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ABSTRACT 

This is the sixth in a series of evaluated sets of rate constants and 

photochemical cross sections compiled by the NASA Panel for Data 

Evaluation. The primary application of the data is in the modeling of 

stratospheric processes, with particular emphasis on the ozone layer and 

its possible perturbation by anthropogenic and natural phenomena. 
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CHEMICAL KINETICS AND PHOTOCHEMICAL DATA 

FOR USE IN STRATOSPHERIC MODELING 

INTRODUCTION 

The present compilation of kinetic and photochemical data represents 

the sixth evaluation prepared by the NASA Panel for Data Evaluation. The 

Panel was established in 1977 by the NASA Upper Atmosphere Research 

Program Office for the purpose of providing a critical tabulation of the 

latest kinetic and photochemical data for use by modelers in computer 

simulations of stratospheric chemistry. The previous publications 

appeared as follows: 

Eyaluation Number 

1 

2 

3 

4 

5 

Reference 

NASA RP 1010, Chapter 1 
(Hudson, 1977) 

JPL Publication 79-27 
(DeMore et al., 1979) 

NASA RP 1049, Chapter 1 
(Hudson and Reed, 1979) 

JPL Publication 81-3 
(DeMore et al., 1981) 

JPL Publication 82-57 
(DeMore et al., 1982) 

The present composition of the Panel and the major responsibilities 

of each member are listed below: 

w. B. DeMore, Chairman (Chapman chemistry) 

D. M. Golden (three-body reactions) 

R. F. Hampson (halogen chemistry) 

C. J. Howard (HOx chemistry, O{1D) reactions) 
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M. J. Kurylo (SOx chemistry) 

M. J. Molina (photochemical cross sections) 

A. R. Ravishankara (hydrocarbon oxidation) 

R. T. Watson (NOx chemistry). 

As shown above, each Panel member concentrates his effort on a given 

area or type of data. Nevertheless, the final recommendations of the 

Panel represent a consensus of the entire Panel. Each member reviews the 

basis for all recommendations, and is cognizant of the final decision in 

every case. 

BASIS OF THE RECOMMENDATIONS 

The recommended rate constants and cross sections are based on 

laboratory measurements, and in general only published data are 

considered. Occasional exceptions are made when preprints of articles 

submitted for publication are available to the Panel. In no cases are 

ra te constants adjust ed to fi t observations of stra tospheri c 

concentrations. The Panel does consider the question of consistency of 

data with expectations based on kinetics theories, and in cases where a 

discrepancy appears to exist, this fact is pointed out in the accompanying 

note. The major use of theoretical extrapolation of data is in connection 

with three-body reactions, in which the required pressure or temperature 

dependence is sometimes unavailable from laboratory measurements, and can 

be estimated by use of appropriate theoretical treatment. In the case of 

a few important rate constants for which no experimental data are 

available the Panel has provided estimates of rate constant parameters, 

based on analogy to similar reactions for which data are available. 
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DISCUSSION 

General State of Laboratory Kinetics 

There have been no major changes in stratospheric chemistry since 

the publication of our previous evaluation, JPL 82-57. There are 

approximately twenty changes in the rate constant reoommendations in the 

present evaluation, but these are for the most part minor. Seventeen new 

reactions have been added, representing processes whioh play small but 

possibly signifioant roles in the stratosphere. Some important 

refinements have been made in certain key rate constants, such as those 

for 0 + 03 and OH + Hel. These examples are typical of the set of 

critical reactions which were carefully measured about five or ten years 

ago, during the early stages of the stratospheric chemistry program. 

While these measurements have generally stood the test of time, it is 

appropriate to re-examine them to verity that the kinetic data being used 

in the models are as accurate as possible. Such refinements will go hand

in-hand with the improved reliability of field measurement methods for the 

in-situ measurement of trace species, permitting more exacting comparisons 

of the model with observatio~ 

One important question whioh has been resolved during the past year 

is that of possible isomer forma tion in the C10 + N02 reaction. Reoent 

experiments, discussed in more detail in the section on three-body 

reaotions, indicate that chlorine nitrate is the sole product of the 

reaction. 
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Ox Reactions 

The kinetics of the 0, 02' and 03 system appear to be well 

established, al though in the present evaluation a small change has been 

made in the rate parameters of the 0 + 03 reaction. There remains some 

concern about possible roles of excited states of 02' especially 02(1t,), 

but at present there is no evidence that these states have any important 

effects on the overall chemistry of the stratosphere. 

0(1D) Reactions 

The data base for 0(1 D) reaction chemistry is in fairly good 

condition. There is good to excellent agreement in independent 

measurements of the absolute rate constants for 0(1D) deactivation by the 

major atmospheric components, N2 and 02' and by the critical radical 

producing components, H20, CH4, N20, and H2. There are fewer direct 

studies of the products of the deactivation processes, but in most cases 

these details appear to be of minor importance. Some processes of 

interest for product studies include the reactions of O('D) with CH4 and 

halo carbons. Possible kinetic energy effects from photolytically 

generated 0(1D) are probably not important in the atmosphere but may 

contribute complications in laboratory studies. 

HOx Reactions 

Our knowledge of the kinetics of HOx radicals has continued to 

improve. For example, several new studies have been reported on the 

H02 + H02 reaction. Although the reaction mechanism is complex and 

demonstrates both bimolecular and termolecular behavior, independent 
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studies using different experimental techniques are in excellent 

agreement. Data on the temperature dependence are also consistent. More 

serious problems remain with the OH + H02 reaction, where there are 

indications of a pressure effect but there are few data on this and the 

temperature dependence. The reaction H + H02, which is important in the 

upper stratosphere, has been added to the evaluation (Table 1). 

NOx Reactions 

The kinetics data for this class of reactions are considered 

reliable, particularly following the recent improvements in the OH + HN03 

and OH + HN04 rate constants. Furthermore, there are now measurements of 

the temperature and pressure dependences of the H02 + N02 reaction. 

Kinetic data for NH2 reactions has been added to this evaluation. 

The status for this class of reactions is not so good as that for the 

other NOx reactions. For nearly all NH2 reactions the value of k at 298 K 

is uncertain by a factor of 2-3, the temperature dependences are not well 

defined, and the reaction mechanisms are complex and not well understood. 

Halogen Chemistry 

The recommendations for the important C10x reactions have not 

changed significantly since the previous evaluation (JPL 82-57). This 

reflects the fact that from the standpOint of the CFM-0
3 

question many of 

the important rate constants have been measured reliably and 

recommendations can be made confidently. There may be minor changes in the 

rate constant recommendation for the reaction OH + HC1, since preliminary 

results from several new studies are slightly higher than the current 
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recommended value. The table includes a new entry for the reaction of 

chlorine atoms with CH3CC13. Other than a few minor refinements, there 

have been no changes in the data base for BrOx and FOx reactions. 

Hydrocarbon Oxidation 

Our understanding of hydrocarbon oxidation in the atmosphere has 

improved considerably in the past few years. All hydrocarbons are 

released at the surface of the earth, and their degradation in the 

troposphere is initiated by reaction with OH (and with ozone in the case 

of olefins). Depending on their reactivity with OH, only a fraction of 

the surface flux of hydrocarbons is transported into the stratosphere 

where their oxidation serves as a source of water vapor. In addition, 

reaction of Cl atoms with these hydrocarbons (mainly CH4) constitutes one 

of the major sink mechansims for active chlorine. Even though CH4 is the 

predominant hydrocarbon in the stratosphere, we have included in this 

evaluation certain reactions of a few heavier hydrocarbon species. 

In the stratosphere, CH4 oxidation is initiated by its reaction with 

either OH or Cl (and to a limited extent 0(1D», leading to formation of 

CH3 and subsequently CH302. Several details of the subsequent chemistry 

are unclear, primarily because four key reactions are not well 

characterized. These reactions are: (1) CH302 + H02' which exhibi ts an 

unusual temperature dependence analogous to that for the H02 + H02 

reaction; (2) CH30 + 02' which has not been directly studied at or below 

room temperature; (3) CH300H + OH, which has been recently studied in a 

competitive system and found to be extremely rapid; and (4) OH + CO, whose 

pressure, O2 , and temperature dependence of the high pressure rate 
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coefficient are uncertain. Even though the rate constants for the four 

reactions mentioned above are not very well known, the effects of these 

uncertainties on stratospheric 03 perturbation calculations are 

negligible. 

The rate constant for CH302N02 formation from CH302 and N02 is well 

defined. However, the role of CH302N02 in the stratosphere remains 

unclear, owing to the lack of data on its thermal decomposition and 

photolysis. 

Formaldehyde photo-oxidation to form CO can be considered well 

understood, especially since the rate of the HCO + 02 reaction is known. 

The rates of the OH and 0(3p) reactions with CH20 and the photolysis cross 

sections of CH20 are reasonably well know~ 

Another area of hydrocarbon oxidation which has seen a great deal of 

improvement is that of product analysis. However, some additional work 

may be required to measure branching ratios for reactions such as CH
3

02 + 

CH302· 

The oxidation scheme for higher hydrocarbons has not been fully 

elucidated. However, the rate of transport of these hydrocarbons into the 

stratosphere can be easily calculated since the rates of reactions with OH 

are well known. In most cases it is expected that the radicals formed 

from the initial OH or Cl attack will follow courses analogous to CH
3

, and 

ul timately lead to CO. 

SOx Reactions 

There have been a number of changes and additions to this section on 

homogeneous sulfur chemistry. In particular, we now have more detailed 
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information on the rates of oxidation of SO by O2 and 03. Nevertheless a 

complete description of SO oxidation by both radical and molecular species 

cannot be presented at this time. Many SO reactions appear to occur with 

rate constants greatly exceeding the NO reaction analogues. Further work 

is still needed to fully assess the importance of SO reactions with 

species such as OH, H02' ClO, BrO, etc. 

Several reactions which have been suggested as candidates for 

coupling the stratospheric chlorine and sulfur cycles have also been 

added. While the limited data base does not support a coupling 

hypothesis, in the absence of more detailed information we cannot 

presently rule it out (particularly for atmospheric regions perturbed by 

volcanic emissions). 

More detailed evidence has been presented on the effect of molecular 

oxygen on the reactions of certain sulfur containing compounds. The role 

of the reaction of O2 with electronically excited CS2 has been documented 

as an important tropospheric loss mechanism of CS2 and source of OCS. 

Quantitative information has now become available regarding the 

appreciable acceleration of the OH + CS2 reaction as a function of total 

pressure, O2 partial pressure, and temperature in a mixed N2/02 

environment. The results are strongly suggestive of the reaction of a 

CS2-OH adduct intermediate with 02. While further such 02 reactions have 

not yet been quantitatively appraised, their occurrence may be very 

important to a complete understanding of SOx chemistry. 

Among the simple bimolecular reactions, those involving sulfur atoms 

are reasonably well defined for stratospheric purposes. However, our 

understanding of atmospheric SH reactions, involved in the oxidation of 
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H2S, is not well defined and suffers from the absence of relevant rate 

constant measurements. For example, the only loss mechanism for SH 

currently included in Table 1 is the reaction with 02' Other reactions 

with H02 or 03 may be important. 

Another area of significant uncertainty is the oxidation of S02 into 

sulfuric acid and its potential depletion of HOx radical concentrations. 

Three possible mechanistic pathways exist for this oxidation resulting in 

the loss of 0, 1, or 2 HOx radicals for each H2S04 formed. For example, 

in the scheme 

OH + S02 -+ HS03 

OH + HS03 -+ H20 + S03 

S03 + H20 -+ H2S04 

two OH radicals are lost for each H2S04 formed. While the final reaction 

in this sequence is probably heterogeneous in nature, the initiation steps 

are most certainly homogeneous. If the second reaction is replaced by 

the cycle leads to no net change in HOx per H2S04 formed. Another model 

involving HS05 as an intermediate species results in a net loss of one HOx 

per H2 S04 formed. Clearly additional information is needed to fully 

understand aerosol formation via S02 oxidatio~ 
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Photochemical Cross Sections 

The absorption cross sections of 02 in the 185-210 nm range--i.e., 

in the Schumann-Runge bands and at the onset of the Herzberg continuum-

require further study; estimates of the penetration of UV radiation in the 

stratosphere depend critically on these cross sections. Also, the 

absorption cross sections of 03 and their temperature dependence should be 

accurately remeasured in view of their importance for atmospheric modeling 

and for interpreting Dobson and BUV data. 

The temperature dependence of the absorption cross sections of 

H02N02 and HN03 in the 300 om region should be determined. 

Status Q! Atmospheric Chemistry 

The ozone content of earth's atmosphere can be considered to exist 

in three distinct regions, the troposphere, stratosphere, and mesosphere. 

The unpolluted troposphere contains small amounts of ozone, which come 

from both downward transport from the stratosphere and from in situ 

photochemical production. The chemistry of' the global troposphere is 

complex, with both homogeneous and heterogeneous (e.g., rain-out) 

processes playing important roles. The homogeneous chemistry is governed 

by coupling between the carbon/nitrogen/hydrogen and oxygen systems and 

can be considered to be more complex than the chemistry of the 

stratosphere, due to the presence of higher hydrocarbons, long 

photochemical relaxation times, higher total pressures, and the high 

relative humidity which may affect the reactivity of certain key species 

such as H02• Significant progress is being made in understanding the 

coupling between the different chemical systems, especially the mechanism 
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of methane oxidation, which partially controls the odd hydrogen budget. 

This is an important development, as reactions of the hydroxyl radical are 

the primary loss mechanism for compounds containing C-H (CH4, CH3Cl, 

CHF2Cl, etc.) or C=C (C2C14, C2HC13t C2H4' etc.), thus limiting the 

fraction transported into the stratosphere. 

The stratosphere is the region of the atmosphere where the bulk of 

the ozone resides, with the concentration reaching a maximum value of 

about 5 x 10 12 molecule cm-3 at an altitude of -25 km. Ozone in the 

stratosphere is removed predominantly by catalytic (i.e., non-Chapman) 

processes, but the assignment of their relative importance and the 

prediction of their futUre impact are dependent on a detailed 

understanding of chemical reactions which form, remove and interconvert 

the catalytic species. A model calculation of stratospheric composition 

may include some 150 chemical reactions and photochemical processes, which 

vary greatly in their importance in controlling the density of ozone. 

Laboratory measurements of the rates of these reactions have progressed 

rapidly in recent years, and have given us a basic understanding of the 

processes involved, particularly in the upper stratosphere. Despite the 

basically sound understanding of overall stratospheric chemistry which 

presently exists, much remains to be done to quantify errors, to identify 

reaction channels positively, and to measure reaction rates both under 

conditions corresponding to the lower stratosphere (-210 K, -75 torr) as 

well as the top of the stratosphere (-270 K, - 1 torr). 

The chemistry of the upper stratosphere, i.e. 30-50 km, is thought 

to be reasonably well defined, although there appear to be some 

significant differences between the predicted and observed chemical 
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composition of this region of the atmosphere which may be due to 

inaccurate rate data or missing chemistry. In this region the chemical 

composition of the atmosphere is predominantly photochemically controlled 

and the photolytic lifetimes of temporary reservoir species such as HOC1, 

H02N02, CION02, N205 and H202 are short and hence they play a minor role. 

Thus the important processes above 30 km all involve atoms and small 

molecules. The majority of laboratory studies on these reactions have 

been carried out under the condi tiona of pressure and temperature which 

are encountered in the upper stratosphere, and their overall status 

appears to be good. No significant changes in rate coefficients for the 

key reactions such as CI + 03 , 0 + C10, NO + CIO, 0 + N02, NO + 03' etc., 

have occurred in the last few years. Historically, a major area of 

concern in the chemistry of the upper stratosphere has involved the 

reaction between HO and H02 radicals, which, as previously discussed in 

this section, has had considerable uncertainty in the rate constant. This 

HOx termination reaction plays an important role in determining the 

absolute concentrations of HO and H02, and since HO plays a central role 

in controlling the catalytic efficiencies of both NOx and C10x ' it is a 

reaction of considerable importance. Recently the uncertainty in the rate 

coefficient for the reaction has decreased, now being thought to be about 

a factor of 1.5 over the entire range of atmospheric conditions. It 

should be noted that the HO + H202, HO + HN03 and HO + H02N02 reactions 

have little effect on controlling the HOx concentrations above 30 km. For 

reactions such as 0 + HO and 0 + H02, which control the HOx radical 

partitioning above 40 km, the data base can only be considered to be quite 

good. 
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One area in which additional studies may be needed is that of 

excited state chemistry, i.e., studies to determine whether electronic or 

vibrational states of certain atmospheric constituents may be more 

important than hitherto recognized. Possible examples are 02*' 03*' HO*, 

or N2*. 

The chemistry of the lower stratosphere is quite complex, with 

significant coupling between the HOx, HOx and C10x families. It is within 

this region of the atmosphere (15-30 km) where both dynamics and 

photochemistry play key roles in controlling the trace gas distributions. 

It is within this region of the stratosphere that the question of the 

pressure and temperature dependences of the rate coefficients is most 

critical, due to the low temperatures (210-255 K) and the high total 

pressures (30-200 torr). The question of possible pressure and 

temperature dependences of HO and H02 reactions is highly pertinent here. 

Our view of the chemistry of the lower stratosphere has changed in 

recent years, due to changes in rate constants which have in turn led to 

changes in the relative importance of reactions which control the HOx 

budget in this region of the atmosphere. Prior to the appearance of 

improved kinetics data for the HO + H202, HO + HN03' and HO + H02N02 

reactions, the maJor termination reaction for odd hydrogen species in 

models of the lower stratosphere was the HO + H02 -+ H20 + 02 reaction. 

However, the HO + HN03 and HO + N02N02 reactions are now thought to play a 

vital role in controlling the HOx radical concentration in the lower 

stratosphere. The species HN03 , H02N02, C1N03 and HOCl illustrate the 

strong coupling that exists between the HOx, NOx and C10x families. One 

disturbing problem is that while these species are currently thought to 
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play an important role in stratospheric photochemistry, only HN0
3 

has yet 

been positively observed by any field measurement study. 

Heterogeneous Effects 

A continuing question in stratospheric modeling is whether or not 

aerosols perturb the homogeneous chemistry to a significant degree. 

Effects could arise through the following processes: 

1. Surface catalysis of chemical reactions. 

2. Production or removal of active species. 

3. Effects of aerosol precursors. 

The aerosol question now assumes more relevance in view of the 1982 

eruption of the El Chichon volcano, which evidently increased the aerosol 

loading by approximately an order of magnitude. This effect is of course 

temporary, with a recovery time of the order of a few years. 

In NASA Reference Publications 1010 and 1049, processes 1 and 2 

above were discussed in general terms. It was shown that, with a few 

possibly significant exceptions, surface catalysis of chemical reactions 

is not expected to compete with the rates of homogeneous gas phase 

reactions. The essential reason was that the frequency of collision of a 

gas phase molecule with the aerosol surface is typically of the order of 

104 to 105 sec-1, whereas most of the key gas phase reactions, for 

example, conversion of atomic oxygen to 02 by the 0 + 03 reaction, occur 

with much greater frequency. Thus, even in the unlikely case of unit 

reaction efficiency on the aerosol surface the heterogeneous process 

cannot be significant. Possible exceptions occur for reactions which are 

extremely slow in the gas phase, such as hydrolysis of an anhydride, as in 

14 



the reaction N205 + H20 + 2HN03' There remains some uncertainty with 

regard to the role of these latter processes. 

It was also shown in NASA 1010 and 1049 that there is no evidence 

that aerosols serve as significant sources or sinks of the major active 

species such as chlorine compounds. However, Hunten llU. (1980) have 

suggested that dust particles of meteoric origin may scavenge metallic 

atoms and ions, and in particular may remove Na diffusing from the 

mesosphere in the form of absorbed NaOH or Na2S04' 

Although it appears that aerosols do not greatly perturb the ambient 

concentrations of active species through direct interaction with the 

surfaces, the aerosol precursors may significantly perturb the 

stratospheric cycles through removal of species such as OH radicals. For 

example, a large injection of S02, such as that which occurred in the El 

Chichon eruption, has the potential of significantly depleting HOx radical 

concentrations, as was discussed in the section on SOx chemistry. It must 

be reiterated, however, that the detailed mechanism of S02 oxidation is 

not known with certainty, and therefore it is not clear that the process 

resul ts in a net loss of OH from the system. 

Small effects of aerosols on the radiation field and on the 

temperature may also need to be considered. These effects are probably 

small, however. 

There are two problems with regard to detecting the effects of 

aerosol injections such as that following the El Chichon eruptio~ One is 

that no adequate baseline exists for the unperturbed atmosphere, and 

therefore a given observation cannot unambiguously be assigned to the 

enhanced presence of the aerosol loading. A second problem is that, as 
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already discussed, the effects are expected to be subtle and probably of 

small magnitude. Thus, in spite of the large change that has occurred in 

the aerosol content of the lower stratosphere, effects on the chemical 

balance will be difficult to detect. 

RATE CONSTANT DATA 

Format 

In Table 1 (Rate Constants for Second Order Reactions) the reactions 

are grouped into the classes Ox' O(1D), HOx, NOx , ClOX' BrOx , FOx, 

Hydrocarbon Reactions, and SOx. The data in Table 2 (Rate Constants for 

Three-Body Reactions), while not grouped by class, are presented in the 

same order as the bimolecular reactions. Further, the presentation of 

photochemical cross section data follows the same sequence. 

Some of the reactions in Table 1 are actually more complex than 

simple two-body reactions. To explain the anomalous pressure and 

temperature dependences occasionally seen in reactions of this type, it is 

necessary to consider the bimolecular class of reactions in terms of two 

subcategories, direct (concerted) and indirect (non-concerted) reactions. 

A direct or concerted bimolecular reaction is one in which the 

reactants A and B proceed to products C and D without the intermediate 

formation of an A + B adduct which has appreciable bonding, i.e., no 

stable A-B molecule eXists, and there is no reaction intermediate other 

than the transition state of the reaction, (AB)~. 

A + B -+ (AB)~ -+ C + D 

16 



The reaction of OH with CH4 forming H20 + CH3 is an example of a reaction 

of this class. 

Very useful correlations between the expected structure of the 

transition state [AB]~ and the A-factor of the reaction rate constant can 

be made, especially in reactions which are constrained to follow a well

defined approach of the two reactants in order to minimize energy 

requirements in the making and breaking of bonds. 

The indirect or non-concerted class of bimolecular reactions is 

characterized by a more complex reaction path involving a potential well 

between reactants and products, leading to a bound adduct (or reaction 

complex) formed between the reactants A and B: 

A + B :t: [AB]- -+ C + D 

The intermediate [AB]- is different from the transition state [AB]~, in 

that it is a bound molecule which has a finite lifetime and which can, in 

principle, be isolated. (Of course, transition states are involved in all 

of the above reactions, both forward and backward, but are not explicitly 

shown.) An example of this reaction type is ClO + NO, which normally 

produces CI + N02 as a bimolecular product, but which undoubtedly involves 

CIONO (chlorine nitrite) as an intermediate. This can be viewed as a 

chemical activation process forming (ClONO)- which decomposes 

unimolecularly to the ultimate products, Cl + N02• Reactions of the non

concerted type can have a more complex temperature dependence than those 

of the concerted type, and, in particular, can exhibit a pressure 

dependence if the lifetime of [AB] - is comparable to the rate of 
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collisional deactivation of [AB]'. This arises because the relative rate 

at which [AB]' goes to products C + D vs. reactants A + B is a sensitive 

function of its excitation energy. Thus, in reactions of this type, the 

distinction between the bimolecular and term·olecular classification 

becomes less meaningful, and it is particularly necessary to study such 

reactions under the temperature and pressure conditions in which they are 

to be used in model calculations. 

The rate constant tabulation for second-order reactions (Table 1) 

gives the following information: 

1. Reaction stoichiometry and products (if known). 

2. Arrhenius A-factor. 

3. Temperature dependence and associated uncertainty ("activation 

temperature" E/Rz~/R). 

4. Rate constant at 298K. 

5. Uncertainty factor at 298K. 

6. Note giving basis of recommendation and any other pertinent 

information. 

Third-order reactions (Table 2) are given in the form 

(where the value is suitable for air as the third body), together with the 

recommended value of n. Where pressure fall-off corrections are 

necessary, an additional entry gives the limiting high pressure rate 

constant in a similar form: 
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To obtain the effective second-order rate constant for a given condition 

of temperature and pressure (altitude), the following formula is used: 

k(Z) = k(M, T) 

The fixed value 0.6 which appears in this formula fits the data for all 

listed reactions adequately, although in principle this quantity may be 

different for each reactio~ 

Thus, a compilation of rate constants of this type requires the 

stipulation of the four parameters, ko(300), n, koo(300), and m. These can 

be found in Table 2. The discussion that follows outlines the general 

methods we have used in establishing this table, and the notes to the 

table discuss specific data sources. 

Low-Pressure Limiting Rate Constant [~(T)] 

Troe (1977) has described a simple method for obtaining low-pressure 

limi ting rate constants. In essence this method depends on the 

definition: 

Here sc signifies "strong" collisions, x denotes the bath gas, and ex is 
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an efficiency parameter (0 < S < 1), which provides a measure of energy 

transfer. 

The coefficient Sx is related to the average energy transferred in 

a collision with gas x, <~>x' via: 

= 
<~E> 

x 

FE kT 

Notice that <~E> is quite sensitive to S. FE is the correction factor of 

the energy dependence of the density of states (a quantity of the order of 

1.1 for most species of stratospheric interest). 

For many of the reactions of possible stratospheric interest 

reviewed here, there exist data in the low-pressure limit (or very close 

thereto), and we have chosen to eyaluate .aru1 unify this data by 

calculating k~,SC(T) for the appropriate bath gas x and computing the 

value of Sx corresponding to the experimental value [Troe (1977)]. A 

recent compilation (Patrick and Golden, 1983) gives details for reactions 

considered here. 

From the Sx values (most of which 

<[£>x according to the above equation. 

are for N2, i.e., SN ), we compute 
2 

Values of <~E>Nz of approximately 

0.3-1 kcal mole- 1 are generally expected. If multiple data exist, we 

average the values of <~>N and recommend a rate constant corresponding to 

the SN2computed in the equation above. 

Where no data eXist, we have estimated the low-pressure rate 

constant by taking SN = 0.3 at T = 300 K, a value based on those cases 
2 

where data exist. 
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Temperature Dependence of Low-Pressure Limiting Rate Constants n 

The value of n recommended here comes from a calculation of <b.E>N 

from the data at 300 K, and a computation of ~ (200 K) assuming that 
2 

<~>N is independent of temperature in this range. This ~ (200 K) value 
2 2 

is combined with the computed value of koS C (200 K) to give the expected 

value of the actual rate constant at 200 K. This latter in combination 

with the value of 300 K yields the value of ~ 

This procedure can directly be compared with measured values of 

ko(200 K) when those exist. Unfortunately, very few values of 200 K are 

available. There are often temperature-dependent studies, but some 

ambiguity exists when one attempts to extrapolate these down to 200 K. If 

data is to be extrapolated out of the measured temperature range, a choice 

must be made as to the functional form of the temperature dependence. 

There are two general ways of expressing the temperature dependence of 

rate constants. Either the Arrhenius expression ko(T) = Aexp(-E/RT) or 

the form ko(T) = AI T- n is employed. Since neither of these 

extrapolation techniques is soundly based, and since they often yield 

values that differ substantially, we have used the method explained 

heretofore as the basis of our recommendations. 

High-Pressure Limiting Rate Constants [koo(T)] 

High-pressure rate constants can often be obtained experimentally, 

but those for the relatively small species of atmospheric importance 

usually reach the high-pressure limit at inaccessibly high pressures. 

This leaves two sources of these numbers, the first being guesses based 

upon some model, and the second extrapolation of fall-off data up to 

higher pressures. Stratospheric conditions generally render reactions of 
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interest much closer to the low-pressure limit, and thus are fairly 

insensitive to the high-pressure value. This means that while the 

extrapolation is long, and the value of koo(T) not very precise, a 

"reasonable guess" of koo(T) will then suffice. In some cases we have 

declined to guess since the low-pressure limit is always in effect over 

the entire range of stratospheric conditions. 

Temperature Dependence of High-Pressure Limiting Rate Constants; m 

There is very little data upon which to base a recommendation for 

values of m. Values in Table 2 are estimated, based on models for the 

transition state of bond association reactions and whatever data are 

available. 

k.r.Ql: Estimates 

For second-order rate constants in Table 1, an estimate of the 

uncertainty at any given temperature may be obtained from the following 

expression: 

An upper or lower bound (corresponding approximately to one standard 

deviation) of the rate constant at any temperature T can be obtained by 

multiplying or dividing the value of the rate constant at that temperature 

by the factor fT. The quantities f298 and ~E/R are, respectively, the 

uncertainty in the rate constant at 298K and in the Arrhenius temperature 

coeffiCient, as listed in Table 1. 

For three-body reactions (Table 2) a somewhat analogous procedure is 

used. Uncertainties expressed as increments to ko and kooare given for 

these rate constants at room temperature. The additional uncertainty 
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arising from the temperature extrapolation is expressed as an uncertainty 

in the temperature coefficients nand m. 

Units 

The rate constants are given in units of concentration expressed as 

molecules per cubic centimeter and time in seconds. Thus, for first-, 

second-, and third-order reactions the units of k are s-1, cm3 molecule-1 

s-1, and cm6 molecule-2 s-1, respectively. 
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Table 1. Rate Constants for Second Order Reactions. 

Reaction 

• NO + NO 

/o(1D) + H20> OH + OH 

~0(1D) + CH4 ~ OH + CH3 

)0(1 D) + H2 ~ OH + H 

~(1D) + N2 ~ 0 + N2 

0(1 D) + N2 ~ N20 

J 0 ( 1 D) + O2 ~ 0 + O
2 

0(1D) + 03 ~ 02 + 02 

~ O2 + 0 + 0 

~0(1D) + HCl ~ OH + Cl 

0(1D) + CC14 ~ products 

0(1 D) + CFC13 ~ products 

0(1 D) + CF2C12 ~ products 

A-Factor E/R:tI\( E/R) 

Ox Reactions 

(See Table 2) 

8.0x10-12 

4.9x10-11 

6.7x10-11 

2.2x10-10 

1.4x10-10 

1.4x10-11 

1.0x10-10 

1.8x10-11 

2060'*'250 

0(1D) Reactions 

o:t100 

o:t100 

o:t100 

o:t100 

o:t100 

o:t100 

(See Table 2) 

3.2X10-11 

1.2x10-10 

1.2x10-10 

1.4x10-10 

3.3x10-10 

2.3x10-10 

1.4x10-10 

-(67%100) 

o:t100 

o:t100 

o:t100 

o:t100 

o:t100 

k(298K) 

8.0x10-15 

4.9x10-11 

6.7x10- 11 

2.2x10-10 

1.4x10-10 

1.4x10-11 

1.0x10-10 

2.6x10-11 

4.0x10-11 

1.2x10-10 

1.2x10-10 

1.4x10-10 

3.3x10-10 

2.3x10-10 

1.4x10-10 

'Indicates a change from the previous Panel evaluation (JPL 82-57). 

IIndicates a new entry that was not in the previous evaluation. 
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Unccrtdinty 
Factor/298K 

1.15 

1.4 

1.4 

1.2 

1.2 

1.2 

1.2 

1.2 

1.2 

1.3 

1.3 

1.3 

1.2 

1.2 

1.3 

Notes 

2,3 

2,3 

2,4 

2,5 

2,5 

2 

2 

2 

2,6 

2,6 

2,7 

2,8 

2,8 

2,8 



Table 1. ( Continued) • 

Uncertainty 

Reaction A-Factor ElR±~(fjlHl k(Z96Kl [ilg!;QI:LZ96K HQ!;es 

0(1 D) + CF4 .... CF4 + 0 1.8x10-13 0:i:100 1.8x10-13 2.0 2,8 

O( 1D) + CC120 .... products 3.6x10-1O 0:i:100 3.6x10-1O 2.0 2,9 

0(1 D) + CFC10 .... products 1.9x10-1O 0:i:100 1.9x10-1O 2.0 2,9 

0(1 D) + CF20 .... products 7.4x10-11 0:i:100 7.4x10-11 2.0 2,9 

vOt1D) + NH3 .... OH + NH2 2.5x10-1O 0:i:100 2.5x10-1O 1.3 2,10 

0(1D) + C02 .... 0 + CO2 7.4x10-11 -(117*100) 1.1x10-1O 1.2 2 

O( 1D) +HF .... OH+F 1.0x10-1O 0:i:100 1.0x10-1O 5.0 11 

HOx Reactions 

H + 02 ~ H02 (See Table 2) 

H+03 .... OH+02 1.4x10-1O 470*200 2.9x10-11 1.25 12 

IH + H02 .... products 7.4x10-11 0:i:400 7.4x10-11 1.6 13 

o + OH .... O2 + H 2.2x10-11 -( 117·100) 3.3x10-11 1.2 14 

o + H02 .... OH + 02 3.0x10-11 -(200:i:200) 5.9x10-11 1.4 15 

·0 + H202 .... OH + H02 1.4x10-12 2000%1000 1.7x10-15 2.0 16 

-v*OH + H02 .... H20 + 02 (7+4Patm)x1o- 11 0%500 (7+4Pa tm)x10-11 1.6 17 

.-AJH + 03 .... H02 + 02 1.6x10-12 940:i:300 6.8x10-14 1.3 18 

<OH+ OH .... H20 + 0 4.2x10-12 242:i:242 1.9x10-12 1.4 19 

M .... H202 (See Table 2) 

/eOH + H202 .... H20 + H02 3.1x10-12 187*200 1.7x10-12 1.3 20 

v6H + H2 .... H20 + H 6.1x10-12 2030:i:400 6.7x10- 15 1.2 21 

.Indicates a change from the previous Panel evaluation (JPL 82-57). 

IIndicates a new entry that was not in the previous evaluation. 
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Table 1. (Continued) • 

Uncertainty 
Reaction A-Factor ElR*A(J:;lHl k(~2~Kl EaQtQ~lZ2~K NQ!<es 

)H02 + H02 .... H202 + ~ 2.3x10-13 -(590:t200) 1.7x10-12 1.3 22 

~ H202 + 02 1.7x10-33[H] -(1000:t400) 5x10-32[H] 1.3 22 

~02 + 03 .... OH + 202 1.4x10-14 580!188 2.0x10-15 1.5 23 

NOx Reactions 

N + 02 .... NO + 0 4.4x10-12 3220:t340 8.9x10-17 1.25 24 

N + 03 .... NO + 02 <1.0x10- 15 25 

N + NO .... N2 + ° 3.4x10-11 0'0100 3.4x10-11 1.3 26 

N + N02 .... N20 + ° 3.0x10-12 3 27 

° + NO ~ N02 (See Table 2) 

° + N02 .... NO + 02 9.3x10-12 
0!950 9.3x10-12 1 .1 28 

° + N02 l! N03 (See Table 2) 

° + N03 .... 02 + N02 1.0x10-11 0'0150 1.0x10-11 1.5 29 

° + N205 .... products <3.0x10-16 30 

/0 + HN0
3 .... OH + N03 <3.0X10-17 31 

vO + H02N02 .... products 7.0x10-11 3370%750 8.6x10-16 3.0 32 

j 03 + NO .... N02 + 02 1.8x10-12 1370:t200 1.8x10-14 1.2 33 

JNO + H02 .... N02 + OH 3.7x10-12 -(240:t80) 8.3x10-12 1.2 34 

;No + N0
3 .... 2N02 2.0x10-11 3.0 35 

JOH + NO ~ HONO (See Table 2) 

-Indicates a change from the previous Panel evaluation (JPL 82-57). 

IIndicates a new entry that was not in the previous evaluation. 
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Table 1. (Continued) • 

Uncertainty 

B~iIogUQD 4-ligtsn: BlB*ll!ElRl k(2981Q Faotorl2981C Notes 

vOH + N02 ~ HN03 (See Table 2) 

vnH + HN03 + produots 9.4x10-15 -(778*100) 1.3x10-13 1.3 36 

~OH + H02N02 + produots 1.3x10-12 -(380!~88) 4.6x10-12 1.5 37 

~02 + N02 ~ H02N02 (See Table 2) 

v03 + N02 + N03 + 02 1.2x10-13 2450*140 3.2x10-11 1.15 38 

,;-03 + HN02 + 02 + HN03 <5.0x10-19 39 

~02 + N03 ~ N205 (See Table 2) 

~H + NH3 + H20 + NH2 3.3x10-12 900*200 1.6x10-13 1.4 40 

v1NH2 + OH + produots 1.0x10-13 10 41 

INH2 + H02 + produots 3.4x10-11 2 42 

vfNH2 + NO + produots 3.6x10-12 -(450*150) 1.6x10-11 2 43 

INH2 + N02 + produots 1.9x10-12 -(650*250) 1.7x10-11 3 44 

INH2 + 02 + produots <3x10-18 45 

INH2 + ~ + produots 3.4x10-12 1000*500 1.2x10-13 3 46 

C10x Reaotions 

...tl + 03 + C10 + 02 2.8x10-11 257*100 1.2x10-11 1.15 47 

..A:l + H2 + HCl + H 3.7x10-11 2300*200 1.6x10-14 1.25 48 

~ + CH4 + HCl + CH3 9.6x10-12 1350*150 1.0x10-13 1 .1 49 

Cl + C2H6 + HCl + C2H5 7.7x10-11 90*90 5.7x1o-11 1.1 50 

Cl + C3H8 + HCl + C3H7 1.4x10-1O -(40*250) 1.6x10-1O 1.5 51 

-Indicates a ohange trom the previous Panel evaluation (JPL 82-57). 

'Indicates a new entry that was not in the previous evaluation. 



Table 1. ( Continued) • 

Uncertainty 
Reaction A-Factor ElRZlI'~lBl Id~9!lKl EllQS;ol:lZ9!lK Hgtes 

Cl + C2H2 -+ products 1x10-12 10 52 

Cl + CH30H -+ CH20H + HCl 6.3x10-11 0~250 6.3x10-11 2.0 53 

~l + CH3Cl -+ CH2Cl + HCl 3.4x10-11 1260:t200 4.9x10-13 1.2 54 

ICl + CH3CC13 -+ CH2CC13 + HCl <4xl0-14 55 

vel + H2CO -+ HCl + HCO 8.2x10-11 34~100 7.3x10-11 1.15 56 

vCl + H202 -+ HCl + H02 1.lxl0-11 980*500 4.1xl0-13 1.5 57 

Cl + HOCl -+ products 3.0xl0-12 130:t250 1.9x10-12 2.0 58 

/-Cl + HN03 -+ products <1.7xl0-14 59 

vCl + H02 -+ HCl + 02 1.8x10-11 -( 170·200) 3.2xl0-ll 1.5 60 

-+ OH + C10 4.1xl0-11 450·200 9.1xl0-12 2.0 60 

vtl + C120 -+ C12 + C10 9.8x10-11 0:t250 9.8x10-11 1.2 61 

"vel + OC10 -+ C10 + C10 5.9xl0-11 0:t250 5.9xl0-11 1.25 62 

JlCl + C10N02 -+ products 6.8x10-12 -( 160:t200) 1.2x10-11 1.3 63 

vCl + NO li NOCl (See Table 2) 

Cl + N02 ~ C10NO (C1N02) (See Table 2) 

.;Cl + C1NO -+ NO + C12 2.3xl0-11 0!~g8 2.3xl0-11 3.0 64 

vCl + 02 ~ C100 (See Table 2) 

/Cl + C100 -+ C12 + 02 1.4xl0-1O 0*250 1.4x10-10 3.0 65 

I -+ C10 + C10 8.0xl0-12 0*250 8.0xl0-12 3.0 65 

I C10 + 0 -+ Cl + O2 7.7xl0-11 130~130 5.0x10-11 1.4 66 

*Indicates a change from the previous Panel evaluation (JPL 82-57). 

IIndicates a new entry that was not in the previous evaluation. 
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Table 1. (Continued) • 

Uncertainty 
HegQt;!.Q!l A-f5!.QtQC ElH·~(E/R~ k(228K~ Factor/228K Notes 

~IO + NO ~ N02 + CI 6.2x10-12 -(294*100) 1.7x10-11 1.15 67 

v'CIO + N02 ~ CION02 (See Table 2) 

~10 + H02 ~ HOCI + O2 4.6x10-13 -(710!~~8) 5.0X10-12 1.4 68 

~10 + H2CO ~ products _1.0x10-12 >2060 <1.0x10-15 69 

vaCIO + OH ~ products 9.2x10-12 -(66:200) 1.2x10-11 2 70 

~10 + CH4 ~ products -1.0x10-12 >3700 <4.Ox10-18 71 

~10 + H2 ~ products -1.0x10-12 >4800 <1.Ox10-19 71 

~10 + CO ~ products _1.0x10-12 >3700 <4.Ox10-18 71 

CIO + N20 ~ products -1.0x10-12 >4260 <6.0x10-19 71 

CIO + CIO ~ products 72 

'-CIO + 0
3 
~ CIOO + O2 1.0x10-12 >4000 <1.0x10-18 73 

,/' ~ OCIO + 02 1.0x10-12 >4000 <1.0x10-18 73 

~ + HCI ~ H20 + CI 2.8x10-12 425*100 6.6x10-13 1.2 74 

/lbH + HOCI ~ H20 + CIO 3.0x10-12 150:!:~s8 1.8x10-12 10 75 

~ + CH3CI ~ CH2CI + H2O 1.8x10-12 1112*200 4.3x10-14 1.2 76 

~H + CH2Cl2 ~ CHCl2 + H2O 4.5x10-12 1032*200 1.4x10-13 1.2 76 

~H + CHCl3 ~ CCl3 + H2O 3.3x10-12 1034*200 1.0x10-13 1.2 76 

OH + CHFCl2 ~ CFCl2 + H2O 8.9x10-13 1013*200 3.0x10-14 1.3 76 

OH + CHF2CI ~ CF2CI + H2O 7.8x10-13 1530*200 4.6x10-15 1.2 76 

OH + CH2CIF ~ CHCIF + H2O 2.0x10-12 1134*150 4.4x10-14 1.2 76 

• Indicates a change from the previous Panel evaluation (JPL 82-57) • 

IIndicates a new entry that was not in the previous evaluation. 
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Reaction 

yH + C2C14" products 

OH + C2HC13" products 

OH + CFC1
3 

.. products 

OH + CF2C12 .. products 

/OH + CION02 .. products 

~ + HCl .. OH + Cl 

va + HOCl .. OH + CIO 

JO + CION02 .. products 

JftJ + C120 .. CIO + CIO 

/0 + OCIO .. CIO + 02 

/ NO + OCIO .. N02 + CIO 

~r + 03 .. BrO + 02 

JBr + H202 .. HBr + H02 

~r + H2CO .. HBr + HCO 

Br + H02 .. HBr + 02 

/ 

...;BrO + 0 .. Br + O2 

..IBrO + CIO .. Br + OCIO 

/ .. Br + Cl + O2 

Table 1. (Continued). 

A-Factor 

9.4x10-12 

5.0x10-13 

-1.0x10-12 

_1.0x10-12 

1.2x10-12 

1.0x10-11 

1.0x10-11 

3.0x10-12 

2.9x10-11 

2.5x10-11 

2.5x10-12 

1.4x10-11 

-1.0x10-11 

1.7x10-11 

3.0X10-11 

6.7x10-12 

6.7x10-12 

E/R*A(E/R) 

1820*200 

1200*200 

-(445*200) 

>3650 

>3560 

333*200 

3340*350 

2200:1:1000 

808*200 

630*200 

1160:1:300 

600*300 

BrOx Reactions 

755:1:200 

>2500 

800*200 

0:1:250 

0*250 

0*250 

k(298K) 

1.2x10-14 

1.7x10-13 

2.2x10- 12 

<5.0x10-18 

<6.5x10-18 

3.9x10-13 

1.4x10-16 

6.0x10-15 

2.0x10-13 

3.5x10-12 

5.0x10-13 

3.4x10-13 

1.1x10-12 

<2.0x10- 15 

1.1x10-12 

>1x10-13 

3.0x10-11 

6.7x10- 12 

6.7x10-12 

-Indicates a change from the previous Panel evaluation (JPL 82-57). 

IIndicates a new entry that was not in the previous evaluation. 
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Uncertainty 
Factor/298K 

1.3 

1.25 

1.25 

1.5 

2.0 

10 

1.5 

1.4 

1.5 

1.5 

1.2 

1.3 

3.0 

2.0 

2.0 

Notes 

77 

78 

79 

80 

80 

81 

82 

83 

84 

85 

86 

87 

88 

89 

90 

91 

92 

93 

93 



Table 1. (Continued) • 

Uncertainty 
Reaction A-Factor ElR=A(~ll!l k(Z2BKl EIlQt2rLZ2BK H2tes 

v13'rO + NO .... N02 + Br 8.7x10-12 -(265*130) 2.1x10-11 1.15 94 

--13rO + N02 ~ BrON02 (See Table 2) 

./BrO + BrO .... 2 Br + O2 1.4x10-12 -(150:1:150) 2.3x10-12 1.25 95 

,/ .... Br2 + 02 6.0x10-14 -(600*600) 4.4x10-13 1.25 95 

vErO + 0
3 .... Br+ 202 -1x10-12 )1600 <5.0x10-15 96 

ArO + H02 .... products 5.0x1Q-12 3.0 97 

JBrO + OH .... products 1.2x1O-11 5.0 98 

/6H + HBr .... H2O + Br 8.0x10-12 ():t250 8.0x10-12 1.5 99 

vOH + CH3Br .... CH2Br + H2O 6.1x10-13 825·200 3.8x10-14 1.25 100 

~O + HBr .... OH + Br 6.6x10-12 1540·200 3.7x10-14 1.3 101 

FOx Reactions 

F + 03 .... FO + 02 2.8x10-11 226*200 1.3x10-11 2.0 102 

F + H2 .... HF + H 1.9x10-1O 570:1:250 2.8x10-11 1.3 103 

F + CH4 .... HF + CH3 3.0x10-1O 400:1:300 8.0x10-11 1.5 104 

F + H20 .... HF + OH 2.2x10-11 200·200 1.1x10-11 5.0 105 

F + 02 ~ F02 (See Table 2) 

F + NO M FNO .... (See Table 2) 

F + N02 ~ FN02(FONO) (See Table 2) 

NO + FO .... N02 + F 2.6x10-11 0*250 2.6x10-11 2.0 106 

FO + FO .... 2 F + 02 1.5x10-11 0:1:250 1.5x10-11 3.0 107 

*Indicates a change from the previous Panel evaluation (JPL 82-57). 

'Indicates a new entry that was not in the previous evaluation. 
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Table 1. <Continued) 

Uncertainty 
Reaction A-Factor E/R*t\C E/R) k(298K) Factor/298K 

FO + 03 + F + 2 02 

+ F02 + 02 

FO + N02 ~ FON02 (See Table 2) 

0+FO+F+02 5.0x10-11 0*250 5.0x10-1 1 3.0 

o + F02 + FO + 02 5.0x10-11 0*250 5.0x10- 11 5.0 

HldrQc~rb2D B~~~t12n~ 

'/*OH + CO + CO2 + H See Note 1.5x10-13 (1+0.6Patm) 1.4 

/OH + CH4 + CH3 + H2O 2.4x10- 12 1710*200 7.7x10- 15 

OH + C2H6 + H20 + C2H5 1.9x10-11 1260*250 2.7x10-13 

OH + C3H8 + H20 + C3H7 1.6x10-11 800*250 1.1x10-12 

OH + C2H4 + products (See Table 2) 

OH + C2H2 + products (See Table 2) 

liOH + H2CO + H20 + HCO 1.0x10-11 0*200 1.0x10-11 

- J *OH + CH300H + products 1.0x10-11 0*200 1.0x10-11 

v/OH + HCN + products 1.2x10-13 400*150 3.1x10-14 

10H + CH3CN + products 4.5x10-13 750*300 3.7x10-14 

IH02 + CH20 + adduct 4.5x10-14 

o + C2H2 + products 2.9x10-11 1600·300 1.4x10-13 

o + H2CO + products 3.0x10-11 1550*250 1.6x10-13 

*0 + CH3 + products 1.1x10-1O 0*250 1.1x10-1O 

*Indicates a change from the previous Panel evaluation (JPL 82-57). 

IIndicates a new entry that was not in the previous evaluation. 

CJ-I O(f/-I f /-I:t0 -1 
2. 

C I-'J OJ.... + !.J:. U 
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1.2 

1.25 

1.5 

1.25 

2.0 

3.0 

3.0 

10.0 

1.3 

1.25 

1.3 

Notes 

108 

108 

109 

110 

111 

112 

113 

114 

115 

116 

117 

118 

119 

120 

121 

122 



Table 1. (Continued) 

Uncertainty 

Heas;:UQIl A-Eas;:l;ol: ElH*1I(E/R2 k{228K2 Factor/228K Notes 

'CH3 + 02 + products <3x10- 16 123 

CH3 + 02 ~ CH302 (See Table 2) 

UCH20H + 02 + CH20 + H02 2x10-12 10 124 

v/*CH30 + 02 + CH20 + H02 1.2x10-13 1350*500 1.3x10-15 10 125 

~HCO + O2 + CO + H02 3.5x10-12 -( 140:t140) 5.5x10-12 1.3 126 

'CH3 + 03 + products 5.4x10-12 220*150 2.6x10-12 2 127 

OCH302 + 03 + products <1x10-17 128 

~CH302 + CH302 + products 1.6x10-13 -(220*220) 3.4x10-13 1.25 129 

~CH302 + NO + CH30 + N02 4.2x10-12 -(180·180) 7.6x10-12 1.2 130 

CH302 + N02 ~ CH302N02 (See Table 2) 

/CH302 + H02 + CH300H + 02 7.7x10-14 -( 1300:1980) 6.0x10-12 3.0 131 

SOx Reactions 

~H + H2S + SH + H2O 5.9x10-12 65*65 4.7x10-12 1.2 132 

~ 
OH + OCS + products 1.3x10-12 2300:t500 6.0x10-16 10 133 

~OH + CS2 .... products (See Note) 134 

~H + S02 ~ HOS02 (See Table 2) 

y/c) + H2S + OH + SH 1.0x10-11 1810:t550 2.2x10-14 1.7 135 

./0 + OCS .... CO + SO 2.1x10-11 2200*150 1.3x10-14 1.2 136 

v O + CS2 .... CS + SO 3.2x10-11 650*150 3.6x10-12 1.2 137 

";0 + SH + H + SO 1.6x10-1O 5.0 138 

'Indicates a change from the previous Panel evaluation (JPL 82-57). 

OIndicates a new entry that was not in the previous evaluation. 
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Reaction 

~ + 02 .... SO + 0 

S + 03 .... SO + 02 

S+OH .... SO+H 

j-so + O2 .... S02 + 0 

)SO + 03 .... S02 + 02 

SO + OH .... S02 + H 

/so + N02 .... S02 + NO 

SO + C10 .... S02 + Cl 

SO + OC10 .... S02 + C10 

SO + BrO .... S02 + Br 

~02 + H02 .... products 

JCH302 + S02 .... products 

J SH + 02 .... OH + SO 

ICl + H2S .... HCl + SH 

ICl + OCS .... SCl + CO 

IC10 + OCS .... products 

IC10 + S02 .... Cl + S03 

Table 1. (Continued) 

A-Factor 

2.3x10-12 

2 .4x1 0-13 

3.6x10-12 

E/R*fl(E/R) 

0:1<200 

2370·500 

1100:1<200 

k(298K) 

2.3x10-12 

1.2x10-11 

6.6x10-11 

8.4x10-17 

9.0x10- 14 

8.6x10-11 

1.4x10-11 

2.3x10-11 

1.9x10-12 

>4.0x10-11 

<1.0x10-18 

<5.0x10-17 

<3.2x10- 15 

7.3x10-11 

<1.1x10- 16 

<2.4x10-16 

<4.0x10-18 

-Indicates a change from the previous Panel evaluation (JPL 82-57). 

IIndicates a new entry that was not in the previous evaluation. 
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Uncertainty 
Factor/298K Notes 

1.2 139 

2.0 140 

3.0 141 

2 142 

1.2 143 

2.0 144 

1.3 145 

3.0 146 

3.0 146 

146 

147 

148 

149 

1.4 150 

151 

151 

151 



NOTES .I.Q .I.Am.E ~ 

1. 0 + 03. Changed from JPL 82-57 to include the new results of Wine 

II .sl.., (1983). The recommended rate expression is from Wine II 

~. and is a linear least squares fit of all data (unweighted) from 

Davis II al. (1973), McCrumb and Kaufman (1972), West ~ .sl.. 

(1978), Arnold and Comes (1979), and Wine II li. (1983). 

Compared to the previous recommendation, the new rate is 9% lower 

at 298 K and 9% higher at 220 K. 

2. 0(1 D) Reactions. These recommendations are based on averages of the 

absolute rate constant measurements reported by Streit ~~. (1976), 

Davidson ~~. (1977) and Davidson II sl,. (1978) for N20, H20, CH4, H2, 

N2, 02, 03' HCI, CCI4, CFCI3, CF2CI2, NH3, and C02; by Amimoto 

ll.al. (1978), Amimoto ~.s].. (1979), and Force and Wiesenfeld 

(1981a,b) for N20, H20, CH4, N2, H2, 02, 03' C02, CCI4, CFCl3' 

CF2Cl2, and CF4; by Wine and Ravishankara (1981) and (1982) for 

N20, H20, N2, H2, 03' C02, and CF20; by Brock and Watson (1980c) 

for N2 , 02 and C02; by Lee and Slanger (1978 and 1979) for H20 and 

02; and by Gericke and Comes (1981) for H20. The weight of the 

evidence from these studies indicates that the resul ts of Heidner 

and Husain (1973), Heidner ~~. (1973) and Fletcher and Husain 

(1976a, 1976b) contain a systematic error. For the critical 

atmospheric reactants, such as N20, H20, and CH4' the recommended 

absolute rate constants are in good agreement with the previous 

relative measurements when compared with N2 as the reference 

reactant. A similar comparison with O2 as the reference reactant 

gives somewhat poorer agreement. Wine and Ravishankara (1982) have 

determined the yields of 0(3p) from 0(1D) collisions: H20 (4.9 :t 

3.2%), N20 «4.0%), CH4 «4.3%), and H2 «4.9%). 

3. 0(1D) + N20. The branching ratio for the reaction of 0(1D) with N20 

to give N2 + 02 or NO + NO is an average of the values reported by 

Davidson ~.s.!. (1979); Volltrauer ~.al. (1979); Marx ~ sl. 
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(1979) and Lam ~~. (1981). This result, ¢(N2) = 1.42, agrees 

well with earlier measurements of the N2 quantum yield from N20 

photolysis: ¢(N2) = 1.44 (Calvert and Pitts 1966b). 0(1D) translational 

energy and temperature dependence effects are not clearly resolved. 

4. O(lD) + H20. Measurements by Zellner ~~. (1980) indicate 1(+0.5 

or -1)% of the O(lD) + H20 reaction products are H2 + 02. 

5. O(l D) + CH4. The branching ratio for reaction of O(lD) with CH4 to 

give OH + CH3 or CH20 + H2 is from Lin and DeMore (1973). A molecular 

beam study by Casavecchia ~ Al. (1980) indicates that an additional 

path forming CH30 (or CH20H) + H may be important. This 

possibility requires further investigation. 

6. 0(1D) + 03. The branching ratio for reaction of O(lD) with 03 to 

give 02 + 02 or 02 + ° + ° is from Davenport ~~. (1972). This 

is supported by measurements of Amimoto ~ sl. (1978) who reported 

that on average one ground state ° is produced per 0(1D) reaction with 

03. It seems unlikely that this could result from 100% quenching 

of the 0(1D) by 03. 

7. O(l D) + HCIO. The reaction O(lD) + HCl may give a small amount of 

H + CIO products (Davidson ~ ~., 1977). 

8. O(1D) + halocarbons. The halocarbon rate constants are for total 

disappearance of O(lD) and probably include physical quenching. 

Products of the reactive channels may include: CX30 + X, CX20 + X2, and 

CX3 + XC, where X = H, F, or CI in various combinations. Chlorine and 

hydrogen are more easily displaced than fluorine from halocarbons as 

indicated by approximately 100% quenching for CF4. A useful formula 

for estimating O(lD) removal rates by methane and ethane type 

halocarbons was given by Davidson et sl. (1978): k(CnHaFbClc) = 
0.32a + 0.030b + 0.74c (in units 10-10 cm3 molecule-1s-1). This 

~xpression does not work for molecules with extensive fluorine 
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substitution. Some values have been reported for the fractions of 

the total rate of disappearance of O(1D) proceeding through 

quenching and reactive channels. For CCI4: quenching = (14%6)% and 

reaction = (86%6)%, (Force and Wiesenfeld, 1981a); for CFCI3: quenching 

= (13%4)% and reaction = (87%4)% (Force and Wiesenfeld, 1981a), quenching = 
(25%10)%, CIO formation = (60%15)% (Donovan, 1980); for CF2CI2: 

quenching = (14±7)% and reaction = (86±14)% (Force and 

Wiesenfeld, 1981), quenching = (20%10)%, CIO formation = (55%15)% 

(Donovan, 1980); for CF4: quenching = 100% (Force and Wiesenfeld, 1981a). 

9. O(1D) + CCI20, CFCIO and CF20. For the reactions of O(1D) with CCl20 

and CFCIO the recommended rate constants are derived from data of Fletcher 

and Husain (1978). For consistency, the recommended values for these rate 

constants were derived using a scaling factor (0.5) which corrects 

for the difference between rate constants from the Husain 

Laboratory and the recommendations for other O(1D) rate constants in 

this table. The recommendation for CF20 is from data of Wine and Ravishankara 

(1983). Their result is preferred over the value of Fletcher and Husain 

(1978) because it appears to follow the pattern of decreased reactivity with 

increased fluorine substitution observed for other halocarbons. These reactions 

have been studied only at 298 K. Based on consideration of similar O(1D) 

reactions, it is assumed that E/R equals zero, and therefore the value shown 

for the A-factor has been set equal to k(298 K). 

10. O(1 D) + NH3 • Sanders ~ ale (1980a) have detected the product NH(a1~) in 

addition to OH formed in the reaction O(1D) + NH3' They report the 

yield of NH(a1~) is in the range 3-15% of the amount of OH 

detected. 

11. O(1 D) + HF. No experimental data are known for O(1D) + HF. k is estimated to 

be large and not strongly temperature dependent, based on comparison 

with other O(1 D) reactions. The products OH + F are exothermic 

but quenching may also occur. 
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12. H + 03. The recommendation is an average of the recent results of Lee 

~.al. (1978b) and Keyser (1979), which are in excellent agreement over 

the 200-400 K range. An earlier study by Clyne and Monkhouse (1977) 

is in very good agreement on the T dependence in the range 300-650 K 

but lies about 60% below the recommended valUes. Although we have 

no reason not to believe the Clyne and Monkhouse values, we prefer 

the two studies that are in excellent agreement, especially since 

they were carried out over the T range of interest. Recent results 

by Finlayson-Pitts and Kleindienst (1979) agree well with the 

present recommendations. Reports of a channel forming H02 + ° 
(Finlayson-Pitts and Kleindienst, 1979: -25%, and Force and 

Wiesenfeld, 1981b: -40%) have been contradicted by other studies 

(Howard and Finlayson-Pitts, 1980: < 3%; Washida ~ .al., 1980a: 

< 6%; and Finlayson-Pitts ~.al., 1981: < 2%). Secondary chemistry 

is believed to be responsible for the observed ° atoms in this 

system. Washida ~.al. (1980c) measured a low limit « 0.1%) for 

the production of singlet molecular oxygen in the reaction H + 03. 

13. H + H02. New entry. There are four recent studies of this 

reaction: Hack lili. (1978b), Hack lili. (1979c), Thrush and 

Wilkinson (1981b), and Sridharan ~.al. (1982). Related early work 

and combustion stUdies are referenced in the latter paper. All 

four studies used discharge flow systems. It is difficult to 

obtain a direct measurement of the rate constant for this reaction 

because both reactants are radicals and the products OH and ° are 

very reactive toward the H02 reactant. The recommendation is based 

on the data of Sridharan ~.al. because their measurement was the 

most direct and required the fewest corrections. The other 

measurements, (5.0 :i: 1.3) x 10- 11 cm3 molecule-1 s-1 by Thrush and 

Wilkinson (1981b) and (4.65 :i: 1) x 10-11 by Hack ~~. (1979c) are 

in reasonable agreement with the recommended value. Hack ~ ~ 

(1978b) and Sridharan et~. (1982) reported 3 product channels: 

(a) 20H, (b) H20 + 0, and (c) H2 + 02. The former gave ka/ k = 
0.69, kb/k ~ 0.02, and kc/k = 0.29 and the latter gave ka/k = 0.87 ± 
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0.04, kb/k = 0.04 i: 0.02, and kc/k = 0.09 i: .045. Hislop and Wayne 

(1977) reported on the possibility of 02(b1~) being formed in 

channel (c) in (2.8 oj: 1.3) x 10-4 of the total reactions. There 

are no studies of the temperature dependence of the rate constant 

or the product ratios in the range of atmospheric interest. It is 

likely that the dominant channel at room temperature, (a), which 

occurs on a radical-radical recombination surface will increase 

with decreasing temperature and that the others which involve 

insertion or abstraction will decrease with increasing temperature. 

Further high quality studies are needed. 

14. 0 + OR. The rate constant for 0 + OH is a fit to three temperature dependence 

studies: Westenberg ~~. (1970a), Lewis and Watson (1980), and 

Howard and Smith (1981). This recommendation is consistent with earlier 

work near room temperature as reviewed by Lewis and Watson (1980). 

The ratio k(O + H02)/k(0 + 08) measured by Keyser (1983) agrees 

with the rate constants recommended here. 

15. 0 + H02• The recommendation for the 0 + H02 reaction rate constant is the 

average of two studies at room temperature (Keyser, 1982, and Sridharan 

~Al., 1982) fitted to the temperature dependence given by 

Keyser (1982). Earlier studies by Hack ~al. (1979a) and Burrows 

~Al. (1977,1979) are not considered, because the OH + H202 reaction 

was important in these studies and the value used for its rate constant 

in their analyses has been shown to be in error. Data from Lii ~ 

Al. (1980c) is not considered, because it is based on only four 

experiments and involves a curve fitting procedure that appears to 

be insensitive to the desired rate constant. New data from 

Ravishankara ~~ (1983b) at 298 K are in excellent agreement with 

the recommendation and show no dependence on pressure between 10 

and 500 Torr N2• The ratio k(O + H02)/k(0 + OH) measured by Keyser 

(1983) agrees with the rate constants recommended here. 

16. 0 + H202• There are two direct studies of the 0 + H202 reaction: 
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Davis ~ li. (1974c) and Wine ~ lie (1983). The recommended value 

is a fit to the combined data. Wine §1.sJ... suggest that the 

earlier measurements may be too high because of secondary 

chemistry. The A factor for both data sets is quite low compared 

to similar atom-molecule reactions. An indirect measurements of 

the E/R by Roscoe (1982) is consistent with the recommendation. 

17. OH + H02• Three measurements of the rate constant at low 

pressure (1-3 torr) in discharge-flow systems all give values near 

7 x 10-11 cm3 molecule-1 s-1: Keyser (1981), Sridharan ~ ale 

(1981), and Temps and Wagner (1982). The latter two studies 

supersede earlier work which reported lower values from the same 

laboratories, Chang and Kaufman (1978) and Hack ~~. (1978a). 

Separate studies at pressures near one atmosphere obtain 

consistently a larger rate constant, about 1.1 x 10-10 : Lii 

~li. (1980a), Hochanadelllli. (1980), DeMore (1982), Coxnal. 

(1981) and Braun et sl. (1982). DeMore (1982) reports rate 

constants that increase from about 7 x 10-11 at 75 torr to about 

1.2 x 10-10 at 730 torr. The present recommendation is for a rate 

constant that increases linearly with pressure from 7 x 10-11 at 

low pressure to 1.1 x 10-10 at one atmosphere. Other studies by 

Burrows lili. (1981), Kurylo li ale (1981), and Thrush and 

Wilkinson (1981a) agree with these values. Although this 

recommendation incorporates the most reliable and thorough studies, 

it has not been reconciled in terms of the current models of reaction 

rate theory. The observed pressure dependence implies the formation 

of an H203 intermediate. Preliminary low pressure results from 

Sridharan n.sl. (1983) indicate E/R = -400. Further direct 

studies of the temperature and pressure dependences and products of 

this reaction are required. 

18. OH + 03. The recommendation for the OH + 03 rate constant is based on 

the room temperature measurements of Kurylo (1973) and Zahniser 

and Howard (1980) and the temperature dependence studies of 
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Anderson and Kaufman (1973) and Ravishankara ~Al. (1979b). 

Kurylo's value was adjusted (-8%) to correct for an error in the 

ozone concentration measurement (Hampson and Garvin, 1977). The 

Anderson and Kaufman rate constants were normalized to k = 6.3 x 

10-14 cm3 molecule-1 s-1 at 295K as suggested by Chang and Kaufman 

(1978). 

19. OH + 08. The recommendation for the OH + 08 reaction is the average 

of six measurements near 298K: Westenberg and de Haas (1973a), McKenzie 

~~. (1973), Clyne and Down (1974), Trainor and von Rosenberg 

(1974), Farquharson and Smith (1980) and Wagner and Zellner (1981). 

The rate constants for these studies all fall between (1.4 and 2.3) 

x 10-12 cm3 molecule-1 s-1. The temperature dependence is from 

Wagner and Zellner, who reported rate constants for the range T = 
250-580K. 

20. OH + H202• There are extensive new data on the OH + H202 reaction. The 

recommendation is a fit to the temperature dependence studies of 

Keyser (1980b), Sridharan ~sl. (1980), Wine ~Al. (1981c) and 

Kurylo ~~. (1982b). The first two references contain a 

discussion of some possible reasons for the discrepancies with 

earlier work and an assessment of the impact of the new value on 

other kinetic studies. A measurement at 298 K by Marinelli and 

Johnston (1982a) agrees with the recommendatio~ There is some 

evidence that the E/R decreases with temperature, therefore the 

recommendation incorporates a large error limit on the temperature 

dependence. 

21. OH + H2• The OH + H2 reaction has been the subject of numerous studies 

(see Ravishankara ~~. (1981b) for a review of experimental and 

theoretical work). The recommendation is fixed to the average of 

nine studies at 298K: Greiner (1969), Stub! and Niki (1972), 

Westenberg and de Haas (1973b), Smith and Zellner (1974), Atkinson 

~~. (1975), Overend ~~.(1975), Tully and Ravishankara 
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(1980), Zellner and Steinert (1981), and Bavishankara ~ al. 

(1981b). The E/B is an average of five temperature dependence 

studies: Greiner (1969), Westenberg and de Haas (1973c), Smith and 

Zellner (1974), Atkinson ~~. (1975), and Bavishankara ~~. 

(1981b). 

22. H02 + H02• Two separate expressions are given for the rate 

constant for the H02 + H02 reactio~ The effective rate constant 

is given by the sum of these two equations. This reaction has been 

shown to have a pressure independent bimolecular component and a 

pressure dependent termolecular component. Both components have 

negative temperature coefficients. The bimolecular expression is 

obtained from data of Cox and Burrows (1979), Thrush and Tyndall 

(1982a,b), Kircher and Sander (1983), and Takacs and Howard (1983). 

Earlier results of Thrush and Wilkinson (1979) are inconsistent with 

these dat~ The termolecular expression is obtained from data of Sander 

~ ~ (1982), Simonaitis and Heicklen (1982) at room temperature 

and Kircher and Sander (1983) for the temperature dependence. This 

equation applies to M = air. On this reaction system there is 

general agreement among investigators on the following aspects of 

the reaction at high pressure ( P - 1 atm): (a) the H02 uv 

absorption cross section: Paukert and Johnston (1972), Cox and 

Burrows (1979), Hochanadel ~~. (1980), and Sander ~ Al. 

(1982); (b) the rate constant at 300K: Paukert and Johnston (1972), 

Hamilton (1975), Hamilton and Lii (1977), Cox and Burrows (1979), 

Lii g1 sl. (1979), Tsuchiya and Nakamura (1979), Sander ~ ale 

(1982), and Simonaitis and Heicklen (1982) (all values fall in the 

range (2.5 to 4.7) x 10- 12 cm3 molecule- 1 5- 1); (c) the rate 

constant temperature dependence: Cox and Burrows (1979), Lii ~ ~ 

(1979), and Kircher and Sander (1983); (d) the rate constant water 

vapor dependence: Hamilton (1975), Hochanadel ~ ale (1972), 

Hamilton and Lii (1977), Cox and Burrows (1979), DeMore (1979), Lii 

II Al. (1981), and Sander ~Al.. (1982); (e) the HID isotope 

effect: Hamilton and Lii (1977) and Sander ~ sl. (1982); and (f) 
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the formation of H202 + 02 as the major products at 300K: Su,g.t. ru... 
(1979), Niki§!.sl.. (1980), Sander et.e.l.. (1982), and Simonait1s 

and Heicklen (1982). Recent measurements by Sahetchian ~ ~. 

(1982) give evidence for the formation of a small amount of H2 in 

this system. For systems containing water vapor, the factors given 

by Lii ll.s.l.. (1981) and Sander et al. (1982) can be incorporated. 

23. H02 + 03. There is only one direct study of the H02 + ~ reaction 

(Zahniser and Howard, 1980). This is the basis of the recommendation. 

Three indirect studies, all using H02 + H02 as the reference reaction, 

are in good agreement when the negative temperature dependence of 

the reference reaction is considered (Simonaitis and Heicklen, 

1973; DeMore and Tschuikow-Roux, 1974; and DeMore 1979). Another 

direct study would be valuable. The A factor is unusually low. 

24. N + 02. Unchanged from JPL 82-57. Activation energy based on Becker ,g.t. 

~. (1969). Value and uncertainty at 298K assigned from average of 

Clyne and Thrush (1961), Wilson (1967), Becker et li. (1969), Clark and 

Wayne (1970) and Westenberg llsl. (1970b). Independent confirmation of 

the temperature dependence is needed. 

25. N + 03. Unchanged from JPL 82-57. Recommendation based on results of Stief 

et al. (1979). Note that this is an upper limit based on instrumental 

sensitivity. Results of Stief et~. and Garvin and Broida (1963) cast doubt 

on the fast rate reported by Phillips and Schiff (1962). 

26. N + NO. Unchanged from JPL 82-57. Recommendation is based on the results 

of Lee ~~. (1978c). A recent study by Husain and Slater (1980) reports 

a room temperature rate constant 30 percent higher than the recommended value. 

27. N + N02. Changed from JPL 82-57. Accepts the results of Clyne and 

Ono (1982) for the value of the rate constant at 298 K. This is a 

factor of 2 higher than that reported by Clyne and McDermid 

(1975). However, Clyne and Ono consider that the more recent study 
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is probably more reliable. Husain and Slater (1980) reported a 

room temperature rate constant of 3.8 x 10-11 cm3 molecule-1 s-1 which 

is a factor of 12 greater than the value reported by Clyne and Ono. 

This high value may indicate the presence of catalytic cycles as 

discussed by Clyne and McDermid, and Clyne and Ono. There are no 

studies of the temperature dependence of the rate constant. The 

reaction products are taken to be N20 + ° (Clyne and McDermid). 

28. ° + N02' Unchanged from JPL 82-57. Based on results of Davis ~ 

sl. (1973a), Bemand ~Al. (1974) and Slanger ~ ale (1973), there may 

be a slight negative temperature coefficient, but the evidence at low 

temperature is uncertain. 

29. ° + N03 • Unchanged from JPL 82-57. Based on study of Graham and 

Johnston (1978) and 298K and 329K. While limited in temperature 

range, the data indicate no temperature dependence. Furthermore, 

by analogy with the reaction of ° with N02' it is assumed that this 

rate constant is in fact independent of temperature. Clearly, temperature 

dependent studies are needed. 

30. ° + N205• Unchanged from JPL 82-57. Based on Kaiser and Japar 

(1978). 

31. 0+ HN03 • Unchanged from JPL 82-57. Accepts the upper limit reported by 

Chapman and Wayne (1974). 

32. ° + H02N02' Unchanged from JPL 82-57. Recommended value is based 

on the study of Chang ~si. (1981). The previous recommendation was 

based upon the unpublished results of the same group. The large uncertainties 

in EtR and k at 298K are due to the fact that this is a single study. 

33. 03 + NO. Unchanged from JPL 82-57. The recommended Arrhenius expression 

is a least squares fit to the data reported by Birks ~ al. (1976), 

Lippmann ~Al. (1980), Ray and Watson (1981b), Michael ~ Al. 
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(1981) and Borders and Birks (1982) at and below room temperature, with 

the data at closely spaced temperatures reported in Lippmann ~ .s.l.. 

and Borders and Birks being grouped together so that these five studies 

are weighted equally. This expression fi ts all the data wi thin the 

temperature range 195-304K reported in these five studies to within 20 

percent. Only the data between 195 and 304K were used to derive the 

recommended Arrhenius expression due to the observed non-linear Arrhenius 

behavior (Clyne et Al. (1964), Clough and Thrush (1967), Birks ~ al., 

Michael ~ sl.. and Borders and Birks). Clough and Thrush, Birks ~ al., 

Schurath et al. (1981), and Michael et al. have all reported individual 

Arrhenius parameters for each of the two primary reaction channels. The 

range of values for k at stratospheric temperatures is somewhat larger than 

would be expected for such an easy reaction to study. The measurements of 

Stedman and Niki (1973) and Bemand ~ gl (1974) of k at 298K are in excellent 

agreement with the recommended value of k at 298K. 

34. NO + H02• Unchanged from JPL 82-57. The recommendation for H02 + NO is 

based on the average of six measurements of the rate constant near room 

temperature: Howard and Evenson (1977), Leu (1979), Howard (1979), 

Glaschick-Schimpf ~ ~ (1979), Hack ~ sl.. (1980), and Thrush and 

Wilkinson (1981). All of these are in quite good agreement. An 

earlier study from the Thrush Laboratory, Burrows ~ sl. (1979), 

has been dropped because of an error in the reference rate 

constant, k(OH + H202). The temperature dependence is from 

Howard (1980) and is in reasonable agreement with that given by Leu 

(1979). A high pressure study is needed in view of the many unusual 

effects seen in other H02 reactions. 

35. NO + N03• Unchanged since JPL 82-57. Value reported by Graham and 

Johnston (1978). 

36. OH + HN03• Unchanged from JPL 82-57. Even though there have been 

several recent studies of this reaction, all of the reported data 

are not completely consistent. However, the data which are 
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relevant for stratospheric conditions of temperature and pressure 

are in reasonable agreement. The recommended Arrhenius expression 

is based on a least squares fit to the data reported by Wine ~ 

ale (1981b), Kurylo et ale (1982b), Margitan and Watson (1982), 

Marinelli and Johnston (1982a), Ravishankara ~ ale (1982), Jourdain 

et Al. (1982) and Smith ~ Al. (1983) at and below room 

temperature, i.e. -300K, but did not utilize the data of Smith and 

Zellner (1975), Margitan et Al. (1975), Nelson et 51. (1981) and 

Connell and Howard (1983). While the data of Margitan and Watson 

appear to be in good agreement with data reported in the other 

recent flash photolysis studies (Wine ~~, Kurylo ~ gl., 

Ravishankara et ~., Marinelli and Johnston and Smith ~ ~.) it 

exhibits one rather significant difference, i.e., a small but 

measurable pressure dependence which is greatest at low 

temperatures (a factor of 1.1 increase in k from 20-100 torr He at 

298 K, and a factor of 1.4 increase in k from 20-100 torr He at -235K). 

Consequently it is difficult to reconcile the data of Margitan and 

Watson with that of the other flash photolysis studies where no 

pressure dependence was observed. Although the low pressure discharge 

flow results of Jourdain ~sl. are in excellent agreement with the 

results from the higher pressure studies (at least below 300K), this 

agreement does not preclude a pressure dependence as the magnitude of 

the effect at temperatures ~ 250 K is small in the range 1-40 torr 

(1 torr is a typical discharge flow tube pressure, and 40 torr is 

the typical flash photolysis pressure). The data of Margitan and Watson 

at 40 torr (He and Ar) at each temperature were used in deriving the 

recommended Arrhenius expression (data relevant to the mid

stratosphere and typical of the pressure conditions used in other 

flash photolYSiS studies). Under these conditions the data are in 

excellent agreement with the data from the other preferred studies. 

It should be noted that the 40 torr data is the average of all the 

data; consequently, the preferred value is not dependent upon which 

subset of Margitan and Watson data is used. The recent work of Nelson 

~ sl. should be disregarded as it has been superseded by the 
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more careful and comprehensive Marinelli and Johnston study. However, 

it is not presently possible to explain the difference between the data 

from the preferred studies and that from the discharge flow study of 

Connell and Howard, who determined a value for k at 301K of 8.4 x 10-14 

cm3 molecule s-1 (consistent with the earlier values of Smith 

and Zellner, and Margitan et sl.), in contrast to the recommended 

value of 12.5 x 10-14 cm3 molecule-1 s-1. In addition 

Connell and Howard reported a value for E/R of -430K, in contrast to the 

recommended value of -778K and the earlier values of zero. 

The recommended Arrhenius expression was derived using only data 

from -220-300K due to the non-linear Arrhenius behavior noted above 

300K in all the recent studies except Jourdain ll.sl..and Smith II 

~, who reported linear Arrhenius behavior from 251-403K and 240-

370K, respectively. Marinelli and Johnston fit all their data (218-363K) 

to an Arrhenius expression, but curvature is noticeable and hence their value 

of -644K for E/R would be greater over the temperature range 218-298K. 

This non-linear Arrhenius behavior can easily be rationalized in terms of an 

addition channel (dominating at low temperatures), and an H atom 

abstraction channel (dominating at high temperatures). 

Nelson ~ sl., Jourdain ~.sl.., and Ravishankara ~ sl. (1982) have 

all shown that within experimental evidence the yield of N0
3 

per HO 

removed is unity at 298 K. In addition Ravishankara ~ sl. 

obtained similar product distribution results at 250 K. There is no 

evidence for the production of H202· 

37. OH + H02N02. Unchanged from JPL 82-57. Recommendation for both k 

at 298K and the Arrhenius expression based upon the data of 

Trevor ~.li. (1982), Barnes ~.el. (1981) and Smith ~.li. 

(1983). Trevor ~ .sl.., studied this reaction over the temperature 

range 246-324 K and reported a temperature invariant value of 4.2 x 

10-12 cm3 molecule-1 s-1, although a weighted least squares fit to 

their data yields an Arrhenius expression with an E/R value of 

(193*193) K. In contrast, Smith ~.sl.. studied the reaction 

over the temperature range 240-330 K and observed a negative 
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temperature dependence with an E/R value of -(650%30)K. Barnes ~ 

.sY., only studied the reaction at room temperature. The values of 

k at 298K from the three studies are in exoellent agreement. An 

unweighted least squares fit to all the experimental data of 

Trevor §.t. li., Barnes §.t. Al., and Smith §.t. li. yields the 

reoommended Arrhenius expression. The large differenoe in E/R values may 

be due to the reaction being oomplex and having different E/R values at low 

pressure, i.e., <1 torr (Trevor g1 Al.) and high pressures (760 torr 

(Smith ~li.». The less precise value for kat 298 K reported by 

Littlejohn and Johnston (1980) is in fair agreement with the reoommended 

value. The error limits on the reoommended E/R are sufficient to 

encompass the results of both Trevor g1~. and Smith ~ Al. It 

should be noted that the values of k at 220 K deduced from the two 

studies differ by a factor of 2. Clearly addi tional studies of k 

as a funotion of temperature, and the identification of the 

reaotion products are needed. 

38. 03 + N02• Unchanged from JPL 82-57. Based on least squares fit 

to data in studies of Davis ~ Al. (1974b), Graham and Johnston (1974) 

and Huie and Herron (1974). 

39. 03 + HN02• Unohanged from JPL 82-57. Based on Kaiser and Japar 

(1977) and Streit ~Al. (1979). 

40. OH + NH3 • New entry. The recommended value at 298K is the average 

of the values reported by Stuhl (1973b), Smith and Zellner (1975), 

Perry ~ Al. (1976b), and Silver and Kolb (1980). The values 

reported by Kurylo (1973), Hack ~~. (1974), Pagsberg ~ Al. (1979) 

and Cox ~ Al. (1975) were not inoluded. The temperature 

dependence is based on the results reported by Haok ~ Ai., Smith 

and Zellner, Perry II Al., and Silver and Kol b, and the 

preexponential factor has been selected to fit the recommended room 

temperature value. 
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41. NH2 + OH. New entry. No experimental data exist. Based upon 

mechanistic and thermodynamic considerations, the reaction is 

expected to be quite rapid, probably producing NH and H20 

42. NH2 + H02. New entry. There is fairly good agreement on the value 

of k at 298K between the direct study of Kurasawa and Lesclaux 

(1980b), and the relative studies of Cheskis and Sarkisov (1979) and 

Pagsberg et sl.. (1979). The recommended value is the average of 

the values reported in these three studies. The identity of the 

products is not known; however, Kurasawa and Lesclaux suggest that 

the most probable reaction channels give either NH3 + 02 or HNO + 

H20 as products. 

43. NH2 + NO. New entry. The recommended value for k at 298K is the 

average of the values reported by Gordon et sl. (1971), Gehring ~ 

Al. (1973), Lesclaux ~ .al., (1975), Hancock II Al., (1975), 

Sarkisov et al. (1978), Hack et Al. (1979b), Stief ~~. (1982) 

and Silver and Kolb (1982). The values reported in these studies 

for k at 298K range from 8.3 to 27.0 (x 10-12) cm3 molecule-1 s-1, 

which is not particularly satisfactory. The results tend to 

separate into two groups. The flash photolysis results average 1.9 

x 10-11 cm3 molecule- 1 s-1, while those obtained using the 

discharge flow technique average 0.9 x 10- 11 cm3 molecule- 1 s-1. 

The apparent discrepancy cannot simply be due to a pressure effect 

as the pressure ranges of the flash photolysis and discharge flow 

studies overlapped, and none of the studies observed a pressure 

dependence for ~ There have been four studies of the temperature 

dependence of k. Each study reported k to decrease with increasing 

temperature, i.e. r 1•25 (Lesclaux et.al. from 300-500K), r 1•85 

(Hack ~ ru... from 210-503K), T-1.67 exp(-684/T) (Silver and Kolb 

rrom 294-1215K). The recommended temperature dependence is taken 

to be a weighted average of the data below 500K from all four 

studies. The expression is: k = 1.6 x 10-11 (T/298)-1.5 for the 

temperature range 210-500K. 
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While there are many conceivable reaction channels, the channel 

yielding H20 and N2 appears to be the dominant channel with strong 

vibrational excitation of the product H20 observed by Gehring ~ 

sl., and more recently by Wolfrum ~sl. (1981). To date atomic 

hydrogen has not been observed as a reaction product, suggesting 

that the channel producing N2 + H + OH is of limited importance. 

The hydroxyl radical has been observed by both Silver and Kolb, and 

Wolfrum ~~ However, while Silver and Kolb reported a yield of 

40% for OH production, Wolfrum ~ ~ tentatively placed an upper 

limit of 15% on OH productio~ Stief ~sl. failed to observe OH 

production and placed an upper limit of 22% on OH production in 

agreement with Wolfrum et sl. Clearly more work on this reaction 

is required. 

44. NH2 + N02• New entry. There have been two studies of this 

reaction (Hack ~ ale (1979b), and Kurasawa and Lesclaux (1979». 

There is very poor agreement between these two studies both for k 

at 298K (factor of 2.3) and for the temperature dependence of k (r-3•O 

and ~1.3). The recommended values of k at 298K and the 

temperature dependence of k are averages of the results reported in 

these two studies. Hack ~~ have shown that the predominant 

reaction channel (>95%) produces N20 + H20. 

45. NH2 + 02. New entry. There have been five studies of this 

reactio~ Upper limits have been reported by Lesclaux and Demissy 

(1977), Pagsberg ~ 51. (1979), and Cheskis and Sarkisov (1979) of 

2 x 10-18, 8 x 10-15 and 1.5 x 10-17 cm3 molecule-1 s-1, 

respectively. Jayanty ~~. (1976) reported a lower limit of 4 x 

10-15 cm3 molecule-1 s-1 from a relative study. Hack ~ ale (1982) 

reported that there was an association reaction between NH2 and 02 

from 295-353K whose rate constant could be expressed: k = 3.6 x 10-33 

(T/295)-2.0 cm6 molecule-2 s-1. Lesclaux (1982) restudied this 

reaction under the conditions employed by Hack ~ ale and reported 
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that there was no detectible reaction at room temperature. The 

upper limit recommended is based on the study of Lesclaux and 

Demissy. 

46. NH2 + 03. New entry. There have been three studies of this 

reaction, by Kurasawa and Lesclaux (1980a), Bulatov ~ sl. (1980), 

and Hack II li. (1981). The vaues of k at 298K vary by a factor of 

three and the values of E/R reported by Kurasawa and Lesclaux, and 

Hack ~ ale differ by a factor of -2. The recommended values of k 

at 298K and E/R are averages of the reported dat~ Bulatov ~ ~., 

and Hack ~Al. observed a deviation of first order decay kinetics 

at higher pressures of 03 and in both instances interpreted the 

observations to indicate that the principal reaction channel leads 

to formation of NH20 + 02 which is followed by the reaction of NH20 

with 03 to regenerate NH2• 

47. Cl + 03' Unchanged from JPL 82-57. The results reported for k(298K) by 

Watson ~ sl. (1976), Zahniser ~sl. (1976), Kurylo and Braun 

(1976) and Clyne and Nip (1976a) are in good agreement, and have 

been used to determine the preferred value at this temperature. 

The values reported by Leu and DeMore (1976) (due to the wide error 

limits) and Clyne and Watson (1974a) (the value is inexplicably 

high) are not considered. The four Arrhenius expressions are in 

fair agreement within the temperature range 205-300K. In this 

temperature range, the rate constants at any particular temperature 

agree to within 30-40%. Although the values of the activation 

energy obtained by Watson ~ ale and Kurylo and Braun are in 

excellent agreement, the value of k in the study of Kurylo and 

Braun is consistently (-17%) lower than that of Watson ~ ~. 

This may suggest a systematic underestimate of the rate constant, 

as the values from the other three studies agree so well at 298K. A 

more disturbing difference is the scatter in the values reported 

for the activation energy (338-831 cal mole-1). However, there 

is no reason to prefer anyone set of data to any other; therefore, 
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the preferred Arrhenius expression shown above was obtained by 

computing the mean of the four results between 205 and 298K. 

Inclusion of higher temperature (~466K) experimental data would 

yield the following Arrhenius expression: k = (3.4=1.0) x 10-11 

exp(-310±76)/T). 

Vanderzanden and Birks (1982) have interpreted their observation 

of oxygen atoms in this system as evidence for some production 

(0.1-0.5%) of 02 (1L~) in this reaction. The possible 

production of singlet molecular oxygen in this reaction has also been 

discussed by DeMore (1981), in connection with the Cl2 photo

sensitized decomposition of ozone. 

48. CI + H2• Unchanged from JPL 82-57. This Arrhenius expression is based on 

the data below 300K reported by Watson ~ Al. (1975), Lee ~Al. 

(1977) and Miller and Gordon (1981). The results of these three 

studies are in excellent agreement below 300K; the data at higher 

temperatures are in somewhat poorer agreement. The results of 

Watson ~ sl. and those of Miller and Gordon agree well (after 

extrapolation) with the results of Benson ~sl. (1969) and Steiner 

and Rideal (1939) at higher temperatures. For a discussion of the 

large body of rate data at high temperatures see the review by 

Baulch ~~. (1980). Miller and Gordon also measured the rate of 

the reverse reaction, and the ratio was found to be in good 

agreement with equilibrium constant data. Results of a new study 

by Kita and Stedman (1982) are in excellent agreement with this 

recommendation. They also measured the rate of the reverse 

reaction and found the ratio to be in good agreement with 

equilibrium constant data. 

49. CI + CH4• Unchanged from JPL 82-57. The values reported from the thirteen 

absolute rate coefficient studies for k at 298K fall in the range (0.99 to 

1.48) x 10-13, with a mean value of 1.15 x 10-13 • However, based 

upon the stated confidence limits reported in each study, the range 
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of values far exceeds that to be expected. A preferred average 

value of 1.04 x 10-13 can be determined from the absolute rate 

coefficient studies for k at 298K by giving equal weighting to the 

values reported in Lin et al. (1978a), Watson ~~. (1976), 

Manning and Kurylo (1977), Whytock ~~. (1977), Zahniser et al. 

(1978), Michael and Lee (1977), Keyser (1978), and Ravishankara and 

Wine (1980). The values derived for k at 298K from the competitive 

chlorination studies of Pritchard ~sl. (1954), Knox (1955), 

Pritchard et al. (1955), Knox and Nelson (1959), and Lin ~ al. 

(1978a) range from (0.95 - 1.13) x 10-13 , with an average value of 

1.02 x 10-13 • The preferred value of 1.04 x 10-13 was obtained by 

taking a mean value from the most reliable absolute and relative 

rate coefficient studies. 

There have been nine absolute studies of the temperature dependence 

of k. In general the agreement between most of these studies can 

be considered to be quite good. However, for a meaningful analysis 

of the reported studies it is best to discuss them in terms of two 

distinct temperature regions, (a) below 300 K, and (b) above 300 K. 

Three resonance fluorescence studies have been performed over the 

temperature range -200-500 K (Whytock et~. (1977), Zahniser 

et sl. (1978) and Keyser (1978» and in each case a strong non

linear Arrhenius behavior was observed. Ravishankara and Wine 

(1980) also noted nonlinear Arrhenius behavior over a more limited 

temperature range. This behavior tends to explain partially the 

large variance in the values of E/R reported between those other 

investigators who predominantly studied this reaction below 300 K 

(Watson ~al. (1976) and Manning and Kurylo (1977» and those 

who only studied it above 300 K (Clyne and Walker (1973), Poulet ~ 

al. (1974), and Lin ~sl. (1978a». The agreement between all 

studies below 300 K is good, with values of (a) E/R ranging from 

1229-1320 K, and (b) k(230 K) ranging from (2.64-3.32) x 10-14 • The 

mean of the two discharge flow values (Zahniser ~sl. (1978) and 

Keyser (1978» is 2.67 x 10-14 , while the mean of the four flash 
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photolysis values (Watson ~A1. (1976), Manning and Kurylo (1977), 

Whytock et sl. (1977), and Ravishankara and Wine (1980» is 3.22 x 

10-14 at 230 K. There have not been any absolute studies at stra

tospheric temperatures other than those which utilized the resonance 

fluorescence technique. Ravishankara and Wine (1980) have suggested 

that the results obtained using the discharge flow and competitive 

chlorination techniques may be in error at the lower temperatures 

«240 K) due to a non-equilibration of the 2P1/2 and 2P3/2 

states of atomic chlorine. Ravishankara and Wine observed that at 

temperatures below 240 K the apparent bimolecular rate constant was 

dependent upon the chemical composition of the reaction mixture; 

i.e., if the mixture did not contain an efficient spin equilibrator, 

e.g. Ar or CCI4, the bimolecular rate constant decreased at high 

CH4 concentrations. The chemical composition in each of the 

flash photolysis studies contained an efficient spin equilibrator, 

whereas this was not the case in the discharge flow studies. 

However, the reactor walls in the discharge flow studies 

could have been expected to have acted as an efficient spin equili

brator. Consequently, until the hypothesis of Ravishankara and Wine 

is proven it is assumed that the discharge flow and competitive 

chlorination results are reliable. Above 300 K the three resonance 

fluorescence studies reported (a) "averaged" values of E/R ranging 

from 1530-1623 K, and (b) values for k (500 K) ranging from (7.74-

8.76) x 10-13• These mass spectrometric studies have been per

formed above 300 K with E/R values ranging from 1409-1790 K. The 

data of Poulet et sl. (1974) are sparse and scattered, that of 

Clyne and Walker (1973) show too strong a temperature dependence 

(compared to all other absolute and competitive studies) and 

k(298 K) is -20% higher than the preferred value at 298 K, while 

that of Lin et~. (1978a) is in fair agreement with the resonance 

fluorescence results. In conclusion, it should be stated that the 

best values of k from the absolute studies, both above and below 

300 K, are obtained from the resonance fluorescence studies. The 

competitive chlorination results differ from those obtained from the 
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absolute studies in that linear Arrhenius behavior is observed. 

This difference is the major discrepancy between the two types of 

experiments. The values of E/R range from 1503 to 1530 K, and 

k (230 K) from (2.11-2.54) x 10-14 with a mean value of 2.27 x 10-14• 

It can be seen from the above discussion that the average values at 

230 K are: 3.19 x 10-14 (flash photolysis), 2.67 x 10-14 (discharge 

flow) and 2.27 x 10-14 (competitive chlorination). These 

differences increase at lower temperatures. Until the hypothesis of 

Ravishankara and Wine (1980) is re-examined, the preferred Arrhenius 

expression attempts to best fit the results obtained between 200 and 

300 K from all sources. The average value of k at 298 K is 1.04 x 

10-13 , and at 230 K is 2.71 x 10- 14 (this is a simple mean of 

the three average values). The preferred Arrhenius expression is 

9.6 x 10-12 exp(-1350/T). This expression yields values 

similar to those obtained in the discharge flow-resonance 

fluorescence studies. If only flash photolysis-resonance 

fluorescence results are used then an alternate expression of 6.4 x 10-12 

(exp(-1220/T» can be obtained (k(298 K) = 1.07 x 10-13 , and k(230 K) = 
3.19 x 10-14 ). 

A recent study (Heneghan ~ sl. (1981» using very low pressure 

reactor techniques reports results from 233 to 338K in excellent 

agreement with the other recent measurements. They account for 

the curvature in the Arrhenius plot at higher temperatures by 

transition state theory. Measured equilibrium constants 

are used to derive a value of the heat of formation of the methyl 

radical at 298K of 35.1±0.1 kcal/mol. 

50. Cl + C2H6. Unchanged from JPL 82-57. The absolute rate coefficients reported 

in all four studies (Davis ~ Al. (1970), Manning and Kurylo (1977), 

Lewis ~ Al. (1980), and Ray ~ al. (1980» are in good agreement 

at 298 K. The value reported by Davis ~~. was probably 

overestimated by -10% (the authors assumed that If was proportional 

to [CllO.9, whereas a linear relationship between If and [Cll 
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probably held under their experimental conditions). The preferred 

value at 298 K was taken to be a simple mean of the four values (the 

value reported by Davis ~Al. was reduced by 10%), i.e., 5.7 x 10-11 • 

The two values reported for E/R are in good agreement; E/R = 61 K 

(Manning and Kurylo) and E/R = 130 K (Lewis ~ al.). A simple 

least squares fit to all the data would unfairly weight the data of 

Lewis ~ ale due to the larger temperature range covered. Therefore, 

the preferred value of 7.7 x 10-11 exp(-90/T) is an expression which 

best fits the data of Lewis ~ sl. and Manning and Kurylo between 

220 and 350 K. 

51. Cl + C3H8. Unchanged from JPL 82-57. This recommendation is based on 

results over the temperature range 220-607K reported in the recent 

discharge flow-resonance fluorescence study of Lewis ~~ (1980). These 

results are consistent with these obtained in the competitive chlorination 

studies of Pritchard ~ ale (1955) and Knox and Nelson (1959). 

52. Cl + C2H2. Unchanged from JPL 82-57. Since abstraction would be endotherm 

by 9 kcal/mol, the initial step must be addition to give an excited C2H2Cl 

radical which either will be stabilized or will decompose to give the 

original reactants. Lee and Rowland (1977), in a high pressure study using 

radioactive tracer techniques, concluded that the initial addition must 

occur once in not more than 5 collisions. They calculated that under 

conditions corresponding to the stratosphere at 30 km the overall 

conversion of Cl to stabilized C2H2Cl proceeds with a rate 

coefficient of about 1 x 10-12 cm3 molecule-1 s-1. Poulet ~al. 

(1977) discuss their own earlier work using the discharge flow-mass 

spectrometric technique at 1 torr helium in which they report a 

value of (2.0~0.5) x 10-13 independent of temperature from 295-500K. 

They point out that these results can be reconciled with those of 

Lee and Rowland if the efficiency of stabilization of excited 

C2H2Cl is 1/500 at 1 torr helium. The rate constant given in the 

table is for the overall rate of conversion of Cl to a stabilized C2H2Cl 

radical under conditions of the stratosphere at 30 km. The probable 
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fate of this radical is reaction with 02· 

53. Cl + CH30H. Unchanged from JPL 82-57. This recommendation is based on results 

obtained over the temperature range 200-500K using the flash photolysis

resonance fluorescence technique in the only reported study of this reaction, 

Michael ~ RJ... (1979b). This reaction has been used as a source of 

CH20H and as a source of H02 by the reaction of CH20H with 02. 

See Radford (1980) and Radford et RJ... (1981). 

54. Cl + CH3Cl. Unchanged from JPL 82-57. The results reported by both groups 

(Clyne and Walker (1973), and Manning and Kurylo (1977» are in good 

agreement at 298 K. However, the value of the activation energy 

measured by Manning and Kurylo is significantly lower than that 

measured by Clyne and Walker. Both groups of workers measured the 

rate constant for the Cl + CH4 and, similarly, the activation energy 

measured by Manning and Kurylo was significantly lower than that 

measured by Clyne and Walker. It is suggested that the discharge 

flow-mass spectrometric technique was in this case subject to a systematic 

error, and it is recommended that the flash photolysis results be used for 

stratospheric calculations in the 200-300 K temperature range (see 

discussion of the Cl + CH4 studies). In the discussion of the 

Cl + CH4 reaction it was suggested that some of the apparent dis

crepancy between the results of Clyne and Walker and the flash photo

lysis studies can be explained by nonlinear Arrhenius behavior. 

However, it is less likely that this can be invoked for this 

reaction as the pre-exponential A-factor (as measured in the flash 

photolysis studies) ~ already -3.5 x 10-11 and the significant 

curvature which would be required in the Arrhenius plot to make the 

data compatible would result in an unreasonably high value for A 

(> 2 x 10-10). 

55. Cl + CH3CC13• New reaction. There has been only one study of this 

rate, that by Wine ~sl. (1982) using a laser flash photolysis-resonance 

fluorescence technique. It was concluded that the presence of a reactive 
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impurity accounted for a significant fraction of the Cl removal, and therefore 

only upper limits to the rate were reported for the temperature range 259-356K. 

This reaction is too slow to be of any importance in atmospheric chemistry. 

56. Cl + H2CO. Unchanged from JPL 82-57. The results from five of the six 

published studies (Michael ~ sl. (1979a), Anderson and Kurylo (1979), 

Niki ~sl. (1978a), Fasano and Nogar (1981) and Poulet ~sl. (1981» 

are in good agreement at -298K, but -50% greater than the value 

reported by Foon ll.sU.. (1979). The preferred value at 298K (7.3 x 

10-11 ) was obtained by combining the absolute values reported by 

Michael ~ sl., Anderson and Kurylo, and Fasano and Nogar, with the 

values obtained by combining the ratio of k(Cl + H2CO)/k(Cl + C2H6) 

reported by Niki ~ sl. (1.3:0.1) and by Poulet ~ sl. (1.16·0.12) 

with the preferred value of 5.7 x 10-11 for k(Cl + C2 H6) at 298K. 

The preferred value of E/R was obtained from a least squares fit to all 

the data reported in Michael ~.sU.. and in Anderson and Kurylo. 

The A-factor was adjusted to yield the preferred value at 298K. 

57. Cl + H202• Unchanged from JPL 82-57. The absolute rate coefficients 

determined at -298 K by Watson ~sl. (1976), Leu and DeMore (1976), 

Michael ~sl. (1977), Poulet ~ sl. (1978a) and Keyser (1980a) 

range in value from (3.6-6.2) x 10-13. The studies of Michael 

~~., Keyser, and Poulet ~ sl. are presently considered to 

be the most reliable. The preferred value for the Arrhenius 

expression is taken to be that reported by Keyser. The A-factor 

reported by Michael ~ sl. is considerably lower than that expected 

from theoretical considerations and may possibly be attributed to 

decomposition of H2 02 at temperatures above 300 K. The data 

of Michael ~ sl. at and below 300 K are in good agreement with the 

Arrhenius expression reported by Keyser. More data are required 

before the Arrhenius parameters can be considered to be well 

established. 

58. Cl + HOCI. Unchanged from JPL 82-57. This recommendation is based on results 
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over the temperature range 243-365K using the discharge flow-mass 

spectrometric technique in the only reported study of this reaction, Cook 

et al. (1981a). In a subsequent paper, Cook et al. (1981b) argue that 

C12 + OH are the major products of this reaction, even though 

the reaction channel giving HCl + C10 is more exothermic. 

59. Cl + HN03. Changed from JPL 82-57. Since the previous evaluation there have 

been two stUdies of this rate, in which the decay of Cl atoms 1n 

excess HN03 was monitored by resonance fluorescence (Kurylo 

et al., 1983b) or by resonance absorption (Clark ~ al., (1982). 

Both report values higher than those obtained in earlier discharge 

flow-mass spectrometric studies by Leu and DeMore (1976) and by 

Poulet et sl. (1978a) which monitored the decay of HN03 in 

excess Cl. Kurylo ~ al. report a value for E/R of 1700K for 

the temperature range 243-298K. Poulet et sl. report a value 

for E/R of 4380K for the temperature range 439-633K. The higher 

temperature data of Poulet g1 sl. are not directly applicable 

to stratospheric conditions, and extrapolation to room temperature 

may not be valid. The preferred value is based on assuming that 

the room temperature data of Kurylo ~ ale represents an upper 

limit. The higher value reported by Clark ~ Al. is based on 

data which exhibit significant scatter and is not considered in 

deriving the preferred value. 

60. Cl + H02• Unchanged from JPL 82-57. The recommendations for the two 

reaction channels are based upon the recent results by Lee and Howard 

(1982) using a discharge flow system with laser magnetic resonance 

detection of H02' OH and C10. The total rate constant is 

temperature independent with a value of (4.2%0.7) x 10-11 cm3 

molecule-1 s-1 over the temperature range 250-420K. This value 

for the total rate constant is in agreement with the value 

recommended in JPL 81-3, which was based on indirect studies 

relative to Cl + H202 (Leu and DeMore (1976), Poulet et iLl. 

(1978a), Burrows et sl. (1979) or to Cl + H2 (Cox (1980». The 
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contribution of the reaction channel producing OH + ClO (21% at 

room temperature) is much higher than the upper limit reported by 

Burrows ~sl. (1% of total reaction). The value of the rate 

constant for this channel, when combined with the rate constant for 

the reaction ClO + OH (assuming the products are Cl + H02) , yields 

an equilibrium constant of 1.0. This gives a value for the heat of 

formation of H02 at 298K of 3.3 kcal/mol, in reasonably good 

agreement with the Howard (1980) value of 2.5~0.6 kcal/mole. Weissman 

et sl. (1981) propose that the reaction proceeds by radical combination 

to give an excited HOOCl intermediate whose stabilization may become 

important at stratospheric temperatures. 

61. Cl + Cl20. Unchanged from JPL 82-57. The preferred value of 9.8 x 10-
11 

cm3molecule-1s-1 was determined from two independent absolute rate coefficient 

studies reported by Ray ~~. (1980), using the discharge flow-resonance 

fluorescence and discharge flow-mass spectrometric techniques. 

This value has been confirmed by Burrows and Cox (1981) who determined 

the ratio k(Cl + Cl20)/k(Cl + H2) = 6900 in modulated photolysis 

experiments. The earlier value reported by Basco and Dogra (1971a) 

has been rejected. The Arrhenius parameters have not been experimentally 

determined; however, the high value of k at 298 K precludes a 

substantial positive activation energy. 

62. Cl + OClO. Unchanged from JPL 82-57. Data reported by Bemand, Clyne and 

Watson (1973). 

63. Cl + ClON02• Minor change from JPL 82-57. Recent flash photolysis/resonance 

fluorescence studies by Margitan (1983a) and by Kurylo ~ sl. 

(1983a) which are in good agreement show that the rate constant 

for this reaction is almost two orders of magnitude faster than 

that indicated by the previous work of Kurylo and Manning (1977) 

and Ravishankara et Al. (1977b). It is probable that the slower 

reaction observed by Kurylo and Manning was actually ° + ClN03 , 

not Cl + ClN03. The preferred value averages the results of 
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the two new studies. 

64. CI + CINO. Unchanged from JPL 82-57. This value is based on the discharge 

flow-resonance fluorescence study of Clyne and Cruse (1972) and the 

flash photolysis-resonance fluorescence study of Nelson and Johnston 

(1981). Grimley and Houston (1980) reported a value which is lower 

than this preferred value by a factor of four. This low value may 

be due to adsorption of CINO on the vessel walls in their static 

experiment. There are no reliable data on the temperature dependence. 

A new study by Kita and Stedman (1982) using the same technique as 

that of Clyne and Cruse (1972) report a value which is a factor of 

three higher than the preferred value. However, there are 

insufficient data reported to assess the reliability of this result, 

and the preferred value has therefore been left unchanged. 

65. Cl + CIOO. Unchanged from JPL 82-57. Values of 1.56 x 10-10 , 9.8 x 10-11 , 

and 1.67 x 10-10 have been reported for ka(CI + CIaO + Cl2 + 02) by 

Johnston ~sl. (1969), Cox gial. (1979), and Ashford ~ ale 

(1978), respectively. Values of 108, 20.9, 17, and 15 have been 

reported for ka(Cl + CIaO + C12 + 02)/k(Cl + CIaO + 2 ClO) by 

Johnston et al., Cox ~ al., Ashford ~al., and Nicholas and 

Norrish (1968). Obviously the value of 108 by Johnston et lie is 

not consistent with the others, and the preferred value of 17.6 was obtained 

by averaging the other three values (this is in agreement with a value 

that can be derived from a study by Porter and Wright (1953». The 

absolute values of ka and kb are dependent upon the choice of ~ (CIaO) 

(the values of liH<f (CIaO) reported by Cox ~ 5ll.. and Ashford ~ .sl.. 

are in excellent agreement, i.e. 22.7 and 22.5 kcal/mol, 

respectively). The preferred value of ka(Cl + CIaO + C12 + 02) is 

taken to be the average of the three reported values, i.e. 1.4 x 

10-10 cm3 molecule-1s-1• Consequently, the preferred value 

of kb(Cl + CIaO + 2 CIa) is ka/ 17 •6 , i.e. 8.0 x 10-12 cm3 

molecule-1s-1• The E/R values are estimated to be zero, which is 

consistent with other experimentally determined E/R values for atom-
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radical reactions. 

66. 0 + CIO. Unchanged from JPL 82-57. The recommended rate constant is base 

on the experimental data of Bemand ~ si. (1973), Clyne and Nip (1976b), 

and Zahniser and Kaufman (1977). The E/R values reported by Clyne and 

Nip and Zahniser and Kaufman are in poor agreement. Before this 

rate constant can be considered to be well established, additional data 

are required. 

67. CIO + NO. Unchanged from JPL 82-57. The absolute rate coefficients deter 

mined in the four discharge flow mass spectrometric studies (Clyne 

and Watson (1974a), Leu and DeMore (1978), Ray and Watson (1981a) 

and Clyne and MacRobert (1980» and the discharge flow laser magnetic 

resonance study Lee ~ Al. (1982) are in excellent agreement at 

298K, and are averaged to yield the preferred value. The value 

reported by Zahniser and Kaufman (1977) from a competitive study 

is not used in the derivation of the preferred value as it is about 33% 

higher. The magnitudes of the temperature dependences reported by 

Leu and DeMore (1978) and Lee et al. are in excellent agreement. 

Although the E/R value reported by Zahniser and Kaufman (1977) is 

in fair agreement with the other values, it is not considered as it 

is dependent upon the E/R value assumed for the CI + 0
3 

reaction. 

The Arrhenius expression was derived from a least squares fit to 

the data reported by Clyne and Watson, Leu and DeMore, Ray and Watson, 

Clyne and MacRobert and Lee ~al. 

68. CIO + H02• Unchanged from JPL 82-57. There have been four low pressure 

discharge flow studies, each using a different experimental detection 

technique, and one high pressure molecular modulation study 

(Burrows and Cox, 1981) at 298 K. The values reported at 298 K, 

in units of 10-12 cm3 molecule-1s-1, are 0.85±0.19 (Poulet ~ ~., 

1978b), 3.8:1:0.5 (Reimann and Kaufman 1978), 4.5:1:0.9 (Leck ~ li., 

1980), 6.3±1.3 (Stimpfle ~ al., 1979), and 5.4!~ (Burrows and Cox, 

1981). The value of Poulet et ale was disregarded and the preferred 
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value taken to be the mean of the other four values, i.e. k = 5.0 x 10-12 cm3 

molecule-1s-1• The agreement between the low pressure values 

and the one atmosphere value suggests the absence of a third order 

complex forming process. The only temperature dependence study 

(Stimpfle ~sl.) resulted in a non-linear Arrhenius behavior. The 

data were best described by a four parameter equation of the form 

k = Ae-B/ T + CTn, possibly suggesting that two different mechanisms 

may be occurring. The expression forwarded by stimpfle ~ sl. was 

3.3 x 10-11 exp(-850/T) + 4.5 x 10-12 (T/300)-3.7. Two possible 

preferred values can be suggested for the temperature dependence of 

k; (a) an expression of the form suggested by Stimpfle ~al., but 

where the values of A and C are adjusted to yield a value of 5.0 x 

10-12 at 298 K, or (b) a simple Arrhenius expression which fits the data 

obtained at and below 300 K (normalized to 5.0 x 10- 12 at 298 K), 

i.e., 4.6 x 10-13 exp(710/T). The latter expression is preferred. 

The two most probable pairs of reaction products are, (1) HOCI + 02 

and (2) HCI + 03• Both Leu (1980b) and Leck ~ sl. used mass 

spectrometric detection of ozone to place upper limits of 1.5% (298 K), 

3.0% (248 K) and 2.0% (298 K), respectively, on k2/k. Burrows and Cox 

report an upper limit of 0.3% for k2/k at 300 K. 

69. CIO + H2CO. Unchanged from JPL 82-57. Poulet ~ al. (1980) have 

determined an upper limit of 10-15cm3molecule-1s-1 for k at 298 K using 

the discharge flow-EPR technique. 

70. CIO + OH. Changed from JPL 82-57, which recommendation was based on 

preliminary, uncorrected results of a discharge flow-resonance fluorescence 

temperature dependent study, which is now published (Ravishankara 

et gl. (1983a» and a similar study at room temperature by Leu and 

Lin (1979). In the published paper by Ravishankara ~ al., the 

preliminary values have been corrected for interference due to OH 

regeneration by the reaction CI + H02 + OH + CIO. The same 

correction applied to the published results of Leu and Lin gives a 

room temperature value in very good agreement with Ravishankara 
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et Al.'s corrected value (M. T. Leu, private communication). 

The preferred value at 298 K is the mean of the values reported in 

these two studies. The A-factor was adjusted to give the preferred 

value at 298 K. Leu and Lin determined a lower limit of 0.65 for 

k1(OH + C10 + H02 + Cl)/k (OH + C10 + products) at 298K. 

The approach was somewhat indirect and the actual value of k1/k 

may be unity. If in fact it is unity, then the value of this rate 

constant and that for the reverse reaction (Cl + H02 + OH + C10) 

are consistent with the Howard (1980) value of 2.5*0.6 kcal/mol 

for the heat of formation of H02. See note on Cl + H02 reaction. 

Additional studies of the rate and mechanism as a function of pressure 

and temperature are needed. 

71. C10 Reactions. Unchanged from JPL 82-57. These upper limits are based 

on the data of Walker (reported in Clyne and Watson (1974a». The upper 

limits shown for k (298) were actually determined from data collected at 

either 587 K or 670 K. The Arrhenius expressions were estimated 

based on this -600 K data. 

72. C10 + C10. No recommendation at present. For a discussion of the 

C10 + C10 reactions the reader is referred to Watson (1977, 1980). 

73. C10 + 03• Unchanged from JPL 82-57. The branching ratio between 

the two channels is not known, but, for the present discussion, is 

assumed to be unity. The Arrhenius parameters were estimated, and 

the upper limit rate constants are based on data reported by DeMore, 

Lin and Jaffe (1976) and by Wongdontri-Stuper ~A1. (1979). 

74. OH + HC1. Unchanged from JPL 82-57. There is good agreement between six 

groups of workers at -298K (Takacs and Glass (1973c), Zahniser 

~ ale (1974), Smith and Zellner (1974), Ravishankara ~ sl. 

(1977a), Hack ~sl. (1977) and Husain ~ sl. (1981» and the 

preferred value at this temperature is the average of the six. The 

Arrhenius expression was derived by giving an equal weighting to 
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data reported by Zahniser ~ ~., Ravishankara ~ al., and Smith 

and Zellner. There have been several very recent studies of this 

rate. Preliminary values by Molina, by Ravishankara, and by Keyser 

are all higher than the preferred value, and therefore the error 

limit has been increased slightly. 

75. OH + HOCI. Unchanged from JPL 82-57. There are no experimental data 

for this reaction. This is an estimated value based on the OH + H202 
reaction, which should have roughly similar E/R and A values. 

76. OH + Subst~tuted Methanes. There have been several studies of each of the 

OH + CHxFyX(4_x_y) (X = CI or Br) reactions, i.e. OH + CH3CI, CH2CI2' 

CHCI3 , CHFCI2, CHF2CI, CH2CIF, and CH3Br. In each case there has been 

quite good agreement between the reported results (except for Clyne and Holt, 

(1979b», both at -298 K and as a function of temperature. However, 

in certain cases it can be noted that the E/R values obtained from 

studies performed predominantly above 298 K were greater than the 

E/R values obtained from studies performed over a lower temperature 

range, e.g. the E/R value for OH + CH
3

CI reported by Perry ~ al. 

(1976a) is significantly higher than that reported by Davis ~ al. 

(1976). These small but significant differences could be 

attributed to either experimental error or non-linear Arrhenius 

behavior. The recent results of Jeong and Kaufman (1982) have shown 

a non-linear Arrhenius behav~or for each reaction studied. They 

found that their data could best be represented by a three parameter 

equation of the form AT2exp(-B/T). The experimental AT2exp(-B/T) 

fit ~s stated by the authors to be in agreement with that expected 

from transition state theory. 

The preferred values shown in this review were obtained by first 

fitting all of the absolute rate data for each reaction (except Clyne 

and Holt (1976b» to the three parameter equation AT2 exp (-B/T), 

and then simplifYing these equations to a set of "derived 

Arrhenius expressions" centered at 265 K. The derived Arrhen~us 
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expressions were centered at 265 K as a temperature representative 

of the mid-troposphere. The AT2exp(-B/T) expressions are given 

for each reaction in the individual notes, while the nderived 

Arrhenius expressionsn are entered in the table of preferred values. 

Obviously nderivedn Arrhenius expressions can be centered at any 

temperature from the three parameter equations (these should be 

restricted to within the temperature range studied). Transforming 

k = AT2exp(-B/T) to the form k = A'exp(-E/T): E' = B + 2T and 

A' = A x e2 x T2. 

Unchanged from JPL 82-57. The preferred values were obtained using 

only absolute rate coefficient data. The data of Howard and 

Evenson (1976a), Davis et Al. (1976), Perry ~ sl. (1976a), 

Paraskevopoulos ~ Al. (1981) and Jeong and Kaufman (1982) are in good 

agreement and were used to determine the preferred values. Fitting the data 

to an expression of the form AT2exp(-B/T) results in the equation 

3.49 x 10-18 T2exp(-582/T) over the temperature range (247-483)K. This 

results in a preferred value of 4.40 x 10-14cm3 molecule-1s-1 for 

k at 298 K. The derived Arrhenius expression centered at 265 K is 1.81 x 

10-12exp(-1112/T). 

Unchanged from JPL 82-57. The preferred values were obtained using 

only absolute rate coefficient data. The accuracy of the OH + CH4/ 

OH + CH2Cl2 study (Cox ~ sl. 1976a» was probably no better than 

a factor of 2. The data of Howard and Evenson (1976a), Davis ~ al. 

(1976), Perry et al. (1976a), and Jeong and Kaufman (1982) are in 

good agreement and were used to determine the preferred value (the 

values of Davis ~ sl. are somewhat lower (20%) than those reported 

in the other studies but are included in the evaluation). Fitting 

the data to an expression of the form AT2exp(-B/T) results in the 
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equation 8.58 x 10-18 T2exp(-502/T) over the temperature range 

245-455 K. This results in a preferred value of 1.41 x 10-13cm3 

molecule- l s- l for k at 298 K. The derived Arrhenius expression 

centered at 265 K is 4.45 x 10-12exp(-1032/T). 

OH + CHC13 

Unchanged from JPL 82-57. The preferred values were obtained using 

only absolute rate coefficient data. The accuracy of the OH + CH4/ 

OH + CHC13 study (Cox ~ al. (1976a» was probably no better than 

a factor of 2. The data of Howard and Evenson (1976a), Davis ~ sl. 

(1976) and Jeong and Kaufman (1982) are in good agreement and were 

used to determine the preferred values. Fitting the data to an 

expression of the form AT2exp(-B/T) results in the equation 6.3 x 

10-18exp(-504/T) over the temperature range 245-487 K. This results 

in a preferred value of 1.03 x 10-13cm3molecule-l s- l for k at 298 K. 

The derived Arrhenius expression centered at 265 K is 3.27 x 10-12 

exp(-1034/T). 

OH + CHFC12 

Unchanged from JPL 82-57. The preferred values were derived using the 

absolute rate coefficient data reported by Howard and Evenson 

(1976a), Perry ~ sl. (1976a), Watson ~ al. (1977), Chang and 

Kaufman (1977a), Paraskevopoulos ~ ale (1981) and Jeong and Kaufman 

(1982). The data of Clyne and Holt (1979b) was not considered as 

it is in rather poor agreement with the other data within the temperature 

range studied, e.g. there 1S a difference of -65% at 400 K. Fitting 

the data to an expression of the form AT2exp(-B/T) results in the 

equation 1.71 x 10-18 T2exp(-483/T) over the temperature range 241-483 K. 

This results in a preferred value of 3.0 x 10-14cm3molecule-ls-l 

for k at 298 K. The derived Arrhenius expression centered at 265 K 

is 0.89 x 10-12exp(-1013/T). 
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OH + CHF2Cl 

Unchanged from JPL 82-57. The preferred values were derived using 

the absolute rate coefficient data reported by Howard and Evenson 

(1976a), Atkinson ~ sl. (1975), Watson ~ sl. (1977), Chang and 

Kaufman (1977a), Handwerk and Zellner (1978), Paraskevopoulos II 

sl. (1981) and Jeong and Kaufman (1982), which are in good agreement. 

The data of Clyne and Holt (1979b) was not considered as it is in rather 

poor agreement with the other data within the temperature range studied, 

except at 298 K (the reported A-factor of -1 x 10-11 cm3molecule- l s-1 is 

inconsistent with that expected theoretically). Fitting the data 

to an expression of the form AT2 exp(-B/T) results in the equation 

1.51 x 10-18 T2exp(-1000/T) over the temperature range 250-482 K. 

This results in a preferred value of 4.68 x 10-15cm3molecule-ls-l 

for k at 298 K. The derived Arrhenius expression centered at 265 K 

is 0.78 x 10-12exp(-1530/T). 

Unchanged from JPL 82-57. The preferred values were derived us~ng the 

absolute rate coefficient data reported by Howard and Evenson 

(1976a), Watson ll..a.l.. (1977), Handwerk and Zellner (1978), 

Paraskevopoulos ~~. (1981) and Jeong and Kaufman (1982) which are 

in fair agreement. Fitting the data to an expression of the form 

AT2exp(-B/T) results in the equation 3.77 x 10-18 T2exp(-604/T) over 

the temperature range 245-486 K. This results in a preferred value of 

4.41 x 10-14 cm3 molecule- l s- l for k at 298 K. The derived Arrhenius 

expression centered at 265 K is 1.96 x 10-12exp(-1134/T). 

77. OH + CH3CCl3. Unchanged from JPL 82-57. This evaluation is based on 

the recent data of Jeong and Kaufman (1979) and Kurylo~..a.l. (1979). 

Their results are in excellent agreement over the temperature range 

250-460 K. The earlier results of Howard and Evenson (1976b), 

Watson ~ sl. (1977), Chang and Kaufman (1977a) and Clyne and Holt 
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(1979a) were discounted in favor of the recent results. The earlier 

results showed higher values of the rate constant, and lower E/R 

values. This may be indicative of the CH
3

CCl
3 

used in the early studies 

being contaminated with small amounts of a reactive olefinic 

impurity. 

78. OH + C2C14' Unchanged from JPL 82-57. The preferred value at 298 K 

is a mean of the values reported by Howard (1976) and Chang and Kaufman 

(1977a). The value reported by Winer ~ ale (1976), which is more than a 

factor of 10 greater, is rejected. The preferred Arrhenius parameters 

are those of Chang and Kaufman. 

79. OH + C2HCI3• Unchanged from JPL 82-57. The preferred value at 298K 

is a mean of the values reported by Howard (1976) and Chang and Kaufman 

(1977a). The value derived from a relative rate coefficient study by W~ner 

~.9.l.. (1976) is a factor of about -2 greater than the other values and 

is not considered in deriving the preferred value at 298 K. The 

Arrhenius parameters are based on those reported by Chang and Kaufman 

(the A-factor is reduced to yield the preferred value at 298K). 

80. OH + CFCl
3 

and OH + CH2Cl2' Unchanged from JPL 82-57. The A-factor was 

estimated, and a lower limit was derived for E/R by using the upper limits 

reported for the rate constants by Chang and Kaufman (1977b) at about 

-480 K. These expressions are quite compatible with the upper limits 

reported for these rate constants by Atkinson ~.9.l.. (1975), 

Howard and Evenson (1976a), Cox ~ ale (1976a) and Clyne and Holt 

(1979b). None of the investigators reported any evidence for 

reaction between OH and these chlorofluoromethanes. 

81. OH + CION02' Unchanged from JPL 82-57. The results reported by Zahniser 

et.9.l.. (1977) and Ravishankara ~ ale (1977b) are in good agreement 

at _245K (within 25%), considering the difficulties associated with 

handling CION02• The preferred value is that of Zahniser ~ ale 

Neither study reported any data on the reaction products. 

69 



82. ° + HC1. Unchanged from JPL 82-57. Fair agreement exists between 

the results of Brown and Smith (1975), Wong and Belles (1971), 

Ravishankara ~sl. (1977a), Hack ~ al. (1977) and Singleton 

and Cvetanovic (1981) at 300K (some of the values for k (300K) 

were obtained by extrapolation of the experimentally determined 

Arrhenius expressions), but these are a factor of -7 lower 

than that of Balakhnin ~ sl. (1971). Unfortunately, the 

values reported for E/R are in complete disagreement, ranging 

from 2260-3755K. The preferred value was based on the results 

reported by Brown and Smith, Wong and Belles, Ravishankara ~ Al., 

Hack ~ al. and Singleton and Cvetanovic but not those reported 

by Balakhnin ~ al. 

83. ° + HOC1. Unchanged from JPL 82-57. There are no experimental data; 

this is an estimated value based on rates of o-atom reactions with 

similar compounds. 

84. ° + C10N02• Unchanged from JPL 82-57. The results reported by Molina 

~~. (1977b) and Kurylo (1977) are in good agreement, and this data 

has been used to derive the preferred Arrhenius expression. The 

value reported by Ravishankara et .s.l. (1977b) at 245K is a factor 

of 2 greater than those from the other studies, and this may 

possibly be attributed to (a) secondary kinetic complications, (b) presence 

of N02 as a reactive impurity in the C1ON02, or (c) formation of 

reactive photolytic products. None of the studies reported 

identification of the reaction products. The recent room temperature 

result of Adler-Golden and Wiesenfeld (1981) is in good agreement 

with the recommended value. 

85. ° + C120. Minor change from JPL 82-57. Recommendation averages the 

resl ts of Miziolek and Molina (1978) for 236-295K with the 

approximately 30 percent lower values of Wecker ~ sl. (1982) over 

the same temperature range. Earlier resul ts by Basco and Dogra 

(1971a) and Freeman and Phillips (1968) have not been included in the 
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derivation of the preferred value due to data analysis difficulties 

in both studies. 

86. ° + OClO. Unchanged from JPL 82-57. Arrhenius expression was estimated 

based on 298 K data reported by Bemand, Clyne and Watson (1973). 

87. NO + OClO. Unchanged from JPL 82-57. Arrhenius expression was estimated 

based on 298 K data reported by Bemand, Clyne and Watson (1973). 

88. Br + 03• Unchanged from JPL 82-57. The results reported for k (298K) 

by Clyne and Watson (1975), Leu and DeMore (1977), Michael ~ sl. 

(1978) and Michael and Payne (1979) are in excellent agreement. 

The preferred value at 298 K is derived by taking a simple mean of 

these four values. The temperature dependences reported for k by 

Leu and DeMore, Michael gi al. and Michael and Payne can only be 

considered to be in fair agreement. There is a spread of 25% in k 

at 200 K and 50% at 360 K. Although the results reported by 

Michael ~ sl. and Michael and Payne are in good agreement, there 

is no reason at present to discard the results of Leu and DeMore. Therefore, 

until further results are reported, the preferred value was synthesized 

to best fit all the data reported from these four studies. 

89. Br + H202 • Unchanged from JPL 82-57. Using the discharge flow-mass 

spectrometric technique Leu (1980a), and Posey ~sl. (1981) determined 

an upper limit for k of -2 x 10-15 at -298 K. Leu also reported an 

upper limit for k of 3 x 10-15 at 417 K. An estimate of the Arrhenius 

expression would be <1 x 10-11 exp (-2500/T). The A-factor was chosen 

to be consistent with that determined for the Cl + H2 02 reaction, 

and the E/R value was calculated to yield the upper limit at 298 K. 

90. Br + H2CO. Unchanged from JPL 82-57. There have been two studies of 

this rate constant as a function of temperature; Nava ~ sl. (1981), 

using the flash photolysis-resonance fluorescence technique, and Poulet 

~sl. (1981), using the discharge flow-mass spectrometric 
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technique. These results are in reasonably good agreement. The 

Arrhenius expression was derived from a least squares fit to the 

data reported in these two studies. The higher room temperature 

value of LeBras ~ ale (1980) using the discharge flow - EPR 

technique has been shown to be in error due to secondary chemistry 

(Poulet gi al.). 

91. Br + H02• Unchanged from JPL 82-57. Posey ~~. (1981) used the 

discharge flow-mass spectrometric technique to determine a value of 2 

x 10-13 (±factor of 2) for k at 298K. This value seems low for an 

atom-radical reaction; for example, it is two orders of magnitude 

lower than the corresponding reaction of H02 with Cl. Therefore, 

until there is additional data, it is suggested that this be used as 

a lower limit. 

92. Bra + O. Unchanged from JPL 82-57. The preferred value is based on the 

value reported by Clyne ~ ale (1976). This value appears to be quite 

reasonable in light of the known reactivity of CIO radicals with 

atomic oxygen. The temperature dependence of k is expected to be 

small for an atom-radical process, e.g., a + CIO. 

93. Bra + CIO. Unchanged from JPL 82-57. The results reported by Clyne 

and Watson (1977) and Basco and Dogra (1971b) differ not only in the 

magnitude of the rate constants, but also in the interpretation 

of the reaction mechanism. The preferred value is that reported 

by Clyne and Watso~ The temperature dependence for such processes is 

expected to be small, as for Bra + Bra. Although the second 

reaction channel is shown proceeding directly to Br + Cl + 02' it 

may proceed through Br + C100 (6HO = -6.6 kcal/mol-1) or Cl + BrOO 

(6HO unknown). 

94. Bra + NO. Unchanged from JPL 82-57. The results of the three low pressure 

mass spectrometric studies (Clyne and Watson (1975), Ray and Watson 

(1981a) and Leu (1979) and the high pressure uv absorption study 
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(Watson ~ Al. (1979}), which all used pseudo first-order 

conditions, are in excellent agreement at 298 K, and are thought 

to be much more reliable than the earlier low pressure uv absorption 

study (Clyne and Cruse (1970b». The results of the two temperature 

dependence studies are in good agreement and both show a small 

negative temperature dependence. The preferred Arrhenius expression 

was derived from a least squares fit to all the data reported in 

the four recent studies. By combining the data reported by Watson 

~ gl. with that from the three mass spectrometric studies, it 

can be shown that this reaction does not exhibit any observable 

pressure dependence between 1 and 700 torr total pressure. The 

temperature dependences of k for the analogous C10 and H02 reactions 

are also negative, and are similar in magnitude. 

95. BrO + BrO. Unchanged from JPL 82-57. There are two possible bimolecular 

channels for this reaction: BrO + BrO + 2Br + O2 (k1) and BrO + 

BrO + Br2 + O2 (k2). The total rate constant for disappearance of BrO 

(k = k1 + k2) has been studied by a variety of techniques, including discharge 

flow-ultraviolet absorption (Clyne and Cruse, 1970a), discharge 

flow-mass spectrometry (Clyne and Watson, 1975) and flash 

photolysis-ultraviolet absorption (Basco and Dogra, 1971b; Sander 

and Watson, 1981b). Since this reaction is second order in [BrO], 

those studies monitoring [BrO] by ultraviolet absorption required 

the value of the cross section a to determine k. There is 

SUbstantial disagreement in the reported values of a. Although the 

magnitude of cr is dependent upon the particular spectral transition 

selected and instrumental parameters such as spectral bandwidth, 

the most likely explanation for the large differences in the 

reported values of a is that the techniques (based on reaction 

stoichiometries) used to determine cr in the early studies were used 

incorrectly (see discussion by Clyne and Watson). The recent study 

of Sander and Watson used totally independent methods to determine 

the values of a and (alk). The recommendations for k1 and k2 

are consistent with a recommendation of k = 1.14 x 10- 12 
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exp(+255/T) cm3 molecule-1 s-1. This temperature dependence is the 

corrected value from Sander and Watson, and the pre-exponential has 

been chosen to fit the value of k(298K) = 2.7 x 10-12 cm3 molecule-1 

s-1, which is the average of the values reported by Clyne and 

Watson (the mass spectrometric study where knowledge of a is not 

required) and by Sander and Watson (the recent absorption study). 

There was no observable pressure dependence from 50 to 475 torr in 

the latter study. In a recent study, Cox ~sl. (1982) used the 

molecular modulation technique with ultraviolet absorption to 

derive a temperature independent value of k2 which is 50 percent 

greater than the 298K value recommended here. 

The partitioning of the total rate constant into its two 

components, k1 and k2, has been measured by Sander and Watson 

at 298K, by Jaffe and Mainquist (1980) from 258 to 333K, and by Cox 

~Al. (1982) from 278 to 348K. All are in agreement that k1/k = 

0.84*0.03 at 298K. In the temperature dependent studies the 

quantum yield for the bromine photosensitized decomposition of 

ozone was measured. Jaffe and Mainquist observed a strong, 

unexplained dependence of the quantum yield at 298K on [Br2], and 

their results were obtained at much higher [Br2] values than were 

those of Cox ~~. This makes a comparison of results difficult. 

From an analysis of both sets of temperature dependent data, the 

following expressions for k1/k were derived: 0.98 exp(-44/T) (Jaffe 

and Mainquist); 1.42 exp(-163/T) (Cox ~ al); and 1.18 exp(-104/T) 

(mean value). This mean value has been combined with the 

expression for k given above to yield the expression for k1 shown 

in the table. The expression for k2 results from the numerical 

values of k2 at 200K and 300K derived from the evaluation of these 

expressions for k1 and for k(=k1 + k2). 

96. BrO + 03. Unchanged from JPL 82-57. Based on a study reported by 

Sander and Watson (1981b). Clyne and Cruse (1970a) also reported an upper 

limit of 8 x 10-14cm3molecule-1s-1 for this reaction. Both studies 
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reported that there is no evidence for this reaction. The analogous 

CIO reaction has a rate constant of <10-18cm3molecule-1s-1• 

97. BrO + H02• Unchanged from JPL 82-57 in which the preferred value was 

based on value of k(CIO + H02). Cox and Sheppard (1982) have studied 

the rate of this reaction in an investigation of the photolysis of 03 
in the presence of Br2, H2, and 02 using the molecular modulation -

ultraviolet absorption technique. Although the reported value is 

not very precise, it does show that this reaction occurs and at a 

rate comparable to that for ClO + H02• By analogy with the CIO + 

H02 system, the products may be expected to be HOBr + 02· 

98. BrO + OH. Changed from JPL 82-57. Value chosen to be consistent with 

k(CIO + OH), due to the absence of any experimental data. 

99. OH + HBr. Unchanged from JPL 82-57. Takacs and Glass (1973a) and 

Jourdain ~~. (1981) used the discharge flow - EPR technique and 

reported k (298K) to be 5.1 and 9.2 x 10-12 cm3 molecule-1 s-1, 

respectively. Ravishankara ~~. (1979a) and Husain ~~. (1981) 

used the flash photolysis-resonance fluorescence technique and 

reported values of 11.9 and 6.0 x 10-12 cm3 molecule-1 s-1, 

respectively. The preferred value of k (298K) is taken to be a 

simple mean of these four values. The data reported by Ravishankara 

~~. show that the rate constant exhibits no temperature 

dependence between 249-416K. 

100. OH + CH3Br. Unchanged from JPL 82-57. The absolute rate coefficients 

determined by Howard and Evenson (1976a) and Davis ~~. (1976) 

are in excellent agreement at 298 K. The same approach has been used to 

determine the preferred Arrhenius parameters as was used for the OH + 

CHxFyC14_x_y reactions. Fitting the data to an expression 

of the form AT2exp(-B/T) results in the equation 1.17 x 10-18 

T2exp(-295/T) over the temperature range 244-350 K. This results 

in a preferred value of 3.86 x 10-14cm3molecule-1s-1 for k at 298 K. 
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The derived Arrhenius expression centered at 265 K is 6.09 x 10-13 

exp{-825/T) • 

101. 0+ HBr. Changed from JPL 82-57. Results of the recent flash photolysis

resonance fluorescence study of Nava ~ sl. (1983) for 221-455K 

provide the only data at stratospheric temperatures. The previous 

recommendation was based on results reported by Singleton and 

Cvetanovic (1978) for 298-554K by a phase-shift technique, and on 

discharge flow results of Brown and Smith (1975) for 267-430K and 

of Takacs and Glass at 298K. The preferred value is based on the 

results of Nava ~sl. and those of Singleton and Cvetanovic 

over the same temperature range, since these results are less 

subject to complications due to secondary chemistry than are the 

results using discharge flow techniques. The uncertainty at 298K 

has been set to encompass these latter results. 

102. F + 03' Unchanged from JPL 82-57. The only experimental data 

is that reported by Wagner ~.aJ... (1972). Value appears to be quite 

reasonable in view of the well known reactivity of atomic chlorine 

with 03. 

103. F + H2• Unchanged from JPL 82-57. The value of k at 298K seems to be 

well established with the results reported by Homann ~sl. (1970), 

Warnatz ~Al. (1972), Zhitneva and Pshezhetskii (1978), Heidner 

~ sl. (1979, 1980), Wurzberg and Houston (1980), Dodonov ~ sl. 

(1971), Clyne ~ Al. (1973), Bozzelli (1973), and Igoshin ~Al. 

(1974), being in excellent agreement (range of k being 2.3-3.3 x 10-11 

cm3 molecule-1 s-1). The preferred value at 298K is taken to be the 

mean of the values reported in these references. The magnitude of the 

temperature dependence is not quite as well established with values of 

E/R ranging from 433-755K (Homann ~ sl., Warnatz ~sl., Heidner 

~ sl., Wurzburg and Houston, Igoshin ~Al.). The preferred 

value of E/R is taken to be the mean of the results from all of the 

studies. The A-factor was calculated by taking E/R to be 570K, and 
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k at 298K to be 2.8 x 10-11 cm3 molecule-1 s-1. 

104. F + CH4. Unchanged from JPL 82-57. The three absolute rate coefficients 

determined by Wagner ~Al. (1971), Clyne ~ Al. (1973) and Kompa 

and Wanner (1972) at 298 K are in good agreement; however, this 

may be somewhat fortuitous as the ratios of keF + H2)/k(F + CH4) 

determined by these same groups can only be considered to be in fair 

agreement, 0.23, 0.42 and 0.88. The values determined for k (298) 

from the relative rate coefficient studies are also in good 

agreement with those determined in the absolute rate coefficient 

studies, and the value of 0.42 reported for keF + H2)/k(F + CH4) 

by Foon and Reid (1971) is in good agreement with that reported by 

Clyne ~Al. The preferred value of 8.0 x 10-11 for k (298) is a 

weighted mean of all the results. The magnitude of the temperature . 
dependence is somewhat uncertain. The preferred Arrhenius 

parameters are based on the data reported by Wagner ~ al., and 

Foon and Reid, and the preferred Arrhenius parameters of the F + H2 

reaction. This reaction has recently been reviewed by both Foon 

and Kaufman (1975) and Jones and Skolnik (1976). A-factor may be 

too high. Since the previous evaluation there has been one study 

of this reaction, by Fasano and Nogar (1982). The reported value 

at 298K is 30% lower than the preferred value, well within the 

stated uncertainty limits. The preferred value is based on results 

of five studies and inclusion of this new result does not change 

the preferred value. 

105. F + H20. Unchanged from JPL 82-57. This is the value of Zetzsch (1971) 

which was reported in the review of Jones and Skolnik (1976). The 

reactivity appears to be somewhat lower than might be expected for such 

a hydrogen abstraction reaction (see review of Foon and Kaufman (1975). 

106. NO + FO. Unchanged from JPL 82-57. This is the value reported by Ray 

and Watson (1981a) for k at 298K using the discharge flow-mass spectro-
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metric technique. The temperature dependence of k is expected to 

be small for such a radical-radical reaction. The temperature 

dependences of k for the analogous CIO and BrO reactions have been 

reported to be negative, with E/R preferred values of -294K and 

-265K, respectively. 

107. FO + FO. Unchanged from JPL 82-57. Although the value of k (FO + 

FO) reported by Clyne and Watson (1974b) was obtained in a more 

direct manner than that of Wagner ~sl. (1972), and as such is less 

susceptible to error due to the presence of complicating secondary 

reactions and thus would normally be preferred, the value to be 

recommended in this assessment is a weighted average of the two 

studies. From the data of Wagner ~~. it can be seen that the 

dominant reaction channel is that producing 2F + 02. However, their 

data base is not adequate to conclude that it is the only process. 

108. FO + 03. Unchanged from JPL 82-57. The FO + 03 reaction has two 

possible pathways which are exothermic, resulting in the production of F + 2 

02 or F02 + 02. Although this reaction has not been studied in a 

Simple, direct manner, two studies of complex chemical systems have 

inferred some kinetic information about it. Starrico ~ ale (1962) 

measured quantum yields for ozone destruction in F2/03 mixtures, 

and attributed the high values, -4600, to be due to the rapid 

regeneration of atomic fluorine via the FO + 03 ~ F + 02 reactio~ 

However, their results are probably also consistent with the chain 

propagation process being FO + FO ~ 2 F + 02 (the latter reaction 

has been studied twice (Wagner ~ ale (1972), Clyne and Watson 

(1974b», but although the value of [F]produced/[FO]consumed is 

known to be close to unity, it has not been accurately determined. 

Consequently it is impossible to ascertain from the experimental 

results of Starrico ~~. whether or not the high quantum yields 

for ozone destruction should be attributed to the FL + 03 reaction 

producing either F + 2 02 or F02 + 02 (this process is also a chain 

propagation step if the resulting F02 radical preferentially reacts 
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with ozone rather than with either Fa or itself). Wagner ~ sl 

utilized a low pressure discharge flow-mass spectrometric system to 

study the F + 03 and Fa + Fa reactions by directly monitoring the 

time history of the concentrations of F, Fa and 03' They concluded 

that the Fa + 03 reaction was unimportant in their system. However, 

their paper does not present enough information to warrant this 

conclusion. Indeed, their value of k(FO + Fa) of 3 x 10-11 is 

about a factor of 4 greater than that reported by Clyne and Watson, 

which may possibly be attributed to either reactive impurities being 

present in their system, e.g., 0(3p), or that the Fa + 03 reactions 

were not of negligible importance in their study. Consequently, 

it is not possible to determine a value for the Fa + 03 reaction 

rate constant from existing experimental data. It is worth 

noting that the analogous C10 + 03 reactions are extremely slow 

«10-18cm3molecule-1s-1) (DeMore ~ ale (1976», and upper limits 

of 8 x 10-14 (Clyne and Cruse (1970a» and 5 x 10-15cm3molecule-1s-1 

(Sander and Watson (1981b» have been reported for Bra + 03 , 

109. a + Fa. Unchanged from JPL 82-57. This estimate is probably accurate to 

within a factor of 3, and is based upon the assumption that the 

reactivity of Fa is similar to that of C10 and Bra. The experi-

mentally determined rate constants for C10 and Bra at -298 K are 

5.0 x 10-11 and 3.0 x 10-11 , respectively (NASA preferred values). 

The temperature dependence of the rate constant is expected to be 

small. The temperature dependence of the analogous C10 reaction 

has been studied twice with somewhat different results. The values 

reported for E/R are -76 K (Zahniser and Kaufman (1977) and +224 K 

Clyne and Nip (1976b». 

110. a + F02• Unchanged from JPL 82-57. No experimental data. The rate 

constant for such a radical-atom process is expected to approach the gas 

collision frequency, and is not expected to exhibit a strong temp

erature dependence. 
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111. OH + co. The recommendation allows for an increase in k with pressure. 

The zero pressure value was derived by averaging all direct low pressure 

determinations (those listed in Baulch ~ sl. (1980) and the values 

reported by Dreier and Wolfrum (1980), Husain ~ Al. (1981), and 

Ravishankara and Thompson (1983». An increase in k with pressure has 

been observed by a large number of investigators (Overend and Paraskevopoulc 

(1977a), Perry ~Al. (1977), Chen ~ ale (1977), Bierman ~sl. 

(1978), Cox ~.al. (1976b), and Butler II .s.l.. (1978». There are a 

large number of inconsistencies in these data, however. Bierman ~ sl. (1978) 

found the rate coefficient to be dependent on both pressure and presence of 02 

(or other impurities). Recent measurements by Paraskevopoulos and Irwin (1982a 

indicate that the pressure effects are seen in the absence of 02. DeMore 

(1983) reported a similar lack of dependence on O2 when N2 was the 

pressurizing gas, and found less than a 10% increase in k when pressure of 

Argon diluent was changed from -50 torr to -760 torr, both in the presence 

and absence of 02. 

Refinements in the rate coefficient data for the OH + H02 and OH + H202 

reactions require reinterpretation of many of the above mentioned 

studies. For example, the possibility of the OH + H02 reaction causing 

interference in the studies of Bierman ~~. needs to be considered. 

The study of Butler ~ Al. can be reevaluated by using the value 

of k(OH + H202) recommended here to yield the rate coefficients 

for OH + CO of 1.5 x 10-13 cm3 molecule-1 s-1 at 100 torr increasing 

to 3.7 x 10-13 cm3 molecule-1 s-1 at 600 torr of synthetic air. 

The weight of the present evidence suggests that there is no O2 

effect, but there is a pressure effect. The exact value of the 

high pressure limit and the pressure at which it is reached remain 

undefined. In the absence of such data, the recommended value is 

quite uncertain (-40%). Until proven otherwise, the E/R value is 

assumed to be zero. 

112. OH + CH4. This is an extremely well characterized reaction. All 
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temperature dependence studies are in good agreement (Greiner (1970a), Davis 

gkal. (1974a), Margitan gk Al. (1974), Zellner and Steinert (1976), 

Tully and Ravishankara (1980), Jeong and Kaufman (1982». Due to this good 

agreement, and the curved nature of the Arrhenius plot at higher temperatures, the 

value of Davis ~ al., obtained in the temperature interval 

240 < T < 373K is recommended. 

113. OH + C2"6. There is excellent agreement between five studies of this 

reaction at 298K, i.e., Greiner (1970a), Howard and Evenson (1976b), Overend 

~ gl. (1975), Lee and Tang (1982) and Tully ~sl. (1983). k(298K) is 

the average of these five measurements. The temperature dependence was 

computed by using the data of Greiner (1970a) and Tully ~~. (1983). 

114. OH + C3H8. There are five measurements of the rate coefficient at 

298K; Greiner (1970a), Gorse and Volman (1974), Bradley ~~. (1973), 

Overend ~ Al. (1975), and Tully et Al. (1983). Gorse and Volman 

measured k(OH + C3H8) relative to k(OH + CO) in the presence of 02 and 

calculated k(OH + C3H8) assuming that k(OH + CO) = 1.5 x 10-13 cm3 

molecule-1 s-1. If the current recommended value for k(OH + CO) at 

high pressure is used, k(OH + C3H8) will be approximately 

4 x 10-12 cm3 molecule-1 s-1. Therefore the results of Overend ~~. 

(1975) (k = 2 x 10-12 cm3 s-1) and Gorse and Volman are in disagreement 

with the other values. The most probable cause for the discrepancy is 

the presence of secondary reactions in their system. The 298K value is 

the average of the three studies. Only Greiner (1970a) and Tully ~ 

al. (1983) have measured the temperature dependence of this reaction, 

and the recommended E/R was obtained from a linear least squares analysis of 

the data below 500 K. The A factor was adjusted to reproduce k(298K). 

This reaction has two possible channels, i.e., abstraction of the 

primary or the secondary H atom. Therefore, non-Arrhenius behavior 

may be exhibited over a wide temperature range, as seen by Tully ~ ~. 

The branching ratios can be estimated from Greiner's (1970a) formula: 

kprimary = 6.1 x 10-12 exp(-830/T) cm3 molecule-1 s-1 

ksecondary = 4.6 x 10-12 exp(-430/T) cm3 molecule-1 s-1 
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115. OH + H2CO. The value for k (298 K) is the average of those determined 

by Atkinson and Pitts (1978) and Stief ~ Al. (1980), both using the 

flash photolysis-resonance fluorescence technique. The value 

reported by Morris and Niki (1971) agrees within the stated 

uncertainty. There are two relative values which are not in agree

ment with the recommendations. The value of Niki et~. (1978b) 

relative to OH + C2H4 is higher while the value of Smith (1978) 

relative to OH + OH is lower. The latter data are also at variance 

with the negligible temperature dependence observed in the two flash 

photolysis studies. Although Atkinson and Pitts assign a small 

energy barrier (E/R = 90 + 150), their data at 356 K and 426 K 

and that of Stief ~~. at 228 K, 257 K and 362 K are all within 

10% of the k (298 K) value. Thus, the combined data set suggest E/R 

= O. The abstraction reaction shown in the table is probably the major 

channel; other channels may contribute (Horowitz ~A1., 1978). 

116. OH + CH300H. The recommended value is that of Niki ~ Al. (1983). They 

measured the rate coefficient relative to that of OH with C2H4 by 

monitoring CH300H disappearance using an FTIR system. This measured value 

is very fast and hence is not expected to show substantial temperature 

dependence. Niki ~Al. have determined that the rate coefficient 

for H atom abstraction from the CH3 group is approximately 0.7 times 

that for H atom abstraction from the OH group. Independent, direct 

measurements of this rate coefficient are needed. 

117. OH + HCN. New entry. This reaction is pressure dependent. The recommended 

value is the high pressure limit measured by Lorenz ~~. (1983) using 

a laser photolysis-resonance fluorescence apparatus. Phillips (1978) 

studied this reaction using a discharge flow apparatus at low pressures 

and found the rate coefficient to have reached the high pressure limit at 

-10 torr at 298K. Lorenz ~A1.'s results contradict this finding. 

They agree with Phillips' measured value, within a factor of two, at 7 

torr but they find k to increase further with pressure. The products of 
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the reaction are unknown. The measured A factor appears to be low. 

118. OH + CH3CN. New entry. This rate coefficient has been measured in 

the temperature range 298-424K by Harris ~al. (1981) using flash 

photolysis-resonance fluorescence method. Zellner (1983) has measured 

(k298 ), using flash photolysis-resonance fluorescence method, to be 

approximately a factor of two lower than that determined by Harris ~ 

sl. The recommended E/R is that of Harris ~ ale k(298K) is the 

average of Harris ~Al.'s and Zellner's values. The A factor has 

been adjusted to reproduce k(298K). The products of the reaction are 

unknown. The measured A factor appears to be low. 

119. H02 + CH20. New entry. There is a general consensus that this reaction 

proceeds through addition of H02 to CH20 (Su et al., 1979a,b, Veyret 

~~. 1982). The value of the rate coefficient deduced by Su 

~ Al. (1979b) based on modelling a complex system involving the 

oxidation of CH20 is approximately seven times lower than that 

obtained by Veyret et ale (1982), who also modelled a complex 

system. The recommended value is an average of the two measurements 

and is very uncertain. Su ~sl. (1979b) have deduced that life 

time of the adduct towards decomposition to CH20 and H02 is 

-1sec at 298K. 

120. ° + C2H2. The value at 298K is an average of nine measurements; 

Arrington ~ ale (1965), Sullivan and Warneck (1965), Brown and Thrush 

(1967), Hoyermann ~~. (1967), Westenberg and deHaas (1969b), 

James and Glass (1970), Stuhl and Niki (1971), Westenberg and 

deHaas (1977) and Aleksandrov ~ ale (1981). There is reasonably 

good agreement between these studies. Arrington ~sl. (1965) did 

not observe a temperature dependence, an observation which was later 

shown to be erroneous by Westenberg and deHaas (1969). Westenberg 

and deHaas are the only ones who have measured the temperature 

dependence, and they observed a curved Arrhenius plot. In the range 

of 195-450K, Arrhenius behavior provides an adequate description and 
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the E/R obtained by them in this temperature range is recommended. 

The A factor was calculated to reproduce k(298K). This reaction can 

have two sets of products, i.e., C2HO + H or CH2 + CO. Under 

molecular beam conditions C2HO has been shown to be the major 

product. However, a recent study by Aleksandrov ~~. using a 

discharge flow-resonance fluorescence method (under undefined pressure 

conditions) indicates that the CH20 + H channel contributes no 

more than 7% to the net reaction at 298K. 

121. 0 + H2CO. The recommended values for A, E/R and k (298 K) are the 

averages of those determined by Klemm (1979) using flash photolysis-resonancE 

fluorescence (250 to 498 K) by Klemm ~~. (1980) using discharge 

flow-resonance fluorescence (298 to 748 K) and Chang and Barker 

(1979) using discharge flow-mass spectrometry (296 to 436 K). All 

three studies are in good agreement. The k (298 K) value is also 

consistent with the results of Niki ~~. (1969), Herron and 

Penzhorn (1969), and Mack and Thrush (1973). Although the mechanism 

for 0 + H2CO has been considered to be the abstraction reaction 

yielding OH + HCO, Chang and Barker suggest that an addition channel 

yielding H + HC02 may be occurring to the extent of 30% of the total 

reaction. This conclusion is based on an observation of C02 as a 

product of the reaction under conditions where reactions such as 

o + HCO + H + C02 and 0 + HCO + OH + CO apparently do not occur. 

This interesting suggestion needs independent confirmation. 

122. 0 + CH3. The recommended k(298K) is the weighted average of three 

measurements by Washida and Bayes (1976), Washida (1980), and Plumb and 

Ryan (1982). The E/R value is based on the results of Washida and Bayes 

(1976) who found k to be independent of temperatures between 259 and 

341K. 

123. CH3 + O2• This bimolecular reaction is not expected to be important 

based on the results of Baldwin and Golden (1978a) who found k < 5 x 10-17 

cm3 molecule-1 s-1 for temperatures up to 1200K. Klais ~ s1. 
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(1979) failed to detect OH (via CH3 + 02 + CH20 + OH) at 368K 

and placed an upper limit of 3 x 10-16 cm3 molecule-1 s-1 for this 

rate coefficient. Bhaskaran, Frank and Just (1979) measured k = 1 

x 10-11 exp(-12,900/T) cm3 molecule-1 s-1 for 1800 < T < 2200K. 

The latter two studies, thus, support the results of Baldwin and 

Golden. Recent studies by Selzer and Bayes (1983) and Plumb and 

Ryan (1982) confirm the low value for this rate coefficient. Previous 

studies of Washida and Bayes (1976) are superseded by those of Selzer 

and Bayes. Plumb and Ryan have placed an upper limit of 3 x 10-16 

cm3 molecule- 1 s-1 based on their inability to find HCHO in their 

experiments. 

124. CH20H + 02' The rate coefficient has been measured by Radford (1980) by 

detecting the H02 product in a laser magnetic resonance spectrometer. 

The effect of wall loss of CH20H could have introduced a large error 

in this measurement. Radford also showed that the previous measurement of 

Avramenko and Kolesnikova (1961) was in error. 

125. CH30 + 02' The recommended A factor and E/R are those obtained from the 

results of Gutman ~sl. (1982). These investigators have measured 

k directly under pseudo-first order conditions by following CH30 

via laser induced fluorescence. The temperature interval was 413 

to 608K. Cox ~ sl. (1980) used an end product analysis technique 

to measure k down to 298K. The previous high temperature measure-

ments (Barker ~al. (1977) and Batt and Robinson (1979», are in 

reasonable agreement with the derived expression. k(298K) is calculated 

from the recommended expression. This value is consistent with the 

298K results of Cox ~ sl. (1980) and with the upper limit measured 

by Sanders ~~. (1980b). The A factor, shown above, appears to be 

too low for a hydrogen atom transfer reaction. The products of this 

reaction are H02 and CH20, as shown by Niki ~ sl. (1981). 

126. HCO + 02. The value of k(298K) is the average of the determinations 

by Washida ~~. (1974), Shibuya et al. (1977), Veyret and Lesclaux 
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126. HCO + 02. The value of k(298K) is the average of the determinations 

by Washida ~ sJ... (1974), Shibuya ~.sl,. (1977), Veyret and Lesclaux 

(1981), and Langford and Moore (1983). There are three measurements of k 

where HCO was monitored via the intracavity dye laser technique (Reilly 

~ ale (1978), Nadtochenko ~.sl.. (1979), and Gill ~ sl (1981». 

Even though there is excellent agreement between these three studies, 

they yield consistently lower values than those obtained by other techniques. 

There are several possible reasons for this discrepancy. (a) The relationship 

between [HCO] and laser attenuation might not be linear, (b) there could 

have been depletion of 02 in the static systems that were used (as 

suggested by Veyret and Lesclaux), and (c) these experiments were designed 

more for the study of photochemistry than kinetics. Therefore, these values 

are not included in obtaining the recommended value. The recommended 

temperature dependence is essentially identical to that measured 

by Veyret and Lesclaux. We have expressed the temperature dependence 

in an Arrhenius form even though the authors preferred a Tn form 

(k = 5.5 x 10-11 T-(0.4±0.3) cm3 molecule-1 s-1). 

127. CH3 + 03. The recommended A factor and E/R are those obtained from 

the results of Ogryzlo ~.sl.. (1981). The results of Simonaitis and 

Heicklen (1975) based on an analysis of a complex system have been 

neglected. Washida ~.sl,. (1980b) used ° + C2H4 as the source of 

CH
3

• Recent results (Buss ~ al. (1981), Kleinermanns and Luntz 

(1981), Hunziker ~ ale (1981), and Inoue and Akimoto (1981» have 

shown the ° + C2H4 reaction to be a poor source of CH3. Therefore, 

the results of Washida ~ ale are also neglected. 

128. CH302 + 03. There are no direct studies of this reaction. The 

quoted upper limit is based on indirect evidence obtained by Simonaitis 

and Heicklen (1975). 

129. CH302 + CH302• The recommended value for k(298K) is the average of 

those reported by Hochanadel ~ ale (1977), Parkes (1977), Anastasi 

~Al. (1978), Kan ~ Al. (1979), Sanhueza ~~. (1979), and Sander 
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the absorption cross section for CH302 at the monitored wavelength. 

To obtain a set of numbers that can be compared, the values of k 

have been recalculated using the absorption cross sections measured 

by Hochanadel g1 ale (1977). k(298K) is the average of these numbers. 

The recommended temperature dependence is that measured by Sander and 

Watson (1981c). 

This reaction has three possible sets of products, i.e., 

CH302 + CH302 + CH20 + CH30H + 02 kb 

~ 

FTIR studies by Kan ~ Al. (1980) and Niki ~ ale (1981) are 

in reasonable agreement on branching ratios at 298K; ka/k -0.35, 

kb/k -0.10. Because of the existence of multiple pathways, 

the temperature dependence of k may be complex. Further work 

is required on both the temperature dependence and the variation 

of branching ratios with temperature. 

130. CH302 + NO. The value of k(298K) is the average of those determined 

by Sander and Watson (1980), Ravishankara ~ ale (1981a), Cox and 

Tyndall (1980), Plumb ~ Al. (1981), and Simonaitis and Heicklen (1981). 

Values lower by more than a factor of two have been reported by Adachi 

and Basco (1979) and Simonaitis and Heicklen (1979). The former direct 

study was probably in error because of interference by CH30NO formation. 

The results of Simonaitis and Heicklen (1979) and Plumb g1Al. (1979) 

are assumed to be superseded by their more recent values. Ravishankara gk 

Al. (1981a) and Simonaitis and Heicklen (1981) have measured the temperature 

dependence of k over limited temperature ranges. The recommended A factor 

and E/R were obtained by a least squares analysis of the data from the two 

studies. The value of k(218K) obtained by Simonaitis and Heicklen (1981) has 
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been neglected; however, the large error bounds allow the calculated value 

of k at 218K to overlap that measured by Simonai tis and Heicklen. 

Ravishankara ~al. (1981a) find that the reaction channel leading to 

N02 accounts for at least 80% of the reaction. This result, in conjunction 

with the indirect evidence obtained by Pate ~~. (1974), confirms 

that N02 formation is the major, if not the only, reaction path. 

131. CH302 + H02' The room temperature value is that of Cox and Tyndall 

(1979, 1980). This study also reports a large negative E/R value over a 

temperature range 274 to 338K, which is similar to that found for the H02 + H02 

reaction by many groups (see note on H02 + H02)' This measurement 

has been carried out only at 1 atmosphere pressure. The above results 

are not inconsistent with the suggested value for the H02 + H02 

reaction. The rate coefficient needs independent verification at 

one atmosphere, and measurements as functions of pressure, water 

vapor concentration, and temperature. 

132. OH + H2S, The value of k(298) is an average of the rate constants reported 

by Perry ~ ale (1976b), Cox and Sheppard (1980), Wine ~~. (1981a), 

Leu and Smith (1982a), and Michael ~~. (1982). The value of E/R 

is taken from a composite unweighted least squares fit to the 

individual data points from these same five studies. The study by 

Leu and Smith (1982a) shows a slight parabolic temperature dependence 

of k with a minimum occurring near room temperature. Within the error 

limits stated in this evaluation, all data are fit reasonably well 

with an Arrhenius expression. The data from the very recent study 

by Lin (1982) are in excellent agreement with the present recommendation 

They also show a slight non-Arrhenius behavior. The weight of evidence 

from these recent measurements suggests that the earlier study by 

Westenberg and deHaas (1973b) was in error (quite possibly due to 

secondary reactions). The room temperature value of Stuhl (1974) 

lies just outside the 20 error limit set for k(298). 

133. OH + OCS. This recommendation accepts with broad uncertainties the 
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work of Leu and Smith (1981) who report rate constants between 300 and 

500K approximately an order of magnitude lower than Ravishankara 

~Al. (1980b), who had been thought to have minimized the compli

cations due to secondary chemistry and/or excited state reactions 

present in the studies of Atkinson et Al. (1978) and Kurylo (1978). 

The upper limit of k(298) reported by Cox and Sheppard (1980) is 

too insensitive to permit valid comparison with the newer results. 

The Ravishankara et~. (1980b) data can be used to calculate an 

E/R value of -2000K. The similarity between this value and the 

230K value of Leu and Smith (1981) suggests a temperature invariant 

removal of OH in the Ravishankara experiment possibly due to 

impurities in the OCS. Product observations by Leu and Smith (1981) 

tentatively confirm the suggestion of Kurylo and Laufer (1979) that 

the reaction produces predominantly HS + C02. Until these lower 

measurements are independently confirmed, the error limits on k(298) 

and E/R will encompass the results of Ravishankara et sl. (1980b). 

134. OH + CS2• There appears to be a consensus of experimental evidence 

indicating that this reaction proceeds very slowly as a direct bimolecular 

process. Based on the study by Wine ~ Al. (1980), an upper limi t 

on k(298) of 1.5 x 10-15 can be set. This determination is 

consistent with the upper limit reported by Iyer and Rowland (1980) 

for the rate of direct production of OCS in an OH + CS2 reaction 

system suggesting that OCS and SH are the primary products of the 

bimolecular process. This mechanistic interpretation is further 

supported by the studies of Leu and Smith (1982b) and Biermann ~ 

Al. (1982) which set upper limits on k(298) somewhat higher than 

Wine ~ Al. (1980). The more rapid reaction rates observed by 

Atkinson ~ sl. (1978), Kurylo (1978), and Cox and Sheppard (1980) 

may be attributed to severe complications arising from excited 

state and secondary chemistry in their photolytic systems. The Cox 

and Sheppard study in particular may have been affected by the 

reaction of electronically excited CS2 (produced via the 350 on 

photolysis) with O2 (in the 1 atmosphere synthetic air mix). The 
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importance of this reaction in the tropospheric photooxidation of 

CS2 to oes has been suggested by Wine ~ sl. (1981d). 

More recent investigations by Ravishankara (1982), Jones ~Al. 

(1982), and Barnes et sl. (1983) have demonstrated a marked 

acceleration of the OH + CS2 reaction in the presence of O2 with 

a one to one relationship between the S02 and OCS produced and 

the CS2 consumed. In the Barnes study the effective bimolecular 

reaction rate was found to be a function of total pressure (02 + N2) 

as well, and exhibited an appreciable negative temperature 

dependence. These observations are consistent with the formation of 

a long-lived collision adduct postulated by Kurylo (1978) and Kurylo 

and Laufer (1979), followed by its reaction with 02: 

k 
a 

+ M:::==HOCS2 + M 

~ 
k 

02--S. Products 

The effective second order rate constant of eS2 or OH removal in 

such a scheme can be written as 

kb 
l/k

eff 
= -k-k--

a c Po 
2 

1 
+ k P 

a M 

where Po is the partial pressure of O2 and PM equals Po + PN_. 
2 2 -2 

The validity of this expression requires that ka and kb are 

invariant with the P
02

/PN
2 

ratio. A 11k vs 1/P02 plot of 

the data of Jones et~. taken at atmospheric pressure exhibits 

marked curvature, suggesting a more complex mechanistic involvement 

of 02" The more extensive data base of Barnes ~ sl., however, 

appears to be fit quite satisfactorily by the above analysis. 

Nevertheless several inconsistencies arise. First, under the same 

conditions of Po and PN , the Barnes ~Al. rate constants lie 
2 2 

-60% higher than those of Jones et s1. Secondly, two fits of the 

Barnes data can be made: one at fixed PM and varying Po , and the 
2 

90 



other at fixed Pez and varying PM (i.e. varying added N2). While 

both fits converge for mole fractions of 02 near 0.2 (the common 

data point) their differences approach more than a factor of 2 for 

a pure 02 system. Finally, the temperature dependence of the keff 

values from Barnes ~ ale varies systematically from an E/R or 

-1300K for runs in pure 02 (at 700 torr total pressure) to -2900K 

in a 50 torr 02 plus 650 torr N2 mixture. These last two observations 

suggest that ka and kb are not independent of the identity of M. 

The present recommendation was derived by averaging the two above 

mentioned fits of the Barnes ~ Al. room temperature data and 

incorporating the temperature dependence calculated from an Arrhenius 

analysis of the 1/keff vs. Po fits of the constant PM data at 264, 
2 

278, and 293K. This leads to the following equation: 

k(298) = 3.2 x 10-15 P cm3 molec-1 s-1 

for air mixtures (i.e. Po /PN = 0.25) where P (the total pressure) 
2 2 

is expressed in torr. The uncertainty factor at 298K has been set 

to encompass the synthetic air data of Jones ~ ~. 

Values of k at temperatures below 298K can be calculated from the 

expression 

k = 2.0 x 10-18exp[(2200~500)/T] x P cm3 molec-1 s-1 

Again, this expression is valid for oxygerr-ni trogen mixtures at a 

total pressure P (in torr) having an oxygen mole fraction of 0.2. 

The 6E/R has been set to account for (within 20) the range of 

E/R found as a function of the Paz /PN 2 ratio. 

No recommendation is given for N2 + 02 mixtures with mole 
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fractions differing from air since, as mentioned, the fits to the 

two sets of Barnes et sl. room temperature data diverge at high 

O2 mole fractions. Additional work is needed to understand more 

fully the complex details of this reaction. 

135. 0 + H2S. This recommendation is derived from an unweighted least squares 

fit of the data of Singleton ~sl. (1979) and Whytock ~ ale (1976). 

The results of Slagle ~ ale (1978) show very good agreement for 

E/R in the temperature region of overlap (300-500K) but lie systematically 

higher at every temperature. The uncertainty factor at 298K has been 

chosen to encompass the values of k(298K) determined by Slagle et sl. 

(1978) and Hollinden ~sl. (1970). other than the 263K data point 

of Whytock ~ ale (1976) and the 281K point of Slagle ~ sl. (1978) 

the main body of rate constant data below 298K comes from the study of 

Hollinden ~sl. (1970), which indicates a dramatic change in E/R in 

this temperature region. Thus, ~E/R was set to account for these 

observations. Such a non-linearity in the Arrhenius plot might indicate 

a change in reaction mechanism from abstraction (as written) to addition. 

An additional channel (resulting in H atom displacement) has been 

proposed for this reaction by Slagle ~sl. (1978), Singleton ~Al. 

(1979), and Singleton et sl. (1982). In the two Singleton studies 

an upper limit of 20% is placed on the displacement channel. Direct 

observa tion of product HSO was made in the recent reactive 

scattering experiments of Clemo ~ sl. (1981) and Davidson ~ sl. 

(1982). A threshold energy of 3.3 Kcal/mole was observed (similar 

to the activation energy measured in earlier studies) suggesting the 

importance of this direct displacement channel. Addition products 

from this reaction have been seen in a matrix by Smardzewski and Lin 

(1977). Further kinetic study in the 200 to 300K range as well as 

quantitative direct mechanistic information could clarify these issues. 

This reaction is thought to be of limited stratospheric importance, 

however. 

136. 0 + OCS. The value for k (298 K) is the average of five different studies 
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of this reaction: Westenberg and de Haas (1969a), Klemm and Stief 

(1974), Wei and Timmons (1975), Manning ~ Al. (1976) and Breckenridge 

and Miller (1972). The recommended value for E/R is the average of those 

determined in the temperature stUdies reported in the first three references. 

Hsu ~Al. (1979) report that this reaction proceeds exclusively by 

a stripping mechanism. 

137. 0 + CS2• The value of k (298 K) is the average of seven determinations: 

Wei and Timmons (1975), Westenberg and de Haas (1969a), Slagle ~ Al. 

(1974a), Callear and Smith (1967), Callear and Hedges (1970), Homann 

~~. (1968), and Graham and Gutman (1977). The E/R value is 

an average of those determined by Wei and Timmons (1975) and Graham 

and Gutman (1977). E/R has been set to encompass the limited 

temperature data of Westenberg and de Haas (1969a). The principal 

reaction products are thought to be CS + SO. However, Hsu ~ ~. 

(1979) report that 1.4% of the reaction at 298K proceeds through the 

channel yielding CO + S2 and calculate a rate constant for the 

overall process in agreement with that recommended. Graham and Gutman 

(1977) have found that 9.6% of the reaction proceeds to yield OCS + S 

at room temperature. 

138. 0 + SH. This recommendation accepts the results of Cupitt and Glass 

(1975). The large uncertainty reflects the fact that there is only 

one study of the reaction. 

139. S + O2• This recommendation is based primarily on the study of 

Davis ~~. (1972). Modest agreement at 298K is provided by the 

studies of Fair and Thrush (1969), Fair ~sl. (1971), Donovan and 

Little (1972) and Clyne and Townsend (1975). A more recent study by 

Clyne and Whitefield (1979) indicates a slightly negative E/R between 

300 and 400K. Their data are encompassed by the error limits of the 

present recommendation. 

140. S + 03• This recommendation accepts the only available experimental 
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data by Clyne and Townsend (1975). In the same study these authors report 

a value for S + 02 in reasonable agreement with that recommended. The 

error limit cited reflects both the agreement and the need for independent 

confirmation. 

141. S + OH. This recommendation is based on the single study by Jourdain 

~Al. (1979). Their measured value for k(298) compares favorably 

with the recommended value of k(O + OH) when one considers the slightly 

greater exothermicity of the present reaction. 

142. SO + O2 • This recommendation is based on the recent (only available low 

temperature measurements) of Black ~ Al. (1982a,1982b). The room 

temperature value accepts the latter results as recommended by the 

authors. The uncertainties cited reflect the need for further 

confirmation and the fact that these results lie significantly 

higher than an extrapolation of the higher temperature data of 

Homann ~ Ai. (1968) upon which the previous recommendation was 

based. A room temperature upper limit on k set by Breckenridge and 

Miller (1972) is in good agreement with the Black ~Al. data. 

143. SO + 03. The value of k(298) is an average of the determinations by 

Halstead and Thrush (1966), Robertshaw and Smith (1980), and Black ~sl. 

(1982a,1982b) using widely differing techniques. The value of E/R is 

an average of the values reported by Halstead and Thrush (1966) and 

Black ~ Al. (1982b) with the A-factor calculated to fit the value 

recommended for k(298). 

144. SO + OH. The value recommended for k(298) is an average of the 

determinations by Fair and Thrush (1969) and Jourdain ~ Al. (1979). 

Both sets of data have been corrected using the present recommendation 

for the 0 + OH reaction. 

145. SO + N02 • The value of k(298) is an average of the measurements by 

Clyne and MacRobert (1980) and Black ~Al. (1982a) which agree quite 
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well with the rate constant calculated from the relative rate measurements 

of Clyne ~.s!.l.. (1966). 

146. so + OCIO. This recommendation is based on the single investigation by 

Clyne and MacRobert (1981). Uncertainties for both the CIO and OCIO 

reactions reflect the absence of any confirming investigations. 

In the BrO reaction (performed in excess SO), the BrO decay was 

too rapid to permit quantitative analysis. The lower limit for 

k(298) was therefore obtained from the measurement of S02 

production. 

147. S02 + H02• This upper limit is based on the atmospheric pressure study 

of Graham et.s!.l.. (1979). A more recent low pressure laser magnetic 

resonance study by Burrows ~ al. (1979) places a slightly 

higher upper limit on k(298) of 4 x 10-17 (determined relative 

to OH + H202). Their limit is based on the assumption that the products 

are OH + S03. The weight of both these stUdies suggests an 

error in the earlier determination by Payne ~ Ai. (1973). 

148. CH302 + S02. This recommendation accepts results from the study of 

Sander and Watson (1981a), which is believed to be the most appropriate 

study for stratospheric modeling purposes among those which have 

been conducted. Their experiments were conducted using much lower 

CH302 radical concentrations than in the earlier studies of Sanhueza 

et al. (1979) and Kan ~ gl. (1979), both of which resulted in 

k(298) values approximately 100 times larger. A more recent report by 

Kan ~ Ai. (1981) postUlates that these differences are due to 

reactive removal of the CH302S02 adduct at high CH302 radical 

concentrations, prior to its reversible decomposition into CH
3
02 + S02. 

They suggest that such behavior of CH302S02 or its equilibrated 

adduct with O2 (CH302S0202) would be expected in the studies 

yielding high k values, while decomposition of CH302S02 into 

reactions would dominate in the Sander and Watson experiments. It 

does not appear likely that such secondary reactions involving CH302' 
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NO, or other radical species, if they occur, would be rapid enough 

under normal stratosphere condi tions to compete with the adduct 

decomposition. 

149. SH + O2 • The basis of this recommendation is the recent work of Tiee 

~si. (1981) employing laser induced fluorescence detection of HS. 

Their preliminary measurement is lower than the upper limit for this 

rate constant estimated by Cupitt and Glass (1975) by nearly two orders 

of magnitude. A pulse radiolysis study by Nielsen (1979) sets an 

upper limit for k(298) approximately 2.5 times greater than that 

found by Tiee ~ Ai. (1981). 

150. Cl + ~S. This recommendation is based on the laser-initiated, time

resolved infrared chemiluminescence study by Nesbitt and Leone (1980) 

which refines the measurements of Braithwaite and Leone (1978). The 

uncertainty factor at 298K has been set to encompass (within 2a) 

the discharge flow results of Clyne and Ono (1983) which may have 

been complicated by heterogeneous effects or by wall loss of the 

very low concentrations of H2S used. 

151. Cl + OCS; C10 + OCS; C10 + S02. These recommendations are based on 

the discharge flow mass spectrometer data of Eibling and Kaufman (1983). 

The upper limit on k(298) for the Cl + OCS reaction is calculated from 

their minimum detectible decrease in atomic chlorine. Based on 

the observation of product SC1, a lower limit for k(298) for the 

reaction as written can be set at 10-18 cm3 molec-1 s-1. 

Similarly, the upper limit on k(298) for the C10 + OCS reaction 

was set from the minimum detectible decrease of C10 in this reaction 

system. No products were observed. 

The recommended upper limit on k(298) for the C10 + S02 reaction 

is based on the authors' estimate of their detectibility for S03. 

Other estimates of k at 298K and 220K, based on the minimum detectible 
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decrease in ClO, have not been used because of the potential problem 

of ClO reformation from the Cl + 03 source reaction. 
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Table 2. Rate Constants for Three-Body Reactions 

Low Pressure Limit High Pressure Limit 
ko(T) = kaOO (T/300)-n koJT) = k~00(T/300)-m 

Reaction kdOO n ~OO m Notes 

/0 + 02 ~ 03 (6.0:0.5)( -34) 2.3:0.5 

+0(1D) + N2 ~ N20 (3.5:t3.0)(-37) 0.6!~6 2 

J'H + 02 !! H02 (5.5:t0. 5)( -32) 1.6:t0.5 3 

+ H OH + OH .... H202 (6. 9:t3.0)( -31) 0.8~6:g (1.0:t0.5)( -11) 1.0:t1.0 4 

o + NO ~ N02 (1.2:t0.3)(-31 ) 1 .8:t0. 5 (3.0:1.0)(-11) 0:t1 5 

o + N02 !i N03 ( 9 .0:t1 .0)( - 32 ) 2.0:t1.0 (2.2:t0. 3)( -11) 0:1 6 

~OH + NO !i HONO (7.0:t2.0)(-31) 2.6:t1.0 (1. 5:1. 0)( -11) 0.5:0.5 7 

JOH + N02 !i HN03 (2. 6:t0. 3)( -30) 3.2:t0.7 (2.4:t1.2)( -11) 1.3:t1.3 8 

~02 + N02 !i H02N02 (2. 3:t0 .2)( -31) 4.6:t1.0 (4.2:1.0)(-12) 0:t2.0 9 

,ft02 + N03 !! N205 (2.2:t1.1)( -30) 2.8:t1.0 ( 1 • 0:t0 .8)( -12 ) 0:t1.0 10 

-.tCl + NO !i ClNO (9.0:2.0)(-32) 1.6:0.5 11 

+Cl + N02 ~ ClONO ( 1 • 6:t0 .6)( -30 ) 2.0:t1.0 ( 1.0:t0.5)(-10) 1.0:t1.0 12 

+ !i ClN02 (2.2:t1.2)(-31) 2.0:t1.0 ( 1 • 0:t0 • 5 )( -1 0 ) 1.0:t1.0 12 

~Cl + O2 ~ ClOO (2.0:t1.0)(-33) 1.4:t1.4 13 

/ ClO + N02 !i ClON02 ( 1 • 8:t0 .3)( - 31 ) 3.4:t1.0 ( 1. 5:0 • 7)( -11 ) 1.9:1.9 14 

viBrO + N02 ~ BrON02 (5 .0:t2. 0)( -31) 2.0:t2.0 ( 1 • 0:t0. 5)( -11 ) 1.0%1.0 15 

k (T) [M] 2} -1 
0 0.6{1 + [log10(ko (T) [M]/koo(T»] 

Note: k(Z) = k(M,T) = (1 + k (T)[M]/k (T» 
o 00 

The values quoted are suitable for air as the third body, M. 

+H1nor changes from JPL 82-57 for consistency with calculations of Patrick and Golden (1983). 

·Changed from JPL 82-57. 
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Table 2. (Continued). 

Low Pressure Limit High Pressure Limit 
ko(T) = k300 (T/300)-n k (T) = k3OO (T/300)-m 

0 <Xl <Xl 

Reaction k~OO n k300 
<Xl m Notes 

+F + O2 !! F02 (1.6:1:0.8)( -32) 1.4:1:1.0 16 

F + NO ~ FNO ( 5.9:1:3 • 0 )( - 32 ) 1. 7:1:1. 7 17 

F + N02 ~ Products (3.3:1:1.7)(-30) 2.0:1:2.0 (2.0:1:1.0)(-10) 1.0:1:1.0 18 

FO + N02 ~ FON02 (2.6:1:2.0)(-31 ) 1. 3:1:1.3 (2.0:1:1.0)(-11) 1.5:1:1.5 19 

./ CH3 + 02 !! CH302 (6.0:1:3.0 )(-31) 2.0:1:1.0 (2.0:1:1.0)(-12) 1.7:1:1. 7 20 

CH302 + N02 !! CH302N02 (1.5:1:0.8)(-30) 4.0:1:2.0 (6.5:1:3.2)(-12) 2.0:1:2.0 21 

VOH + 502 !! H0502 (3.0:1:1.5)(-31 ) 3.4:1:1.5 (2.0:1:1.5)(-12) 0:1:1.0 22 

OH + C2H4 !! HOCH2CH2 (3. r:t2)( -28) 3.1:1:2.0 (8.8:1:0.9)(-12) O:!:~ 23 

DH + C2H2 ~ HDCHCH (3.5:1:2)(-29) 3.5:1:2.0 (8.0:1:1.0)(-13) -2.6:!:~:g 24 

k (T) [M] 2} -1 

Note: k(Z) = K(M,T) = (1 + kO(T) [M]/k (T» 
0.6 {l + [loglO(ko (T)[H]/k<Xl(T»)] 

o <Xl 

The values quoted are suitable for air as the third body, H. 

+Hinor changes from JPL 82-57 for consistency with calculations of Patrick and Golden (1983). 
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1. Low-pressure limit and T-dependence are an average of Klais, 

Anderson, and Kurylo (1980a), and Lin and Leu (1982). The result 

is in agreement with most previous work (see references therein). 

2. Low-pressure limit from Kajimoto and Cvetanovic (1976). T-dependence 

assuming constant S. Rate constant is extremely low in this special 

system due to electronic curve crossing. 

3. Kurylo (1972), Wong and Davis (1974) averaged. Both studies include 

T-dependence; the recommended value is chosen with constant <~>N _ 

.05 kcal mole-1• This very low number reflects rotational effects. 

4. Zellner (1982) reports pressure and T-dependence in N2 for 

253 < T < 353. Their values are in rough agreement with those of 

Kijewsky and Troe (1972), who report low-pressure values in Ar for 

950 < T < 1450. Trainor and von Rosenberg (1974) also report a 

value. 

5. Values of rate constants and temperature dependences from the 

evaluations of Baulch ~ al. (1980). They suggest Fe = 0.85=.1, 

compared to our fixed value of 0.6. They also suggest m = -0.3. 

These make very small differences over the range of stratospheric 

conditions. 

(In a supplementary review, Baulch ~ sl. (1982) suggest a slight 

temperature dependence for Fc' which would cause their suggested 

value to rise to Fc = 0.89 at 200 K.) 

6. Values of rate constants and temperature dependences from the 

evaluations of Baulch ~sl. (1980). They use Fc = 0.8 to fit the 

measured data at 298K, but our value of Fc = 0.6 gives a similar 

result. (In a supplementary review, Baulch ~ al. (1982) suggest 
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a slight temperature dependence for Fc , which would cause their 

suggested value to rise to Fc = 0.85 at 200K.) 

7. The low-pressure limit rate constant has been reported by Anderson 

and Kaufman (1972), Stuhl and Niki (1972), Morley and Smith (1972), 

Westenberg and de Haas (1972), Anderson ~al., (1974), Howard and 

Evenson (1974), Harris and Wayne (1975), Atkinson gisl. (1975), 

Overend ~sl. (1976), Anastasi and Smith (1978), and Burrows 

et sl. (1983). The general agreement is good, and the recommended 

value is a weighted average, with heavy weighting to the work of 

Anastasi and Smith. The reported high pressure limit rate 

constant is generally obtained from extrapolation. The recom mended 

value is a weighted average of the reports in Anastasi and Smith (1978) 

and Anderson ~sl. (1974). [Both ~ and trans - HONO are 

formed. ] 

8. Low-pressure limit from Anderson ~sl. (1974), who report n = 2.5 

(240 < TIK < 450); Howard and Evenson (1974); Anastasi and Smith 

(1976), who report n = 2.6 (220 < TIK < 550) and Wine ~sl. (1979) 

who support these values over the range (247 < TIK < 352). The recommended 

value of n = 3.2 comes from <~E>N =0.55 kcal mole-1• (This 
2 

value is consistent with the experiments.) Burrows gi.s.L (1983) 

confirm the value of 295 K. The high-pressure limit and T-dependence 

come from R R KM model of Smith and Golden (1978), although the error 

limits have been expanded to encompass m = O. 

Robertshaw and Smith (1982) have measured k up to 8.6 atmospheres of 

CF4. Their work suggests that koo might be higher than suggested 

here (-50%). This might also be due to other causes (i.e., isomer 

formation or involvement of excited electronic states). The recommendation 

herein fits all data over the range of atmospheric interest. 

9. Low-pressure limit from Howard (1977) and Sander and Peterson 

(1982). The latter work includes a complete study of pressure and 
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temperature dependence, and all other parameters are from this 

study. The previous values from Baldwin and Golden (1978b), who used 

RRKM theory and data on the reverse reaction from Graham, Winer, and 

Pitts (1977), differ slightly in the value and the temperature 

dependence of koo• The absence of negative temperature dependence 

for koo yields an equilibrium constant that, in turn, yields values 

of SO(H02N02) -76 cal mole-1 deg-1 and bHf(H02N02) = -12.7 kcal 

mole-1• This compares to Baldwin and Golden's values of S0298 = 
71.6, and 6Hf ,298 = -14.1 kcal/mole-1• This value of 71.6 e.u. 

should be a fairly conservative upper limit, and suggests that some 

negative T-dependence may be required to fit all the data. The 

discrepancy in the high-pressure limiting rate constants has a 

small effect at stratospheric pressures. 

other studies by Simonaitis and Heicklen (1978) and Cox and Patrick 

(1979) are in reasonable agreement with the recommendations. 

10. Data on the reverse reaction from Connell and Johnston (1979) and 

Viggiano ~ al. (1981). A very thorough analysis of this data by 

Malko and Troe (1982) concludes that the data is best fit with ko300 = 
3.7 x 10-30 , n = 4.1, koo30 0 = 1.6 x 10-12 , m = -0.2, and F c = exp(-T/250) + 

exp(-1050/T), Fc = .33 at 300K. The values recommended here fit the 

data just as well. A recent study in 02 (Fowles ~ al. 1982) is in 

rough agreement for the high pressure limit. 

11. Low-pressure limit from Lee ~ sl., (1978a), Clark ~ sl. (1966), 

Ashmore and Spencer (1959), and Ravishankara ll.al. (1978). 

Temperature dependence from Lee ~al. (1978a) and Clark ~~. 

(1966). 

12. Low-pressure limit and T-dependence from Ravishankara ~~. (1978), 

Ravishankara (1982), and Chang ~ ale (1979). The latter paper 

shows why Niki ~ sl. (1978c) saw two products with ClONO dominating. 

8 = 0.28 was arrived at by dividing the sum of ksc for both paths 
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into measured rate constant for overall reaction of Cl + N02. 

[Both ~ and ~ - ClONO are formed.] High-pressure limit and 

temperature dependence are fixed to match measurement at 200 torr. 

13. stedman ~~. (1968) and Nicholas and Norrish (1968) measured this 

process in Ar. Recommended value based on k(N2)/k(Ar) = 1.8. 

T-dependence from constant <~>. 

14. The available kinetics data for this reaction fall into two sets, 

which are in substantial disagreement. Several independent low

pressure determinations (Zahniser ~ ~., 1977; Birks ~ ~., 1977; 

Leu ~~., 1977; Lee ~ gl., 1982) of the rate of ClO disappearance 

via the ClO + N02 + M reaction are in excellent agreement and give 

an average ko (300) near 1.8 x 10-31 cm6 s-1. No product 

identification was carried out, and it was assumed that the reaction 

gave chlorine nitrate, ClON02• In contrast, direct measurements 

of the rate of thermal decomposition of ClON02 (Knauth, 1978; 

Schonle ~ ~., 1979), combined with the equilibrium constant, give 

ko(300) = 4.5 x 10-32 cm6 s-1 for the three-body reaction forming 

ClON02• Since the measured rate of ClO disappearance seems well 

established by four groups, the Knauth results can be reconciled 

with the higher number by three different explanations: (1) the 

measured thermal decomposition rate is incorrect; (2) the 

equilibrium constant is in error by a factor of three (requiring 

that the ~Hf's are off by -1 kcal/mole, which, while small, is 

outside the stated error limits); (3) all the data are correct, and 

the low-pressure ClO disappearance studies measured not only a 

reaction forming ClON02 , but another channel forming an isomer, 

such as OClN02, ClOONO, or OClONO (Chang ~ al., 1979; Molina gt si., 

1980a) • 

Recent work by Margitan (1983b) and Cox li.9l.. (1983) indicate that 

there are no isomers of ClON02 formed. Thus, either explanation (1) 

and/or (2) above must be invoked. 
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The high-pressure limit rate constants and their temperature 

dependence are from the model of Smith and Golden (1978). 

The rate constants above fit measured rate data for the 

disappearance of reactants (Cox and Lewis, 1979; Dasch §..t.li., 

1981). Data from Zellner (1982) indicate an approximately 50% 

lower koo' 

15. Data at 300K are from Sander ~Al. (1981). They suggest ko = 

(5.0~1.0)(-31) koo = (2.0!q:O)(-11) and Fc = 0.4!8:05' The 

temperature dependences are simple estimates. 

Even though isomer formation seems to have been ruled out for the 

C10 + N02 reaction (i.e. the isomer stability is too low to make 

a significant contribution to the measured rate constant), this does 

not eliminate the possibility that BrO + N02 leads to more than one 

stable compound. In fact, if the measured value of ko is accepted, 

it can only be theoretically reconciled with a single isomer, 

BrON02, which would have a 6-7 kcal mole-1 stronger bond than 

C10N02 ! This would fix the heat of formation of BrON02 to be the 

same as C10N02' an unlikely possibility. 

16. Low-pressure limit from Baulch ~~. (1982), who averaged the 

results of Zetzsch (1973), Arutyunov lili. (1976), Chen ~ .s.l.. 

(1977), and Shamonima and Ketov (1979). Temperature dependence is 

calculated (Patrick and Golden (1983». 

Calculated values of the strong-collision rate constant yield a more 

physically meaningful value of B when the JANAF value of the heat of 

formation of F02 is adopted. See notes to Table 3 and Patrick and 

Golden (1983). 

17. Parameters estimated from strong collision calculations with <tE> 

set at .42 kcal/mole-1, yielding B = .30 at 300K and B = .38 

at 200K. T-dependence as per text. 
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18. Low-pressure limit rate constant from strong collision calculation 

and S = 0.30. T-dependence from constant <6E> = 0.42 kcal mole-1. 

High-pressure limit and T-dep~ndence are estimated by analogy to 

Cl + N02 , assuming the same relative stability of the analogous 

isomers (i.e. FONO is formed more rapidly than FN02)' 

19. Low-pressure limit from strong collision calculation and S = 0.33. 

T-dependence from constant <6E> = .52 kcal mole-1• High-pressure 

limit and T-dependence estimated. 

Once again (see Note 15) multiple channels could be important here, 

which would mean that the reaction between FO and N02 could be much 

faster, since these values consider only FON02 formation. 

20. Low pressure limit from recent reports of Plumb and Ryan (1982) and 

Selzer and Bayes (1983) who each report ko - 3 x 10-31 cm-6 sec-1 

in He. Low-pressure limit T-dependence as per text. High-pressure 

limit from van den Bergh and Callear (1971), and Hochanadel ~Al. 

(1977). [Data of Basco ~~. (1972), Washida and Bayes (1976), 

Laufer and Bass (1975), Washida (1980), are also considered.] 

High-pressure limit T-dependence estimated. 

21. Parameters from a reasonable fit to the temperature and pressure

dependent data in Sander and Watson (1980) and Ravishankara ~ ale 

(1980a) • 

The former reference reports their room-temperature data in the same 

form as herein, but they allow Fc to vary. They report: 

ko = 2.33 x 10-30 , koo = 8 x 10-12 , Fc = 0.4 

which is not a qualitatively different fit to the data at 300K. 

The later reference reports temperature dependence as: 

ko = 2.2 x 10-30(T/300)-2.5, koo = 7 x 10-12(T/300)-3.5, Fc = 0.4 

These parameters are a better fit at all temperatures than those 

recommended here. We do not adopt them since they are not much 
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better in the stratospheric range, and they would require both a 

change in our Fc = 0.6 format, and the adoption of a quite large 

negative activation energy for koo• 

The most recent CODATA recommendations (Baulch ~ ~., 1982) are: 

ko = 2.3 x 10-30 (T/300)-4, koo = 8 x 10-12 and 

F - e-T/ 320 + e-1280/T. F = .41 at 300K and .54 at 200K. c - , c 

These values do not fit the data as well as the current recommendations. 

It is interesting to note that the data require a negative T-dependence 

for koo' unlike H02 + N02, and that the value of S at 300K is -.2. 

22. Values of rate constants from Baulch ~ ale (1980). Temperature 

dependence from S = .07 ( E = .24 kcal mole-1) as forced by the data. 

They suggest a value of Fc = 0.7. In a supplementary review, Baulch ~ sl. 

(1982) suggest that Fc = 0.55 at 300K and is temperature dependent, such that 

Fc = 0.67 at 200K, and they raise koo3 00 to 2.5 x 10-12 to accommodate 

this change. The computed rate constants are essentially the same over 

stratospheric conditions as when using Fc = 0.6 as recommended herein. 

Recent work of Leu (1982) and Ravishankara (1983) are in excellent agreement 

with the recommended values. 

23. Experimental data of Tully (1983), Davis ~ Al. (1975), Howard 

(1976), Greiner (1970a), Morris ~ ale (1971) and Overend and 

Paraskevopolous (1977b) in helium, Atkinson ~ al. (1977) in argon 

and Lloyd et ale (1976) and Cox (1975) in nitrogen/oxygen mixtures, 

have been considered in the evaluation. All data are for T > 290 K. 

The low-pressure limiting rate constant and its temperature 

dependence are from calculations of the type discussed earlier 

and in Patrick and Golden (1983). Most of the data is close to the 

high pressure limit and relatively insensitive to ko • 

The value of the high-pressure limiting rate constant and its 

temperature dependence were arrived at from the same data base as 
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above. 

The consensus value of koo is already so high, that is unlikely to 

have much temperature dependence. This is not a radical-radical 

reaction, such as all the previous entries in Table 2, and is 

unlikely to have a positive value of m. The extreme limit of m = -2 

corresponds to a real activation energy of -1 kcal mole-1. 

24. The rate coefficient for this reaction has been measured in 

discharge flow tubes by three groups of investigators; Wilson and 

Westenberg (1967), Breen and Glass (1971), and Pastrana and Carr 

(1974). There is poor agreement between these three studies. 

Smith and Zellner (1973) measured k(298K) = 8 x 10-13 cm3 molecule-1 

s-1. Davis ~Al. (1975) found the rate coefficient to be 

independent of pressure, which is contradicted by Perry ~ Al. 

(1977), Michael ~~. (1980), and Perry and Williamson (1982) who 

found k(298K) to increase up to a pressure of -200 torr of 

argon and then reach a pressure-independent value. 

The recommended values fit the temperature and pressure dependence 

of the latter three reports, when the differences between Ar and 

N2 as bath gases are considered. 

The low pressure limiting rate constant and its temperature 

dependence are calculated as always. Thermo-chemical parameters 

are adjusted within reason to fit the data. 

The high pressure rate constant and its temperature dependence 

are from Michael ~~. (1980), extrapolated downward in temperature. 

The error limits on m reflect the positive activation energy 

requirement. 
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EQUILIBRIUM CONSTANTS 

FQrmat 

SQme Qf the three-bQdy reactiQns in Table 2 fQrm prQducts which are 

thermally unstable at atmQspheric temperatures. In such cases the thermal 

decQmpQsitiQn reactiQn may cQmpete with Qther IQSS prQcesses, such as 

phQtQdissQciation or radical attack. Table 3 lists the equilibrium 

cQnstants, K(T), for six reactiQns which may fall intQ this categQry. The 

table has three cQlumn entries, the first tWQ being the parameters A and B 

which can be used tQ express K(T): 

K(T)/cm3 molecule-1 = A exp(B/T) (200 < T < 300K) 

The third cQlumn entry in Table 3 is the calculated value of K at 300K. 

The data sources for K(T) are described in the individual notes to 

Table 3. When values of the heats Qf formation and entropies of all 

species are knQwn at the temperature T, we note that: 

log [K(T)/cm3 molecule- 1] = 2.303R 

~HO 
T 

2.303RT + log T - 21.87 

where the superscript "0" refers to a standard state of one atmosphere. 

In some cases K values were calculated from this equation, using 

thermochemical data. In other cases the K values were calculated directly 

from kinetic data for the forward and reverse reactions. When available, 

JANAF values were used for the equilibrium constants. The following 

equations were then used to calculate the parameters A and B: 
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K200 300 . 200 
B/oK = 2.303 log 200 

K300 300-

log A = log K(T) - B/2.303 T 
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Table 3. Equilibrium Constants 

Reaction A/cm3 molecule-1 log K(300) Note 

.At02 + N02 + H02N02 2.33 x 10-27 10, 870 -10.90 1 

A02 + N03 + N205 1. 77 x 10-27 11 , 001 -10.83 2 

/c:l + 02 + C100 2.43 x 10-25 2, 979 -20.30 3 

C10 + 02 + C10· 02 <1.3 x 10-26 <5, 230 <-18.30 4 

F + 02 + FOO 5.32 x 10-25 7, 600 -13.27 5a 

1.15x 10-25 3, 582 -19.75 5b 

CH302 + N02 + CH302N02 1.30 x 10-28 11 , 192 -11.68 6 

K/cm3 molecule-1 = A exp(B/T) [200 < T/K < 300] 
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1. The value was obtained by combining the data of Sander and Peterson 

(1982) for the rate constant of the reaction as written and that of 

Graham ~Ai. (1977) for the reverse reaction. 

From the equilibrium constant, it may be inferred that the thermal 

decomposition of H02N02 is unimportant in the stratosphere, but is 

important in the troposphere. 

2. The parameters A and B were calculated from JANAF equilibrium constants 

at 200 and 300 K. 

3. Cox ~ gl. (1979) measured K at 298 K. Their reported value of K, 

(5.4%2.6) x 10-21 cm3 molecule-1 , when combined with JANAF values 

for the entropy change, gives ~Hf(298)(Cl02) = 22.5 kcal/mole-1• 

This is in excellent agreement with Ashford ~al. (1978), who suggest 

~f(298)(Cl02) = 22.5%.5 kcal/mole-1• The expression of Cox ~al. 

is: 

K = 3.71 x 10-28 T exp(32l7/T). 

4. Zellner (1982) suggests K < 12 atm-1 and ~H ~ - 11 kcal/mole. The 

corresponding value of A leads to S0300(ClO·02) -73 cal mole-1 K-1. 

A higher value of 

requires SO(ClO·02) 

unreasonably high. 

evidence for ClO·02• 

K has been proposed by 

to be about 83 cal mole-1 

Carter and Andrews (1981) 

Prasad (1980), but it 

K-1, which seems 

found no experimental 

5. (a) From JANAF thermochemical values. (This value favored by ko 

calculation, see Note 16, Table 2.) 

(b) From Benson's (1976) thermochemical values. 

6. Thermochemical values at 300 K for CH302N02 and CH302 are from 
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Baldwin (1982). In the absence of data, ~Ho and ~so were assumed 

to be independent of temperature. Bahta et~. (1982) have measured 

k(dissociation) at 263 K. Using the values of k(recombination) suggested 

in this evaluation, they compute K(263) = (2.68~0.26) x 10-10 cm3• 

Our values predict 3.94 x 10-10 cm3, in good agreement. 
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PHOTOCHEMICAL DATA 

Discussion Q! Format ~~ Estimates 

In Table 4 we present a list of photochemical reactions considered 

to be of stratospheric interest. The absorption cross sections of 02 and 

03 largely determine the extent of penetration of solar radiation into the 

stratosphere and troposphere. Some comments and references to these cross 

sections are presented in the text, but the data are not listed here. The 

photodissociation of NO in the O2 Schumann-Runge band spectral range is 

another important process requiring special treatment and is not discussed 

in this evaluation (see, for example, Frederick and Hudson, 1979; Allen 

and Frederick, 1982; and WMO Report '11). 

For some other species having highly structured spectra, such as 

CS2 , S02 and OCIO, some comments are given in the text, but the 

photochemical data are not presented. The species CH20 and N02 also have 

complicated spectra, but in view of their importance for atmospheric 

chemistry the data are summarized in the evaluation; for more detailed 

information on their high-resolution spectra and temperature dependence, 

the reader is referred to the original literature. 

Table 5 gives recommended reliability factors for some of the more 

important photochemical reactions. These factors represent the combined 

uncertainty in cross sections and quantum yields, taking into 

consideration the atmospherically important wavelength regiOns, and they 

refer to total dissociation rate regardless of product identity (except in 

the case of 0(1D) production from photolYSiS of 03)· 

The absorption cross sections are defined by the following 

expression of Beer's Law: 
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I = Ioexp(-anl), 

where: Io, I are the incident and transmitted light intensity, 

respectively, a is the absorption cross section in cm2 molecule- 1 , n is 

the concentration in molecule cm-3 , and 1 is the pathlength in cm. The 

cross sections are room temperature values, and the expected 

photodissociation quantum yields are unity, unless otherwise stated. 
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Table 4. Photochemical Reactions of Stratospheric Interest 

02 + hv + ° + ° 
03 + hv + 02 + 0 

03 + hv + 02 + 0(1D) 

H02 + hv + products 

H20 + hv + H + OH 

H202 + hv + OH + OH 

NO + hv + N + ° 
N02 + hv + NO + ° 
N0

3 
+ hv + products 

N20 + hv + N2 + 0(1D) 

N205 + hv + products 

NH3 + hv + NH2 + H 

HN02 + hv + OH + NO 

HN03 + hv + OH + N02 
HN04 + hv + products 

Cl2 + h v + CI + CI 

CIO + hv + CI + ° 
CIOO + hv + products 

OCIO + hv + ° + CIO 

CI03 + hv + products 

HCI + hv + H + CI 

HOCI + hv + OH + CI 

CINO + hv + CI + NO 

CIN02 + hv + products 

(1) Hudson and Kieffer (1975) 

(2) Turco (1975) 

IF New entry 

(1) 

(1) 
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CIONO + hv + products 

CION02 + hv + products 

CCl4 + hv + products 

CCl3F + hv + products 

CCl2F2 + hv + products 

CHCIF2 + hv + products 

CH3CI + hv + products 

CCl20 + hv + products 

CCIFO + hv + products 

CF20 + hv + products 

CH3CCl3 + hv + products 

#BrO + hv + Br + ° 
BrON02 + hv + products 

HF + hv + H + F 

CO + hv + C + ° 
C02 + hv + CO + ° 
CH4 + hv + products 

CH20 + hv + products 

CH300H + hv + products 

HCN + hv + products 

CH3CN + hv + products 

S02 + hv + SO + ° 
H2S + hv + HS + H 

COS + hv + CO + S 

CS2 + hV + products 

(1) 

(1) 

(2) 

(2) 



Table 5. Combined Uncertainties for Cross Sections and 

Quantum Yields 

Species Uncertainty 

°2 
(Schumann-Runge bands) 1.4 

°2 (Continua) 1.3 

°3 
1.15 

03 + 0(1 D) 1.4 

N02 1.25 

N0
3 2.0 

N20 1.2 

N205 2.0 

H202 1.4 

HN03 1.25 

H02N02 2.0 

CH20 1.4 

HCl 1.15 

HOCl 1.4 

CION02 1.25 

CCl4 1.1 

CC13F 1 .1 

CC12F2 1.15 

CH3Cl 1.1 

CF20 2.0 

CH300H 1.4 

BrON02 1.4 

116 



O2 + h \J -+ 0 + 0 

The photodissociation of molecular oxygen in the stratosphere is due 

primarily to absorption of solar radiation in the 200-220 nm wavelength 

region, i.e., within the Herzberg continuum. The 185-200 nm region -- the 

02 Schumann-Runge band spectral range -- is also very important, since 

solar radiation penetrates efficiently into the stratosphere at those 

wavelengths. 

There is considerable disagreement among the cross section values 

measured in the laboratory around 200 nm. Hasson and Nicholls (1971) 

report the largest values: -1.4 x 10-23 cm2 at 200 nm and -1.1 x 10-23 cm2 

at 210 nm. Shardanand and Prasad Rao (1977) obtain the smallest cross 

sections, 1.0 x 10-23 cm2 at 200 nm and 7.7 x 10-24 cm2 at 210 nm. Other 

investigators (Ditchburn and Young, 1962; Ogawa, 1971) report values lying 

between the two extremes. 

Frederick and Mentall (1982) and Herman and Mentall (1982) have 

estimated 02 absorption cross sections from balloon measurements of solar 

irradiance in the stratosphere. The latter authors find the cross 

sections in the 200-210 nm range to be -35% smaller than the smallest of 

the laboratory results, which are those of Shardanand and Prasad Rao. 

Additional laboratory studies should be carried out to resolve the 

discrepancies. 

The attenuation of solar radiation in the Schumann-Runge wavelength 

region is a problem requiring special treatment due to the rotational 

structure of the bands; see, for example, Nicolet and Peetermans (1980); 

Frederick and Hudson (1980); and Allen and Frederick (1982). The 

effective O2 cross sections obtained from solar irradiance measurements in 
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the stratosphere by Herman and Mentall (1982) are in good agreement 

between 187 and 195 nm with the values reported by Allen and Frederick 

(1982), which were obtained by an empirical fit to the effective cross 

sections appropriate for stratospheric conditions. Between 195 and 200 nm 

the fit yielded values which are somewhat larger than those estimated by 

Herman and MentaU. 

The studies of the penetration of solar radiation in the atmosphere 

in the Schumann-Runge wavelength region have been based so far on 

laboratory measurements of cross sections which were affected by 

instrumental parameters due to insufficient spectral resolutio~ Yoshino 

et ale (1983) have recently reported high resolution 02 cross section 

measurements at 300K, between 119 and 202 nm, obtaining presumably the 

first set of results which is independent of the instrumental width. The 

Schumann-Runge cross sections are temperature-dependent, so that 

additional studies will be required in order to carry out detailed 

atmospheric modelling calculations. Furthermore, for estimates of the 

solar irradiance in the stratosphere the cross section values which need 

to be accurately known are those at the wings of the rotational lines and 

in the underlying continuum, and these are several orders of magnitude 

smaller than the peak values. 
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03 + hV + 0 + O2 

The quantum yields for 0(1D) production, ~(01D), for wavelengths 

near 310 nm--i.e., the energetic threshold or fall-off region--have been 

measured mostly relative to quantum yields for wavelengths shorter than 

300 nm, which were assumed to be unity. There are now several studies 

which indicate that this assumption is not correct: Fairchild ~ ale 

(1978) observed approximately 10% of the primary photolysis products in 

the ground state channel, that is, ~(03p) ~ 0.1, at 274 nm; 'Sparks II ale 

(1980) also report ~(03p) ~ 0.1, at 266 nm; according to Brock and Watson 

(1980b) ~(01D) = 0.88 at 266 nm; Amimoto ~ al. (1980) report ~(01D) = 

0.85 at 248 nm, and Wine and Ravishankara (1982) measured 

directly ~(03p) = 0.09 at 248 nm. There are also some indications 

that ~(01D) decreases slightly between 304 and 275 nm (see Brock and 

Watson, 1980 a, b). 

The recommendation for the quantum yields in the fall-off region is 

given in Table 5, and is taken from the mathematical expression given by 

Moortgat and Kudzus (1978), scaled down by a factor of 0.9 to account for 

the absolute magnitude of ~(01D) at short wavelengths. The relative 

values are in good agreement with those reported by Brock and Watson 

(1980a) • 

There are several reviews of the 03 absorption cross sectiOns; see, 

for example, Ackerman (1971) and Hudson and Kieffer (1975). Additional 

laborator~ measurements are required in order to better establish the 

cross sections and their temperature dependency, particularly in the 

critical 280-320 nm range (such work is in progress; see Bass and Paur, 

1981). 
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Table 6. Mathematical Expression for O(lD) Quantum Yields, ~, in the 

Photolysis of 03 

Where: T = T - 230 is a temperature function with T given in Kelvin, 

T is expressed in nm, and arctan in radians. 

The coefficients A(T), B(T), \,(T) and C(T) are expressed as 

interpolation polynomials of the third order: 

A(T) = 0.332 + 2.565 x 10-4 T + 1.152 X 10-5T 2 + 2.313 X 10-8T 3 

B(T) = -0.575 + 5.59 x 10-3T -1.439 X 10-5T 2 - 3.27 X 10-8T 3 

AO(T) - 308.20 + 4.4871 x 10-2T +6.9380 X 10-5T 2 - 2.5452 X 10-6T 3 

C(T) = 0.466 + 8.883 x 10-4T -3.546 X 10-5T 2 + 3.519 X 10-7T 3. 

In the limits where ~(A,T) > 0.9, the quantum yields is set ~ = 0.9, and 

similarly for ~(A,T) < 0, the quantum yield is set ~ =0. 
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H02 + hv + OH + 0 

The absorption cross sections or the hydroperoxyl radical, H02, in 

the 200-250 run region have been measured at room temperature by Paukert 

and Johnston (1972), Hochanadelllli. (1972) and Cox and Burrows (1979). 

Hochanadel ~ sl. (1980) give a cross section value of 4.0ZO.5 x 10-18 cm2 

at 205 nm, and Sander ~ li. (1982) a value of 3.0:0.4 x 10-18 cm2 at 

227.5 nm. 

The shape of the spectrum reported by the first three groups cited 

above is in reasonable agreement. The recommended absorption cross 

sections, listed in Table 7, are computed from the mean of the three after 

normalization of each spectrum to the value at 227.5 run reported by Sander 

~ li. (1982). This latter study gives the most direct measurement of an 

absolute cross section value for H02. 

Lee (1982) has detected O(1n) as a primary photodissociation product 

at 193 and at 248 run, with a quantum yield which is about 15 times larger 

at the longer wavelength. The absolute quantum yield for O(1n) production 

has not been reported yet. 

Table 7. Absorption Cross Sections of H02 

A(nm) 1020a(cm2) 

190 430 

200 480 

210 490 

220 400 

230 260 

240 120 

250 50 
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H202 + hv + OH + OH 

The recommended absorption cross section values, listed in Table 8, 

are the mean of the data of Lin li.s.l.. (1978b) and of Molina and Molina 

(1981). This latter work supersedes the earlier results of Molina ~ sl. 

(1977a). 

Table 8. Absorption Cross Sections of H202 Vapor 

A 1020 a A 1020 a 

(nm) (cm2) (nm) (cm2) 

190 67.2 270 3.2 

195 56.3 275 2.5 

200 47.5 280 2.0 

205 39.8 285 1.5 

210 34.9 290 1.13 

215 29.9 295 0.87 

220 25.4 300 0.66 

225 21.3 305 0.49 

230 17.9 310 0.37 

235 14.8 315 0.28 

240 12.2 320 0.20 

245 10.0 325 0.15 

250 8.3 330 0.12 

255 6.7 335 0.09 

260 5.2 340 0.07 

265 4.2 345 0.05 

350 0.03 

122 



N02 + hv + NO + 0 

Table 9 lists the recommended absorption cross sections of nitrogen 

dioxide, taken from the work of Bass et ~ (1976), who report extinction 

coefficients every 1/8 nm between 185 and 410 nm at 298 K, and between 290 

and 400 nm at 235 K. The effect of the dimer (N204) absorption was 

considered in detail, and the measurements are probably correct to within 

±10%. 

Harker ~ 21. (1977) have reported measurements of absorption cross 

sections and quantum yields in the 375-420 nm region. Their cross 

sections are 4-10% larger than the values reported by Bass ~.s.l. (1976), 

and their quantum yields are, on the average, about 15% smaller than those 

measured by Jones and Bayes (1913), whose data provided the basis for 

earlier recommendations. Recent measurements of the quantum yields by 

Davenport (1978) at six different wavelengths agree very well with those of 

Harker ~~ The recommended values for the quantum yields, presented in 

Table 9, are those of Harker ll..s.l. (1977). Davenport's results indicate 

that the quantum yields themselves are temperature dependent, although the 

effect of temperature on the cross sections is more pronounced. 

For quantum yields in the 295-365 nm region the recommendation is to 

use the expression given by Jones and Bayes (1973), listed at the bottom 

of Table 10. More accurate values should be established in this 

wavelength region, although their contribution to the overall atmospheric 

photodissociation rate is not of major importance. Direct measurements of 

the solar photodissociation rate 1n the troposphere (Stedman ~sA., 1975; 

Dickerson and Stedman, 1980) indicate that the present data base is 

adequate for atmospheric modeling purposes. However, in view of the 
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importance of the N02 atmospheric photodissociation process additional 

studies of the temperature dependence of the quantum yield should be 

carried out. 
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Table 9. N02 Absorption Cross Sections at 235 and 298 K 

A 102Oa(cm2) A 102Oa(cm2) 
--

(nm) 235 K 298 K (nm) 235 K 298 K 

185 26.0 300 10.9 11.7 

190 29.3 305 16.7 16.6 

195 24.2 310 18.3 17 .6 

200 25.0 315 21.9 22.5 

205 37.5 320 23.5 25.4 

210 38.5 325 25.4 27.9 

215 40.2 330 29.1 29.9 

220 39.6 335 31.4 34.5 

225 32.4 340 32.3 38.8 

230 24.3 345 34.3 40.7 

235 14.8 350 31.1 41.0 

240 6.70 355 43.7 51.3 

245 4.35 360 39.0 45.1 

250 2.83 365 53.7 57.8 

255 1.45 370 48.7 54.2 

260 1.90 375 50.0 53.5 

265 2.05 380 59.3 59.9 

270 3.13 385 57.9 59.4 

275 4.02 390 54.9 60.0 

280 5.54 395 56.2 58.9 

285 6.99 400 66.6 67.6 

290 6.77 8.18 405 59.6 63.2 

295 8.52 9.67 I 410 53.2 57.7 
I 

~ J 
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Table 10. Quantum Yields for N02 Photolysis 

A,run q, A,run <!l A,run q, 

375 0.73 389 0.74 400 0.65 

376 0.75 390 0.74 401 0.62 

377 0.86 391 0.81 402 0.57 

378 0.74 392 0.73 403 0.50 

379 0.83 393 0.78 404 0.40 

380 0.81 394 0.83 405 0.32 

381 0.73 394.5 0.78 406 0.30 

382 0.65 395 0.81 407 0.23 

383 0.62 395.5 0.75 408 0.18 

384 0.66 396 0.78 409 0.17 

385 0.70 396.5 0.81 410 0.14 

386 0.74 397 0.77 411 0.10 

387 0.69 398 0.72 415 0.067 

388 0.76 399 0.70 420 0.023 

295-365 nm: q,(A) = 1.0-0.0008 (1..-275) 
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N03 + h v + NO + ~ ( <1>1 ) 

+ N02 + ° (<l>2) 

The absorption cross sections of the nitrate free radical, N0
3

, have 

been studied by (1) Johnston and Graham (1974); (2) Graham and Johnston 

(1978); (3) Mitchell ~ u. (1980); and (4) Marinelli ~ ale (1982). The 

1st and 4th studies required calculation of the N03 concentration by 

modelling a complex kinetic system. The 2nd and 3rd studies are the most 

direct ones and the results in terms of integrated absorption coefficients 

are in very good agreement; the discrepancies in peak heights can be 

attributed to the difference in instrumental resolution, which was higher 

in the 2nd study. The recommended absorption cross sections, listed in 

Table 11 for every 2 nm, are taken from this latter study (Graham and 

Johnston, 1978), which reports values every nm. 

The 4th study was designed to characterize under high resolution the 

strong absorption band around 662 nm; for spectroscopic measurements of 

N03 in the atmosphere the preferred cross sections are those reported in 

this 4th study, which have been scaled to yield the same integrated 

absorption coefficient as in the 2nd and 3rd studies. 

The quantum yields 4>1 and ¢2 have been measured by Graham and 

Johnston (1978) and under higher resolution by Magnotta and Johnston 

(1980), who report the product of the cross section times the quantum 

yield in the 400 to 630 nm range. The total quantum yield value ¢1 + ¢2 

computed from the results of this latter study and the cross sections of 

Graham and Johnston (1978), listed in Table 11, are above unity for A <610 

nm, which is, of course, impossible; hence, there is some systematic error 

and it is most likely in the primary quantum yield measurements. Magnotta 
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and Johnston (1980) and Marinelli ~ sl. (1982) have discussed the 

probable sources of this error, but the question remains to be resolved 

and further studies are in order. At present, the recommendation remains 

unchanged from the previous two, namely, to use the following 

photodissociation rates estimated by Magnotta and Johnston (1980) for 

overhead sun at the earth's surface: 

J 1(NO + 02) = 0.022 s-1 

J2( N02 + 0) = 0.18 s-1. 
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Table 11. Absorption Cross Sections of N03 

1 20 0 CJ 10 20 CJ 10 20 CJ 10 20 CJ 

(run) (cm2) (run) (cm2) (run) 1cm2) (run) Ccm2) 

400 0 476 64 552 216 628 689 

402 1 478 66 554 245 630 641 

404 2 480 64 556 295 632 327 

406 3 482 63 558 317 634 132 

408 3 484 62 560 323 636 123 

410 6 486 74 562 268 638 176 

412 3 488 80 564 248 640 98 

414 7 490 93 566 258 642 68 

416 3 492 89 568 257 644 71 

418 6 494 88 570 253 646 56 

420 9 496 104 572 248 648 48 

422 8 498 108 574 255 650 32 

424 12 500 98 576 292 652 39 

426 9 502 91 578 303 654 57 

428 12 504 105 580 299 656 89 

430 12 506 119 582 310 658 168 

432 14 508 106 584 247 660 512 

434 17 510 130 586 275 662 1708 

436 21 512 161 588 448 664 1154 

438 18 514 141 590 567 666 486 

440 19 516 140 592 483 668 175 

442 20 518 121 594 392 670 75 

444 21 520 144 596 416 672 57 

446 23 522 172 598 354 674 36 

448 28 524 150 600 245 676 31 

450 27 526 137 602 284 678 55 

452 31 528 179 604 400 680 49 

454 34 530 209 606 338 682 25 

456 32 532 181 608 159 684 9 

458 37 534 177 610 135 686 3 

460 39 536 232 612 169 688 4 

462 35 538 211 614 224 690 1 

464 41 540 181 616 174 692 0 

466 45 542 168 618 183 694 1 

468 50 544 139 620 247 696 4 

470 49 546 204 622 761 698 4 

472 54 548 275 624 1166 

474 56 550 224 626 700 
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The recommended values are taken from the work of Selwyn II ale 

(1977), who measured the temperature dependence of the absorption cross 

sections in the atmospg.erically relevant wavelength region. They have 

fitted their data with the expression shown in Table 12. Hubrich and 

Stuhl (1980) have recently measured the N20 cross sections at 298K and 

208K, and their results are in very good agreement with those of Selwyn ~ 

Table 12. Mathematical Expression for Absorption Cross 
Sections of N20 as a Function of Temperature 

ln cr(A,T) = A1 + A2A + A3A2 + A4A3 + A5A4 

+ (T-300)exp(B1 + B2A + B3 A2 + B4A3) 

Where: T: temperature, Kelvin A . nm . 

A1 = 68.21023 B1 = 123.4014 

A2 = -4.071805 B2 = -2.116255 

A3 = 4.301146 x 10-2 B3 = 1.111572 x 10-2 

A4 = -1.777846 x 10-4 B4 = -1.881058 x 10-5 

A5 = 2.520672 x 10-7 

Range: 173 to 240 nm; 194 to 320 K 
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N205 + hv + products 

The absorption cross sections of dinitrogen pentoxide, N205 , have 

been measured at room temperature by Jones and Wulf (1937) between 285 and 

380 nm, by Johnston and Graham (1974) between 210 and 290 nm, by Graham 

(1975) between 205 and 310 nm; and for temperatures in the 223 to 300 K 

range by Yao ~~ (1982), between 200 and 380 nm. The agreement is good 

particularly considering the difficulties in handling N2 05' The 

recommended cross section values, listed in Table 13, are taken from Yao 

ll.sl.. (1982); for wavelengths shorter than 280 nm there is little or no 

temperature dependence, and between 285 and 380 nm the temperature effect 

is best computed with the expression listed at the bottom of Table 13. 

The primary products appear to be N02 and N03: Swanson and Johnston 

(1983) have measured directly the primary quantum yield for N03 production 

obtaining a value of 0.9 oJ: 0.1. 

Table 13. Absorption Cross Sections of N20
5 

A (nm) 102O o{cm2) A{nm) 102Oo{cm2) 

200 920 245 52 

205 820 250 40 

210 560 255 32 

215 370 260 26 

220 220 265 20 

225 144 270 16.1 

230 99 275 13.0 

235 77 280 11.7 

240 ~a 

For 285 nm < A < 380 nm; 300 K > T > 225 K: 

1020
0 = exp[2.735 + {4728.5 - 17.127 A)/T] 

Where 0/ cm2 ; A /nm; T/K. 
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HONO + hv + HO + NO 

The ultraviolet spectrum of HONO between 300 and 400 nm has been 

studied by Stockwell and Calvert (1978) by examination of its equilibrium 

mixtures with NO, N02, H20, N203 and N204; the possible interferences by 

these compounds were taken into account. The recommended cross sections, 

taken from this work, are listed in Table 14. 

Table 14. HONO Absorption Cross Sections 

A 1020a A 1020a A 10
20a 

(nm) (cm2) (nm) (cm2) (nm) ( Q1!l2~ 

310 0.0 339 16.3 368 45.0 
311 0.0 340 10.5 369 29.3 
312 0.2 341 8.70 370 11 .9 
313 0.42 342 33.5 371 9.46 
314 0.46 343 20.1 372 8.85 
315 0.42 344 10.2 373 7.44 
316 0.3 345 8.54 374 4.77 
317 0.46 346 8.32 375 2.7 
318 3.6 347 8.20 376 1.9 
319 6.10 348 7.49 377 1.5 
320 2.1 349 7.13 378 1.9 
321 4.27 350 6.83 379 5.8 
322 4.01 351 17 .4 380 7.78 
323 3.93 352 11.4 381 11 .4 
324 4.01 353 37.1 382 14.0 
325 4.04 354 49.6 383 17.2 
326 3.13 355 24.6 384 19.9 
327 4.12 356 11.9 385 19.0 
328 7.55 357 9.35 386 11.9 
329 6.64 358 7.78 387 5.65 
330 7.29 359 7.29 388 3.2 
331 8.70 360 6.83 389 1.9 
332 13.8 361 6.90 390 1.2 
333 5.91 362 7.32 391 0.5 
334 5.91 363 9.00 392 0.0 
335 6.45 364 12.1 393 0.0 
336 5.91 365 13.3 394 0.0 
337 4.58 366 21.3 395 0.0 
338 19.1 367 35.2 396 0.0 
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HN03 + hv ~OH + N02 

The recommended absorption cross sections, listed in Table 15, are 

taken from the work of Molina and Molina (1981). These data are in good 

agreement throughout the 190-330 nm range with the values reported by 

Biaume (1973). They are also in very good agreement with the data of 

Johnston and Graham (1973) except towards both ends of the wavelength 

range. Okabe (1980) has measured the cross sections in the 110-190 nm 

range; his results are 20-30% lower than those of Biaume and of Johnston 

and Graham around 185-190 nm. 

The temperature dependence of these cross sections has not been 

measured yet; it might be significant in the 300 nm region and hence for 

estimates of the atmospheric photodissociation rate. 

Johnston et al. (1974) measured a quantum yield value of -1 for the 

OH + N02 channel in the 200-315 nm range, using end product analysis. The 

quantum yield for O-atom production at 266 nm has been measured to be 

0.03, and that for H-atom production less than 0.002, by Margitan and 

Watson (1982), who looked directly for these products using atomic 

resonance fluorescence. 
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Table 15. Absorption Cross Sections of HN03 Vapor 

A 10200 A 1020
0 

(nI!!l (cm2) ~ .. 
(cm2) 

190 1560 260 1.88 

195 1150 265 1. 71 

200 661 270 1.59 

205 293 275 1.35 

210 105 280 1.10 

215 35.6 285 0.848 

220 15.1 290 0.607 

225 8.62 295 0.409 

230 5.65 300 0.241 

235 3.72 305 0.146 

240 2.57 310 0.071 

245 2.10 315 0.032 

250 1.91 320 0.012 

255 1.90 325 0.005 

330 0.002 
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H02N02 + hv ~ products 

There are four studies of the UV spectrum of H02N02 vapor: Cox and 

Patrick (1979), Morellill, (1980), Graham lili.. (1978b) and Molina and 

Molina (1981). The latter two studies are the only ones covering the gas 

phase spectrum in the critical wavelength range for atmospheric 

photodissociation, that is, wavelengths longer than 290 nm. The 

recommended values, listed in Table 16 are taken from the work of Molina 

and Molina (1981), which is the more direct study. The temperature 

dependence of the cross sections at these longer wavelengths and the 

identity of the photod~ssociation products remain to be determined. 

Table 16. Absorption Cross Sections of H02N02 Vapor 

A 10200 A 1020
0 

(nm) (cm2) (nm) (cm2) 

190 1010 260 27.8 

195 816 265 22.4 

200 563 270 17 .8 

205 367 275 13.4 

210 241 280 9.3 

215 164 285 6.3 

220 120 290 4.0 

225 95.2 295 2.6 

230 80.8 300 1.6 

235 69.8 305 1 .1 

240 59.1 310 0.7 

245 49.7 315 0.4 

250 41.8 320 0.3 

255 35.1 325 0.2 

330 0.1 
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Cl2 + hv + Cl + Cl 

The absorption cross sections of Cl2, listed in Table 17, are taken 

from the work of Seery and Britton (1964). These results are in good 

agreement with those reported by Gibson and Bayliss (1933), and Fergusson 

ll.al. (1936). 

Table 17. Absorption Cross Sections of Cl2 

A(nm) 1020 a(cm2) A(nm) 102Oa(cm2) 

240 0.08 350 18.9 

250 0.12 360 13 .1 

260 0.23 370 8.3 

270 0.88 380 4.9 

280 2.7 390 3.3 

290 6.5 400 1.9 

300 12.0 410 1.3 

310 18.5 420 0.99 

320 23.6 430 0.73 

330 25.6 440 0.53 

340 23.6 450 0.34 
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CIO + hv + CI + 0 

The absorption cross sections of chlorine monoxide, CIO, have been 

reviewed by Watson (1977). There are some recent measurements yielding 

results in reasonable agreement with the earlier ones, by Handelman and 

Nicholls (1977) in the 250-310 nm region; by Wine et Al. (1977) around 283 

nm; and by Rigaud ~s.l. (1977) and Jourdain ~.ru... (1978) in the 270-310 

nm region. 

The calculations of Coxon et ale (1976) and Langhoff ~ li. (1977) 

indicate that photodecomposition of CIO accounts for at most 2 to 3 

percent of the total destruction rate of CIO in the stratosphere, which 

occurs predominantly by reaction with oxygen atoms and nitric oxide. 
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CIOO + h\J + CIO + 0 

Johnston ~~. (1969) measured the absorption cross sections of the 

CIOO radical using a molecular-modulation technique which required 

interpretation of a complex kinetic scheme. The values listed in Table 18 

are taken from their work. 

Table 18. Absorption Cross Sections of CIOO 

A(nm) A (nm) 

225 260 255 1240 

230 490 260 1000 

235 780 265 730 

240 1050 270 510 

245 1270 275 340 

250 1230 280 230 
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OCIO + hv ~ 0 + CIO 

The spectrum of OCIO is characterized by a series of well developed 

progressions of bands extending from - 280 to 480 nm. The spectroscopy of 

this molecule has been studied extensively, and the quantum yield for 

photodissociation appears to be unity throughout the above wavelength 

range--see, for example, the review by Watson (1977). 

Birks gi Al. (1977) have estimated a half-life against atmospheric 

photodissociation of OCIO of a few seconds. 
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C103 + hv -+ products 

Table 19 lists absorption cross sections of chlorine trioxide, C10
3

, 

for the 200 to 350 nm range obtained by graphical interpolation between 

the data points of Goodeve and Richardson (1937>. Although the quantum 

yield for decomposition has not been measured, the continuous nature of 

the spectrum indicates that it is likely to be unity. 

Table 19. C103 Absorption Cross Sections 

A 1020 0 A 1020
0 

(nm) (cm2) (nm) (cm2) 

200 530 280 460 

210 500 290 430 

220 480 300 400 

230 430 310 320 

240 350 320 250 

250 370 330 180 

260 430 340 110 

270 450 350 76 
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HCl + hv + H + Cl 

The absorptions cross sections of HC1, listed in Table 20, are taken 

from the work of Inn (1975). 

Table 20. Absorption Cross Sections of HCl Vapor 

A 

(nm) 

140 

145 

150 

155 

160 

165 

170 

175 

180 

10200' 

(cm2) 

211 

281 

345 

382 

332 

248 

163 

109 

58.8 
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A 

(nm) 

185 

190 

195 

200 

205 

210 

215 

220 

10200' 

(cm2) 

31.3 

14.5 

6.18 

2.56 

0.983 

0.395 

0.137 

0.048 



HOCl + hv + OH + Cl 

Knauth ~ ale (1979) have measured absorption cross sections of HOCl 

using essentially the same technique as Molina and Molina (1978) except 

for a higher temperature, which allowed them to obtain a more accurate 

value for the equilibrium constant Keq for the H2Q-Cl20-HOCl system. The 

cross section values from Molina and Molina's measurements recalculated 

using the new Keq are in excellent agreement with the results of Knauth gi 

~. The recommended values, taken from this later work, are presented in 

Table 21. 

Molina ~ ill. (1980b), by monitoring directly OH radicals produced 

by laser photolysis of HOCl, obtain an absorption cross section value of 

-6 x 10-20 cm2 around 310 nm, again in excellent agreement with the data of 

Knauth li..al.. (1979). 

In contrast, the theoretical predictions of Jaffe and Langhoff 

(1978) indicate negligible absorption at those wavelengths. The reason is 

not known, although it should be pointed out that no precedent exists to 

validate the theoretical approach for this particular type of problem. 

Butler and Phillips (1983) found no evidence for O-atom production 

at 308 nm, and placed an upper limit of -0.02 for the primary quantum 

yield for the HCl + 0 channel. 
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Table 21. 

A 

(nm) 

200 

210 

220 

230 

240 

250 

260 

270 

280 

290 

300 

Absorption Cross Sections of HOCI 

102°0 
(cm2) 

5.2 

6.1 

11.0 

18.6 

22.3 

18.0 

10.8 

6.2 

4.8 

5.3 

6.1 
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A 

(nm) 

310 

320 

330 

340 

350 

360 

370 

380 

390 

400 

420 

6.2 

5.0 

3.7 

2.4 

1.4 

0.8 

0.45 

0.24 

0.15 

0.05 

0.04 



CINO + hv + Cl + NO 

Nitrosyl chloride has a continuous absorption extending beyond 650 

nanometers. There is good agreement between the work of Martin and Gareis 

(1956) for the 240 to 420 nm wavelength region, of Ballash and Armstrong 

(1974) for the 185 to 540 nm region, and of lIlies and Takacs (1976) for 

the 190 to 400 nm region. These resul ts indicate that the early data of 

Goodeve and Katz (1939) were seriously in error between 186 and 300 nm, 

whereas, at longer wavelengths, they are in good agreement with the more 

recent measurements. 

The recommended absorption cross sections, listed in Table 22, are 

obtained by taking the mean of the results of Ballash and Armstrong (1974) 

and of lIlies and Takacs (1976). The two sets of measurements agree 

within 20 percent, except in the region near 240 nm, where the values of 

Ballash and Armstrong are about 60 percent higher. 

The quantum yield for the primary photolytic process has been 

reviewed by Calvert and Pitts (1966a) it is unity over the entire visible 

and near-ul traviolet bands. 
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Table 22. C1NO Absorption Cross Sections 

A(nm) 1020 a(cm2) 

190 5270 

200 6970 

210 3180 

220 1170 

230 377 

240 134 

260 18.0 

280 10.3 

300 9.5 

320 12.1 

340 13.7 

360 12.2 

380 8.32 

400 5.14 
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CIN02 + hv ~ products 

The absorption cross sections of nitryl chloride, CIN02, nave been 

measured between 230 and 330 nm by Martin and Gareis (1956), between 185 

and 400 nm by lIlies and Takacs (1976), and between 270 and 370 nm by 

Nelson and Johnston (1981). The results are ~n good agreement below 300 

nm. Table 23 lists the recommended values wh~ch are taken from lIlies and 

Takacs (1976) between 190 and 270 nm, and from Nelson and Johnston (1981) 

between 270 and 370 nm. These latter authors showed that a -6% Cl2 

impurity in the samples used by lIlies and Takacs could explain the 

discrepancy in the results above 300 nm. 

Nelson and Johnston (1981) report a value of one (within 

experimental error) for the quantum yield for production at Cl atoms; they 

also report a negligible quantum yield for the production of oxygen atoms. 

Table 23. Absorption Cross Sections of ClN02 

A(nm) 1020 a( cm2) A(nm) 102O a(cm2) 

190 2690 290 18.1 

200 455 300 15.5 

210 339 310 12.5 

220 342 320 8.70 

230 236 330 5.58 

240 140 340 3.33 

250 98.5 350 1.78 

260 63.7 360 1.14 

270 37.2 370 0.72 

280 22.3 
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CIONO + hv + products 

Measurements in the near-ultraviolet of the cross sections of 

chlorine nitrite (CIONO) have been made by Molina and Molina (1977). 

Their results are listed in Table 24. The characteristics of the spectrum 

and the instability of CIONO strongly suggest that the quantum yield for 

decomposition is unity. The CI-O bond strength is only about 20 

kilocalories, so that chlorine atoms are likely photolysis products. 

Table 24. CIONO Absorption Cross Sections at 231 K 

A 1020 0- A 1020 0-

(nm) (cm2) (nm) (cm2) 

235 215.0 320 80.3 

240 176.0 325 75.4 

245 137.0 330 58.7 

250 106.0 335 57.7 

255 65.0 340 43.7 

260 64.6 345 35.7 

265 69.3 350 26.9 

270 90.3 355 22.9 

275 110.0 360 16.1 

280 132.0 365 11.3 

285 144.0 370 9.0 

290 144.0 375 6.9 

295 142.0 380 4.1 

300 129.0 385 3.3 

305 114.0 390 2.2 

310 105.0 395 1.5 

315 98.1 400 0.6 
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ClON02 + h v -+ products 

The recommended cross section values, listed in Table 25, are taken 

from the work of Molina and Molina (1979), which supersedes the earlier 

work of Rowland, Spencer and Molina (1976). 

The identity of the primary photolytic fragments has been 

investigated by several groups. Smith llli. (1977) report ° + CIaNO as 

the most l~kely products, using end product analysis and steady-state 

photolysis. The resul ts of Chang II ale (1979), who employed the "Very 

Low Pressure Photolysis" (VLPPh) technique, indicate that the products are 

Cl + N03• Adler-Golden and Wiesenfeld (1981), using a flash photolysis 

atomic absorption technique, find O-atoms to be the predominant photolysis 

product, and report a quantum yield for Cl-atom production of less than 

4%. Marinell~ and Johnston (1982b) report a quantum yield for N03 

production at 249 nm between 0.45 and 0.85 with a most likely value of 

0.55; they monitored N03 by tunable dye-laser absorption at 662 nm. 

Margitan (1983a) used atomic resonance fluorescence detection of 0- and 

Cl-atoms and finds the quantum yield at 266 and at 355 nm to be 0.9 :t 0.1 

for Cl-atom production, and -0.1 for a-atom production, with no 

discernible difference at the two wavelengths. 

The preferred quantum yield values are 0.9 for the Cl + N03 chanel, 

and a complementary value of 0.1 for the ° + ClONO channel. The 

recommendation is based on Margitan (1983), whose direct study is the only 

one with results at a wavelength longer than 290 nm, which is where 

atmospheriC photodissociation will predominantly occur. The reason for 

the discrepancy with the studies by Adler-Golden and Weisenfeld (1981) and 

by Marinelli and Johnston (1982b) is almost surely that the rate constant 

for Cl + ClN03 is much faster (two order of magnitude) than previously 

thought (Margitan, 1983a; Kurylo ~ ru..., 1983a). 
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Table 25. Absorption Cross Sections of C10N02 

A 
102Ocr(cm2) 

A 102Ocr(cm2) 

(nm) 227K 243K 296K (nm) 227K 243K 296K 

190 555 - 589 325 0.463 0.502 0.655 

195 358 - 381 330 0.353 0.381 0.514 

200 293 - 307 335 0.283 0.307 0.397 

205 293 - 299 340 0.246 0.255 0.323 

210 330 - 329 345 0.214 0.223 0.285 

215 362 - 360 350 0.198 0.205 0.246 

220 348 - 344 355 0.182 0.183 0.218 

225 282 - 286 360 0.170 0.173 0.208 

230 206 - 210 365 0.155 0.159 0.178 

235 141 - 149 370 0.142 0.140 0.162 

240 98.5 - 106 375 0.128 0.130 0.139 

245 70.6 - 77.0 380 0.113 0.114 0.122 

250 52.6 50.9 57.7 385 0.098 0.100 0.108 

255 39.8 39.1 44.7 390 0.090 0.083 0.090 

260 30.7 30.1 34.6 395 0.069 0.070 0.077 

265 23.3 23.1 26.9 400 0.056 0.058 0.064 

270 18.3 18.0 21.5 405 - - 0.055 

275 13.9 13.5 16.1 410 - - 0.044 

280 10.4 9.98 11.9 415 - - 0.035 

285 7.50 7.33 8.80 420 - - 0.027 

290 5.45 5.36 6.36 425 - - 0.020 

295 3.74 3.83 4.56 430 - - 0.016 

300 2.51 2.61 3.30 435 - - 0.013 

305 1.80 1.89 2.38 440 - - 0.009 

310 1.28 1.35 1.69 445 - - 0.007 

315 0.892 0.954 1.23 450 - - 0.005 

320 0.630 0.681 0.895 
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HALOCARBON ABSORPTION CROSS SECTIONS AND QUANTUM YIELDS 

The primary process in the photodissociation of chlorinated 

hydrocarbons is well established: absorption of ultraviolet radiation in 

the lowest frequency band is interpreted as an n-o* transition involving 

excitation to a repulsive electronic state (antibonding in C-Cl), which 

dissociates by breaking the carbon-chlorine bond (Majer and Simons, 1964). 

As expected, the chlorofluoromethanes--which are just a particular type of 

chlorinated hydrocarbons--behave in this fashion (Sandorfy, 1976). Hence, 

the quantum yield for photodissociation is expected to be unity for these 

compounds. There are several studies which show specifically that this is 

the case for CF2Cl2, CFCl3 aand CCI4. These studies--which have been 

reviewed in CODATA (1982)-also indicate that at shorter wavelengths two 

halogen atoms can be released simultaneously in the primary process. 

Several authors have investigated recently the absorption cross 

sections for CCI 4 , CCl3F, CCI 2F2, CHCIF2 , and CH3CI--e.g., Hubrich.§.t. al. 

(1977); Hubrich and Stuhl (1980); Vanlaethem-Meuree et sl. (1978a,b); 

Green and Wayne (1976-1977)--and their results are in general in very good 

agreement with our earlier recommendations. Tables 26, 27 and 28 list the 

present recommendations for the cross sections of CCl4, CCl3F and CCl2F2 

respectively; these data are given by the mean of the values reported by 

various groups--those cited above as well as those referred to in earlier 

evalua tions--as reviewed by CODATA (1982). For atmospheric 

photodissociation calculations the change in the cross section values with 

temperature is negligible for CCl4 and CFCl3; for CF2Cl2 the temperature 

dependence is given by the expression at the bottom of Table 28. 

The species CHCIF2, CH3CI and CH3CCI3'"are discussed individually; 

their absorption cross sections are listed in Tables 29, 30 and 32, 

respectively. 

The absorption cross sections for various other halocarbons not 
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listed in this evaluation have been investigated recently. For CCIF3, 

CCI2FCCIF2, CCIF2CCIF2 and CCIF2CF3 the values given by Hubrich and stuhl 

(1980) at 298 K are in very good agreement with the earlier results of 

Chou ~Al. (1978) and of Robbins (1977); Hubrich and Stuhl also report 

values of 208 K for these species. 

Absorption cross sections have also been measured recently for 

several other halocarbons, including the following: CHCl2F by Hubrich ~ 

ale (1977); CHCI3 , CH2CI2, CH2CIF, CF3CH2CI, CH3CCIF2 and CH3CH2CI by 

Hubrich and Stuhl (1980); CHCI3' CH3Br, CHFCI2' C2F4Br2' C2HCl3 and 

C2H3Cl3 by Robbins (1977); CH2Cl2 and CHCl3 by Vanlaethem-Meuree ~ ale 

(1978a); CHCI2F, CCIF2CH2CI, CF3CH2CI, CF3CHCl2 and CH3CF2CI by Green and 

Wayne (1976-1977); and CH3Br, CH2Br2' CBrF3' CBr2F2, CBrCIF2, CBrF2CBrF2 

and CBrF2CF3 by Molina ~sl. (1982). 

As before, the recommendation for the photodissociation quantum 

yield value is unity for all these species. 
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Table 26. Absorption Cross Sections of CCl4 

A(nm) A(nm) 

174 995 218 21.8 

176 1007 220 17 .0 

178 976 222 13.0 

180 772 224 9.61 

182 589 226 7.19 

184 450 228 5.49 

186 318 230 4.07 

188 218 232 3.01 

190 144 234 2.16 

192 98.9 236 1.51 

194 74.4 238 1.13 

196 68.2 240 0.784 

198 66.0 242 0.579 

200 64.8 244 0.414 

202 62.2 246 0.314 

204 60.4 248 0.240 

206 56.5 250 0.183 

208 52.0 255 0.0661 

210 46.6 260 0.0253 

212 39.7 265 0.0126 

214 33.3 270 0.0061 

216 27.2 275 0.0024 
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Table 27. Absorption Cross Sections of CCl3F 

A(run) 102O a(cm2) A(run) 102Oa(cm2) 

170 316 208 21.2 

172 319 210 15.4 

174 315 212 10.9 

176 311 214 7.52 

178 304 216 5.28 

180 308 218 3.56 

182 285 220 2.42 

184 260 222 1.60 

186 233 224 1.10 

188 208 226 0.80 

190 178 228 0.55 

192 149 230 0.35 

194 123 235 0.126 

196 99 240 0.0464 

198 80.1 245 0.0173 

200 64.7 250 0.00661 

202 50.8 255 0.00337 

204 38.8 260 0.00147 

206 29.3 
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Table 28. Absorption Cross Sections of CCl2F2 

A(nm) 1 0200( cm2) A(nm) 102Oo(cm2) 

170 124 200 8.84 

172 151 202 5.60 

174 171 204 3.47 

176 183 206 2.16 

178 189 208 1.32 

180 173 210 0.80 

182 157 212 0.48 

184 137 214 0.29 

186 104 216 0.18 

188 84.1 218 0.12 

190 62.8 220 0.068 

192 44.5 225 0.022 

194 30.6 230 0.0055 

196 20.8 235 0.0016 

198 13.2 240 0.00029 

0T = 0298exp[4.1 x 10-4C\-184.9)(T-298)] 

Where: 0298 cross section at 298K 

nm 

T temperature, Kelvin 
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CHClF2 + hv + products 

The preferred absorption cross sections, listed in Table 29, are the 

mean of the values reported by Robbins and stolarski (1976) and Chou et 

gl, (1976), which are in excellent agreement with each other. Hubrich ~ 

Al. (1977) have reported cross sections for CHClF2 at 298 K and 208 K. 

Their results indicate a significant temperature dependence for A > 200 

nm, and their room temperature values are somewhat higher than those of 

the former two groups. 

Photolysis of CHClF 2 1S rather unimportant throughout the 

atmosphere; reaction with OH radical is the dominant destruction process. 

Table 29. Absorption Cross Sections of CHClF2 

A(nm) 1020 o(cm2) 

174 5.94 

176 4.06 

178 2.85 

180 1.99 

182 1.30 

184 0.825 

186 0.476 

188 0.339 

190 0.235 

192 0.157 

194 0.100 

196 0.070 

198 0.039 

200 0.026 

202 0.022 

204 0.013 

155 



CH3Cl + hv ~ products 

The preferred absorption cross sections, listed in Table 30, are 

those given by Vanlaethem-Meuree ll.al. (1978b). These values are in 

very good agreement with those reported by Robbins (1976) at 298 K, as 

well as with those given by Hubrich ~.S!l.. (1977) at 298 K and 208 K, if 

the temperature trend is taken into consideration. 

Table 30. Absorption Cross Sections of CH3Cl 

102Oa(cm2) 

A 

(run) 296 K 279 K 255 K 

186 24.7 24.7 24.7 

188 17 .5 17 .5 17 .5 

190 12.7 12.7 12.7 

192 8.86 8.86 8.86 

194 6.03 6.03 6.03 

196 4.01 4.01 4.01 

198 2.66 2.66 2.66 

200 1.76 1.76 1.76 

202 1.09 1.09 1.09 

204 0.691 0.691 0.691 

206 0.483 0.475 0.469 

208 0.321 0.301 0.286 

210 0.206 0.189 0.172 

212 0.132 0.121 0.102 

214 0.088 0.074 0.059 

216 0.060 0.048 0.033 
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CC120 + h \) -+ products, CCIFO + h \) -+ products, and CF 20 + h \) -+ products 

Table 31 shows the absorption cross sections of CC120 (phosgene) and 

CFClO given by Chou ~ Al. (1977a), and of CF 20 taken from the work of 

Molina and Molina (1982). The spectrum of CF20 shows considerable 

structure; the values listed in Table 31 are averages over each 50-

wave number interval. The spectrum of CFCIO shows less structure, and the 

CC1 20 spectrum is a continuum; its photodissociation quantum yield is 

unity (Calvert and Pitts, 1966a). 

The quantum yield for the photodissociation of CF20 at 206 nm 

appears to be -0.25 (Molina and Molina, 1982); addi tional studies of the 

quantum yield in the 200 nm region are required in order to establish the 

atmospheric photodissociation rate. 
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Table 31. Absorption Cross Sections of CC120, CCIFO, and CF20 

102Oa(cm2) 

>-

(nm) CC120 CCIFO CF20 

184.9 204.0 - -
186.0 189.0 15.6 5.5 

187.8 137.0 14.0 4.8 

189.6 117.0 13.4 4.2 

191.4 93.7 12.9 3.7 

193.2 69.7 12.7 3.1 

195.1 52.5 12.5 2.6 

197.0 41.0 12.4 2.1 

199.0 31.8 12.3 1.6 

201.0 25.0 12.0 1.3 

203.0 20.4 11.7 0.95 

205.1 16.9 11.2 0.69 

207.3 15.1 10.5 0.50 

209.4 13.4 9.7 0.34 

211.6 12.2 9.0 0.23 

213.9 11 .7 7.9 0.15 

216.2 11.6 6.9 0.10 

218.6 11.9 5.8 0.06 

I 
221.0 12.3 4.8 0.04 

223.5 12.8 4.0 0.03 

I 226.0 

l 
13.2 3.1 -
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CH3CCl3 + hv ~ products 

The absorption cross sections have been measured by Robbins (1977), 

by Vanlaethem-Meuree et ale (1979) and by Hubrich and Stuhl (1980). These 

latter authors corrected the results to account for the presence of a UV

absorbing stabilizer in their samples, a correction which might account 

for the rather large discrepancy with the other measurements. The results 

of Robbins (1977) and of Vanlaethem-Meuree et ~. (1979) are in good 

agreement. The recommended values are taken from this latter work (which 

reports values at 210 K, 230 K, 250 K, 270 K and 295 K, every 2 nm, and in 

a separate table at wavelengths corresponding to the wavenumber intervals 

generally used in stratospheric photodissociation calculations). Table 32 

lists the values at 210 K, 250 K and 295 K, every 5 nm; the odd wavelength 

values were computed by linear interpolation. 
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Table 32. Absorption Cross Sections of CH3CC13 

A 10200 (cm2) 

(nm) 

295K 250K 210K 

185 265 265 265 

190 192 192 192 

195 129 129 129 

200 81.0 81.0 81.0 

205 46.0 44.0 42.3 

210 24.0 21.6 19.8 

215 10.3 8.67 7.47 

220 4.15 3.42 2.90 

225 1.76 1.28 0.97 

230 0.700 0.470 0.330 

235 0.282 0.152 0.088 

240 0.102 0.048 0.024 
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BrO + hv ~ Br + 0 

The BrO radical has a banded spectrum in the 290-380 nm range, the 

strongest absorption feature lying around 338 nm. The photodissociation 

quantum yield in this wavelength range is expected to be unity due to 

extensive predissociation. 

The recommended absorption cross sections averaged over 5 nm 

wavelength intervals are taken from the recent work of Cox ~ sl.. (1982), 

and are listed in Table 33. These authors estimate a Bra lifetime against 

atmospheric photodissociation of -20 seconds at the earth's surface, for a 

solar zenith angle of 300 • 

The earlier BrO cross section measurements were carried out mostly 

around 338 nm, and have been reviewed by CODATA (1980; 1982). 
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Table 33. Absorption Cross Sections of BrO 

A 1020 cr (cm2) 

(nm) average 

300 - 305 200 

305 - 310 259 

310 - 315 454 

315 - 320 391 

320 - 325 600 

325 - 330 753 

330 - 335 628 

335 - 340 589 

340 - 345 515 

345 - 350 399 

350 - 355 228 

355 - 360 172 

360 - 365 161 

365 - 370 92 

370 - 375 51 
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BrON02 + hv + products 

The bromine nitrate cross sections have been measured at room 

temperature by Spencer and Rowland (1978) in the wavelength region 186-390 

nm; their results are given in Table 34. The photolysis products are not 

known. 

Table 34. Absorption Cross Sections of BrON02 

A 10200- A 10200-

(nm) (cm2) (nm) (cm2) 

186 1500 280 29 

190 1300 285 27 

195 1000 290 24 

200 720 295 22 

205 430 300 19 

210 320 305 18 

215 270 310 15 

220 240 315 14 

225 210 320 12 

230 190 325 11 

235 170 330 10 

240 130 335 9.5 

245 100 340 8.7 

250 78 345 8.5 

255 61 350 7.7 

260 48 360 6.2 

265 39 370 4.9 

270 34 380 4.0 

275 31 390 2.8 
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HF + hv + H + F 

The ultraviolet absorption spectrum of HF has been studied by Safary 

~~. (1951). The onset of absorption occurs at A < 170 nm, so that 

photodissociation of HF should be unimportant in the stratosphere. 
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H2CO + hv ~ H + HCO (¢1) 

~ H2 + CO ( 4>2) 

Bass ~ al. (1980) have recently measured the absorption cross 

sections of formaldehyde with a resolution of 0.05 nm at 296 K and 223 K. 

The cross sections have also been measured by Moortgat ~~. (1980; 1983) 

with a resolution of 0.5 nm in the 210-360 K temperature range; their 

values are -30% larger than those of Bass ~.al. for wavelengths longer 

than 300 nm. The recommended cross section values, listed in Table 35, 

are the mean of the two sets of data (as computed in CODATA, 1982). 

The quantum yields have been reported with good agreement by 

Horowitz and Calvert (1978), Clark~.al. (1978a), Tangllli. (1979), 

Moortgat and Warneck (1979), and Moortgat ~ 9J... (1980; 1983). The 

recommended values listed in Table 35 are based on the results of all of 

these investigators. The quantum yield 4>2 is pressure dependent for 

wavelengths longer than 329 nm, and is given by the expression at the 

bottom of Table 35, which is based on the values reported by Moortgat ~ 

.s.l.. (1980; 1983) for 300 K. 

Additional work is needed to determine 4>1 and the cross sections 

around 330 nm, which is the important wavelength region for atmospheric 

photodissociation of CH20 to yield H + HCO; only a few scattered 

measurements of 4>1 have been carried out around this wavelength. At 

present the recommendation for the 320-340 nm wavelength interval is to 

calculate 4>1 by linear interpolation assuming a value of 4>1 = 0.62 at 320 

nm and 4> 1 = 0 at 340 nm. 
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Table 35. Absorption Cross Sections and Quantum Yields for 

Photolysis of CH20. 

10200 ( cm2) 

A <1>1 <1>2 

(om) 290 K 220 K 
I 

(H + HCO) (H2 + CO) 
, 

240 0.03 0.08 ! 0.21 0.42 

250 0.13 0.08 I 0.24 0.46 

260 0.47 0.47 
, 
I 0.30 0.48 

270 0.86 0.85 I 0.40 0.46 

280 1.86 1.93 I 0.59 0.35 , 

290 2.51 2.47 I 0.71 0.26 
I 

300 2.62 2.58 I 0.78 0.22 

310 2.45 2.40 I 0.77 0.23 

320 1.85 1.71 0.62 0.38 

330 1.76 1.54 0.31 0.80 
, 

0.69· 340 1.18 1.10 l 0 

350 0.42 0.39 0 0.40· 

360 0.06 0.02 0 0.12· 

1 

Note: The values are averaged for 10 om intervals centered on 

indicated wavelength • 

• at p = 760 torr 

For A > 329 om, <1>2 is given by the following expression: 

1 - exp(112.8-0.347A) 
p A-329 

1 + 760 (364-A) 

nm 

P : torr 
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CH300H + hv ~ products 

Molina and Arguello (1979) have measured the absorption cross 

sections of CH300H vapor. Their results are listed in Table 36. 

Table 36. Absorption Cross Sections of CH300H 

A 10200 A 10200 A 1020
0 

(nm) (cm2) (nm) (cm2) (nm) (cm2) 

210 37.5 260 3.8 310 0.34 

220 22.0 270 2.5 320 0.19 

230 13.8 280 1.5 330 0.11 

240 8.8 290 0.90 340 0.06 

250 5.8 300 0.58 350 0.04 

167 



HCN + hv ~ products and CH3CN + hv ~ products 

Herzberg and Innes (1957) have studied the spectroscopy of hydrogen 

cyanide, HCN, which starts absorbing weakly at A < 190 nm. McElcheran ~ 

sl. (1958) have reported the spectrum of methyl cyanide, CH3CN; the first 

absorption band appears at A < 216 nm. 

The solar photodissociation rates for these molecules should be 

rather small, even in the upper stratosphere; estimates of these rates 

would require additional studies of the absorption cross sections and 

quantum yields in the 200 nm regio~ 
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S02 + hv ~ products 

The UV absorption spectrum of S02 is highly structured, with a very 

weak absorption in the 340-390 nm region, a weak absorption in the 260-340 

nm, and a strong absorption extending from 180 to 235 nm; the threshold 

wavelength for photodissociation is -220 nm. The atmospheric 

photochemistry of S02 has been reviewed by Heicklen llAl. (1980) and by 

Calvert and Stockwell (1983). Direct photooxidation at wavelengths longer 

than -300 nm by way of the electronically excited states of S02 appears to 

be relatively unimportant. 
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ocs + hv ~ CO + S 

The absorption cross sections of OCS have been measured by Chou ~ 

sl.. (1979) between 186 and 226 nm, at 296,251 and 232 K (the results are 

unpublished); by Breckenridge and Taube (1970), who presented their 298 K 

results in graphical form, between 200 and 260 nm; by Rudolph and Inn 

(1981) between 200 and -300 nm (see also Turco ~ li., 1981), at 297 and 

195 K; by Leroy lisl.. (1981) at 294 K, between 210 and 260 nm, using 

photographic plates; and by Molina ~ li. (1981) between 180 and 300 nm, 

at 295 and 225 K. The results are in good agreement in the regions of 

overlap, except for A > 280 nm, where the cross section values reported by 

Rudolph and Inn (1981) are significantly larger than those reported by 

Molina li lie (1981). The latter authors concluded that solar 

photodissociation of OCS in the troposphere occurs only to a negligible 

extent. 

The recommended cross sections, given in Table 37, are taken from 

Molinalisl.. (1981). (The original publication also lists a table with 

cross sections values averaged over 1 nm intervals, between 185 and 300 

run) • 

The recommended quantum yield for photodissociation J.S 0.72. This 

value is taken from the work of Rudolph and Inn (1981), who measured the 

quantum yield for CO production in the 220-254 nm range. 
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Table 37. Absorption Cross Seotions of OCS 

A. 
1020a(om2) 

A. 
1020 aCom2) 

(nm) (nm) 

295 K 225 K 295 K 225 K 

186.1 18.9 13.0 228.6 26.8 23.7 

187.8 8.33 5.63 231.2 22.1 18.8 

189.6 3.75 2.50 233.9 17 .1 14.0 

191.4 2.21 1.61 236.7 12.5 9.72 

193.2 1.79 1.53 239.5 8.54 6.24 

195.1 1.94 1.84 242.5 5.61 3.89 

197.0 2.48 2.44 245.4 3.51 2.29 

199.0 3.30 3.30 248.5 2.11 1.29 

201.0 4.48 4.50 251.6 1.21 0.679 

203.1 6.12 6.17 254.6 0.674 0.353 

205.1 8.19 8.27 258.1 0.361 0.178 

207.3 10.8 10.9 261.4 0.193 0.0900 

209.4 14.1 14.2 264.9 0.0941 0.0419 

211.6 17 .6 17.6 268.5 0.0486 0.0199 

213.9 21.8 21.8 272.1 0.0248 0.0101 

216.2 25.5 25.3 275.9 0.0119 0.0048 

218.6 28.2 27.7 279.7 0.0584 0.0021 

221.5 30.5 29.4 283.7 0.0264 0.0009 

223.5 31.9 29.5 287.8 0.0012 0.0005 

226.0 30.2 27.4 292.0 0.0005 0.0002 

296.3 0.0002 -

Photodissooiation quantum yield ~ = 0.72 
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eS2 + hv + es + S 

The eS2 absorption spectrum is rather complex. Its photochemistry 

has been reviewed by Okabe (1978). There are two distinct regions in the 

near UV spectrum: a strong absorption extending from 185 to 230 nm, and a 

weaker one in the 290-380 nm range. The threshold wavelength for 

photo dissociation is -280 nm. 

The photooxidation of eS2 in the atmopshere has been discussed by 

Wine ~ Ai. (1981d), who report that electronically excited eS2 may react 

with 02 to yield eventually DeS. 
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