 

obtained with the KIT-6 template treated at 130 oC and KBH4 was identified to be the best reducing agent. 

The double gyroid mesoporous Pd network showed an excellent performance in the enantioselective 
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hydrogenation test due to the unique spatial arrangement with the optimum pore size. Moreover, the desired 

lattice structure formed by the KBH4 reduction provided the appropriate micro-environment for improving 

the enantio-differentiation. Hence, the enantioselectivity could be tuned by manipulating the confinement 

effect in the catalyst structure.[124] 

The fabrication of mesoporous metals using soft-templating method is typically achieved by lyotropic 

liquid crystals (LLCs)[125-127] and micelle assembly[128-137]. In the LLC approach, there are several lyotropic 

phases, including cubic Ia3d, lamellar, and hexagonal phase. Bartlett and co-workers reported the synthesis 

of mesoporous Pd layers with a hexagonal pore arrangement using the hexagonal LLC template (Figure 

12a).[127] The thickness of the metallic layers could be controlled by adjusting the total charge. The obtained 

mesoporous Pd layer had average pore diameter and pore-to-pore distance of 3 nm and 6 nm, respectively. 

(Figure 12b), with a relatively high electrochemical surface-active area (ECSA) of 39 m2 g-1. Interestingly, 

the pores were found to run continuously from the outer surface to the inner pore walls. Thus, by carrying 

out the deposition in several stages, continuous pore structure could be achieved, leading to the high ECSA. 

Compared to LLCs, the utilization of block copolymers as soft templates can enable the attainment of 

mesoporous Pd with larger pore size. Cappillino et al. successfully demonstrated the fabrication of 

mesoporous Pd with tunable porosity by changing the block size of the block copolymer, poly(styrene-b-

ethylene oxide) (PS-b-PEO).[128]  Two block copolymers, PS2300-b-PEO3100 and PS3800-b-PEO5000 were 

utilized as soft templates and the prepared mesoporous Pd particles were denoted as PdS and PdL, 

respectively. The formation mechanism of the mesoporous Pd can be described as follows (Figure 12c). The 

block copolymer arranged hexagonal array of cylindrical micelles. The hydrophobic PS block and the 

hydrophilic PEO block formed the core and shell of the micelles, respectively. The PEO block solvated the 

metallic ions in aqueous phase. The pores were formed on the regions which were previously occupied by 

the templates following their removal. In this case, the pore walls or backbones were constructed by metallic 

Pd. Interestingly, the use of different molecular weight of the block copolymer PS-b-PEO generated 

different average pore size for the resulting mesoporous Pd particles. The average pore sizes of PdS and PdL 

were 7 nm and 13 nm, respectively, consistent with the pore sizes observed by TEM (Figure 12d,e). 

Cationic surfactants, such as cetyltrimethyl ammonium bromide (CTAB), cetyltrimethyl ammonium 

chloride (CTAC), hexadecylpyridinium chloride (HDPC), cetylpyridinium chloride (CPC) and non-ionic 

surfactants, such as Pluronic F127 and P123, can assist the formation of mesoporous Pd via chemical 

reduction. For example, Zhang and co-workers successfully prepared spherical mesoporous Pd particles with 
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an average diameter of ca. 33 nm and rough surface by utilizing CTAC as a structure-directing agent 

(Figure 13a).[130] An in-depth structural analysis of an individual sphere by TEM revealed that each sphere 

was actually composed of smaller nanoparticles with an average size of 7 nm (Figure 13b). Later, Li et al. 

reported the successful size-controlled synthesis of spherical mesoporous Pd particles by employing dual 

surfactants, HDPC and F127 (Figure 13c, d).[132] In their report, the reaction solution consisted of HPDC, 

F127, Na2PdCl4 and ascorbic acid, which acted as shape-directing agent, protecting agent, Pd source and 

reducing agent, respectively. The size of the mesoporous Pd particles could be easily controlled by tuning 

the amount of F127 in the reaction solution. The rough surface of these particles was caused by the oxidative 

etching process as a result of the sufficient amount of Clˉ ions derived from the cationic surfactant. When 

tested for formic acid oxidation, the mesoporous Pd catalyst exhibited more than double the activities of 

commercial Pd black and Pd nanoparticles, along with better electrochemical stability. The superior activity 

and stability were attributed to the mesoporous nature of these particles with high-index facets, which 

provided a high density of active sites. Apart from spherical mesoporous Pd particles, mesoporous Pd film 

has also been fabricated via electrodeposition with the assistance of CTAC.[134] The applied deposition 

potential was fixed at a constant value to attract metallic ion complexes in the electrolyte solution toward the 

working electrode and to ensure successful reduction of the metallic ion complexes to the metallic state. 

Interestingly, the deposited Pd film formed vertical mesochannels with pore channel size of 2.1 ± 0.2 nm 

and channel wall size of 3.3 ± 0.2 nm (Figure 14). The presence of these vertical mesochannels ensured 

easier access for the reactant and product to and from inner side of the pores, owing to the lower diffusion 

resistance.[116] Although various surfactants have been successfully utilized as pore-directing agents in the 

fabrication of mesoporous metals, achieving mesoporous Pd particles with controllable pore size and 

orientation using surfactants is still challenging and further studies are needed to resolve this issue in the 

future. 

 

4. Functionalization of Pd-based Nanocatalysts 

4.1. Pd-Based Alloys and Intermetallics  

Despite its high catalytic activity, pure Pd cannot exceed the performance of Pt in many catalytic reactions. 

Furthermore, the intermediates produced during the oxidation of small organic molecules, such as carbon 

monoxide (CO) are often strongly adsorbed on the Pd surface, thereby lowering its catalytic performance. In 

the case of oxygen oxidation reaction, the oxygenated species tend to adsorb on the surface of pure Pt or Pd 
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catalyst. In addition, pure Pt or Pd catalysts suffer from poor alcohol tolerance when employed in direct 

alcohol fuel cells. Therefore, the development of intermetallics or Pd alloys with non-noble metals has 

gained significant momentum in the last ten years to produce cheaper high-performance catalysts with 

enhanced stability.[138-147] The tolerance of Pd to poisoning species in direct alcohol fuel cells can be 

enhanced by combining or alloying it with other transition metals (e.g., Ni, Co, Fe, Cu, Cr, Mo, and W). 

Such enhancement is believed to have arisen from two possible mechanisms: 1) the neighboring sites of Pd 

atoms from the second element provide oxygenated species that induce surface reactions with Pd-adsorbed 

poisoning species and 2) the alloy structure shift the energy of Pd electronic states, thus weakening Pd-

poisoning species interaction.[148-154] In the case of electrooxidation of ethanol, incomplete oxidation of 

ethanol sometimes occurs due to the decreased capability of Pd to break the C−C bond when the ethanol 

oxidation goes through the C2 pathway.[155] Therefore, by alloying Pd with other element(s), it becomes 

possible to completely oxidize ethanol into CO2.
[156-158] Meanwhile, in the case of cathodic catalyst, 

increased alcohol cross-over tolerance can be achieved by weakening the bond strength of the oxygenated 

species on the catalyst surface.  

To date, numerous Pd-based intermetallics and alloys have been reported in the literatures.[159-188] Table 

1 lists an exhaustive summary of previously reported Pd-based alloys and intermetallics, including their 

synthetic approach, application and properties. The most common solution-based methods for generating 

Pd-based alloys or intermetallics are chemical reduction, galvanic replacement reaction and polyol method. 

With regard to the chemical reduction method, the reduction and deposition of the secondary element on Pd 

to prepare the bimetallic alloys are typically achieved through underpotential deposition (UPD). For instance, 

Pd-Cu bimetallic alloys with tripod architectures were previously reported by Zhang and co-workers.[174]  To 

generate such alloys, the Cu atoms were deposited on the Pd surface after the preferential reduction of 

PdBr4
2+ into Pd metal (Figure 15a). The Pd ions could be directly reduced to metallic Pd by ascorbic acid. 

Meanwhile, in the absence of Pd precursors in the reaction solution, no Cu particles were obtained, 

indicating that the Cu UPD could only occur on the metal surface with a higher redox potential than its 

standard reduction potential. The formation of the tripod Pd-Cu bimetallic alloys was governed by the 

presence of Cu precursor and the amount of KBr in the reaction solution. In the absence of Cu precursor, 

only Pd nanoparticles with cubic morphology were obtained. When a small amount of Cu precursor was 

introduced in the reaction solution, the cubic Pd nanoparticles were transformed into Pd-Cu alloy with a 

mixture morphology of cubic and tripods. Upon the addition of more Cu precursor, Pd-Cu tripods with clear 
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branched arms were observed (Figure 15b). In the early stage of the synthesis (t = 10 min), the small plate-

like particle seeds of ca. 4 nm in size with a triangular shape were formed, together with very short arms. 

The branched tripod structures grew along three <211> directions as the synthesis process proceeded. The 

atomic arrangement on the side face of the arm branches was characterized by the alternation of {111} and 

{100} atom steps (Figure 15d and 15e). In addition, the formation of the tripod morphology was also 

facilitated by the Brˉ ions. Here, the growth direction was affected by the strongly bonded Brˉ ions to the 

three of the {100} side faces of a triangular plate, which forced the Pd atoms to grow on the three corners of 

the plate-like seed to generate the tripod structure (Figure 15c). The bimetallic PdCu catalyst was found to 

exhibit almost 9 times higher mass activity for formic acid oxidation than the commercial PdB along with 

better stability due to the contribution from the high-index facets. 

More recently, Fan et al. successfully created ultrathin PdCu nanosheets with average thickness of 2.71 

± 0.48 nm and lateral size of 33.8 ± 8.3 nm through a solvothermal method (Figure 16a).[175] In their 

synthesis, CO molecules and n-butylamine were used as capping agents by promoting anisotropic growth. In 

addition, n-butylamine also assisted the reduction of Cu2+ by creating complexes between Cu2+ and 

ammonium. In addition, the wrinkle-free nanosheet morphology was also affected by the presence of PVP 

and CTAB in the reaction solution, which acted as stabilizing agent (to prevent aggregation) and shape-

directing agent, respectively. By changing the ratio of the initial Pd and Cu precursors, the final composition 

of the PdCu alloy could be tuned (Figure 16c). Interestingly, these bimetallic nanosheets exhibited 

modulated electronic structures of Pd atoms, as evidenced by theoretical and experimental observations. The 

theoretical study by density functional theory (DFT) calculations showed that the d-band center of PdCu 

nanosheets (−2.44 eV) was further away from the Fermi level, as compared to that of PdCu nanoparticles 

(−2.25 eV). The XPS results also supported the DFT calculations, as indicated by the shift of the core-level 

XPS peak of Pd in PdCu nanosheets by about 0.25 eV toward higher binding energy relative to that of PdCu 

nanoparticles, indicating a down-shift of the d-band of PdCu nanosheets (Figure 16b). These findings 

suggested that the introduction of Cu atoms could effectively decrease the bonding between the adsorbate 

and Pd surface which in turn, improved the catalytic activity and stability of the bimetallic PdCu nanosheets. 

The intermetallic structure differs from its counterparts (alloy and bimetallic) in terms of its ordered 

structure which leads to uniform surrounding of the active sites. This allows that the numbers of neighboring 

sites and the distance between neighboring sites to be easily identified by experimental and theoretical 

techniques. However, the ordered structure is typically achieved by post-synthetic heating at a very high 
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temperature (1000 oC). Previously, two different groups reported the fabrication of intermetallic Pd3Pb and 

Pd2Ge nanonetworks via one-pot reduction and solvothermal methods, respectively, at low reaction 

temperatures (170 oC and 220 oC). The ordered Pd2Ge nanonetwork was firstly reported by Sarkar and co-

workers.[159] To synthesize this intermetallic nanonetwork, K2PdCl4 and GeCl4 were used as the metal 

precursors, superhydride (Li(Et3BH)) was employed as the reducing agent and tetraethylene glycol (TEG) 

was utilized as the solvent. Their TEM analysis revealed that in the initial stage of the reaction, Pd2Ge was 

formed as small nanoparticles. Then, after 24 h, the as-formed intermetallic particles grew larger and 

became joined together (Figure 17a). Through further reaction (36 h), the joined particles formed a large 

connected network (Figure 17b) via oriented attachment (Figure 17c). The covalent bonding strength 

between Pd and the secondary element in the intermetallic structure was studied by XPS. As seen in Figure 

17d-g, the binding energies of the core-level Ge peaks were shifted down by 0.7 eV compared to elemental 

Ge, indicating the existence of a strong covalent bond between Pd and Ge. When tested for EOR, the 

ordered Pd2Ge nanonetwork exhibited not only higher activity but also better stability than the commercial 

Pd/C catalyst. The superior electroactivity of the intermetallic Pd2Ge nanonetwork was attributed to the 

perfect balance between the adsorption energies of the reaction intermediate species, such as CH3CO and 

OH. Their theoretical simulations revealed that the intermetallic Pd2Ge could bond strongly to OH, however 

it was only weakly bonded to CH3CO. 

Ordered Pd3Pb nanonetwork has previously been prepared by Shi et al. through a one-pot reduction 

method at low temperatures.[160] The metal precursors (Na2PdCl4 and Pb(acac)2) were co-reduced by citric 

acid and the solvent, ethylene glycol. In addition, the anisotropic growth of the nanonetwork was dictated by 

the capping agent PVP. The XRD pattern of the ordered Pd3Pb nanonetwork showed the typical five peaks 

assigned to (111), (200), (220), (311), and (222) along with six additional peaks (so-called “ordering peaks”) 

assigned to (100), (110), (210), (211), (300) and (310) planes of Pd3Pb cP4 crystalline type (space group 

Pm3̅m(221)), thereby confirming the formation of the intermetallic phase. The inter-diffusion of Pb atoms 

for creating structurally ordered and chemically stable intermetallic phase was important for optimizing the 

electronic and geometric effects (rough surfaces with abundance of opening channels within the 

nanonetwork) by downshifting the d-band center. This in turn, weakened the adsorption energy of the 

reaction intermediate products, accelerated the desorption rate and enhanced the catalytic activity, CO 

tolerance and stability.   
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Apart from chemical reduction, electrochemical deposition has also been shown to be effective for 

creating nanoarchitectures of Pd-based alloys. For instance, Tominaka et al. reported the fabrication of 

mesoporous PdCo sponge-like film using electrochemical deposition and de-alloying techniques. The 

aqueous electrolyte solution consisted of a mixture of [Pd(NH3)4]Cl2, NH4Cl, CoCl2 and malonic acid.[164] 

Electrochemical deposition of the mesoporous PdCo film was carried out at a constant potential of -0.9 V vs. 

Ag/AgCl for 10 min at 14 ± 2 oC. The mesoporous structure was formed through a subsequent 

electrochemical de-alloying process by applying a potential of 0.6 V in nitrogen-saturated 0.5 M H2SO4 for 

6 h at room temperature. The determination of the applied deposition potential through linear sweep 

voltammogram (LSV) of the electrolyte solution consisting more than single metal complexes could not be 

determined as a simple summation of those individual voltammogram profiles. The linear sweep 

voltammogram (LSV) profile of the PdCo electrolyte solution showed a unique profile, in which the 

deposition current increased as the potential was decreased from −0.2 to −0.8 V (Figure 18a). Comparison 

of the LSV profiles of PdCo and Co revealed that the reduction and deposition of Co atoms in PdCo 

occurred through underpotential co-deposition. The quality of the as-deposited mesoporous PdCo film could 

be enhanced by de-alloying technique, which further improved the porosity by ca. 62%, but also reset the Pd 

and Co composition ratio to 92:8. Such a high level of porosity was beneficial for ensuring good oxygen 

diffusion and the Pd:Co composition ratio of 92:8 was reported to be the optimum composition for obtaining 

the best ORR activity (Figure 18b-e). More importantly, the mesoporous PdCo film displayed a higher 

ORR activity than the typical Pt electrode, owing to their unique geometric features and enhanced electronic 

properties. 

 

4.2. Supported Pd Nanoparticles 

The use of support materials which have larger particle size than the actual catalyst can enable the catalyst 

particles to be well-dispersed on the support.[189] Good dispersion of the catalyst particles will increase the 

catalyst contact area with the reactant(s), leading to better catalytic activity, while also reducing the loading 

of catalyst.[190] To date, numerous materials have been utilized as support materials for noble metal catalysts, 

including carbons[191-193], oxides[194-196], carbides[197-199] and electroconductive polymers [200-204]. For  

electrocatalytic applications, some requirements should be fulfilled by the support materials to ensure their 

successful utilization.[205] These requirements are: (1) high surface area for ensuring good dispersion of 

metallic catalyst particles; (2) high electrical conductivity; (3) good interaction with the metallic catalyst 
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particles, either through electrostatic, van der Waals, or covalent bonding and (4) high tolerance to poisoning, 

corrosion and mechanical deformation. 

Strong electronic interaction between the metallic catalyst particles and the support material is crucial 

for achieving high catalytic activity.[206] Several analytical techniques (XPS and Raman spectroscopy) and 

DFT calculations can be employed to characterize and predict the interaction and charge transfer distribution 

at the Pd-support interface.[207] For instance, Rao et al. revealed the correlation between support 

functionalization and charge distribution at the Pd-carbon interface. It was shown that carbon support could 

modify the electronic properties of Pd and therefore, enhanced the catalytic activity.[208]  

Carbon black is commonly employed as a carbonaceous support for electrocatalysts due to their high 

surface area and electrical conductivity. However, its high surface area is mostly contributed by the large 

density of micropores (<1 nm), which is not good for the dispersion of the metallic catalyst particles and the 

flow of the reactant(s). In contrast, ordered mesoporous carbon (OMC) and carbon gels are preferred host 

materials for the deposition of metallic catalyst particles.[209] Furthermore, emerging graphitic carbon 

materials (e.g., graphene and carbon nanotubes) have also drawn significant attention as catalyst supports 

due to their unique structures and properties, which can affect the chemical stability of the catalyst.[210]  

Although commercial carbon black-supported Pd catalysts are widely available on the market, recent 

studies have been aimed at synthesizing small-sized Pd particles on the carbon support with better size 

uniformity and improved dispersion. For example, Wang et al. successfully prepared monodisperse small-

sized Pd particles with an average size of ca. 3.8 nm on Vulcan XC-72 through a one-pot reduction method 

at room temperature.[211] The size of these Pd particles was more uniform compared to the commercial Pd/C 

particles (Figure 19a and 19b). The deposition of the Pd nanoparticles on the carbon surface was achieved 

through a mild reduction process in the presence of DMF and N, N-diethylaniline borane (Figure 19c). In 

this process, DMF provided a free pair of electrons which could interact with the carbon surface and 

promoted the formation of monodisperse Pd atoms/cluster on the carbon support. Furthermore, the use of N, 

N-diethylaniline borane enabled alkyl substitution to nitrogen, which could prevent the overgrowth of Pd 

nanoparticles. The resulting carbon-supported monodisperse Pd catalyst exhibited 2.5 times higher ECSA 

than the commercial Pd/C particles, as investigated by CO-stripping experiments.[212] Correspondingly, they 

displayed around 2.6 and 4 times higher mass activity than the commercial Pd/C catalyst toward formic acid 

and ethanol oxidation, respectively. Pd nanoparticles supported on OMC for electrooxidation catalyst have 

been reported by Hu et al.
[213] OMC possesses larger pore size and hence, it can host more Pd nanoparticles 
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as well as provide more accessible channels for the reactants and products. Pd nanoparticles with an average 

size of 3 nm were easily decorated on the highly ordered mesoporous structure with an average pore 

diameter size of 4.7 nm (Figure 20a-c). The agglomeration of Pd nanoparticles during self-assembly and 

growth could be prevented by adding dimethylamine hydrolyzed from DMF as the solvent, as illustrated in 

Figure 20d. A significant fraction of Pd nanoparticles inside the porous structure was observed from the 

decrease in mean surface area (around 22.4%) of non-decorated OMC and Pd-decorated-OMC through the 

analysis of nitrogen adsorption isotherms (Figure 20e and 20f). Pd-decorated-OMC showed significant 

improvement in catalytic activity toward both ethanol and methanol oxidation compared to PdB and Pd/C. 

Hollow graphitic carbon nanocages synthesized using magnesium oxide (MgO) as a sacrificial template 

have been utilized as support for Pd nanoparticles (i.e., Pd/CN catalyst).[214] Owing to its large surface area, 

uniform dispersion and excellent electrical conductivity, the Pd/CN catalyst could outperform commercial 

Pd/C catalyst in EOR.  

Emerging carbonaceous materials, such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), 

graphene and reduced graphene oxide (RGO) have been widely used as support materials for Pd 

nanoparticles.[215-218] Recently, Mondal and co-workers reported a new approach to unzip single-walled 

CNTs (SWCNTs) simultaneously with the formation of small-sized Pd nanoparticles encapsulated with a 

graphitic carbon layer. This approach could ensure the successful integration of the metallic catalyst with the 

honeycomb carbon network, leading to high electrocatalytic activity toward oxidation of formic acid.[219] 

There are still some challenges with regard to the deposition of small-sized Pd nanoparticles on the carbon 

support: (1) How to avoid the agglomeration of Pd nanoparticles; (2) How to prevent the overgrowth of Pd 

nanoparticles; (3) How to maintain the original carbon structure during growth and/or attachment of Pd and 

(4) how the Pd nanoparticles can be anchored/attached well on the support surface. A natural polymer, such 

as deoxyribonucleic acid (DNA), was recently employed to promote the growth of small-sized Pd clusters 

and to modify the surface of CNTs to prevent aggregation and provide sufficient binding sites.[220] The effect 

of the size of Pd nanoparticles on the ECSA was studied by Yang et al. and Zhang et al. Their studies 

revealed that larger-sized Pd nanoparticles (average size of ca. 20 nm) exhibited lower ECSA than smaller-

sized ones (average size of ca. 4.2 nm).[221]  Pd nanoparticles supported on helical carbon nanofibers 

(Pd/HCNFs) have been reported by two different groups.[222,223] Hu and co-workers utilized a specific type 

of functional group (phenyl groups) to anchor uniform small-sized Pd nanoparticles (an average size of 4.5 

nm) on the surface of hollow carbon nanofibers (HCNFs) through π- π interaction.  
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Graphene sheets have also been utilized as support for Pd nanoparticles.[224-226] However, their 

restacking property, aggregation of metal particles on the pristine sheet surface, and insufficient binding 

sites present major problems for graphene sheets. To solve these problems, chemical functionalization and 

chemical doping with heteroatoms should be performed prior to attaching Pd nanoparticles on the sheet 

surface.[227,228] Kiyani et al. Have successfully synthesized uniform small-sized Pd nanoparticles with good 

dispersion on the surface of nitrogen-doped graphene (NG) sheets. The N-doped graphene sheets exhibited 

many surface defects which provided good deposition sites for metal nanoparticles.[229] The anchoring of Pd 

nanocatalysts with exposed high-index facets on 2D support materials, such as graphene sheets is still rarely 

reported. The successful anchoring of Pd nanoparticles with multi-edges and corners on graphene support 

was previously reported by Liu and co-workers.[230] The preparation of these graphene-supported Pd 

nanoparticles comprised of three steps: (1) the preparation of graphene oxide (GO) by modified 

Hummers‘ method followed by the reduction of GO into reduced graphene oxide (RGO); (2) the preparation 

of Pd nanoparticles and (3) the assembly of Pd nanoparticles on the RGO support. In this work, ascorbic 

acid was employed as both reducing and structure-directing agents. Interestingly, the incorporation of the Pd 

nanoparticles on the RGO support did not alter the morphology as well as the uniformity of the Pd 

nanoparticles. Such incorporation however, has successfully prevented the agglomeration of Pd 

nanoparticles and improved their dispersion on the RGO surface. The covalent bond strength of the Pd 

nanoparticles and RGO support has been calculated theoretically and according to their report, the Pd 

adatoms on graphene preferred B-site bonding than T-site or H-site. Multi-edges and corners are expected to 

provide enhanced charge transfer efficiency as these structures can promote the spontaneous formation of 

localized electric field. The corresponding mechanism of electron transfer from the corner of the Pd 

nanoparticles to the RGO occurred through strong covalent interaction between Pd nanoparticles and RGO. 

In comparison to Pd nanoparticles and commercial Pd/C catalyst, the electrocatalytic performance of the 

Pd/RGO hybrid was higher. This enhancement was attributed to the novel morphology of the nanoparticles 

with multi-edges and corners, the enhanced conductivity, and the higher surface area contributed by the 

RGO.  
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5. Summary and Outlook 

Recent advances on the fabrication of Pd-based nanoarchitectures by solution-phase chemical reduction and 

electrochemical deposition methods toward the development of cost-effective and high-performance 

catalysts were reviewed. By designing Pd nanoarchitectures with specifically exposed facets and controlled 

morphology, Pd nanocatalysts with outstanding catalytic performance for many catalytic reactions can be 

achieved. Furthermore, by combining Pd with non-noble elements and/or support materials can enhance its 

catalytic performance and stability toward corrosion and harsh reaction conditions. 

Solution-phase methods have been used to prepare a wide variety of Pd nanoarchitectures from 0D to 

3D either through seed-mediated or direct (seedless) synthesis. Regardless of the method, halide additives 

are commonly used to direct the growth of the particles along a certain direction or to etch specific planes. 

To avoid the risk of dissolution, the Ostwald ripening and aggregation associated with 0D nanoparticles, 

higher dimensional Pd nanoarchitectures (1D to 3D) are generally preferred. Furthermore, they can provide 

better electron and mass transport, greater abundance of low-coordinated atoms and hierarchical porous 

structures, leading to higher catalytic activity. Despite some success, there are still some limitations with 

respect to the solution-phase synthesis. First, traces of additives and surfactants involved in the reaction 

should be completely removed from the final product or they will lower the catalytic performance. Post-

synthetic cleaning by ozone treatment or high-temperature heating are usually necessary to ensure complete 

removal of unwanted elements or organic compounds from the product. In the case of supported Pd 

nanocatalysts, the combination of 2D or 3D Pd nanoarchitectures or hybrids (intermetallics/alloys) with 

support materials has rarely been reported in the literatures. The synergistic effect of the support material to 

enhance the charge transfer (and dispersion of the active catalyst) and the abundance of active sites offered 

by 2D or 3D nanoarchitectures are expected to produce significantly higher performance than supported 0D 

nanoparticles. 

From economical viewpoint, the price of Pd has increased steadily over the past two years. However, 

the Pd resource on earth is at least fifty times larger than Pt and hence, Pd can still partially be used to 

reduce the heavy demand for Pt catalyst. The combination of Pd with non-noble elements, such as transition 

metals, is expected to provide cost-effective catalysts with similar or higher catalytic activity than pure Pt or 

Pd catalyst. Furthermore, to improve the feasibility of Pd-based catalysts toward real-life catalytic 

applications, more efforts into development of facile, greener and scalable synthetic methods should be 

carried out in the future. 
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Figure 1. Triangular diagram showing the correlations between convex polyhedron with different 
crystallographic facets. Reproduced with permission.[37] Copyright 2014, The Royal Society of Chemistry. 
 

 

 
 

Figure 2. Various (a) stepped and (b) kinked surfaces in close-packed fcc lattice. Reproduced with 
permission.[43] Copyright 1985, US National Academy of Sciences. 
  



  

38 

 

 
 

Figure 3. Schematic diagram of the basic concept of Pd as nanocatalyst. Pd belongs to the d-block transition 
metals and its high catalytic activity arises from the incompletely-filled subshell in the d-orbital. The 
catalytic performance of Pd-based catalysts has been shown to be dependent on the shape and size of the Pd 
nanocatalyst. The optimization to meet the demand for high performance Pd catalyst can be achieved by 
creating nanoarchitectures which possess a high density of low-coordinated atoms, high surface-active area, 
and high stability by combining Pd with other elements to provide synergistic effects. Various Pd 
nanoarchitectures are promising for many applications, such as organic catalysis, non-enzymatic sensing and 
electrocatalysis. 
 
 

 
 

Figure 4. TEM images of single Pd nanocrystals, their corresponding SAED patterns and TEM images of 
the particles over larger areas: (a1-a3) Pd octahedra, (b1-b3) truncated octahedra, (c1-c3) cuboctahedra, (d1-
d3) truncated cubes, and (e1-e3) cubes. The respective diffraction patterns for the various Pd nanocrystals 
are shown in panel (f). Reproduced with permission.[57] Copyright 2015, American Chemical Society. 
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Figure 5. Schematic illustration of shape evolution of the Pd nanocrystals and (a-e) the corresponding TEM 
images for various morphologies, respectively (scale bars, 10 nm), where slight truncation at the corner of 
cubic Pd was induced by HCl oxidative etching in the early stage and then, continuous atomic addition to 
{100} facets promotes the enlargement of {111} facets, resulting in the formation of octahedral Pd bounded 
by {111} facets. Reproduced with permission.[58] Copyright 2014, The Royal Society of Chemistry. 
 
 

 
Figure 6. (a) Illustration of shape evolution of polyhedral Pd NCs by adjusting upper limit potential (EU). 
(b) SEM images of Pd NPs electrodeposited on GCE for different time, showing the growth process of C-
DTH Pd NCs. Scale bars are 100 nm. (c) Schematic illustration of the proposed growth mechanism of C-
DTH Pd NCs. Reproduced with permission.[61] Copyright 2016, American Chemical Society. 
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Figure 7. TEM images showing the attachment and time-dependent growth of Pd nanoparticles into wavy 
nanowires at 140 °C after the precursor had been injected: a) 1 min, b) 10 min, c) 30 min, and d) 3 h. The 
white arrows in (a) mark a few typical small Pd nanoparticles formed in the early stage of the synthesis. (e) 
A schematic illustration showing how the reaction kinetics (as mediated by precursor) affect the nucleation, 
growth, attachment, and thus, the final morphology of Pd nanostructures in polyol synthesis. Reproduced 
with permission.[71] Copyright 2014, Wiley-VCH Verlag GmbH. 
 
 

 
 

Figure 8. (a) TEM image of Pd nanosheets. Reproduced with permission.[67] Copyright 2015, American 
Chemical Society. (b) Schematic illustration of the possible formation mechanism and (c) TEM image of the 
free-standing 2D porous Pd nanosheets through particle attachment and self-assembly processes. 
Reproduced with permission.[89] Copyright 2017, Wiley-VCH Verlag GmbH. 
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Figure 9. (a) Schematic illustration of noble metal aerogel preparation via gelation of pre-formed 
nanoparticles (Strategy (I)) and via an in-situ spontaneous gelation process (Strategy (II)). Reproduced with 
permission.[93] Copyright 2015, American Chemical Society. SEM images of  Pd aerogels prepared using (b) 
Strategy I (Reproduced with permission.[102] Copyright 2014, American Chemical Society) and (c) Strategy 
II. Reproduced with permission.[103] Copyright 2017, Cambridge University Press.  
 

 

 
 

Figure 10. (a) Three different approaches for synthesizing ordered porous structures using colloidal crystal 
templating. Reproduced with permission.[118] Copyright 2015, American Chemical Society. TEM images of 
(b) silica-free 3DOM Pd networks recorded along zone axis ⟨100⟩ with an enlarged image (inset in b) 
Reproduced with permission.[119] Copyright 2011, The Royal Society of Chemistry, and (c) as-prepared 
silica-free hexagonally packed Pd nanoarray with the SAED pattern (inset in c). Reproduced with 
permission.[120] Copyright 2008, American Chemical Society. 
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Figure 11. TEM images of silica-free mesoporous Pd network catalysts. Various KIT-6 templates were 
used: (a, b) Pd-308-KBH4, (c, d) Pd-353-KBH4, (e) skeletal model of a fragment of single gyroid with I4132 
symmetry, (f) Pd-373-KBH4, (g) TEM image simulation of Pd-373-KBH4, (h, i) Pd-403-KBH4, (j) Pd-373-
H2, (k) Pd-373-N2H4∙H2O and (l) skeletal model of a fragment of double gyroid with Ia3d symmetry. Insets 
are the corresponding SAED patterns and Fourier diffractograms. Reproduced with permission.[123] 
Copyright 2014, Elsevier, Ltd. 
 

 
 

Figure 12. (a) Schematic representation of the templating process used to deposit the H1-e films. The 
cylinders represent the micellar rods in the lyotropic liquid-crystalline phase. (b) TEM image of H1-e 
palladium. Reproduced with permission.[127] Copyright 2003, American Chemical Society. (c) Scheme for 
the formation mechanism of PS-b-PEO templated mesoporous Pd. (d) Low- and (e) high-magnification 
TEM images of nanoporous Pd particles prepared using PS2300-b-PEO3100 and PS3800-b-PEO5000, respectively. 
Reproduced with permission.[128] Copyright 2013, The Royal Society of Chemistry. 
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Figure 13. (a, c) SEM and (b, d) TEM images of mesoporous Pd particles prepared via chemical reduction 
with different structure-directing agents: (a, b) CTAC (Reproduced with permission.[130] Copyright 2011, 
The Royal Society of Chemistry) and (c, d) HDPC (Reproduced with permission.[132] Copyright 2014, The 
Royal Society of Chemistry) 
 
 

 
Figure 14. (a) Top view SEM image, cross-sectional (b) TEM and (c) HAADF-STEM images of 
mesoporous Pd film with vertically-aligned mesochannels. Schematic diagram illustrating the formation of 
mesoporous Pd film is shown in panel (d). Reproduced with permission.[134] Copyright 2015, American 
Chemical Society. 
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Figure 15. (a) A schematic illustration showing the Cu under potential deposition (UPD) process during the 
formation of Pd-Cu nanocrystals. TEM images showing the structural variations of the Pd-Cu bimetallic 
alloy by (b) increasing the amount of Cu precursor (0, 1, 3, and 5 mg, respectively) and (c) increasing the 
amount of KBr involved in the reaction solution (0, 50, 100, and 300 mg, respectively). (d) A model of the 
Pd-Cu tripod in the central region marked in the inset, indicating that the side faces are consisted of 
alternating {100} and {111} steps. (e) An illustration of the atomic arrangement for the side face, showing 
the alternation of {100} and {111} atom steps. Reproduced with permission.[174] Copyright 2014, Wiley-
VCH Verlag GmbH. 
 
 

 
Figure 16. (a) TEM image of Pd4Cu1 nanosheets (NSs). (b) The Pd 3d XPS spectra of Pd4Cu1 nanoparticles 
(NPs) and Pd4Cu1 NSs. The core-level XPS peak of Pd in Pd4Cu1 NSs was shifted by about 0.25 eV toward 
higher energy compared to that of Pd4Cu1 NPs, indicating a down-shift of the d-band in Pd4Cu1 NSs. (c) X-
ray diffraction patterns of PdCu nanostructures obtained with different Pd/Cu ratio. Reproduced with 
permission.[175] Copyright 2018, The Royal Society of Chemistry. 
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Figure 17. TEM images of (a) Pd2Ge_24 nanoparticles grown from ellipsoidal particles from small 
nanoparticles (<15 nm) to smaller joined structures and (b) highly connected network of Pd2Ge_36 
nanoparticles. (c) Mechanism of formation of branched Pd2Ge nanoparticles by oriented attachment. XPS 
data of Pd2Ge_24 and Pd2Ge_36 for (d, f) Pd3d and (e, g) Ge3d orbitals, respectively. Reproduced with 
permission.[159] Copyright 2015, The Royal Society of Chemistry. 
 
 

 
Figure 18. (a) Linear sweep voltammogram (LSV) profiles of mesoporous Co, Pd and PdCo films at 10 mV 
s-1 with a negative scan potential. The vertical dotted line shows the hydrogen evolution potential, 0.73 V vs. 
Ag/AgCl. The inset shows the compositions of the films deposited at different constant potentials (0.5, 0.6, 
0.65, 0.7, 0.75, 0.8, 0.9 and 1.0 V vs. Ag/AgCl) for 10 min. (b, d) Top-view and (c, e) cross-sectional SEM 
images of (b, c) as-deposited and (d, e) de-alloyed mesoporous PdCo films. Reproduced with permission.[164] 
Copyright 2010, The Royal Society of Chemistry. 
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Figure 19. TEM image (left) and particle size distribution histograms (right) of (a) home-made Pd/C and (b) 
commercial Pd/C catalysts. (c) Schematic illustration of the synthesis process of Pd/C catalyst in DMF. 
Reproduced with permission.[211] Copyright 2015, Elsevier, Ltd. 
 

 
 

Figure 20. (a) An illustration of the formation mechanism of Pd nanoclusters via the decomposition of 
tri(dibenzylideneacetone)palladium(0), Pd2(DBA)3, in DMF solution. (b) TEM and (c, d) HRTEM images of 
Pd–OMCs. (e) Nitrogen adsorption-desorption isotherms and (f) pore size distribution of OMCs (white 
triangle) and Pd–OMCs (black triangle). Reproduced with permission.[213] Copyright 2014, The Royal 
Society of Chemistry. 
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Table 1. Various Pd-based intermetallic and alloy nanocatalysts synthesized through solution-phase and electrochemical deposition methods 

reported in the literatures. 

Compound Morphology 
Intermetallic or 

Alloy 
Synthetic Approach Features Applications Ref. 

Pd2Ge 3D Networks Intermetallic Solvothermal  High activity toward ethanol oxidation and better 
stability compared to Pd/C 

Electrooxidation of ethanol [159] 

Pd3Pb Nanowire networks Intermetallic One-pot reduction  Bifunctional catalyst  
 Superior long-term stability  
 Higher activity toward ethanol oxidation and oxygen 

reduction 
 Better methanol- and CO-tolerance than PdB 

Electrooxidation of 
methanol and 
electroreduction of oxygen 

[160] 

Pd3Pb Flower-like 
nanoparticles 

Intermetallic Polyol method  The synthetic method can be extended for the 
formation of other Pd and group IV metal-based 
intermetallics 

 Higher activity toward ethanol oxidation and formic 
acid compared to Pd/C 

Electrooxidation of formic 
acid and ethanol 

[161] 

PdBi Nanowires Alloy Solvothermal  Superior mass activity toward formic acid oxidation 
in comparison with Pd/C 

Electrooxidation of formic 
acid 

[162] 

PdCo Nanoparticles Alloy Chemical reduction  Final product composition can be tuned by metal 
molar ratios 

 High activity in the order of Co50Pd50 > Co60Pd40 > 
Co10Pd90 > Pd.  

Electrooxidation of formic 
acid 

[163] 

PdCo Mesoporous Alloy Electrochemical deposition and 
de-alloying 

 Final product composition can be tuned by changing 
the applied potential deposition 

 Exhibit higher activity compared to conventional 
nanoparticle-based catalyst 

Electroreduction of oxygen [164] 

PdCo, PdNi Dendritic Alloy One-pot solvothermal  More negative onset potential for CO oxidation 
 Higher catalytic activity for CO oxidation 
 High activity toward methanol and ethylene glycol 

oxidation in the order of PdCo > PdNi > Pd dendritic 
> PdB 

Electrooxidation of 
methanol and ethylene 
glycol 

[165] 

PdCoP 3D Networks Alloy Chemical reduction  Large BET surface area 
 Higher hydrazine oxidation activity than PdCo 

Electrooxidation of 
hydrazine 

[166] 

PdCu Branched nanopods Alloy Galvanic replacement reaction  More negative onset potential for CO oxidation 
 High activity toward formic acid oxidation and 

oxygen reduction 
 Good stability 

Electrooxidation of formic 
acid 
Electroreduction of oxygen 

[167] 

PdCu Nanowire networks Alloy One-pot reduction  High surface area and mass activity toward ethanol 
oxidation 

Electrooxidation of ethanol [168] 

PdCu Concave tetrahedra Alloy One-pot hydrothermal  Stable and tolerance toward CO  poisoning 
 Higher mass activity than PdB toward formic acid 

oxidation 

Electrooxidation of formic 
acid 

[169] 

PdCu Aerogels Alloy One-pot reduction  High activity toward ethanol oxidation and better 
stability compared to Pd/C 

Electrooxidation of ethanol [170] 

PdCu Porous nanoparticles Alloy Hydrothermal  High ECSA due to the porous structure 
 Higher activities for methanol and formic acid 

oxidation compared to Pd/C 
 Good stability 

Electrooxidation of 
methanol and formic acid 

[171] 
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PdCu Hollow nanocubes Alloy Solvothermal  High ECSA due to the hollow structure 
 Higher activity for formic acid oxidation compared to 

Pd nanoparticles 
 Good stability 

Electrooxidation of formic 
acid 

[172] 

PdCu Nanodendrites Alloy Chemical reduction  Tunable Cu to Pd composition ratio 
 Higher activity and better stability toward methanol 

oxidation than Pd/C 

Electrooxidation of 
methanol 

[173] 

PdCu Nanotripods Alloy Chemical reduction  Encased by high-index facets 
 Mass activity toward formic acid about 8.7 times 

higher than PdB 
 Better stability 

Electrooxidation of formic 
acid 

[174] 

PdCu Nanosheets Alloy Solvothermal  Superior activity about 10 times higher than PdB 
 Excellent ECSA 
 Better CO tolerance due to the modulated d-band 

electrons 

Electrooxidation of 
methanol 

[175] 

PdCu Spherical, cubic, and 
dendritic nanoparticles 

Alloy Galvanic replacement reaction  High Faradaic efficiency for CO conversion Electroreduction of CO2 [176] 

PdCu 3D Branched Alloy One-pot reduction  High activity and better stability toward formic acid 
oxidation compared to PdB and Pd/C 

Electrooxidation of formic 
acid 

[177] 

PdCuCo, 
PdCuNi, 
PdCu 

Nanoparticles Intermetallic One-pot reduction and thermal 
annealing 

 Bifunctional catalyst 
 Ordered intermetallic phase 
 Activity increase in the order of Pd/C < Pt/C < 

ordered PdCu < ordered PdCuNi  < ordered 
PdCuCo 

Electrooxidation of ethanol 
and electroreduction of 
oxygen 

[178] 

PdCuCr Nanoparticles Alloy Chemical reduction  Higher activity and selectivity than bimetallic PdCu, 
PdCr and monometallic Pd 

Dehydrogenation of 
Formic Acid 

[179] 

PdNi Nanowire networks Alloy Chemical reduction  Higher activity for formic acid oxidation compared to 
Pd/C 

 Good stability 

Electrooxidation of formic 
acid 

[180] 

PdNi Aerogels Alloy One-pot reduction  Superior mass activity toward ethanol oxidation 
about 5 times higher than Pd/C 

 Excellent stability 

Electrooxidation of ethanol [181] 

PdNi 3D Networks Alloy Chemical reduction  Hierarchical pore structure 
 Superior ORR performance in comparison with PdNi 

nanoparticles and PdB 

Electroreduction of oxygen [182] 

PdNi 3D Networks Alloy One-pot reduction  High surface area due to hierarchical porous 
structure 

 High activity toward methanol oxidation and better 
stability compared to Pd/C 

Electrooxidation of 
methanol 

[183] 

PdNi Nanowires Alloy Electrodeposition  Consist of mesopores (an average diameter of 3-6 
nm) 

 Higher activity for formic acid oxidation compared to 
Pd/C 

 Better stability 

Electrooxidation of formic 
acid 

[184] 

Pd-P 3D Networks Alloy Hydrothermal  More negative onset potential for CO oxidation 
 High activity toward formic acid oxidation and 

oxygen reduction 
 Good stability 

Electrooxidation of formic 
acid 

[185] 

PdPb Aerogels Intermetallic One-pot reduction  Ordered intermetallic phase 
 Mass activity toward ethylene glycol oxidation about 

Electrooxidation of 
ethylene glycol 

[186] 
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6 times higher than PdB 
 Better stability than PdB 

PdSn Dendritic Alloy Electrochemical deposition  More negative onset potential for CO oxidation 
 Higher catalytic activity for CO oxidation 
 High activity toward ethanol 

Electrooxidation of ethanol [187] 

PdTe Nanowires Alloy Hydrothermal  Mass activity toward ethylene glycol oxidation about 
4.5 times higher than Pd/C 

 Good stability 

Electrooxidation of 
methanol and ethylene 
glycol 

[188] 
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Due to its high catalytic activity, palladium (Pd) has received tremendous attention for 

many catalytic reactions. Various Pd-based nanoarchitectures, including alloys, intermetallics, 

and supported Pd materials, have been synthesized through chemical reduction and 

electrochemical deposition methods to develop costeffective and high-performance Pd-based 

nanocatalysts. 
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