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5.5.   HYDRODYNAMIC INTERACTIONS IN DISPERSIONS 

5.5.1   BASIC EQUATIONS AND LUBRICATION APPROXIMATION 

In addition to the surface forces (see Section 5.4 above), two colliding particles in a liquid 

medium also experience hydrodynamic interactions due to the viscous friction, which can be 

rather long range (operative even at distances above 100 nm). The hydrodynamic interaction 

among particles depends on both the type of fluid motion and the type of interfaces. The 

quantitative description of this interaction is based on the classical laws of mass conservation 

and momentum balance for the bulk phases:
410-415
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where ρ is the mass density, v is the local mass average velocity, P is the hydrodynamic stress 

tensor; Pb is the body-force tensor which accounts for the action of body forces such as 

gravity, electrostatic forces (the Maxwell tensor), etc. In a fluid at rest, and in the absence of 

body forces, the only contact force given by the hydrodynamic stress tensor is the scalar 

thermodynamic pressure, p, and P can be written as P = −pI, where I is the unit tensor in 

space. For a fluid in motion, the viscous forces become operative and: 

TIP +−= p           (242) 

where T is the viscous stress tensor. From the definition of the stress tensor (Equation 242), it 

follows that the resultant hydrodynamic force, F, exerted by the surrounding fluid on the 

particle surface, S, and the torque, M, applied to it are given by the expressions
410,412

 

∫ ⋅=
S

dSnPF ,  ∫ ⋅×=
S

dSnPrM 0      (243) 

where r0 is the position vector of a point of S with respect to an arbitrarily chosen coordinate 

origin, and n is the vector of the running unit normal to the surface S. In the presence of body 

forces, the total force, Ftot, and torque, Mtot, acting on the particle surface are: 

∫ ⋅+=
S

dSnPFF btot ,  ∫ ⋅×+=
S

dSnPrMM b0tot     (244) 

 The dependence of the viscous stress on the velocity gradient in the fluid is a 

constitutive law, which is usually called the bulk rheological equation. The general linear 

relation between the viscous stress tensor, T, and the rate of strain tensor, 



 107

( )[ ]T
vvD ∇+∇=

2

1
         (245) 

(the superscript T denotes conjugation) reads 

( ) ( ) 



 −+= IvDIvT div

3

1
2div ηζ        (246) 

The latter equation is usually referred as the Newtonian model or Newton’s law of viscosity. 

In Equation 246, ζ is the dilatational bulk viscosity and η is the shear bulk viscosity. The 

usual liquids comply well with the Newtonian model. On the other hand, some concentrated 

macromolecular solutions, colloidal dispersions, gels, etc. may exhibit non-Newtonian 

behavior; their properties are considered in detail in some recent review articles and books.
415-

418
 From Equations 241 and 246, one obtains the Navier-Stokes equation:

419,420
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for homogeneous Newtonian fluids, for which the dilatational and shear viscosities, ζ and η, 

do not depend on the spatial coordinates. In Equation 247, the material derivative d/dt can be 

presented as a sum of a local time derivative and a convective term: 

( )∇⋅+
∂
∂

= v
ttd

d
         (248) 

If the density, ρ, is constant, the equation of mass conservation (Equation 240) and the 

Navier-Stokes equation (247) reduce to: 

0div =v ,  fv
v

+∇+−∇= 2ηρ p
td

d
     (249) 

For low shear stresses in the dispersions, the characteristic velocity, Vz, of the relative particle 

motion is small enough in order for the Reynolds number, Re = ρVzL/η, to be a small 

parameter, where L is a characteristic length scale. In this case, the inertia terms in Equations 

247 and 249 can be neglected. Then, the system of equations becomes linear and the different 

types of hydrodynamic motion become additive,
278,421,422

 e.g., the motion in the liquid flow 

can be presented as a superposition of elementary translation and rotational motions. 

 The basic equations can be further simplified in the framework of the lubrication 

approximation, which can be applied to the case when the Reynolds number is small and 

when the distances between the particle surfaces are much smaller than their radii of curvature 

(see Figure 31).
423,424

 There are two ways to take into account the molecular interactions 

between the two particles across the liquid film intervening between them: (i) the body force 

approach; (ii) the disjoining pressure approach. The former approach treats the molecular 

forces as components of the body force, f (Equation 247); consequently, they give 
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contributions to the normal and tangential stress boundary conditions.
425,426

  In the case (ii), 

the molecular interactions are incorporated only in the normal stress boundary conditions at 

the particle surfaces. When the body force can be expressed as a gradient of potential, 

U∇=f  (that is IP U=b ), the two approaches are equivalent.
427 

 

 

 

 

 

 

 

 

 

 

FIGURE 31. Sketch of a plane-parallel film formed between two identical fluid particles. 

 If two particles are interacting across an electrolyte solution, the equations of 

continuity and the momentum balance, Equation 249, in lubrication approximation read
428
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where vII and ∇II are the projection of the velocity and the gradient operator on the plane xy; 

the z-axis is (approximately) perpendicular to the film surfaces S1 and S2 (see Figure 31); ci = 

ci(r,z,t) is the ion concentration (i = 1, 2, …, N); Φ is the dimensionless electric potential (see 

Sections 5.2.1.2 and 5.2.2). It turns out that in lubrication approximation, the dependence of 

the ionic concentrations on the z-coordinate comes through the electric potential Φ(r,z,t): one 

obtains a counterpart of the Boltzmann equation )exp(),,(n, Φ−= iii ztzrcc , where ci,n refers 

to an imaginary situation of “switched off” electric charges (Φ ≡ 0). The kinematic boundary 

condition for the film surfaces has the form: 
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     (251) 
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where: ui is the velocity projection in the plane xy at the corresponding film surface, Si, which 

is close to the interfacial velocity; (vz)i is the z component of the velocity at the surface Si . 

The general solution of Equations 250 to 251 could be written as: 
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Here h = h2 − h1 is the local film thickness; the meaning of ),,(n tyxp  is analogous to that of 

and ),,(n, tyxci ; the functions, )(, zm ik , account for the distribution of the i-th ionic species in 

the electric double layer: 

1)exp(,0 −Φ−≡ ii zm ,      ∫ −≡
z

ikik zdzm
h

zm

0

,1, ˆ)ˆ(
2

)(       (k = 1, 2, 3, i = 1, 2, …, N)      (254) 

 The equation determining the local thickness, h, of a film with fluid surfaces (or, 

alternatively, determining the pressure distribution at the surfaces of the gap between two 

solid particles of known shape) is 

+∇⋅∇=+⋅∇+ )3(
12

1
)](

2
[ IIIIII 21 ph
h

t

h

η∂
∂

uu        

})]()()()([{
8

1
n,II1,32,32,21,2

3

II
∑ ∇+−+⋅∇+
=

N

i
iiiii

chmhmhmhmh
Tk

η
      (255) 

The problem for the interactions upon central collisions of two axisymmetric particles 

(bubbles, droplets or solid spheres) at small surface-to-surface distances was first solved by 

Reynolds
423

 and Taylor
429

 for solid surfaces and by Ivanov et al.
430,431

 for films of uneven 

thickness. Equation 255 is referred to as the general equation for films with deformable 

surfaces
430,431

 (see also the more recent reviews
164,289,432

). The asymptotic analysis
433-435

 of the 

dependence of the drag and torque coefficient of a sphere, which is translating and rotating in 

the neighborhood of a solid plate, is also based on Equation 255 applied to the special case of 

stationary conditions. 

 Using Equation 244, one can obtain expressions for the components of the total force 

exerted on the particle surface, S, in the lubrication approximation: 
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where p∞ is the pressure at infinity in the meniscus region (Figure 31) and nelΠ  ≡ Π − Πel 

accounts for the contribution of non-electrostatic (non-double-layer) forces to the disjoining 

pressure (see Section 5.4). The normal and the lateral force resultants, Fz and FII, are the 

hydrodynamic resistance and shear force, respectively. 

 

5.5.2   INTERACTION BETWEEN PARTICLES OF TANGENTIALLY IMMOBILE SURFACES 

The surfaces of fluid particles can be treated as being tangentially immobile when they are 

covered by dense surfactant adsorption monolayers which can resist tangential 

stresses.
164,289,432,436,437

 In such a case, the bubbles or droplets behave as flexible balls with 

immobile surfaces. When the fluid particles are rather small (say, microemulsion droplets), 

they can behave like hard spheres; therefore, some relations considered below, which are 

originally derived for solid particles, can be also applied to fluid particles. 

 

5.5.2.1  Taylor and Reynolds Equations, and Influence of the Particle Shape 

In the case of two axisymmetric particles moving along the z-axis towards each other with 

velocity Vz = −dh/dt Equation 255 can be integrated, and from Equation 256 the resistance 

force can be calculated. The latter turns out to be proportional to the velocity and bulk 

viscosity and depends on the shape in a complex way. For particles with tangentially 

immobile surfaces and without surface electric charge (u1 = u2 = 0, Φ = 0) Charles and 

Mason
438

 have derived 

∫
∞

=
0 3

3

6 dr
h

r
VF zz πη          (258) 

where r is the radial coordinate in a cylindrical coordinate system. In the case of two particles 

of different radii, R1 and R2, film radius R, and uniform film thickness h (see Figure 32), from 

Equation 258 the following expression can be derived:
439,440
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VF zz ++= πη  ,          R* ≡ 2R1R2/(R1+R2)   (259) 

This geometrical configuration has proven to be very close to the real one in the presence of 

electrostatic disjoining pressure.
180

 The Charles-Mason formula (Equation 258) and Equation 
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256 have been used to calculate the velocity of film thinning for a large number of cases, 

summarized by Hartland
441

 in tables for more than 50 cases (two- and three-dimensional small 

drops, fully deformed large drops subjected to large forces, two-dimensional hexagonal drops, 

etc.). 

 

 

 

 

 

 

 

 

 

 

FIGURE 32. Sketch of a film between two nonidentical fluid particles of radii R1 and R2. The 

film thickness and radius are denoted by h and R. 

 Setting R = 0 in Equation 259, one can derive a generalized version of the Taylor 

formula
429

 for the velocity of approach of two nondeformable spheres under the action of an 

external (non-viscous) force, Fz:
440
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hF
V z
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=           (260) 

When a solid sphere of radius Rc approaches a flat solid surface, one may use the Taylor 

formula with R*
 
=

 
2Rc when the gap between the two surfaces is small compared to Rc. 

 In the case when two plane-parallel ellipsoidal discs of tangentially immobile surfaces 

are moving against each other under the action of an external force, Ftot,z, from Equations 255 

and 256, one can derive the Reynolds equation
423

 for the velocity of film thinning: 

33

223

Re
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)(

ba

bahF
V z

πη

+
=         (261) 

where a and b are the principal radii of curvature. If there is a contribution of the disjoining 

pressure, Π, the Reynolds equation for a flat axisymmetrical film (a
 
=

 
b

 
=

 
R) between two 

fluid particles of capillary pressure Pc can be written in the form:
143
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 From Equations 259 and 262 the ratio between the Reynolds velocity and the velocity 

of film thinning for a given force is obtained. In Figure 33, this ratio is plotted as a function of 

the film thickness, h, divided by inversion thickness, *
2 / RRhi = .

432
 One sees that the 

influence of the viscous friction in the zone encircling the film (this influence is not accounted 

for in Equation 262) decreases the velocity of thinning about three times for the larger 

distances, whereas for the small distances this influence vanishes. From Equations 259 and 

260, the ratio between the Taylor velocity (corresponding to nondeformable spheres) and the 

approaching velocity of two deformable particles can be calculated. The dependence of this 

ratio on the distance between the particles for different film radii is illustrated in Figure 34. 

One sees that an increase of the film radius, R, and a decrease of the distance, h, lead to a 

decrease in the velocity. The existence of a film between the particles can decrease the 

velocity of particle approach, Vz, by several orders of magnitude. 

 

FIG. 33 Plot of 

VRe/Vz vs. h/hi for 

two fluid particles 

(Equation 259) 

which are defor-

med because of the 

viscous friction in 

the transition zone 

between the film 

and the bulk phase 

(see Figure 32). 

 

 

FIG. 34. Plot of 

VTa/Vz vs. h/R* for 

various values of 

the dimensionless 

film radius, R/R*. 

VTa corres-ponds to 

two nondeformed 

(spherical) partic-

les (Equation 260), 

whereas Vz is the 

velocity of appro-

ach of two defor-

med particles (Eq. 

259). 
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5.5.2.2   Interactions Among Nondeformable Particles at Large Distances 

The hydrodynamic interaction between members of a group of small particles suspended in a 

viscous fluid has fundamental importance for the development of adequate models for 

calculating the particle collective diffusion coefficient and the effective viscosity of 

suspension.
278,421,437,442,443

 The Stokesian resistance is determined for a number of specific 

particle shapes under the condition that the particles are located so far apart that the 

hydrodynamic interactions can be ignored.
421

 A general theory applicable to a single particle 

of arbitrary shape has been developed by Brenner.
444,445

 This method gives the first-order 

correction (with respect to the particle volume fraction) of the viscosity and diffusivity. 

Matrix relations between resistance and velocity for the pure translational and rotational 

motions of the members of a general multiparticle system involved in a linear shear flow are 

given by Brenner and O’Neill.
446

 In principle, from these relations one can further obtain the 

higher order terms in the series expansion of the viscosity and diffusivity with respect to the 

powers of the particle volume fraction. 

 At present, the only multiparticle system for which exact values of the resistance 

tensors can be determined is that of two spheres. It turns out that all types of hydrodynamic 

flows related to the motion of two spherical particles (of radii R1 and R2) can be expressed as 

superpositions of the elementary processes depicted in Figure 35.
278,412,421,422,447-456

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 35. Types of hydrodynamic interactions between two spherical particles: (a) motion 

along and rotation around the line of centers; (b) motion along and rotation around an axis 

perpendicular to the line of centers; (c) the first particle moves under the action of an applied 

external force, F, whereas the second particle is subjected to the hydrodynamic disturbance 

created by the motion of the first particle. 
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 The first particle moves toward the second immobile particle and rotates around the 

line of centers (see Figure 35(a)). This is an axisymmetric rotation problem (a two-

dimensional hydrodynamic problem) which was solved by Jeffery
448

 and Stimson and 

Jeffery
449

 for two identical spheres moving with equal velocities along their line of centers. 

Cooley and O’Neill
450,451

 calculated the forces for two nonidentical spheres moving with the 

same speed in the same direction, or alternatively, moving toward each other. A combination 

of these results permits evaluation of the total forces and torques acting on the particles. 

 The first particle then moves along an axis perpendicular to the center line and rotates 

around this axis, whereas the second particle is immobile; see Figure 35(b) (this is a typical 

three-dimensional hydrodynamic problem). The contribution of this asymmetric motion of the 

spheres to the resistance tensors was determined by Davis
452

 and O’Neill and Majumdar.
453

 

 The first particle moves with linear velocity, U1, under the action of an applied 

external force, F, whereas the second particle is subjected to the hydrodynamic disturbances 

(created by the motion of the first particle) and moves with a linear velocity, U2 (see Figure 

35(c)). As a rule, this is a three-dimensional hydrodynamic problem. For this case, 

Batchelor
457

 and Batchelor and Wen
458

 have derived the following expressions for the 

instantaneous translational velocities of the two particles in an otherwise quiescent and 

unbounded fluid: 

)])(()([
6 211211

1

1
r

rB
r

rA
R

rr
I

rrF
U −+⋅=

πη
      (263) 

)])(()([
)(6 212212

21

2
r

rB
r

rA
RR

rr
I

rrF
U −+⋅

+
=

πη
     (264) 

where r is the vector connecting the particle centers and r = |r|. Expressions for the mobility 

functions Aij and Bij (i,j = 1,2) at large values of the dimensionless distance s = 2r/(R1+R2) and 

comparable particle radii λ = R2/R1 = O(1) have been derived by Jeffrey and Onishi
459

 and 

Davis and Hill.
456

 The derived far-field expansions are 
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 In the case of a small heavy sphere falling through a suspension of large particles 

(fixed in space), one has λ >> 1; the respective expansions, corresponding to Equation 265, 

were obtained by Fuentes et al.
460

 In the opposite case, when λ << 1, the suspension of small 

background spheres will reduce the mean velocity of a large heavy particle (as compared with 

its Stokes velocity
461

) because the suspension behaves as an effective fluid of larger viscosity 

as predicted by the Einstein viscosity formula.
457,460

 

 

5.5.2.3   Stages of Thinning of a Liquid Film  

Experimental and theoretical investigations
162,170,289,432,437,462,463

 show that during the approach 

of two fluid colloidal particles, a flat liquid film can appear between their closest regions (see 

Figure 23). The hydrodynamic interactions as well as the buoyancy, the Brownian, 

electrostatic, van der Waals, and steric forces and other interactions can be involved in film 

formation.
134,180,439,464,465

 The formation and the evolution of a foam or emulsion film usually 

follows the stages shown in Figure 36. 

 Under the action of an outer driving force, the fluid particles approach each other. The 

hydrodynamic interaction is stronger at the front zones and leads to a weak deformation of the 

interfaces in this front region. In this case, the usual hydrodynamic capillary number, 

Ca = ηVz/σ, which is a small parameter for nondeformable surfaces, should be modified to 

read Ca = ηVzR*/σh, where the distance, h, between the interfaces is taken into account. The 

shape of the gap between two drops for different characteristic times was calculated 

numerically by many authors.
465-485

 Experimental investigation of these effects for symmetric 

and asymmetric drainage of foam films were carried out by Joye et al.
474,475

 In some special 

cases, the deformation of the fluid particle can be very fast: for example, the bursting of a 

small air bubble at an air-water interface is accompanied by a complex motion resulting in the 

production of a high-speed liquid jet (see Boulton-Stone and Blake
485

). 
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FIGURE 36 Main stages of formation and evolution of a thin liquid film between two 

bubbles or drops: (a) mutual approach of slightly deformed surfaces; (b) at a given separation, 

the curvature at the center inverts its sign and a dimple arises; (c) the dimple disappears, and 

eventually an almost plane-parallel film forms; (d) due to thermal fluctuations or other 

disturbances the film either ruptures or transforms into a thinner Newton black film (e) which 

expands until reaching the final equilibrium state (f). 

 

 When a certain small separation, hi, the inversion thickness, is reached, the sign of the 

curvature in the of contact of the fluid particles (drops, bubbles) changes. A concave lens-

shaped formation called a dimple is formed (see Frankel and Mysels
486

). This stage is also 

observed for asymmetric films.
475

 A number of theoretical studies described the development 

of a dimple at the initial stage of film thinning.
465-485

 The inversion thickness can be 

calculated from a simple equation in which the van der Waals interaction is explicitly taken 

into account (see Section 5.4.2)
164,431,465
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where σ1 and σ2 are the interfacial tensions of the phase boundaries S1 and S2; in this case Fz 

is the external force (of non-viscous and non-van-der-Waals origin) experienced by the 

approaching particles; AH is the Hamaker constant. In the case, when the van der Waals force 

is negligible, Equation 266 reduces to )4/()( 2121 σπσσσ += zi Fh .
164,431

  Danov et al.
439

 

have shown that in the case of Brownian flocculation of identical small droplets, hi obeys the 

following transcendental equation: 
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where kT is the thermal energy; γ(z) = Fz/Vz is the hydrodynamic resistance given by Equation 

259; U is the potential energy due to the surface forces (see Equation 164); and z is the 

distance between the droplet mass centers. These authors pointed out that with an increase of 

droplet size the role of the Brownian force in the film formation decreases, but for 

micrometer-sized liquid droplets the Brownian force is still by several orders of magnitude 

greater than the buoyancy force due to gravity. If the driving force is large enough, so that it is 

able to overcome the energy barrier created by the electrostatic repulsion and/or the increase 

of the surface area during the droplet deformation, then film with a dimple will be formed. On 

the contrary, at low electrolyte concentration (i.e. strong electrostatic repulsion) such a dimple 

might not appear. Parallel experiments
487

 on the formation and thinning of emulsion films of 

macroscopic and microscopic areas, prepared in the Scheludko cell
143

 and in a miniaturized 

cell, show that the patterns and the time scales of the film evolution in these two cases are 

significantly different. There is no dimple formation in the case of thin liquid films of small 

diameters.
487

 

 In the case of predominant van der Waals attraction, instead of a dimple, a reverse 

bell-shape deformation, called pimple, appears and the film quickly ruptures.
 465,472,481,484

 The 

thickness, hp, at which pimple appears can be calculated from the relationship:
465
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The pimple formation thickness depends significantly on the radius, R*. If a drop of 

tangentially immobile surfaces and radius Rd is driven by the buoyancy force, then we have:  

gRF dz ρπ ∆= 3

3

4
        (269) 

where ∆ρ is the density difference, and g is the gravity acceleration. For the collision of this 

drop with another immobile one we have )16/( 2
H

2
dp RgAh ρπ ∆= . One sees that hp is 

inversely proportional to the drop radius. For typical values of the Hamaker constant 

AH = 4
 × 

10
−20

 J, density difference ∆ρ = 0.12
 × 

10
3
 g/cm

3
, and Rd = 10 µm, the thickness of 

pimple formation is hp = 82.3 nm. Note that this thickness is quite large. The pimple 

formation can be interpreted as the onset of instability without fluctuations (stability analysis 

of the film intervening between the drops has been carried out elsewhere
52

). 

 As already mentioned, if the van der Waals force (or other attractive force) is not 

predominant, first a dimple forms in the thinning liquid films. Usually the dimple exists for a 

short period of time; initially it grows, but as a result of the swift outflow of liquid it decreases 
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and eventually disappears. The resulting plane-parallel film thins at almost constant radius R. 

When the electrostatic repulsion is strong, a thicker primary film forms (see point 1 in Figure 

13). From the viewpoint of conventional DLVO theory, this film must be metastable. Indeed, 

the experiments with microscopic foam films, stabilized with sodium octyl sulfate or sodium 

dodecyl sulfate in the presence of different amount of electrolyte,
488

 show that a black spot 

may suddenly form and a transition to secondary (Newton black) film may occur (see point 2 

in Figure 13). The rate of thinning depends not only on the capillary pressure (the driving 

force) but also very strongly on the surfactant concentration (for details, see Section 5.5.3.2 

below). 

 The appearance of a secondary film (or film rupture, if the secondary film is not 

stable) is preceded by corrugation of the film surfaces due to thermally excited fluctuations or 

outer disturbances. When the derivative of the disjoining pressure, ∂Π/∂h, is positive, the 

amplitude of the fluctuations (ζ in Figure 36(d)) spontaneously grows. As already mentioned, 

the instability leads to rupture of the film or to formation of black spots. The theory of film 

stability was developed by de Vries,
489

 Vrij,
490

 Felderhof,
425

 Sche and Fijnaut,
426

 Ivanov et 

al.,
491

 Gumerman and Homsy,
492

 Malhotra and Wasan,
493

 Maldarelli and Jain,
427

 and 

Valkovska et al.
494

 On the basis of the lubrication approximation for tangentially immobile 

surfaces, Ivanov et al.
491

 and Valkovska et al.
494

 derived a general expression for the critical 

film thickness, hcr, by using long-waves stability analysis: 
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where kcr is the wave number of the critical wave defined as: 
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In Equation 271, htr is the so-called transitional thickness
490,491,494

 at which the increase of 

free energy due to the increased film area and the decrease of free energy due to the van der 

Waals interaction in the thinner part (Figure 36(d)) compensate each other. At htr the most 

rapidly growing fluctuation (the critical wave) becomes unstable. The transitional thickness 

obeys the following equation:
491,494 
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Figures 37 and 38 show the critical thicknesses of rupture, hcr, for foam and emulsion films, 

respectively, plotted vs. the film radius.
495

 In both cases the film phase is the aqueous phase, 

which contains 4.3
 × 

10
−4

 M SDS + added NaCl.  



 119

 

 

 

 

 

 

 

 

 

 

FIGURE 37. Dependence of the critical thickness, hcr, on the radius, R, of foam films. The 

experimental points are data from Reference 495; the films are formed from a solution of 

4.3
 × 

10
−4

 M SDS + 0.25 M NaCl. Curve 1 is the prediction of the simplified theory,
493

 

whereas Curve 3 is calculated using Equations 270 to 272; no adjustable parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 38. Critical thickness, hcr, vs. radius, R, of emulsion films, toluene/water/toluene. 

The experimental points are data from Reference 495; the films are formed from a solution of 

4.3
 × 

10
−4

 M SDS + 0.1 M NaCl. Curve 1 is the prediction of the simplified theory,
493

 whereas 

Curve 3 is calculated using Equations 270 to 272; no adjustable parameters. 
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FIGURE 39. Dependence of the critical 

thickness, hcr, of aniline films on the 

concentration of dodecanol, c0. (Modified 

from Ivanov, I.B., Pure Appl. Chem., 52, 

1241, 1980.) 

 

 

 

 

The emulsion film is formed between two toluene drops. Curve 1 is the prediction of a 

simpler theory, which identifies the critical thickness with the transitional one. 
493

 Curve 2 is 

the theoretical prediction of Equations 270 to 272 (no adjustable parameters); in Equation 171 

for the Hamaker constant the electromagnetic retardation effect has also been taken into 

account.
278

 In addition, Figure 39 shows the experimental dependence of the critical thickness 

vs. the concentration of surfactant (dodecanol) for aniline films. Figures 37 to 39 demonstrate 

that when the film area increases and/or the electrolyte concentration decreases the critical 

film thickness becomes larger. 

 The surface corrugations do not necessarily lead to film rupture. Instead, black spots 

(secondary films of very low thickness; h2 in Figure 13) can be formed. The typical thickness 

of plane-parallel films at stage (c) (Figure 36(c)) is about 200 nm, while the characteristic 

thickness h2 of the Newton black film (Figures 36(e) and (f)) is about 5 to 10 nm. The black 

spots either coalesce or grow in diameter, forming an equilibrium secondary (Newton black) 

film with a thickness h2 and radius Rsp. These spots grow until they cover the whole film area. 

 After the entire film area is occupied by the Newton black film, the film radius 

increases until it reaches its equilibrium value, R = RNBF (Figure 36(f)). Finally, the 

equilibrium contact angle is established. For more details about this last stage of film 

thinning, see part IV.C of Reference 164. 
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5.5.2.4  Dependence of Emulsion Stability on the Droplet Size 

Experimental data
497,498

 shows that the emulsion stability correlates well with the lifetime of 

separate thin emulsion films or of drops coalescing with their homophase. To simplify the 

treatment we will consider here the lifetime of a single drop pressed against its homophase 

under the action of gravity. To define the lifetime (or drainage time) τ, we assume that in the 

initial and final moments the film has some known thicknesses hin and hf : 











































































−+−+== ∫ 2

2

2
*

2

4

*

22
* 1

2
1ln

2

3

in

f

fin

f

ff

in

z

h

h
z h

h

Rh

R

h

h

Rh

R

h

h

F

R

V

dhin

f

πητ    (273) 

The final thickness, hf, may coincide with the critical thickness of film rupture. Equation 273 

is derived for tangentially immobile interfaces from Equation 259 at a fixed driving force (no 

disjoining pressure). 

 In the case of gravity-driven coalescence of a droplet with its homophase, the driving 

force is given by Equation (269) and the mean drop radius is R* = 2Rd. Then from Equations 

269 and 273 one can deduce the droplet lifetime in the so-called Taylor regime, corresponding 

to nondeformed droplets (R = 0): 
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One sees that τTa depends logarithmically on the ratio of the initial and final thickness. 

Moreover, in the Taylor regime the lifetime, τ, decreases with the increase of the driving 

force, Fz, and the drop radius, Rd. The latter fact is confirmed by the experimental data of 

Dickinson et al.
499

 (see Figure 40). 

 In the case of deformed drops (R ≠ 0), the drainage time, τ, is determined by Equation 

273, and in such a case the fluid particles approach each other in the Reynolds regime.
432,496

 

The dependence of τ on Rd in Equation 273 is very complex, because the driving force, Fz, 

and the film radius, R, depend on Rd. The film radius can be estimated from the balance of the 

driving and capillary force:
432,496

 

πσ2

2 dRzF
R =           (275) 

In this regime, the lifetime, τ, increases with an increase of the driving force, Fz. This is 

exactly the opposite trend compared to results for the Taylor regime (see Equation 274). The 

result can be rationalized in view of Reynolds equation (Equation 262). In the numerator of 

this equation, Fz ∝ Rd
3
, whereas in the denominator R

4
 ∝ Rd

8
 (see Equation 275); as a result, 

the drainage rate becomes proportional to Rd
−5

, i.e., Vz decreases as the droplet radius 

increases. 



 122

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 40. Experimental data of Dickinson et al.
499

 for the lifetime, τ, of drops vs. their 

radius, Rd. The oil drops are pressed against their homophase by the buoyancy force. (From 

Dickinson, E., et al., J. Chem. Soc. Faraday Trans., 84, 871, 1988. With permission.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 41. Calculated lifetime, τ, of drops approaching a fluid interface in Taylor regime 

(the solid line) and in Reynolds regime (the other lines) as a function of the droplet radius, Rd. 
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 The numerical results from Equations 273 to 275 for the lifetime or drainage time, τ, 
vs. the droplet radius, Rd, are plotted in Figure 41 for parameter values typical for emulsion 

systems: ∆ρ = 0.2 g/cm
3
, η = 1 cP, hf = 5 nm, and hin = Rd/10. The various curves in Figure 41 

correspond to different values of the surface tension, σ, shown in the figure. The left branches 

of the curves correspond to the Taylor regime (nondeformed droplets), whereas the right 

branches correspond to the Reynolds regime (formation of film between the droplets). In 

particular, the data shown in Figure 40 correspond to the left branch (Figure 41); in addition, 

data also complies with the right branch.
432

 The presence of a deep minimum on the τ vs. Rd 
curve was first pointed out by I.B. Ivanov.

500,501
 The theoretical dependencies in Figure 41 

agree well with experimental data
502

 for the lifetime of oil droplets pressed by the buoyancy 

force against a large oil/water interface in a system containing protein: bovine serum albumin. 

 

5.5.3   EFFECT OF SURFACE MOBILITY 

The hydrodynamic interactions between fluid particles (drops, bubbles) suspended in a liquid 

medium depend on the interfacial mobility. In the presence of surfactants, the bulk fluid 

motion near an interface disturbs the homogeneity of the surfactant adsorption monolayer. 

The ensuing surface tension gradients act to restore the homogeneous equilibrium state of the 

monolayer. The resulting transfer of adsorbed surfactant molecules from the regions of lower 

surface tension toward the regions of higher surface tension constitutes the Marangoni effect. 

The analogous effect, for which the surface tension gradient is caused by a temperature 

gradient, is known as the Marangoni effect of thermocapillarity. In addition, the interfaces 

possess specific surface rheological properties (surface elasticity and dilatational and shear 

surface viscosities) which give rise to the so-called Boussinesq effect, (see below).
503

 

 

5.5.3.1  Diffusive and Convective Fluxes at an Interface - Marangoni Effect 

To take into account the influence of surfactant adsorption, Equations 240 and 241 are to be 

complemented with transport equations for each of the species (k = 1,2,...,N) in the bulk 

phases
410,413,436,437
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  (k = 1,2, ... ,N)     (276) 

where ck and jk are bulk concentration and flux, respectively, of the k-th species – note that jk 

includes the molecular diffusive flux, the flux driven by external forces (e.g. electro-

diffusion
428,436,437

) and the thermodiffusion flux;
436

 and rk is the rate of production due to 

chemical reactions, including surfactant micellization or micelle decay. The surface mass-

balance equation for the adsorption, Γk, has the form
428,436,437
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where n is the unit normal to the interface directed from phase 1 to phase 2;  denotes the 

difference between the values of a given physical quantity at the two sides of the interface; ∇s 

is the surface gradient operator;
504

 vs is the local material surface velocity; s
kj  is the two-

dimensional flux of the k-th component along the interface; and s
k

r  accounts for the rate of 

production of the k-th component due to interfacial chemical reactions and could include 

conformational changes of adsorbed proteins. Equation 277 provides a boundary condition for 

the normally resolved flux, jk. From another viewpoint, Equation 277 represents a two-

dimensional analogue of Equation 276. The interfacial flux, s
kj , can also contain 

contributions from the interfacial molecular, electro-, and thermodiffusion. A simple 

derivation of the time-dependent convective-diffusion equation for surfactant transport along 

a deforming interface is given by Brenner et al.,
505-508

 Davis et al.,
443

 and Stone.
509

 If the 

molecules are charged, the bulk and surfaces electro-diffusion fluxes can be expressed in the 

form
428,510,511
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for the bulk and interfacial phase. Here, kD  and s
kD  are the bulk and surface collective 

diffusion coefficients, respectively, which are connected with the diffusion coefficients of 

individual molecules, 0,kD  and s
kD 0, , through the relationship:

511
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where kµ  and s
kµ  are the bulk and surface chemical potentials, respectively. The 

dimensionless bulk friction coefficient, Kb, accounts for the change in the hydrodynamic 

friction between the fluid and the particles (created by the hydrodynamic interactions between 

the particles). The dimensionless surface mobility coefficient, Ks, accounts for the variation of 

the friction of a molecule in the adsorption layer. Feng
512

 has determined the surface diffusion 

coefficient, the dilatational elasticity, and the viscosity of a surfactant adsorption layer by 

theoretical analysis of experimental data. Stebe and Maldarelli
513,514

 studied theoretically the 

surface diffusion driven by large adsorption gradients. The determination of bulk and surface 

diffusion coefficients from experimental data for the drainage of nitrobenzene films stabilized 

by different concentrations of dodecanol was reported.
510

. 

 Note that the adsorption isotherms, relating the surface concentration, Γk, with the 

subsurface value of the bulk concentration, ck (see Section 5.2.2.1 above), or the respective 
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kinetic equation 86 for adsorption under barrier control (see Section 5.2.2.5), should also be 

employed in the computations based on Equations 276 to 279 in order for a complete set of 

equations to be obtained. 

 Another boundary condition is the equation of the interfacial momentum 

balance:
414,432,437

 

∇s⋅σ = n⋅ bPP +          (280) 

where σ is the interfacial stress tensor, which is a two-dimensional counterpart of the bulk 

stress tensor, P. Moreover, a two-dimensional analogue of Equations 242, 245 and 246, called 

the Boussinesq-Scriven constitutive law, can be postulated for a fluid interface:
164,437,503,515-519
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where ηdl and ηsh are the interfacial dilatational and shear viscosities, respectively; Is is the 

unit surface idemfactor;
504

 and, as usual, σa is the scalar adsorption part of the surface tension 

(see Section 5.2.1.2.2). In view of the term σaIs in Equation 281, the Marangoni effects are 

hidden in the left-hand side of the boundary condition (Equation 280) through the surface 

gradient of σa: 
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where Ek is the Gibbs elasticity for the k-th surfactant species (see Equation 6) and ET 

represents the thermal analogue of the Gibbs elasticity. The thermocapillary migration of 

liquid drops or bubbles and the influence of ET on their motion are investigated in a number of 

works.
520-522

 

 In fact, Equation 281 describes an interface as a two-dimensional Newtonian fluid. On 

the other hand, a number of non-Newtonian interfacial rheological models have been 

described in the literature.
523-526

 Tambe and Sharma
527

 modeled the hydrodynamics of thin 

liquid films bounded by viscoelastic interfaces, which obey a generalized Maxwell model for 

the interfacial stress tensor. These authors
528,529

 also presented a constitutive equation to 

describe the rheological properties of fluid interfaces containing colloidal particles. A new 

constitutive equation for the total stress was proposed by Horozov et al.
530

 and Danov et al.
531

 

who applied a local approach to the interfacial dilatation of adsorption layers. 

 When the temperature is not constant, the bulk heat transfer equation complements the 

system and involves Equations 240, 241, and 276. The heat transfer equation is a special case 

of the energy balance equation. It should be noted that more than 20 various forms of the 

overall differential energy balance for multicomponent systems are available in the 

literature.
410,413

 The corresponding boundary condition can be obtained as an interfacial 
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energy balance.
437,519

 Based on the derivation of the bulk
532

 and interfacial
531,533

 entropy 

inequalities (using the Onsager theory), various constitutive equations for the thermodynamic 

mass, heat, and stress fluxes have been obtained. 

 

5.5.3.2   Fluid Particles and Films of Tangentially Mobile Surfaces 

When the surface of an emulsion droplet is mobile, it can transmit the motion of the outer 

fluid to the fluid within the droplet. This leads to a special pattern of the fluid flow and affects 

the dissipation of energy in the system. The problem concerning the approach of two 

nondeformed (spherical) drops or bubbles of pure phases has been investigated by many 

authors.
432,459,460,466,467,534-539

 A number of solutions, generalizing the Taylor equation 

(Equation 260), have been obtained. For example, the velocity of central approach, Vz, of two 

spherical drops in pure liquid is related to the hydrodynamic resistance force, Fz, by means of 

a Padé-type expression derived by Davis et al.
466
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where h is the closest surface-to-surface distance between the two drops, and ηd is the 

viscosity of the disperse phase (the liquid in the droplets). In the limiting case of solid 

particles, one has ηd → ∞, and Equation 283 reduces to the Taylor equation (Equation 260). 

Note that in the case of close approach of two drops (ξ >> 1), the velocity Vz is proportional to 

h . This implies that the two drops can come into contact (h = 0) in a finite period of time 

(τ < ∞) under the action of a given force, Fz, because the integral in Equation 273 is 

convergent for hf = 0. This is in contrast with the case of immobile interfaces (ξ << 1), when 

Vz ∝ h and τ → ∞ for hf → 0. 

 In the other limiting case, that of two nondeformed gas bubbles (ηd → 0) in pure 

liquid, Equation 283 cannot be used; instead, Vz can be calculated from the expression due to 

Beshkov et al.
539
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Note that in this case Vz ∝ (lnh)
−1

, and the integral in Equation 273 is convergent for hf → 0. 

In other words, the theory predicts that the lifetime, τ, of a doublet of two colliding spherical 

bubbles in pure liquid is finite. Of course, the real lifetime of a doublet of bubbles or drops is 

affected by the surface forces for h < 100 nm, which should be accounted for in Fz and which 

may lead to the formation of thin film in the zone of contact.
134,266

 

 Let us proceed with the case of deformed fluid particles (Figure 23). A number of 

theoretical studies
540-543

 have been devoted to the thinning of plane-parallel liquid films of 
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pure liquid phases (no surfactant additives). Ivanov and Traykov
542

 derived the following 

exact expressions for the velocity of thinning of an emulsion film: 
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where ρd is the density of the disperse phase, VRe is the Reynolds velocity defined by 

Equation 262, and εe is the so-called emulsion parameter. Substituting typical parameter 

values in Equations 283 and 285 one can check that at a given constant force the velocity of 

thinning of an emulsion film is smaller than the velocity of approach of two nondeformed 

droplets and much larger than VRe. It is interesting to note that the velocity of thinning as 

predicted by Equation 285 does not depend on the viscosity of the continuous phase, η, and 

its dependence on the drop viscosity, ηd, is rather weak. There are experimental observations 

confirming this prediction (see Reference 32, p. 381). 

 The presence of surfactant adsorption monolayers decreases the mobility of the droplet 

(bubble) surfaces. This is due to the Marangoni effect (see Equation 282). From a general 

viewpoint, one may expect that the interfacial mobility will decrease with the increase of 

surfactant concentration until eventually the interfaces become immobile at high surfactant 

concentrations (see Section 5.5.2, above); therefore, a pronounced effect of surfactant 

concentration on the velocity of film drainage should be expected. This effect really exists 

(see Equation 286, below), but in the case of emulsions it is present only when the surfactant 

is predominantly soluble in the continuous phase. 

 

 

 

 

 

FIGURE 42. Damping of convection driven surface tension gradients by influx of surfactant 

from the drop interior. (a) Since the mass transport is proportional to the perturbation, the 

larger the perturbation the stronger the flux tending to eliminate it. (b) Uniform surfactant 

distribution is finally reached. 

 Traykov and Ivanov
543

 established (both theoretically and experimentally) the 

interesting effect that when the surfactant is dissolved in the disperse phase (that is, in the 

emulsion droplets), the droplets approach each other just as in the case of pure liquid phases, 

i.e. Equation 285 holds. Qualitatively, this effect can be attributed to the fact that the 

convection-driven surface tension gradients are rapidly damped by the influx of surfactant 

from the drop interior; in this way, the Marangoni effect is suppressed. Indeed, during the film 
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drainage the surfactant is carried away toward the film border, and a nonequilibrium 

distribution, depicted in Figure 42(a), appears. Since, however, the mass transport is 

proportional to the perturbation, the larger the deviation from equilibrium the stronger the flux 

tending to eliminate the perturbation (the surfactant flux is denoted by thick arrows in Figure 

42(b)). In this way, any surface concentration gradient (and the related Marangoni effect) 

disappears. The emulsion films in this case behave as if surfactant is absent. 

 In the opposite case, when the surfactant is soluble in the continuous phase, the 

Marangoni effect becomes operative and the rate of film thinning becomes dependent on the 

surface (Gibbs) elasticity (see Equation 282). Moreover, the convection-driven local depletion 

of the surfactant monolayers in the central area of the film surfaces gives rise to fluxes of bulk 

and surface diffusion of surfactant molecules. The exact solution of the 

problem
428,430,462,510,511,543

 gives the following expression for the rate of thinning of 

symmetrical planar films (of both foam and emulsion type): 
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where, as usual, D and Ds are the bulk and interfacial collective diffusion coefficients (see 

Equation 279); EG is the Gibbs elasticity; and εf is the so-called foam parameter.
496 

In the 

special case of foam film, one substitutes εe = 0 in Equation 286. Note that the diffusive 

surfactant transport, which tends to restore the uniform adsorption monolayers, damps the 

surface tension gradients (which oppose the film drainage) and thus accelerates the film 

thinning. However, at large surfactant concentrations, the surface elasticity, EG, prevails, εf 

increases, and consequently, the thinning rate decreases down to the Reynolds velocity, Vz → 

VRe (see Equation 286). Similar expressions for the rate of film thinning, which are 

appropriate for various ranges of values of the interfacial parameters, can be found in the 

literature.
164,431,432,477,544,545

 A table describing the typical ranges of variation of the interfacial 

properties (Γ, EG, D, Ds, ∂σ/∂c, etc.) for emulsion and foam systems can be found in 

Reference 164, Table 2 therein. For h < 100 nm, the influence of the disjoining pressure 

should be taken into account (see Equation 262). In some studies,
164,440,527,546-549

 the effect of 

the interfacial viscosity on the rate of thinning and the lifetime of plane-parallel films is 

investigated; this effect is found to decrease when the film thickness, h, becomes smaller 

and/or the film radius, R, becomes larger. 

 Note that Equation 286 does not hold in the limiting case of foam films (εe = 0) at low 

surfactant concentration, εf → 0. The following expression is available for this special case:
496
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FIGURE 43. Histograms for the lifetimes of emulsion films: ∆N/N is the relative number of 

films which have ruptured during a time interval ∆t = 0.4 sec. (a) Surfactant in the drops: 

benzene films between water drops containing surfactant sodium octylsulfonate of 

concentration (1) 0 M, (2) 10
-4

 M, and (3) 2×10
-3

 M; (b) Surfactant in the film: (1) benzene 

film with 0.1 M of lauryl alcohol dissolved in the film, (2) water film with 2×10
-3

 M of 

sodium octylsulfonate inside. (From Traykov, T.T. and Ivanov, I.B., Int. J. Multiphase Flow, 

3, 471, 1977. With permission.) 

 

The merit of this equation is that it gives as limiting cases both Vz/VRe for foam films without 

surfactant, εf → 0, and Equation 286 with εe = 0 (note that in the framework of the lubrication 

approximation, used to derive Equation 286, the terms ∝ h
2
/R

2
 are being neglected). Equation 

287 has also some shortcomings, which are discussed in Reference 496. 

 Another case, which is not described by the above equations, is the approach of two 

nondeformed (spherical) bubbles in the presence of surfactant. The velocity of approach in 

this case can be described by means of the expression:
431,440,501,511
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where the parameters b and hs account for the influence of bulk and surface diffusivity of 

surfactants, respectively. From Equation 279 these parameters are calculated to be:
511
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A generalization of Equation 288 to the more complicated case of two nondeformed 

(spherical) emulsion droplets with account for the influence of surface viscosity has been 

published in Reference 440. 

 Returning back to the parameter values, we note that usually εe << εf and εe << 1. 

Then, comparing the expressions for Vz/VRe as given by Equations 285 and 286, one 

concludes that the rate of thinning is much greater when the surfactant is dissolved in the 

droplets (the disperse phase) in comparison with the case when the surfactant is dissolved in 

the continuous phase. This prediction of the theory was verified experimentally by measuring 

the number of films that rupture during a given period of time,
550

 as well as the rate of 

thinning. When the surfactant was dissolved in the drop phase, the average lifetime was the 

same for all surfactant concentrations (Figure 43(a)), in agreement with Equation 285. For the 

emulsion film with the same, but inverted liquid phases (the former continuous phase 

becomes disperse phase and vice versa), i.e., the surfactant is in the film phase, the average 

lifetime is about 70 times longer – compare curve 3 in Figure 43(a) with curve 2 in Figure 

43(b). The theoretical conclusions have been also checked and proved in experimental 

measurements with nitroethane droplets dispersed in aqueous solution of the cationic 

surfactant hexadecyl trimethyl ammonium chloride (HTAC).
498

 

 

5.5.3.3   Bancroft Rule for Emulsions 

There have been numerous attempts to formulate simple rules connecting the emulsion 

stability with the surfactant properties. Historically, the first one was the Bancroft rule
551

 

which states that “in order to have a stable emulsion the surfactant must be soluble in the 

continuous phase”. A more sophisticated criterion was proposed by Griffin
552

 who introduced 

the concept of hydrophilic-lipophilic balance (HLB). As far as emulsification is concerned, 

surfactants with an HLB number in the range 3 to 6 must form water-in-oil (W/O) emulsions, 

whereas those with HLB numbers from 8 to 18 are expected to form oil-in-water (O/W) 

emulsions. Different formulae for calculating the HLB numbers are available; for example, 

the Davies’ expression
553

 reads: 

HLB = 7 + (hydrophilic group number) − 0.475nc     (290) 
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where nc is the number of -CH2- groups in the lipophilic part of the molecule. Schinoda and 

Friberg
554

 proved that the HLB number is not a property of the surfactant molecules only, but 

it also depends strongly on the temperature (for nonionic surfactants), on the type and 

concentration of added electrolytes, on the type of oil phase, etc. They proposed using the 

phase inversion temperature (PIT) instead of HLB for characterization of the emulsion 

stability. 

 Davis
555

 summarized the concepts about HLB, PIT and Windsor's ternary phase 

diagrams for the case of microemulsions and reported topological ordered models connected 

with the Helfrich membrane bending energy. Since the curvature of surfactant lamellas plays 

a major role in determining the patterns of phase behavior in microemulsions, it is important 

to reveal how the optimal microemulsion state is affected by the surface forces determining 

the curvature energy.
163,556,557

 It is hoped that lattice models
558,559

 and membrane curvature 

models
560,561

 will lead to predictive formulae for the microemulsion design. 

 Ivanov et al.
496,500,501,562

 have proposed a semiquantitative theoretical approach that 

provides a straightforward explanation of the Bancroft rule for emulsions. This approach is 

based on the idea of Davies and Rideal
32

 that both types of emulsions are formed during the 

homogenization process, but only the one with lower coalescence rate survives. If the initial 

drop concentration for both emulsions is the same, the coalescence rates for the two emulsions 

– (Rate)1 for emulsion 1 and (Rate)2 for emulsion 2 (see Figure 44) – will be proportional to 

the respective coalescence rate constants, kc,1 and kc,2 (see Section 5.6, below), and inversely 

proportional to the film lifetimes, τ1 and τ2: 
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Here V1 and V2 denote the respective velocities of film thinning. After some estimates based 

on Equations 262, 273, 285, and 286, one can express the ratio in Equation 291 in the form 
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where hcr,1 and hcr,2 denote the critical thickness of film rupture for the two emulsions in 

Figure 44. Many conclusions can be drawn, regarding the type of emulsion to be formed: 

1. If the disjoining pressures, Π1 and Π2, are zero, the ratio in Equation 292 will be very 

small. Hence, emulsion 1 (surfactant soluble in the continuous phase) will coalesce 

much more slowly and it will survive. This underlines the crucial importance of the 

surfactant location (which is connected with its solubility), thus providing a theoretical 

foundation for Bancroft's rule. The emulsion behavior in this case will be controlled 

almost entirely by the hydrodynamic factors (kinetic stability). 
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FIGURE 44. The two possible types of emulsions obtained just after the homogenization; the 

surfactant is soluble into Phase I. 

2. The disjoining pressure, Π, plays an important role. It can substantially change and 

even reverse the behavior of the system if it is comparable by magnitude with the 

capillary pressure, Pc. For example, if (Pc − Π2) → 0 at a finite value of Pc−Π1 (which 

may happen, for example, for an O/W emulsion with oil soluble surfactant), the ratio 

in Equation 292 may become much larger than unity, which means that emulsion 2 

will become thermodynamically stable. In some cases the stabilizing disjoining 

pressure is large enough for emulsions with a very high volume fraction of the 

disperse phase (above 95% in some cases) to be formed.
563

 

3. The Gibbs elasticity, EG, favors the formation of emulsion 1, because it slows down 

the film thinning. On the other hand, increased surface diffusivity, Ds, decreases this 

effect, because it helps the interfacial tension gradients to relax, thus facilitating the 

formation of emulsion 2. 

4. The film radius, R, increases and the capillary pressure, Pc, decreases with the drop 

radius, Rd. Therefore, larger drops will tend to form emulsion 1, although the effect is 

not very pronounced. 

5. The difference in critical thicknesses of the two emulsions only slightly affects the rate 

ratio in Equation 292, although the value of hcr itself is important. 

6. The viscosity of the continuous phase, η, has no effect on the rate ratio, which depends 

only slightly on the viscosity of the drop phase, ηd. This is in agreement with the 

experimental observations (see Reference 32, p. 381). 
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7. The interfacial tension, σ, affects the rate ratio directly only through the capillary 

pressure, Pc = 2σ/Rd. The electrolyte primarily affects the electrostatic disjoining 

pressure, Π, which decreases as the salt content increases, thus destabilizing the O/W 

emulsion. It can also influence the stability by changing the surfactant adsorption 

(including the case of nonionic surfactants). 

8. The temperature strongly affects the solubility and surface activity of nonionic 

surfactants.
3
 It is well known that at higher temperature nonionic surfactants become 

more oil soluble, which favors the W/O emulsion. Thus solubility may change the type 

of emulsion formed at the PIT. The surface activity has numerous implications, the 

most important being the change of the Gibbs elasticity, EG, and the interfacial 

tension, σ. 

9. Surface active additives (cosurfactants, demulsifiers, etc.), such as fatty alcohols in the 

case of ionic surfactants, may affect the emulsifier partitioning between the phases and 

its adsorption, thereby changing the Gibbs elasticity and the interfacial tension. The 

surface-active additive may also change the surface charge (mainly by increasing the 

spacing among the emulsifier ionic headgroups), thus decreasing the repulsive 

electrostatic disjoining pressure and favoring the W/O emulsion. Polymeric surfactants 

and adsorbed proteins increase the steric repulsion between the film surfaces. They 

may favor either O/W or W/O emulsions, depending on their conformation at the 

interface and their surface activity. 

10. The interfacial bending moment, B0, can also affect the type of the emulsion, although 

this is not directly visible from Equation 292. (Note that B0 = −4kcH0, where H0 is the 

so-called spontaneous curvature and kc is the interfacial curvature elastic modulus;
129

 

typically, B0 is of the order of 5×10
−11

N.) Usually, for O/W emulsions, B0 opposes the 

flattening of the droplet surfaces in the zone of collision (Figure 23), but for W/O 

emulsions favors the flattening.
134

 This effect might be quantified by the expression 

for the curvature contribution in the energy of droplet-droplet interaction:
134

 

( ) 1/,/2
2

0
2 <<−= ddc RRRBRW π      (293) 

It turns out that Wc > 0 for the droplet collisions in an O/W emulsion, while Wc < 0 for 

a W/O emulsion;
134

 consequently, the interfacial bending moment stabilizes the O/W 

emulsions but destabilizes the W/O ones. There is supporting experimental evidence
564

 

for microemulsions, i.e., for droplets of rather small size. Moreover, the effect of the 

bending moment can be important even for micrometer-sized droplets.
134

 This is due 

to the fact that the bent area increases faster (R
2
 ∝ Rd

2
) than the bending energy per 

unit area decreases (Wc/R
2
 ∝ 1/Rd) when the droplet radius, Rd, increases (see Equation 

293). 
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 For micron-sized emulsion droplets the capillary pressure can be so high that a film 

may not appear between the drops. In such case, instead of Equation 292, one can use 

analogous expression for nondeformed (spherical) drops.
565

. 

 

 

 

 

FIGURE 45. (a) Nonuniform surface 

distribution of an emulsifier due to drag 

from the draining film. (b) Suppression 

of the surface tension gradients by a 

demulsifier added in the drop phase. 

 

 

 

 

 

5.5.3.4   Demulsification 

It has been known for a long time
32

 that one way to destroy an emulsion is to add a surfactant, 

which is soluble in the drop phase − this method is termed “chemical demulsification”. To 

understand the underlying process, let us consider two colliding emulsion droplets with film 

formed in the zone of collision (see Figures 23 and 45). As discussed above, when the liquid 

is flowing out of the film, the viscous drag exerted on the film surfaces (from the side of the 

film interior) carries away the adsorbed emulsifier toward the film periphery. Thus, a 

nonuniform surface distribution of the emulsifier (shown in Figure 45(a) by empty circles) is 

established. If demulsifier (the closed circles in Figure 45(b)) is present in the drop phase, it 

will occupy the interfacial area freed by the emulsifier. The result will be a saturation of the 

adsorption layer, as shown in Figure 45(b). If the demulsifier is sufficiently surface active, its 

molecules will be able to decrease substantially, and even to eliminate completely, the 

interfacial tension gradients, thus changing the emulsion to type 2 (see Figure 44 and Section 

5.5.3.2, above). This leads to a strong increase in the rate of film thinning, rapid drop 

coalescence, and emulsion destruction.
500,501

 The above mechanism suggests that the 

demulsifier has to possess the following properties: 
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1. It must be soluble in the drop phase or in both phases, but in the latter case its 

solubility in the drop phase must be much higher. 

2. Its diffusivity and concentration must be large enough to provide a sufficiently large 

demulsifier flux toward the surfaces and thus eliminate the gradients of the interfacial 

tension. 

3. Its surface activity must be comparable and even higher than that of the emulsifier; 

otherwise, even though it may adsorb, it will not be able to suppress the interfacial 

tension gradients. 

 In regard to defoaming, various mechanisms are possible, which are discussed in 

Section 5.7, below. 

 

5.5.4.   INTERACTIONS IN NONPREEQUILIBRATED EMULSIONS 

The common nonionic surfactants are often soluble in both water and oil phases. In the 

practice of emulsion preparation, the surfactant (the emulsifier) is initially dissolved in one of 

the liquid phases and then the emulsion is prepared by homogenization. In such a case, the 

initial distribution of the surfactant between the two phases of the emulsion is not in 

equilibrium; therefore, surfactant diffusion fluxes appear across the surfaces of the emulsion 

droplets. The process of surfactant redistribution usually lasts from many hours to several 

days, until finally equilibrium distribution is established. The diffusion fluxes across the 

interfaces, directed either from the continuous phase toward the droplets or the reverse, are 

found to stabilize both thin films and emulsions. In particular, even films, which are 

thermodynamically unstable, may exist several days because of the diffusion surfactant 

transfer; however, they rupture immediately after the diffusive equilibrium has been 

established. Experimentally, this effect manifests itself in phenomena called cyclic 

dimpling
566

 and osmotic swelling.
567

 These two phenomena, as well as the equilibration of two 

phases across a film,
568,569

 are described and interpreted below. 

 

5.5.4.1   Surfactant Transfer from Continuous to Disperse Phase 

     (Cyclic Dimpling) 

The phenomenon of cyclic dimpling was first oserved
501,566

 with xylene films intervening 

between two water droplets in the presence of the nonionic emulsifier Tween 20 or Tween 80 

(initially dissolved in water but also soluble in oil). The same phenomenon also has been 

observed with other emulsion systems. 

 After the formation of such an emulsion film, it thins down to an equilibrium thickness 

(approximately 100 nm), determined by the electrostatic repulsion between the interfaces.  
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FIGURE 46. Spontaneous cyclic dimpling caused by surfactant diffusion from the aqueous 

film toward the two adjacent oil phases. (a) Schematic presentation of the process. (b) 

Photograph of a large dimple just before flowing out; the interference fringes in reflected light 

allow determination of the dimple shape. 
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As soon as the film reaches this thickness, a dimple spontaneously forms in the film center 

and starts growing (Figure 46(a)). When the dimple becomes bigger and approaches the film 

periphery, a channel forms connecting the dimple with the aqueous phase outside the film 

(Figure 46(b)). Then, the water contained in the dimple flows out leaving an almost plane-

parallel film behind. Just afterwards, a new dimple starts to grow and the process repeats 

again. The period of this cyclic dimpling remains approximately constant for many cycles and 

could be from a couple of minutes up to more than 10 minutes. It was established that this 

process is driven by the depletion of the surfactant concentration on the film surfaces due to 

the dissolving of surfactant in the adjacent drop phases. The depletion triggers a surface 

convection flux along the two film surfaces and a bulk diffusion flux in the film interior. Both 

fluxes are directed toward the center of the film. The surface convection causes a tangential 

movement of the film surfaces; the latter drag along a convective influx of solution in the 

film, which feeds the dimple. Thus, the cyclic dimpling appears to be a process leading to 

stabilization of the emulsion films and emulsions due to the influx of additional liquid in the 

region between the droplets which prevents them from a closer approach, and eventually, 

from coalescence. 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 47. Comparison between the theory of cyclic dimpling (the lines) and the 

experimental data (the points) for the dimple shape, h(r), determined from the interference 

fringes (see Figure 46(b)); emulsifier is anionic surfactant sodium nonylphenol 

polyoxyethylene-25 sulfate and the oil phase is styrene. 

 Combining the general equation of films with deformable interfaces (Equation 255), 

the mass balance (Equations 276 and 277), and the boundary condition for the interfacial 

stresses (Equation 281), one can derive:
570
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where j is the diffusion flux in the drop phase, and, as usual, r is radial coordinate, h(r,t) is the 

film thickness, σ is surface tension, Γ is adsorption, and Π is disjoining pressure. The 

comparison between the numerical calculations based on Equation 294 and the experimental 

data for the cyclic dimpling with the anionic surfactant sodium nonylphenol polyoxyethylene-

25 sulfate show a very good agreement (see Figure 47). The experimental points are obtained 

from the interference fringes (see Figure 46). The shape in the initial moment, t = 0, serve as 

an initial condition for determining h(r,t) by solving Equation 294. The curves for t = 3, 9, 17, 

and 29 sec represent theoretical predictions. The scaling parameters along the h and r axes in 

Figure 47 are h0 = 350 nm and R = 320 µm, the latter being the film radius; the only 

adjustable parameter is the diffusion flux, j. 

 

5.5.4.2   Surfactant Transfer from Disperse to Continuous Phase 

     (Osmotic Swelling) 

Velev et al.
498

 reported that emulsion films, formed from pre-equilibrated phases containing 

the nonionic surfactant Tween and 0.1-M NaCl, spontaneously thin down to Newton black 

films (thickness ≈ 10 nm) and then rupture. However, when the nonionic surfactant Tween 20 

or Tween 60 is initially dissolved in the xylene drops and the film is formed from the nonpre-

equilibrated phases, no black film formation and rupture is observed.
501,567

 Instead, the films 

have a thickness above 100 nm, and one observes formation of channels of larger thickness 

connecting the film periphery with the film center (Figure 48). One may observe that the 

liquid is circulating along the channels for a period from several hours to several days. The 

phenomenon continues until the redistribution of the surfactant between the phases is 

accomplished. This phenomenon occurs only when the background surfactant concentration 

in the continuous (the aqueous) phase is not lower than the CMC. These observations can be 

interpreted in the following way. 

 Since the surfactant concentration in the oil phase (the disperse phase) is higher than 

the equilibrium concentration, surfactant molecules cross the oil-water interface toward the 

aqueous phase. Thus, surfactant accumulates within the film, because the bilk diffusion 

throughout the film is not fast enough to transport promptly the excess surfactant into the 

Plateau border. As the background surfactant concentration in the aqueous phase is not less 

than CMC, the excess surfactant present in the film is packed in the form of micelles (denoted 

by black dots in Figure 48(a)). This decreases the chemical potential of the surfactant inside 

the film. Nevertheless, the film is subjected to osmotic swelling because of the increased 

concentration of micelles within. The excess osmotic pressure 
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Increased pressureP0 P0 + Posm 

+ Surfactant 

FIGURE 48. Osmotic swelling of an aqueous film formed between two oil droplets. (a) The

surfactant dissolved in the oil is transferred by diffusion toward the film, where it forms

micelles, the osmotic effects of which increase the local pressure. (b) Photograph of a typical

pattern from a circular film with channels. 
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cPCkTP ≥= micosm          (295) 

counterbalances the outer capillary pressure and arrests further thinning of the film. 

Moreover, the excess osmotic pressure in the film gives rise to a convective outflow of 

solution: this is the physical origin of the observed channels (Figure 48(b)). 

 Experimental data
501,567

 show that the occurrence of the above phenomenon is the 

same for initial surfactant concentration in the water varying from 1 up to 500 times the CMC, 

if only some amount of surfactant is also initially dissolved also in the oil. This fact implies 

that the value of the surfactant chemical potential inside the oil phase is much greater than 

that in the aqueous phase, the latter being closer to its value at the CMC in the investigated 

range of concentrations. 

 

5.5.4.3   Equilibration of Two Droplets across a Thin Film 

In the last two sections, we considered mass transfer from the film toward the droplets and the 

reverse, from droplets toward the film. In both cases, the diffusion fluxes lead to stabilization 

of the film. Here we consider the third possible case corresponding to mass transfer from the 

first droplet toward the second one across the film between them. In contrast with the former 

two cases, in the last case the mass transfer is found to destabilize the films. Experimentally, 

the diffusion transfer of alcohols, acetic acid, and acetone was studied.
571,572

 The observed 

destabilization of the films can be attributed to the appearance of Marangoni instability,
568

 

which manifests itself through the growth of capillary waves at the interfaces, which 

eventually can lead to film rupture. 

 The Marangoni instabilities can appear not only in thin films, but also in the simpler 

case of a single interface. In this case, the Marangoni instability may bring about spontaneous 

emulsification. This effect has been theoretically investigated by Sterling and Scriven,
573

 

whose work stimulated numerous theoretical and experimental studies on spontaneous 

emulsification. Lin and Brenner
574

 examined the role of the heat and mass transfer in an 

attempt to check the hypothesis of Holly
575

 that the Marangoni instability can cause the 

rupture of tear films. Their analysis was extended by Castillo and Velarde,
576

 who accounted 

for the tight coupling of the heat and mass transfer and showed that it drastically reduces the 

threshold for Marangoni convection. Instability driven by diffusion flux of dissolved oil 

molecules across an asymmetric liquid film (oil-water-air film) has been theoretically 

investigated.
569

 It was found that even small decrements of the water-air surface tension, 

caused by the adsorbed oil, are sufficient to trigger the instability. 
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5.5.5   HYDRODYNAMIC INTERACTION OF A PARTICLE WITH AN INTERFACE 

There are various cases of particle-interface interactions, which require separate theoretical 

treatment. The simpler case is the hydrodynamic interaction of a solid particle with a solid 

interface. Other cases are the interactions of fluid particles (of tangentially mobile or 

immobile interfaces) with a solid surface; in these cases, the hydrodynamic interaction is 

accompanied by deformation of the particle. On the other hand, the colloidal particles (both 

solid and fluid) may hydrodynamically interact with a fluid interface, which thereby 

undergoes a deformation. In the case of fluid interfaces, the effects of surfactant adsorption, 

surface diffusivity, and viscosity affect the hydrodynamic interactions. A special class of 

problems concerns particles attached to an interface which are moving throughout the 

interface. Another class of problems is related to the case when colloidal particles are 

confined in a restricted space within a narrow cylindrical channel or between two parallel 

interfaces (solid and/or fluid); in the latter case, the particles interact simultaneously with both 

film surfaces. 

 The theoretical contributions are limited to the case of low Reynolds 

number
421,422,498,577-579

 (mostly for creeping flows, see part 5.5.1), avoiding the difficulties 

arising from the nonlinearity of the equations governing the fluid motion at higher velocities. 

Indeed, for low Reynolds numbers, the term v⋅∇v in the Navier-Stokes equation (see 

Equations 247 to 249) is negligible, and one may apply the method of superposition to solve 

the resulting linear set of equations. This means that one may first solve the simpler problems 

about the particle elementary motions: (1) particle translation (without rotation) in an 

otherwise immobile liquid, (2) particle rotation (without translation) in an otherwise immobile 

liquid, and (3) streamlining of an immobile particle by a Couette or Poiseuille flow. Once the 

problems about the elementary motions have been solved, one may obtain the linear and 

angular velocity of the real particle motion combining the elementary flows. The principle of 

combination is based on the fact that for low Reynolds numbers the particle acceleration is 

negligible, and the net force and torque exerted on the particle must be zero. In other words, 

the hydrodynamic drag forces and torques originating from the particle translation and 

rotation are counterbalanced by those originating from the streamlining: 

Ftranslation + Frotation + Fstreamlining = 0,           Mtranslation + Mrotation + Mstreamlining = 0          (296) 

That is the reason why we will now consider expressions for F and M for various types of 

elementary motions. 

 

5.5.5.1. Particle of Immobile Surface Interacting with a Solid Wall 

The force and torque exerted on a solid particle were obtained in the form of a power series 

with respect to Rd/l, where Rd is the particle radius and l is the distance from the center of the 

particle to the wall. Lorentz
580

 derived an asymptotic expression for the motion of a sphere 
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along the normal to a planar wall with an accuracy of up to Rd/l. Faxen
581

 developed the 

method of reflection for a sphere moving between two parallel planes in a viscous fluid. 

Using this method, Wakiya
582

 considered the cases of motion in flow of Couette and 

Poiseuille; however, the method employed by him cannot be applied to small distances to the 

wall.
442

 The next important step was taken by Dean and O'Neil
583

 and O'Neil,
584

 who found an 

exact solution for the force and the torque acting on a spherical particle moving tangentially to 

a planar wall at an arbitrary distance from the wall. The limiting case of small distances 

between the particle and the wall was examined by several authors.
433-435,585

 Instead of an 

exact solution of the problem, the authors derived asymptotic formulae for the force and 

torque. Keh and Tseng
586

 presented a combined analytical-numerical study for the slow 

motion of an arbitrary axisymmetric body along its axis of revolution, the latter being normal 

to a planar surface. The inertial migration of a small solid sphere in a Poiseuille flow was 

calculated by Schonberg and Hinch
587 

for the case when the Reynolds number for the channel 

is of the order of unity. 

 Below we present expressions for the forces and torques for some of the elementary 

motions. In all cases we assume that the Reynolds number is small, the coordinate plane xy, is 

parallel to the planar wall and h is the shortest surface-to-surface distance from the particle to 

the wall. 

 First, we consider the case of a pure translational motion: a solid spherical particle of 

radius Rd which translates along the y-axis with a linear velocity U and angular velocity ω ≡ 0 

in an otherwise quiescent fluid. In spite of the fact that the particle does not rotate, it 

experiences a torque, M, directed along the x-axis, due to friction with the viscous fluid. The 

respective asymptotic expressions
433-435

 for the components of the drag force, F, and torque, 

M, read: 

0=xF  ,      ydy fURF πη6−=  ,      xdx mURM 28πη−=  ,      0=yM   (297) 
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where fy, and mx, are dimensionless drag force and torque coefficients, respectively. 

 Second, we consider the case of pure rotation: a solid spherical particle of radius Rd is 

situated at a surface-to-surface distance, h, from a planar wall and rotates with angular 

velocity, ω, around the x-axis in an otherwise quiescent fluid. The corresponding force and 

torque resultants are
433-435

 

0=xF  ,      ydy fRF 26πηω−= ,            xdx mRM 38πηω−=  ,      0=yM   (300) 
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From Equations 297 to 301, it follows that the force and the torque depend weakly 

(logarithmically) on the distance, h, as compared to the Taylor or Reynolds laws (Equations 

260 and 261). 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 49. Deformed fluid particle (the inset) moving tangentially to an immobile solid 

surface: plot of the dimensionless drag coefficient, fy, vs. the dimensionless film thickness, 

h/Rd, for three values of the dimensionless film radius, R/Rd (see Equation 303). 

 As discussed in Sections 5.5.2.1 and 5.5.3.2, a fluid particle in the presence of high 

surfactant concentration can be treated as a deformable particle of tangentially immobile 

surfaces. Such a particle deforms when pressed against a solid wall (see the inset in Figure 

49). To describe the drag due to the film intervening between the deformed particle and the 

wall, one may use the expression derived by Reynolds
423

 for the drag force exerted on a 

planar solid ellipsoidal disc, which is parallel to a solid wall and is moving along the y-axis at 

a distance h from the wall: 

0=xF ,  
ab

h
UFy πη−=       (302) 

Here, a and b are the semi-axes of the ellipse; for a circular disc (or film), one has a = b = R. 

By combining Equations 297 and 298 with Equation 302, one can derive an expression for the 

net drag force experienced by the deformed particle (the inset in Figure 49) when it moves 

along the y-axis with a linear velocity U: 
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Here, as usual, h and R denote the film thickness and radius, and Rd is the curvature radius of 

the spherical part of the particle surface. The dependence of the dimensionless drag 

coefficient, fy, on the distance h for different values of the ratio R/Rd is illustrated in Figure 49. 

The increase of R/Rd and the decrease of h/Rd may lead to an increase of the drag force, fy, by 

an order of magnitude. That is the reason why the film between a deformed particle and a wall 

can be responsible for the major part of the energy dissipation. Moreover, the formation of 

doublets and flocks of droplets separated by liquid films seems to be of major importance for 

the rheological behavior of emulsions. 

 

5.5.5.2   Fluid Particles of Mobile Surfaces 

Let us start with the case of pure phases, when surfactant is missing and the fluid-liquid 

interfaces are mobile. Under these conditions, the interaction of an emulsion droplet with a 

planar solid wall was investigated by Ryskin and Leal,
588

 and numerical solutions were 

obtained. A new formulation of the same problem was proposed by Liron and Barta.
589 

The 

case of a small droplet moving in the restricted space between two parallel solid surfaces was 

solved by Shapira and Haber.
590,591

 These authors used the Lorentz reflection method to 

obtain analytical solutions for the drag force and the shape of a small droplet moving in 

Couette flow or with constant translational velocity. 

 The more complicated case, corresponding to a viscous fluid particle approaching the 

boundary between two pure fluid phases (all interfaces deformable), was investigated by 

Yang and Leal,
592,593

 who succeeded in obtaining analytical results. 

 Next, we proceed with the case when surfactant is present and the Marangoni effect 

becomes operative. Classical experiments carried out by Lebedev
594

 and Silvey
595

 show that 

the measured velocity of sedimentation, U, of small fluid droplets in a viscous liquid (pure 

liquid phases assumed) does not obey the Hadamar
596

 and Rybczynski
597

 equation: 

ηη
ηηπη

+
+

=
d

d
dURF

23
2         (304) 

where F is the drag force. The limiting case ηd → 0 corresponds to bubbles, whereas in the 

other limit, ηd → ∞, Equation 304 describes solid particles. Note that Equation 304 is derived 

for the motion of a spherical fluid particle (drop or bubble) of viscosity ηd in a liquid of 

viscosity η in the absence of any surfactant. The explanation of the contradiction between 

theory and experiment
594,595

 turned out to be very simple: even liquids which are pure from 

the viewpoint of the spectral analysis may contain some surface-active impurities, whose bulk 



 145

concentration might be vanishingly low, but which can provide a dense adsorption layer at the 

restricted area of the fluid particle surface. Then, the effects of Gibbs elasticity and interfacial 

viscosity substantially affect the drag coefficient of the fluid particle. The role of the latter 

two effects was investigated by Levich
436

, Edwards et al.
437

 and He et al.
598

 for the motion of 

an emulsion droplet covered with a monolayer of nonsoluble surfactant (adsorption and/or 

desorption not present). These authors used the Boussinesq-Scriven constitutive law of a 

viscous fluid interface (Equation 281), and established that only the dilatational interfacial 

viscosity, ηdl, but not the shear interfacial viscosity, ηsh, influences the drag force. If the 

surfactant is soluble in both phases and the process of adsorption is diffusion-controlled (see 

Section 5.2.2.1) the generalization of Equation 304 is 
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where Dd is the surfactant diffusion coefficient in the drop phase; c and cd are the 

concentrations of surfactant in the continuous and drop phases, respectively; ha = ∂Γ/∂c and 

hd,a = ∂Γ/∂cd are the slopes of adsorption isotherms with respect to the surfactant 

concentration. In the limiting case without surfactant Equation 305 is reduced to the 

Hadamar
596

 and Rybczynski
597

 equation (Equation 304). 

 Danov et al.
251,599-602

 investigated theoretically the hydrodynamic interaction of a fluid 

particle with a fluid interface in the presence of surfactant. The numerical results of these 

authors reveal that there is a strong influence of both shear and dilatational interfacial 

viscosities on the motion of the fluid particle when the particle-interface distance, h, is 

approximately equal to or smaller than the particle radius, Rd. For example, in the presence of 

an external force acting parallel to the interface (along the y-axis), the stationary motion of the 

spherical particle close to the viscous interface is a superposition of a translation along the y-

axis with velocity Vy and a rotation (around the x-axis) with an angular velocity, ωx (see the 

inset in Figure 50(a)). The numerical results of Danov et al.
601,602

 for Vy and ωx normalized by 

the Stokes velocity, VStokes = F/(6πηRd), are plotted in Figures 50(a) and (b) vs. h/Rd for four 

different types of interfaces: (1) solid particle and solid wall (see Equations 297 to 299); (2) 

fluid particle and fluid interface for K = E =100; (3) the same system as (2) but for K = E = 

10; (4) the same system as (2) but for K = E = 1, where 

K ≡ ηdl/(ηRd),   E ≡ ηsh/(ηRd)      (306) 

(For the definition of the interfacial viscosities, ηdl and ηsh, see Equation 281). As seen in 

Figure 50(a), the velocity of the sphere, Vy, is less than VStokes for the solid (1) and the highly 

viscous (2) interfaces, and Vy noticeably decreases when the distance h decreases. However, 

in case (4), corresponding to low surface viscosities, the effect is quite different: Vy/VStokes is 

greater than unity (the sphere moves faster near the interface than in the bulk), and its 
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FIGURE 50. Spherical particle moving tangentially to a viscous interface: plots of the 

stationary dimensionless linear (Vy/VStokes) (a) and angular (ωxRd/VStokes) velocities vs. the 

dimensionless thickness, h/Rd. The curves corresponds to various surface viscosities: (1) K = 

E = ∞ (solid surfaces); (2) K = E = 100; (3) K = E = 10, and (4) K = E = 1 (see Equation 306). 

(1) 

(2) 

(3) 

(4)

Rd
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       (a) 

 

       (b) 

 

FIGURE 51. Effect of adsorbed surfactant on the surface diffusivity, Dp, of a Brownian 

particle attached to a fluid interface: (a) plot of Dp/Dp0 vs. particle contact angle, θ, for various 

surface viscosities, (see Equation 306); (b) plot of Dp/Dp0 vs. the dimensionless surface 

viscosity, K = E, for various θ. 
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dependence on h is rather weak. The result about the angular velocity, ωx, is also intriguing 

(Figure 50(b)). The stationary rotation of a sphere close to a solid (1) or highly viscous (2) 

interface is in positive direction, i.e., ωx > 0. For the intermediate interfacial viscosity (3), the 

sphere practically does not rotate; whereas, for the interfaces of low viscosity (4), the drop 

rotates in the opposite direction, i.e., ωx < 0. The inversion of the sign of ωx is due to the fact 

that the friction of the particle with the bulk fluid below it (see the inset in Figure 50(a)) 

becomes stronger than the friction with the interface above the particle. 

 Finally we consider the case of a solid particle attached to a liquid-fluid interface. This 

configuration is depicted in Figure 17(e); note that the position of the particle along the 

normal to the interface is determined by the value of the three-phase contact angle. Stoos and 

Leal
603

 investigated the case when such an attached particle is subjected to a flow directed 

normally to the interface. These authors determined the critical capillary number, beyond 

which the captured particle is removed from the interface by the flow. 

 Danov et al.
251

 examined the case of an attached particle moving along a liquid-gas 

interface under the action of an applied force directed tangentially to the interface. The effect 

of the contact angle (the depth of immersion), as well as the effect of adsorbed surfactant on 

the drag force, were investigated. These authors also calculated the surface diffusion 

coefficient of a Brownian particle attached to the liquid surface. Let Dp and Dp0 be the particle 

surface diffusion coefficient in the presence and in the absence of surfactant, respectively. In 

Figure 51(a), we plot the results for Dp/Dp0 vs. the solid-liquid-gas contact angle, θ, for three 

different values of the parameters K and E characterizing the surface viscosities (see Equation 

306): (1) K = E = 1; (2) K = E = 5, and (3) K = E = 10. The relatively small slope of the 

curves in Figure 51(a) indicates that Dp/Dp0 depends less significantly on the contact angle, θ, 

than on the surface viscosity characterized by K and E. Note, however, that Dp0 itself depends 

markedly on θ: the absolute value of Dp0 is smaller for the smaller values of θ (for deeper 

immersion of the particle in the liquid phase). Figure 51(b) presents the calculated 

dependence of Dp/Dp0 on the surface viscosity characterized by K and E (K = E is used in the 

calculations) for various fixed values of the contact angle, θ. Apparently, the particle mobility 

decreases faster for the smaller values of K and then tends to zero insofar as the fluid surface 

"solidifies" for the higher values of the surface viscosities. The experimental data from 

measurements of the drag coefficient of spherical particles attached to fluid interfaces
250

 

showed very good agreement with the predictions of the theory.
251

 

 The role of surface viscosity and elasticity on the motion of a solid particle trapped in 

a thin film, at an interface, or at a membrane of a spherical vesicle has been recently 

investigated in References 604 and 605. The theoretical results
604,605

 have been applied to 

process the experimental data for the drag coefficient of polystyrene latex particles moving 
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throughout the membrane of a giant lipid vesicle;
606-612

 thus the interfacial viscosity of 

membranes has been determined. 

 

5.5.6   BULK RHEOLOGY OF DISPERSIONS 

The description of the general rheological behavior of colloidal dispersions requires 

information regarding the drag forces and torques experienced by the individual 

particles.
278,613,614 

In dilute systems, the hydrodynamic interactions between the particles can 

be neglected and their motion can be treated independently. In contrast, when the particle 

concentration is higher, the effect of hydrodynamic interactions between a spherical particle 

and an interface on the drag force and torque acquires considerable importance. The viscosity 

and the collective diffusion coefficient of colloidal dispersions can be strongly affected also 

by long-range surface forces, like the electrostatic double layer force, see Section 5.9.2.4 

below. 

 Long ago Einstein
615

 obtained a formula for the diffusion coefficient for solid spheres 

in the dilute limit: 

D = kT/(6πηmRp)         (307) 

where Rp is the particle radius and ηm is the viscosity of the liquid medium. This relation was 

later generalized by Kubo
616

 for cases when the hydrodynamic resistance becomes important. 

The further development in this field is reviewed by Davis.
577

 

 The particle-particle interactions lead to a dependence of the viscosity, η, of a 

colloidal dispersion on the particle volume fraction, φ. Einstein
617

 showed that for a 

suspension of spherical particles in the dilute limit: 

)](5.21[ 2φφηη Om ++=         (308) 

Later Taylor
618

 generalized Equation 308 for emulsion systems taking into account the 

viscous dissipation of energy due to the flow inside the droplets. Oldroyd
619

 took into account 

the effect of surface viscosity and generalized the theory of Taylor
618

 to diluted monodisperse 

emulsions whose droplets have viscous interfaces. Taylor,
620

 Fröhlich and Sack,
621

 and 

Oldroyd
622

 applied asymptotic analysis to derive the next term in Equation 308 with respect to 

the capillary number. Thus the effect of droplet interfacial tension was included. This 

generalization may be important at high shear rates. Another important generalization is the 

derivation of appropriate expressions for the viscosity of suspensions containing particles with 

different shapes.
421,422

 A third direction of generalization of Equation 308 is to calculate the 

next term in the series with respect to the volume fraction, φ. Batchelor
623

 took into account 

the long-range hydrodynamic interaction between the particles to derive: 
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)](2.65.21[ 32 φφφηη Om +++=        (309) 

From a mathematical viewpoint, Equation 309 is an exact result; however, from a physical 

viewpoint, Equation 309 is not entirely adequate to the real dispersions, as not only the long-

range hydrodynamic interactions are operative in colloids. A number of empirical expressions 

have been proposed in which the coefficient multiplying φ2
 is varying between 5 and 15.

624
 

The development of new powerful numerical methods during the last five years helped for a 

better understanding of the rheology of emulsions.
625-633

 The simple shear and Brownian flow 

of dispersions of elastic capsules, rough spheres, and liquid droplets were studied in 

References 626, 630, 632, and 633. The effect of insoluble surfactants and the drop 

deformation on the hydrodynamic interactions and on the rheology of dilute emulsions are the 

subject of investigation in References 627, 629, 631. Loewenberg and Hinch
625,628

 discussed 

the basic ideas of the numerical simulations of concentrated emulsion flows. These works are 

aimed at giving a theoretical interpretation of various experimental results for dilute and 

concentrated dispersions. When the Peclet number is not small, the convective term in the 

diffusion equation (Equations 276 and 277) cannot be neglected and the respective problem 

has no analytical solution. Thus a complex numerical investigation has to be applied.
634,635

 

 The formulae of Einstein,
615,617

 Taylor,
618

 and Oldroyd,
619

 have been generalized for 

dilute emulsions of mobile surfaces with account for the Gibbs elasticity and the bulk and 

surface diffusion and viscosity:
636
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where >< mε  is the average value of the interfacial mobility parameter, εm, for all droplets in 

the control volume. The mobility parameter of individual drops, εm, and the effective 

surfactant diffusion coefficient, Deff, are:
636
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(see Equation 305 and below). If the droplet size distribution in the emulsion, and the 

interfacial rheological parameters are known, then the average value <εm> can be estimated. 

For monodisperse emulsions the average value, <εm>, and the interfacial mobility parameter, 

εm, are equal. In the special case of completely mobile interfaces, that is RdEG/(ηmDeff) → 0 

and (3ηdl + 2ηsh)/(Rdηm) → 0, the mobility parameter, εm, does not depend on the droplet size, 

and from Equation 311 and 312 the Taylor
618

 formula is obtained. It is important to note that 

the Taylor formula takes into account only the bulk properties of the phases (characterized by 
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ηd/ηm); in such a case εm is independent of Rd and the Taylor equation is applicable also to 

polydisperse emulsions. If only the Marangoni effect is neglected (EG → 0), then Equations 

311 and 312 become equivalent to the Oldroyd
619

 formula which is originally derived only for 

monodisperse emulsions. 

 For higher values of the particle volume fraction, the rheological behavior of the 

colloidal dispersions becomes rather complex. We will consider qualitatively the observed 

phenomena, and next we will review available semi-empirical expressions. 

 For a simple shear (Couette) flow, the relation between the applied stress, τ, and the 

resulting shear rate, γ& , can be expressed in the form: 

τ = ηγ&            (313) 

(For example, when a liquid is sheared between two plates parallel to the xy-plane, one has 

γ&  = ∂vx/∂z.) A typical plot of γ&  vs. τ is shown in Figure 52(a). For low and high shear rates, 

one observes Newtonian behavior (η = const.), whereas in the intermediate region a transition 

from the lower shear rate viscosity, η0, to the higher shear rate viscosity, η∞, takes place. This 

is also visualized in Figure 52(b), where the viscosity of the colloidal dispersion, η, is plotted 

vs. the shear rate, γ& ; note that in the intermediate zone η has a minimum.
415

 

 Note also that both η0 and η∞ depend on the particle volume fraction, φ. De Kruif et 

al.
624

 proposed the semi-empirical expansions: 
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as well as two empirical expressions which can be used in the whole range of values of φ: 
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 In regard to the dependence of η on the shear stress, τ, Russel et al.
278

 reported that for 

the intermediate values of τ, corresponding to non-Newtonian behavior (Figures 52(a) and 

(b)), the experimental data correlate reasonably well with the expression 

( )ncττηη
ηη

/1

1

0 +
=

−
− ∞          (317) 

with 1 ≤ n ≤ 2, where τc is the value of τ for which η = (η0 + η∞)/2. In its own turn, τc 

depends on the particle volume fraction φ, (see Figure 52(c)). One sees that τc increases with 



 152

the volume fraction, φ, in dilute dispersions then passes through a maximum and finally 

decreases down to zero; note that τc → 0 corresponds to η0 → ∞. The peak at φ ≈ 0.5 is the 

only indication that the hard-sphere disorder-order transition either occurs or is rheologically 

significant in these systems.
278

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 52 Qualitative presentation of basic relations in rheology of suspensions: (a) rate 

of strain, γ& , vs. applied stress, τ, (see Equation 313); (b) average viscosity of a suspension, η, 

vs. rate of strain, γ& ; (c) dimensionless parameter τc (Equation 317) vs. particle volume 

fraction φ. 
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 The restoring force for a dispersion to return to a random, isotropic situation at rest is 

either Brownian (thermal fluctuations) or osmotic,
637

 the former being most important for 

submicrometer particles and the latter for larger particles. Changing the flow conditions 

changes the structure, and this leads to thixotropic effects, which are especially strong in 

flocculated systems. 

 Krieger and Dougherty
638

 applied the theory of corresponding states to obtain the 

following expression for the viscosity of hard-sphere dispersions: 
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        (318) 

where [η] is the dimensionless intrinsic viscosity, which has a theoretical value of 2.5 for 

monodisperse rigid spheres, and φmax is the maximum packing volume fraction for which the 

viscosity η diverges. The value of φmax depends on the type of packing of the particles
415

 (see 

Table 6). The maximum packing fraction, φmax, is very sensitive to particle-size distribution 

and particle shape.
639

 Broader particle-size distributions have greater values of φmax. On the 

other hand, nonspherical particles lead to poorer space-filling and hence lower φmax. Table 7 

presents the values of [η] and φmax obtained by fitting the results of a number of experiments 

on dispersions of asymmetric particles using Equation 318. The trend of [η] to increase and of 

φmax to decrease with increasing asymmetry is clearly seen, but the product, [η]φmax, is almost 

constant; [η]φmax is about 2 for spheres and about 1.4 for fibers. This fact can be utilized to 

estimate the viscosity of a wide variety of dispersions. 

 

 

TABLE 6 

Maximum Packing Volume Fraction, φmax, for 

Various Arrangements of Monodisperse Spheres 
 

Arrangement      φmax 

Simple cubic        0.52 

Minimum thermodynamically stable configuration   0.548 

Hexagonally packed sheets just touching    0.605 

Random close packing      0.637 

Body-centred cubic packing      0.68 

Face-centred cubic/hexagonal close packed    0.74 
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TABLE 7 

Values of [η] and φmax for a Number of Dispersions Obtained 

by Fitting Experimental Data by Means of Equation 318 

 

System   [η] φmax [η]φmax  Ref. 

Spheres (submicron)   2.7 0.71 1.92       de Kruif et al.
624

 

Spheres (40 µm)   3.28 0.61 2.00       Giesekus
651

 

Ground gypsum   3.25 0.69 2.24       Turian and Yuan
652

 

Titanium dioxide   5.0 0.55 2.75       Turian and Yuan
652 

Glass rods (30 × 700 µm)  9.25 0.268 2.48       Clarke
653

 

Quartz grains (53 to 76 µm)  5.8 0.371 2.15       Clarke
653

 

Glass fibers: 

 Axial ratio-  7   3.8 0.374 1.42       Giesekus
651

 

  Axial ratio- 14   5.03 0.26 1.31       Giesekus
651

 

 Axial ratio- 21   6.0 0.233 1.40       Giesekus
651

 

 

 

 A number of rheological experiments with foams and emulsions are summarized in 

the reviews by Prud’home and Khan
640

 and Tadros.
641

 These experiments demonstrate the 

influence of films between the droplets (or bubbles) on the shear viscosity of the dispersion as 

a whole. Unfortunately, there is not a consistent theoretical explanation of this effect 

accounting for the different hydrodynamic resistance of the films between the deformed fluid 

particles as compared to the nondeformed spherical particles (see Sections 5.5.2 and 5.5.3). In 

the case of emulsions and foams, the deformed droplets or bubbles have a polyhedral shape, 

and maximum packing fraction can be φmax ≈ 0.9 and even higher. For this case, a special 

geometrical rheological theory has been developed.
437,642,643

 

 Wessel and Ball
644

 and Kanai et al.
645

 studied in detail the effects of shear rate on the 

fractal structure of flocculated emulsion drops. They showed that the size of the flocs usually 

decreases with the increase of the shear stress; often the flocs are split to single particles at 

high shear rates. As a result, the viscosity decreases rapidly with the increase of the shear rate. 
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 Interesting effects are observed when a dispersion contains both larger and smaller 

particles, the latter being usually polymer coils, spherical or cylindrical surfactant micelles, or 

microemulsion droplets. The presence of the smaller particles may induce clustering of the 

larger particles due to the depletion attraction (see Section 5.4.5.3.3 above); such effects are 

described in the works on surfactant-flocculated and polymer-flocculated emulsions.
646-649

 

Other effects can be observed in dispersions representing mixtures of liquid and solid 

particles. Yuhua et al.
650

 have established that if the size of the solid particles is larger than 

three times the size of the emulsion drops, the emulsion can be treated as a continuous 

medium (of its own average viscosity), in which the solid particles are dispersed; such a 

treatment is not possible when the solid particles are smaller. 



 156

5.6.   KINETICS OF COAGULATION 

There are three scenarios for the occurrence of a two-particle collision in a dispersion 

depending on the type of particle-particle interactions. (1) If the repulsive forces are 

predominant, the two colliding particles will rebound and the colloidal dispersion will be 

stable; (2) when at a given separation the attractive and repulsive forces counterbalance each 

other (the film formed upon particle collision is stable), aggregates or flocs of attached 

particles can appear; and (3) when the particles are fluid and the attractive interaction across 

the film is predominant, the film is unstable and ruptures; this leads to coalescence of the 

drops in emulsions or of the bubbles in foams. 

 To a great extent, the occurrence of coagulation is determined by the energy, U, of 

particle-particle interaction. U is related to the disjoining pressure, Π, by means of Equations 

162 and 163. Qualitatively, the curves Π vs. h (see Figure 13) and U vs. h are similar. The 

coagulation is called fast or slow depending on whether the electrostatic barrier (see Figure 

13) is less than kT or much higher than kT. In addition, the coagulation is termed “reversible” 

or “irreversible” depending on whether the depth of the primary minimum (see Figure 13) is 

comparable with kT or much greater than kT. 

 Three types of driving forces can lead to coagulation: (1) The body forces, such as 

gravity and centrifugal force, cause sedimentation of the heavier particles in suspensions or 

creaming of the lighter droplets in emulsions. (2) For the particles that are smaller than about 

1 µm, the Brownian stochastic force dominates the body forces, and the Brownian collision of 

two particles becomes a prerequisite for their attachment and coagulation; and (3) the 

temperature gradient in fluid dispersions causes termocapillary migration of the particles 

driven by the Marangoni effect. The particles moving with different velocities can collide and 

form aggregates. 

 

5.6.1   IRREVERSIBLE COAGULATION 

The kinetic theory of fast irreversible coagulation was developed by Smoluchowski.
654,655

 

Later the theory was extended to the case of slow and reversible coagulation. In any case of 

coagulation (flocculation), the general set of kinetic equations reads: 
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Here, t is time; n1 denotes the number of single particles per unit volume; nk is the number of 

aggregates of k particles (k = 2, 3, ...) per unit volume; 
ji

fa
,

 (i,j = 1, 2, 3, ...) are rate constants 

of flocculation (coagulation; see Figure 53); qk denotes the flux of aggregates of size k which 

are products of other processes, different from the flocculation itself (say, the reverse process  
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FIGURE 53. Elementary acts of flocculation according to the Smoluchowski scheme; 
ji

f
a

,
 

(i,j = 1, 2, 3, ...) are rate constants of flocculation. 

of aggregate disassembly or the droplet coalescence in emulsions; see Equations 331 and 335 

below). In the special case of irreversible coagulation without coalescence, one has qk ≡ 0. 

The first term in the right-hand side of Equation 319 is the rate of formation of k aggregates 

by the merging of two smaller aggregates, whereas the second term expresses the rate of loss 

of k aggregates due to their incorporation into larger aggregates. The total concentration of 

aggregates (as kinetically independent units), n, and the total concentration of the constituent 

particles (including those in aggregated form), ntot, can be expressed as: 
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The rate constants can be expressed in the form: 

jijiji
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where )0(
, jiD  is the relative diffusion coefficients for two flocks of radii Ri and Rj and 

aggregation number i and j, respectively; Ei,,j is the so-called collision efficiency.
470,656

 Below 

we give expressions for )0(
, jiD  and Ei,j appropriate for various physical situations. 

 The Einstein approach (see Equation 307), combined with the Rybczynski-Hadamar 

equation (Equation 304) leads to the following expression for the relative diffusivity of two 

isolated Brownian droplets: 
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  (perikinetic coagulation)  (322) 

The limiting case ηd → 0 corresponds to two bubbles, whereas in the other limit (ηd → ∞) 

Equation 322 describes two solid particles or two fluid particles of tangentially immobile 

surfaces. 

 When the particle relative motion is driven by a body force or by the thermocapillary 

migration (rather than by self-diffusion), Equation 322 is no longer valid. Instead, in Equation 

321 one has to formally substitute the following expression for 
)0(

, jiD  (see Rogers and 

Davis
657

): 

jijiji RRD vv −+= )(
4

1)0(
,    (orthokinetic coagulation)  (323) 

Here vj denotes the velocity of a flock of aggregation number j. Physically, Equation 323 

accounts for the fact that some particle (usually a larger one) moves faster than the remaining 

particles and can "capture" them upon collision. This type of coagulation is called 

orthokinetic to distinguish it from the self-diffusion-driven perikinetic coagulation described 

by Equation 322. In the case of gravity-driven flocculation, one can identify vj with the 

velocity U in Equation 304, where F is to be set equal to the gravitational force exerted on the 

particle; for a solid particle or a fluid particle of tangentially immobile surface, this yields 

vj = 2g∆ρRj
2
/(9η) with g being the acceleration due to gravity and ∆ρ being the density 

difference between the two phases. 

 In the case of orthokinetic coagulation of liquid drops driven by the thermocapillary 

migration, the particle velocity vj is given by the expression (see Young et al.
658

): 
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v   (thermocapillary velocity)  (324) 

where the thermal conductivity of the continuous and disperse phases are denoted by λ and 

λd, respectively. The interfacial thermal elasticity, ET, is defined by Equation 282. 

 The collision efficiency, Ei,j, in Equation 321 accounts for the interactions (of both 

hydrodynamic and intermolecular origin) between two colliding particles. The inverse of Ei,j 

is often called the stability ratio or the Fuchs factor
659

 and can be expressed in the following 

general form:
14,470
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where, as usual, h is the closest surface-to-surface distance between the two particles; R* is 

defined by Equation 259; Ui,j(s) is the energy of (nonhydrodynamic) interactions between the 

particles (see Section 5.4 above); β(s) accounts for the hydrodynamic interactions; and Fz/Vz 

is the particle friction coefficient. Thus, β → 1 for s → ∞, insofar as for large separations the 

particles obey the Rybczynski-Hadamar equation (Equation 304). In the opposite limit, s << 

1, i.e., close approach of the two particles, Fz/Vz can be calculated from Equation 260, 283, 

284, or 288, depending on the specific case. In particular, for s << 1, one has β ∝ 1/s for two 

solid particles (or fluid particles of tangentially immobile surfaces), β ∝ s
−1/2

 for two liquid 

droplets, and β ∝ lns for two gas bubbles. One sees that for two solid particles (β ∝ 1/s), the 

integral in Equation 325a may be divergent. To overcome this problem, one usually accepts 

that for the smallest separations Ui,j is dominated by the van der Waals interaction, as given 

by Equation 174, i.e., Ui,j → −∞, and, consequently, the integrand in Equation 325a tends to 

zero for s → 0. 

 Note that the value of Wi,j  is determined mainly by the values of the integrand in the 

vicinity of the electrostatic maximum (barrier) of Ui,j, (see Figure 13), insofar as Ui,j enters 

Equation 325a as an exponent. By using the method of the saddle point, Derjaguin
14

 estimated 

the integral in Equation 325a: 
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where sm denotes the value of s corresponding to the maximum. One sees that the larger the 

barrier, Ui,j(sm), the smaller the collision efficiency, Ei,j, and the slower the coagulation. 

 Note also that for imaginary particles, which experience neither long-range surface 

forces (Ui,j = 0) nor hydrodynamic interactions (β = 1), Equation 325a yields a collision 

efficiency Ei,j = 1 and Equation 321 reduces to the Smoluchowski
654,655

 expression for the rate 

constant of the fast irreversible coagulation. In this particular case, Equation 319 represents an 

infinite set of nonlinear differential equation. If all flocculation rate constants are the same 

and equal to af, the problem has a unique exact solution:
654,655

 

2/1 0

0

tna

n
n

f+
= ,  

1

1

)2/1(

)2/(

0

0
0 +

−

+
=

k

k

tna

tna
nn

f

f
k         (k = 1, 2, …)  (326) 

It is supposed that the total average concentration of the constituent particles (in both singlet 

and aggregated form), ntot, does not change and is equal to the initial number of particles, n0. 
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Unlike ntot, the concentration of the aggregates, n, decreases with time, while their size 

increases. Differentiating Equation 326 one obtains: 
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V 0φ≡     (327) 

where V  is the average volume per aggregate and φ0 is the initial volume fraction of the 

constituent particles. Combining Equations 321 and 327, one obtains the following result for 

perikinetic (Brownian) coagulation: 
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where V0 = 4πR0
3
/3 is the volume of a constituent particle, tBr is the characteristic time of the 

coagulation process in this case, E0 is an average collision efficiency, and D0 is an average 

diffusion coefficient. 

 In contrast, V  is not a linear function of time for orthokinetic coagulation. When the 

flocculation is driven by a body force, i.e., in case of sedimentation or centrifugation, one 

obtains:
656
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where tbf is the characteristic time in this case and vbf is an average velocity of aggregate 

motion. As discussed above, when the body force is gravitational, one has vbf = 2g∆ρR0
2
/(9η). 

 When the orthokinetic coagulation is driven by the thermocapillary migration, the 

counterpart of Equation 329 reads:
656
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where vtm is an average velocity of thermocapillary migration and ttm is the respective 

characteristic time. Note that D0 ∝ R0
−1

, vbf ∝ R0
2
 and vtm ∝ R0, (see Equations 307 and 324). 

Then, from Equations 328 to 330, it follows that the three different characteristic times exhibit 

different dependencies on particle radius: tBr ∝ R0
3
, tbf ∝ R0

−1
, while ttm is independent of R0. 

Thus, the Brownian coagulation is faster for the smaller particles, the body force-induced 

coagulation is more rapid for the larger particles, whereas the thermocapillary driven 

coagulation is not so sensitive to the particle size.
660

 

 The Smoluchowski scheme based on Equations 326 and 327 has found numerous 

applications.
278

 An example for biochemical application is the study
661,662

 of the kinetics of 

flocculation of latex particles caused by human gamma globulin in the presence of specific 
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“key-lock” interactions. The infinite set of Smoluchowski equations (Equation 319) was 

solved by Bak and Heilmann
663

 in the particular case when the aggregates cannot grow larger 

than a given size; an explicit analytical solution was obtained by these authors. 

 

5.6.2   REVERSIBLE COAGULATION 

In the case of reversible coagulation, the flocs can disaggregate because the primary minimum 

(Figure 13) is not deep enough.
14

 For example, an aggregate composed of i + j particles can 

be split on two aggregates containing i and j particles. We denote the rate constant of this 

reverse process by ji
ra ,  (see Figure 54(a)). It is assumed that both the straight process of 

flocculation (Figure 53) and the reverse process (Figure 54(a)) take place. The kinetics of 

aggregation in this more general case is described by the Smoluchowski set of equations, 

Equation 319, where one has to substitute: 
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FIGURE 54. Elementary acts of aggregate splitting (a) and droplet coalescence within an 

aggregate (b); ar
i j,

and ac
k i,

 (i,j,k = 1, 2, 3, ...) are the rate constants of the respective 

processes. 
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In Equation 331 qk equals the rate of formation of k aggregates in the process of disassembly 

of larger aggregates minus the rate of decay of the k aggregates. As before, the total number 

of constituent particles, ntot, does not change. However, the total number of the aggregates, n, 

can either increase or decrease depending on whether the straight or the reverse process 

prevails. Summing up all equations in 319 and using Equation 331, one derives the following 

equation for n: 
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Martinov and Muller
664

 reported a general expression for the rate constants of the reverse 

process: 
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where Zi,j is the so-called irreversible factor, which can be presented in the form 
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The integration in Equation 334 is carried out over the region around the primary minimum, 

where Ui,j takes negative values (see Figure 13). In other words, Zi,j is determined by the 

values of Ui,j in the region of the primary minimum, whereas Ei,j is determined by the values 

of Ui,j in the region of the electrostatic maximum, (see Equations 325b and 334). When the 

minimum is deeper, Zi,j is larger and the rate constant in Equation 333 is smaller. In addition, 

as seen from Equations 325b and 333, the increase of the height of the barrier also decreases 

the rate of the reverse process. The physical interpretation of this fact is that in order to detach 

from an aggregate a particle has to first go out from the well and then to "jump" over the 

barrier (Figure 13). 

 To illustrate the effect of the reverse process on the rate of flocculation, we solved 

numerically the set of Equations 319, 331, and 332. To simplify the problem, we used the 

following assumptions: (1) the Smoluchowski assumption that all rate constants of the straight 

process are equal to af; (2) aggregates containing more than M particles cannot decay; (3) all 

rate constants of the reverse process are equal to ar; and (4) at the initial moment, only single 

constituent particles of concentration n0 are available. In Figure 55, we plot the calculated 

curves of n0/n vs. the dimensionless time, τ = afn0t/2, for a fixed value, M = 4, and various 

values of the ratio of the rate constants of the straight and the reverse process, b = 2ar/(n0af). 

Note that n is defined by Equation 320. One sees that in an initial time interval all curves in 

Figure 55 touch the Smoluchowski distribution (corresponding to b = 0), but after this period 

one observes a reduction in the rate of flocculation which is larger for the curves with larger 
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values of b (larger rate constants of the reverse process). These S-shaped curves are typical 

for the case of reversible coagulation, which is also confirmed by the experiment.
14,665

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 55. Reversible coagulation: theoretical plot of the inverse dimensionless aggregate 

concentration, n0/n, vs. the dimensionless time, τ = afn0t/2, in the case of M = 4 and various 

values of the dimensionless ratio, b = 2ar/(n0af), of the rate constants of the reverse and 

straight process, ar and af . 

 

5.6.3 KINETICS OF SIMULTANEOUS FLOCCULATION AND COALESCENCE 

  IN EMULSIONS 

When coalescence is present, in addition to the flocculation, the total number of constituent 

drops, ntot (see Equation 320), does change, in contrast with the case of pure flocculation 

considered above.
32

 Hartland and Gakis,
666

 and Hartland and Vohra
667

 were the first to 

develop a model of coalescence that relates the lifetime of single films to the rate of phase 

separation in emulsions of fairly large drops (approximately 1 mm) in the absence of 

surfactant. Their analysis was further extended by Lobo et al.
668

 to quantify the process of 

coalescence within an already creamed or settled emulsion (or foam) containing drops of size 

less than 100 µm; these authors also took into account the effect of surfactants, which are 

commonly used as emulsifiers. Danov et al.
669

 generalized the Smoluchowski scheme to 

account for the fact that the droplets within the flocs can coalesce to give larger droplets, as 

illustrated in Figure 54(b). In this case, in the right-hand side of Equation 319 one has to 

substitute
669
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where ik
ca ,  is the rate constant of transformation (by coalescence) of an aggregate containing 

k droplets into an aggregate containing i droplets (see Figure 54(b)). The newly formed 

aggregate is further involved in the flocculation scheme, which thus accounts for the fact that 

the flocculation and coalescence processes are interdependent. In this scheme, the total 

coalescence rate, i
ca tot, , and the total number of droplets, ntot, obey the following equations:

669
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To determine the rate constants of coalescence, ik
ca , , Danov et al.

439
 examined the effects of 

droplet interactions and Brownian motion on the coalescence rate in dilute emulsions of 

micrometer- and submicrometer- sized droplets. The processes of film formation, thinning, 

and rupture were included as consecutive stages in the scheme of coalescence. Expressions 

for the interaction energy due to the various DLVO and non-DLVO surface forces between 

two deformed droplets were obtained
266

 (see also Section 5.4 above). 

 Average models for the total number of droplets are also available.
670,671

 The average 

model of van den Tempel
670

 assumes linear structure of the aggregates. The coalescence rate 

is supposed to be proportional to the number of contacts within an aggregate. To simplify the 

problem, van den Tempel has used several assumptions, one of them being that the 

concentration of the single droplets, n1, obeys the Smoluchowski distribution, (Equation 326) 

for k = 1. The average model of Borwankar et al.
671

 is similar to that of van den Tempel but is 

physically more adequate. The assumptions used by the latter authors
671

 make their solution 

more applicable to cases in which the flocculation (rather than the coalescence) is slow and is 

the rate determining stage. This is confirmed by the curves shown in Figure 56 which are 

calculated for the same rate of coalescence, but for three different rates of flocculation. For 

relatively high rates of flocculation (Figure 56(a)), the predictions of the three theories differ. 

For the intermediate rates of flocculation (Figure 56(b)), the prediction of the model by 

Borwankar et al.
671

 is close to that of the more detailed model by Danov et al.
669

 For very low 

values of the flocculation rate constant, af, for which the coalescence is not the rate-

determining stage, all three theories
669-671

 give numerically close results (Figure 56(c)). (For 

more details about the coupling of coalescence and flocculation in dilute oil-in-water 

emulsions see the recent review, Reference 672.) 
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FIGURE 56 Relative change in the total number of drops, ntot, vs. time, t; initial number of 

primary drops n0 = 10
12

 cm
-3

; coalescence rate constant kc
2 1,

 = 10
-3

sec
-1

. Curve 1: numerical 

solution of Equation 336; curve 2: output of the model of Borwankar et al.;
671

 curve 3: output 

of the model of van den Tempel;
670

 the values of the flocculation rate constant are (a) af = 10
-

11
 cm

3
/s; (b) af = 10

-13
 cm

3
/s; (c) af = 10

-16
 cm

3
/s. 
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