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ABSTRACT With methods developed in a prior article on
the chemical kinetic implementation of a McCulloch-Pitts
neuron, connections among neurons, logic gates, and a clocking
mechanism, we construct examples of clocked rmite-state ma-
chines. These machines include a binary decoder, a binary
adder, and a stack memory. An example of the operation of the
binary adder is given, and the chemical concentrations corre-
sponding to the state of each chemical neuron are followed in
time. Using these methods, we can, in principle, construct a
universal Turing machine, and these chemical networks inherit
the halting problem.

In a prior article (1) we discussed the implementation of a
chemical neural network: we wrote a reaction mechanism
with stationary-state properties of a McCulloch-Pitts neuron
(2, 3) and developed chemical interneuronal connections,
basic logic gates, a clocking mechanism, and input and output
of the entire neural network. In this article we combine these
chemical components to construct three devices: a binary
decoder, a binary adder, and a stack memory. The method of
construction can be used to make the finite-state component
of a universal Turing machine (4-6), as any finite-state
machine can be simulated by clocked neural networks (5). In
principle, by coupling this particular finite-state machine with
a readable-writable tape, such as a polymer like DNA or a
pair of stack memory devices, the chemical implementation
of a universal Turing machine based on kinetic reaction
mechanisms is realizable.
We leave for later study a related issue: given a biological

(chemical) reaction mechanism what logic operations, what
computations, can this mechanism perform for given inputs.
We begin with a brief review of the components of a

chemical neural network, and then we discuss the construc-
tion of a binary adder and a stack memory.

Construction of Chemical Neural Networks

vation constraint, Ai + Bi = AO. The stationary-state con-
centrations are functions of the concentration of the catalyst
Ci. By using the rate constants given in ref. 1, the stationary-
state concentration of Ai is <2 x 10-4 mmol/liter and of B1
is >0.999 mmol/liter for Ci <0.90 mmol/liter, and the con-
centration of Ai is >0.999 mmol/liter and of Bi is <2 x 10-4
mmol/liter for Ci >1.10 mmol/liter. Thus, the chemical
neuron has two states, and the concentration of Ci determines
the state of neuron i.

Clocking. In the neural networks we describe here the state
of a chemical neuron is allowed to change only at discrete
times. This discreteness of time and synchronization of state
changes can be implemented chemically by the use of an
autonomously oscillating catalyst E. We assume that E oscil-
lates in a nonsinusoidal manner, as is common in many
chemical oscillators (9). The concentration of E is assumed to
be very small, except during an interval short compared with
the oscillator period and with the relaxation time of a chem-
ical neuron (Eq. 1). The catalyst E interacts with the species
Aj (or Bj) of each neuron j,

e e
Aj = Aj By = Bj, [2]

and rapid equilibration occurs only during the short time
interval when the concentration of E is large. In Fig. 1 we
show schematically the time variation of the concentrations
of Ai and A, as determined by the concentration of Ci. Ai is
the state of neuron i at a given time, say t = 0 for the interval
0 to 1 in Fig. 1 and determines A, in the next time interval, 1
to 2. The state of neuron j at time t - 1 determines the state
of neuron i at time t. Thus, the A; at time t determines the
state of neuron i at time t.

Interneuronal Connections. The effect of the state of the
other neurons j, k, . . . on neuron i is expressed in Ci. The
species Ai, . . . or B.% . . . affect the concentration of the
catalyst Ci by activation reactions,

A Single Chemical Neuron. As a basis for a "chemical
neuron" we choose a cyclic enzyme mechanism studied by
Okamoto et al. (7, 8):

I*i + Ci = X i + Ci

Ejj + AjB= C,1

Jjj= kCi- k-1CiXli

X1+B,= X~ +Ai J2i = k2X11Bi -2Ai

X3i + Ai = X +Bi J3 = k3X3A--k

X3i = I*2i J4i= k4X3i-k4,
where the concentrations of the species marked by the
superscript are held at a constant value, either by buffer
or by flows, and have been absorbed into the rate constal
Ai and Bi are the state species and are related by a con

E9
cij= 1

1 +
KAj

[3]

[4]
E90

Eij + Bj =- Cjj Cii = 1

1 +
K(Ao-Aj)

which are assumed to equilibrate on the time scale of the
[1] pulse of the catalyst E and to be fast compared with the time

scale of mechanism 1. The sum of the active forms of the
(*) enzyme determines C,:

I I

ring
nts.
ser-

[5]Ci= ICij.
J

In Fig. 2 we show schematically the influence of neurons j,
k, and 1 on neuron i. The state of neuron i determines the
concentration of Cij, and the firing of neuron i is inhibited by
the firing of neuronj(Eq. 4). The states ofneurons k and I (not
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FIG. 1. Representation of the variation of concentrations of Ai
and A, as a function of time. Change in concentration of Cl at t = 1
causes change in concentration of Ai, which, in turn, determines
concentration of A, at t = 2.

shown) likewise determine the concentrations Cjk and Cil, and
the sum of CV, Cik, and Cil is Ci, the parameter that determines
the state of neuron i. The state of neuron i determines the
concentration of Cki, and the firing of neuron k is excited by
the firing of neuron i.
The combination ofreactions 3 and 4 determines the logical

operation of neuron i on the states of neuronsj, . . .. That is,
the state of neuron i at time t is determined by a logical
operation on the states of neuronsj, . . . at time t - 1. In ref.
1 we describe how various logical operations can be repre-
sented, such as AND, OR, NOR, etc.
We also use a connection where the connection enzyme

(C) in Eq. 5 is inhibited or activated by more than one
species. Aj and A' interact with the same enzyme Ei.

El + Aj>= C,, [6]

Ej + Al = (EiAl), [7]
and

E,
Ci= 1 K1Ak [8]

1+ +
KAAi KAAi

where Ei, = Ei + Ci + (EiAl), KA is the equilibrium constant
of she activation reaction (Eq. 6), and K, is the equilibrium
constant of the inhibition reaction (Eq. 7). These reactions
allow specific inhibition of one connection, instead of the
nonspecific inhibition given by Eq. 4.

Examples of Finite-State Machines

One copy of the basic reaction mechanism of a neuron (Eq.
1) exists for each chemical neuron in the network. Each
neuron is chemically distinct, but for convenience we assume
that the reactions that constitute each neuron are mechanis-
tically similar. A machine is specified by the number of
neurons, the form of the connections between the neurons
(Eqs. 3, 4, or 8), which neurons represent the output of the
machine, and which concentrations represent the input to the
machine.

Binary Decoder. The first device we construct is a binary
decoder composed of four neurons (i = 3-6) and two input
concentrations A1(t) and A2(t), which we assume to be
controlled by the external world, which are represented here
as the state species of neurons 1 and 2. A binary number is
represented as a string of digits presented to the machine
sequentially in time with the least-significant digit first. A1(t)
and A2(t) are each digits of such numbers. These numbers are
presented, digit by digit in parallel, to the binary decoder,

E~~~~~~~~ki
A.

X:, x

FIG. 2. Schematic of two reaction mechanisms constituting neu-
rons i and j and the influence of neurons j, k, and 1 on neuron i. All
reactions are reversible. The firing of neuronj inhibits the firing of
neuron i, and neurons k and I (not shown) also influence the state of
neuron i. The firing of neuron i inhibits the firing of neuron k.

which causes one and only one of the neurons with i = 3-6
to fire at time t + 1. The catalyst concentrations of the four
neurons are given by

1 1
C3 = + ; neuron 3 fires only if

1 1 Al = 1, A'= 1,
1+- 1+-

2

2A1 2A'

1 1
C4 = + ; neuron 4 fires only if

1 A1=1,A =O,

14--1A
2A

1

2(1 A')

1

C5 = + ; neuron 5 fires only if
1+ 1+- A =O,A'=1,

1+ 1+-1
2(1 - At) 2A'

and

1 1

19]

[10]

[11]

C6 = 1 + ; neuron 6 fires only if
1 + At = 0, A' = 0. [12]

1+ 1+
2

2(1 - A') 2(1 - A')

Neurons i = 3-6 excite neurons in the binary adder described
in the next section. The entire device (decoder and adder) is
pictured in Fig. 3. The purpose of the decoder is to convert
the pairs of input digits into the firing of a unique neuron. If
the input is decoded in this form, then the operation of the
adder on this decoded input can have a canonical form.

Binary Adder. A two-state machine can add arbitrarily
large binary numbers when pairs of digits of the numbers are

supplied to the machine serially (3). The two states of the
machine represent "carry 0" or "carry 1" from the sum of
the previous two digits. For a binary adder the two digits and
the machine state at time t uniquely determine the output and
the machine state at time t + 1 through the rules in Table 1.
Any clocked finite-state machine, such as a binary adder,

can be simulated by a neural network of a certain canonical
form, provided the inputs are suitably decoded (3), as in the
section on Binary Decoder. The canonical form represents
arranging AND-neurons in a matrix where each column

0

a.-
14

C.)
0

384 Chemistry: Hjelmfelt et al.

X*
_ 2j



Proc. Natl. Acad. Sci. USA 89 (1992)

Adder
FIG. 3. Schematic of the neurons and connections in the binary

decoder and adder. The half-shaded circles denote neurons. The
connection emerging from the shaded side is the output (state) of the
neuron. Connections entering the unshaded provide input to the
neuron: -, excitatory connections; -o, inhibitory connections.
The number of firing excitatory inputs is summed, and when that
number is greater than the number in the neuron and no inhibitory
inputs are firing, the neuron fires. In this notation neuron 6 is a NOR
gate, neuron 5 is an A2 AND NOT Al gate, and neurons 3 and 7-12
are AND gates. Some of the connections are denoted by broken lines
for clarity. Each column of the adder represents one state of the
adder: carry 0 or carry 1; and each row represents one of the input
combinations: [1 1], [1 01, [0 0]. Thus each neuron in the adder portion
represents one row in Table 1.

represents one of the machine states and each row represents
one of the possible inputs to the adder. In Fig. 3, neurons 7-9
represent the carry-0 state, and neurons 7 and 10 represent
the input [O 0]. Each neuron i in the adder represents line i of
Table 1. At any given time exactly one neuron in the adder
is firing. Each neuron in the adder excites the neurons in the
column representing its state at t + 1 (determined from Table
1), and each input to the adder from the decoder excites the
neurons in one row. Thus, only one neuron in the adder has
two firing inputs at any given time. Because all the neurons
of the adder are AND-neurons, only one neuron will fire at
time t + 1. This one firing neuron also gives the output of the
adder, which is determined by Table 1.
To follow the rules of Table 1 we choose the catalyst

concentrations for the six AND-neurons that compose the
binary adder as follows:

1 1 1 1
C7= 1 1 1 1[13+

1+1 1+ 1+ 1+
2A' 2A; 2A' 2A'0

1 1 1
c8= + +

1+ 1+ 1+
2A' 2A' 2A'7

1 1
+ + [14]

1+ 1+
2A' 2A'0

1 1 1 1

C9 ~+ + + [15]

9 1 1 1 1 ' [5
1+ 1+ 1+ 1+

2A' 2A' 2A' 2A'0

1 1 1 1
ClO= 1+ 1+ 1

1+- 1+- 1+ 1+
2A' 2A' 2A'1 2A'2

1 1 1
C 11=- + +

1 1 1
1+- 1+- 1+

2A' 2A5 2A'

1 1
+1 1 '

1+ 1+
2A'1 2A'2

and

1 1 1 1
C12= + ~~+ +

1 1 1 1
1+ 1+- 1+ 1+

2Af 2A4 2A'1 2A'2

[16]

[17]

[18]

where A; is the state species of the neuron corresponding to
Ci and for i < 5, these are the neurons of the previous
subsection (the binary decoder). As indicated in Table 1 the
input of [O 1] and [1 0] is degenerate. Thus, the decoder
neurons 4 and 5 both excite the same row (neurons 8 and 11
in Fig. 3) of the AND-neuron matrix.
The operation ofthe decoder and adder is illustrated in Fig.

4, where we plot the time evolution of the state species Ai
concentrations. At t = 0 the two binary digits A1(O) = 1 and
A2(0) = 0 are presented to the decoder. At t = 1 neuron 4 of
the decoder, which fires if and only ifAl = 1 and A2 = 0 (Eq.
10), fires and excites one row of neurons, neurons 8 and 11,
in the binary adder. Also at time t = 1, neuron 7 of the adder
is firing, and it is an input to the carry-O column (neurons 7-9)
of the adder. At t = 2, only neuron 8 of the adder has two
firing inputs, so in the adder only neuron 8 fires. From Table
1 neuron 8 signifies that the adder outputs a 1 and carries a
0. The output ofthe adder lags behind the input to the decoder
by two time steps. The first two digits of output (t = 1, 2) are
discounted bits because of the time lag. The relevant output
starts at t = 3. Likewise, the last two input digits are not part
of the output due to the time lag.

Stack. The last clocked device to be described is a first-in
last-out stack memory. A finite-state machine augmented
with two infinite stacks is equivalent in power to a Turing
machine with one infinite tape (4); it is computationally
universal.
The typical example of a stack is a stack of plates on a

spring, and the spring pushes the plates up so that only one
plate is visible. If the plates represent data (binary digits for
example), then a particular data item can only be reached by
removing all the plates above it. Following the analogy, a
stack can be imagined as a linear array of neurons extending
downward from a top neuron. Each neuron, Eq. 1, is coupled

Table 1. Transition table for the binary adder

i Al A2 S St+, 0

7 0 0 0 0 0
8 0 1* 0 0 1
9 1 1 0 1 0
10 0 0 1 0 1
11 0 1* 1 1 0
12 1 1 1 1 1

Al and A2 are the two input digits, S and St+1 are the machine states
at time t and t + 1, and 0 is the output digit. Each neuron i (7-12)
in the adder corresponds to the same indexed row i in the table.
*The case for A, = 1 and A2 = 0 is equivalent.
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FIG. 4. Time dependence ofthe concentration ofAi in neurons 1-12 ofthe binary decoder and adder. The concentration ofAichanges between
0 and 1 for each neuron. Neurons 1 and 2 are the input digits that are controlled by the external world.

to its two neighbors, and only the top neuron can be read or
modified by an external finite-state machine, as for example
the binary adder in the previous section. At each time step the
stack can perform one of three operations based on the
command received from the external finite-state machine:
"remember," "pop," and "push." For the remember oper-
ation none of the neurons in the stack change state. For the
pop operation, each neuron transfers its state to the neuron
above it in the stack, and the state of the top neuron is
transferred to the external finite-state machine. For the push
operation, each neuron transfers its state to the neuron below
it in the stack, and the external finite-state machine transfers
information to the top neuron.

Pictured in Fig. 5 is a stack consisting of four neurons (i =
1-4). Neurons 5 and 6 (not shown) are part of an external
finite-state machine and determine the operation imple-
mented by the stack. Neuron 7 is also part of the external
finite-state machine and on the push operation A1 accepts
data from A7. To allow neurons 5 and 6 to control the stack
we use the type of connections given by Eqs. 6-8. In Fig. 5
o denotes a connection that is excited by neuron 5 (i.e., the
B5 participates in reaction 7), > denotes a connection excited
by neuron 6, and o denotes a connection that is inhibited by
both neuron 5 and neuron 6. The catalyst concentrations of
the four stack neurons are chosen as follows:

1 1
Cl= +

1+50A5 1+50AI
1+ 1+

2A' 2A'

2 2
+

+1+ 50(1-A
+

1 + 50(1-A'
1

1+ 1+

2A' 2A'

1 1

C2= +
1+50A 1+5OA'

1+ 1+

2A2 2A2

2 2
+ +

1 + 50(1 -A) 1 + 50(1-At)
1+ 1+

2Ai 2Aj

[20]

1 1
C3= I+

1 +5OA 1 +5OA
1+ 51+

2A' 2A'

2 2

1 1 + 50(1-Al) 1 1 + 50(1-A') ' [21]+A2 +A 6
1+ 1+L

IA 2A'

and

1 1
C4= +

1 + 1 + 5OA5 1 + 1 + 0A6'
2A' 2A'

2 2

1 + 50(1-Al) 1 + 50(1-A')
+ +~~~~
1+ 1+

2A3 2A4

[22]

The concentrations A5-A7 are controlled by the external
processor, and we take them as given. Consider the three
stack operations as determined by the external control neu-

rons A5 and A6. When A5 = A6 = 0, the last two terms are

always small, and the magnitude of the first two terms
depends on A! for all Ci: Ci 4/3 when A! 1 or 0 when Ai
0. Thus, the state of neuron i at t + 1 is the same as its state
at time t, and A5 = A6 = 0 causes the remember operation.
When A5 = 1 and A6 = 0, the first and last terms are always
small for all C; values. The second term is either 0 or 2/3,
depending on A;, and the third term is either 0 or 4/3,
depending on the state of the next neuron higher in the stack.
Thus, the state of neuron i at time t + 1 is wholly determined
by the state of the next neuron higher in the stack, and A5 =

1 and A6 = 0 cause the push operation. If A' = 0, A' = 1, the
second and third terms are always small for all C;. The first
term is either 0 or 2/3, depending on A,, and the fourth term
is either 0 or 4/3, depending on the state of the next neuron

lower in the stack. Thus, the state of neuron i at time t + 1
is wholly determined by the state of the next neuron lower in
the stack, and A' = 0 and A' = 1 causes the pop operation.
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FIG. 5. Schematic of the neurons and connections in the stack
memory. The control neurons 5 and 6 are not shown because they are
assumed to be controlled by the external world. Neurons 5 and 6
affect the connections between the neurons in the stack through the
mechanism of Eqs. 6-8. We show these effects by symbols: neuron
6 excites connections marked by D and when neuron 6 is firing, this
connection affects the state ofneuron i; neuron 5 excites connections
marked by o, and when neuron 5 is firing, this connection affects the
state of neuron i. Both neurons 5 and 6 inhibit connections marked
by n, and when either neuron 5 or neuron 6 is firing, this connection
does not affect the state of neuron i.

Conclusion

We have constructed a chemical kinetic system that can
perform a programmed computation. We have demonstrated
only simple computations, where both the computation and
the underlying chemical dynamics are easily understood. In
principle, a universal Turing machine can be constructed
from two infinite chemical stacks and a neural network of the
general form discussed in the sections on Binary Decoder and
Binary Adder. Computational systems may, however, show
much more complex behavior. Computation theory encom-
passes the possibility of computations with dynamical be-
havior that shows unpredictability stronger than "determin-
istic chaos." This unpredictability is due to Turing's halting
problem (3), which states that it is unpredictable, without
direct simulation, whether any arbitrary program will halt or

attain a solution in finite time. The dynamical manifestation
of unpredictability is a question about the existence and
domain of basins of attraction (10). Computations may be
viewed as the transient relaxation to a steady state, where the
steady state represents the solution. Computationally pow-
erful systems must be able to support arbitrarily (and unpre-
dictably) long transients. The halting problem implies that
direct simulation is the only general procedure to determine
whether the transients will ever decay to a stationary state;
in finite time an answer is not guaranteed. This unpredict-
ability is stronger than that of deterministic chaos, where the
motion is confined, at least, to an attractor (10).

Turing's theory uses devices with an infinite memory;
however finite systems can show a related behavior termed
"computational irreducibility" (11). In computationally irre-
ducible bounded systems a solution is reached in finite time,
but direct simulation is the most efficient deterministic
method of solution. No more sophisticated deterministic
method of solution exists and thus no computational shortcut
exists to determine the final state of the system. Such
considerations of computational irreducibility may apply to
biological networks.

In our discussion of the operation of these neural networks
we have assumed that any stochastic fluctuations do not
interfere with the computation. However, stochastic fluctu-
ations do occur. In the clocked networks we described, noise
may significantly affect the integrity of the computation.
Similar problems have been dealt with in the design of digital
computers (3).
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