
Research Article
Chemical Reaction Optimization for Minimum Weight
Dominating Set

A. Pritam Khan Boni and B. Md. Rafqul Islam

Khulna University, Khulna, Bangladesh

Correspondence should be addressed to A. Pritam Khan Boni; pritamku130218@gmail.com

Received 1 July 2022; Revised 16 December 2022; Accepted 20 December 2022; Published 11 January 2023

Academic Editor: Upaka Rathnayake

Copyright © 2023 A. Pritam Khan Boni and B. Md. Rafqul Islam. Tis is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Dominating set of a graph can be defned as the set of vertices that can cover all other vertices of the graph. Te minimum weight
dominating set (MWDS) is the minimum number of vertices in the dominating set with minimum total weight. In recent times,
the chemical reaction optimization algorithm (CRO) has shown its supremacy in solving these types of problems.Terefore in this
paper, a novel approach based on CRO has been proposed to solve theMWDS problem.Te proposed method uses a repair-based
technique to generate a molecule. To make the solution feasible by covering all vertices and to get better results, three supporting
operators are implemented along with the CRO operators. Besides this, two repair operators are introduced. In the frst repair
operator, the searching procedure works based on the scaling properties of vertices, and the second one is a unique method for
eliminating common neighbors of vertices of the dominating set. Te performance of the proposed method is better than any
other existing related algorithms. Te performance is measured from diferent graphs of the benchmark datasets. It can be
mentioned that the proposed method takes minimal running time to obtain the minimum weight compared to other
benchmark methods.

1. Introduction

In graph theory, the dominating set of a graph is the set of
vertices that are either members or neighbors of the member
vertices. If in dominating set the number of vertices is
minimum, then it is called the minimum dominating set
(MDS). A minimum weight dominating set (MWDS) is a
vulgarized version of the minimum dominating set (MDS).
Finding the minimum dominating set with the minimum
total weight of the vertices can be defned as the MWDS
problem. Here, weight is an associated positive value for
every vertex of the graph.

Te MWDS problem is a rising research topic nowadays
due to its immense application area. Te study of social
networks and infuence propagation [1], protein interaction
networks [2, 3], design of wireless sensor networks [4], and
covering codes [5] are the application areas where the
concept of MWDS is used. To construct a backbone for ad-
hoc wireless networks,Wang et al. [6] proposed a centralized

and distributed algorithm for the MWDS problem. On the
other hand, to generate an MWDS for a unit disk graph
(UDG), a (5 + ϵ)-approximation algorithm was proposed
[7]. However, for the MWDS problem, a (4 + ϵ)-approxi-
mation dynamic programming algorithm has been sug-
gested, which is an enormous upsurge as the approximation
factor for UDG without smooth weights [8]. In short, it can
be said that both mathematical and engineering felds have
the importance of the study of the MWDS problem. For
example, to lessen the number of full wavelength converters
in the deployment of wavelength division multiplexing all-
optical networks the MWDS problem is used to solve the
sparse wavelength converters placement problem [9]. Tis
problem is also indulged in ad-hoc network problems where
the nodes have to be determined and intrusion detection
software for squandering detection needs to be installed [10].
MWDS problem is also redesigned for web databases to fnd
an optimal query selection plan [11]. However, many ap-
proximation algorithms were introduced for special graphs

Hindawi
Applied Computational Intelligence and So Computing
Volume 2023, Article ID 9640807, 27 pages
https://doi.org/10.1155/2023/9640807

mailto:pritamku130218@gmail.com
https://orcid.org/0000-0001-9896-1640
https://orcid.org/0000-0002-0777-6747
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9640807

such as UDG problems [7]. However, for general graphs, it is
not applicable, as the time complexity of the approximation
algorithm is always less than O (lnn) until P � NP [12].Tus
the heuristic algorithm is widely evaluated for solving the
MWDS problem to get high-quality solutions. Since the
more data will be generated in real-world problems, the
more vertices will be in the graph. To cope with these
handsome amounts of data in a minimum time meta-
heuristic algorithm is inexorable.

Tere are various metaheuristic algorithms that are used
in diferent combinatorial optimization-based problems. In
recent times, the mixed-variable diferential evolution ap-
proach [13], the self-learning discrete Jaya algorithm [14],
the two-stage cooperative evolutionary algorithm [15], the
cooperative water wave optimization algorithm [16], and the
cooperative multistage hyper-heuristic algorithm [17] have
helped solve many combinatorial optimization-based
problems signifcantly. Using a self-adaptive diferential
evolution algorithm [18], the batch-processing machine
problem has been solved. On the other hand, the self-
learning discrete Jaya algorithm [14] has been used in solving
the energy-efcient distributed no-idle fow-shop scheduling
problem (FSP) in a heterogeneous factory system (HFS-
EEDNIFSP). Besides, the no-wait fow-shop scheduling
problem is introduced and solved by implementing a two-
stage cooperative evolutionary algorithm [15] with problem-
specifc knowledge. Te no-idle fow shop scheduling
problem is also solved using a cooperative water wave op-
timization algorithm [16] that is hybridized with rein-
forcement learning. Te problems solved using these
optimization algorithms are mainly combinatorial-based
optimization problems. Tese algorithms show their su-
premacy in solving these problems efectively.

As MDS and MWDS are both defned as NP-hard
problems [19, 20], it is quite hard to fnd a near-optimal
solution for large instances in reasonable CPU time [20].
Tus, for getting an optimal solution to theMWDS problem,
methods using metaheuristic algorithms are very much
efective [21]. Inspired by this knowledge, many researchers
suggested metaheuristic algorithms to obtain a better so-
lution.Tey proposed diferent approaches based on various
metaheuristic algorithms including binary particle swarm
optimization (BPSO) algorithm [22], ant colony optimiza-
tion (ACO) algorithm [23], hybrid ACO-PP-LS algorithm
[24], a randomized population-based iterated greedy ap-
proach R-PBIG [25], hybrid tabu search algorithm [21],
hybrid memetic algorithm (HMA) [26], and hybrid genetic
algorithm (HGA) [24]. However, the efciencies of existing
metaheuristic algorithms are still not up to the mark, es-
pecially for hard and large-scale instances [27].

Although there are many metaheuristic algorithms that
were proposed to solve the MWDS problem, here we are
proposing an approach based on the chemical reaction
optimization (CRO) algorithm. Tis algorithm has an ef-
cient and efective gain in solving NP-hard problems
[28, 29]. Te reason behind the dominance of this algorithm

is its fexible architecture for both local and global searches,
multiple operators, and the ability to work with variables in
both discrete and continuous domains. Islam et al. [30]
showed these diversifed qualities and robustness of the CRO
algorithm in their work. CRO was applied to the diferent
optimization problems [28, 29, 31–45]. In the proposed
approach, the population is generated using a ranking-based
procedure along with the parameter-based random method.
Next, the operators of CRO work on the population. Tree
new operators are applied as the supporting operators along
with the CRO operators. To intensify the search, a new repair
operator is used on the best solution obtained after CRO.
After that, to the improvement of the obtained results, a
common neighbor elimination procedure is applied. Con-
tributions to this work are as follows:

(1) For solving the MWDS problem using CRO, the
operators of CRO are redesigned to ft especially for
this problem.

(2) A novel population generation procedure is intro-
duced where the parameter-based and ranking-
based searching procedures are merged. Tis com-
bination improves the efciency of searching in the
search space.

(3) After population generation, molecule intensifca-
tion procedure, a novel operator is introduced which
can lead to obtaining a better solution.

(4) Along with the four operators of CRO, three sup-
porting operators such as neighborhood search, local
search, and redundant vertices elimination proce-
dure, are designed and applied to make the solution
feasible and to obtain better results. Among these
operators, the concept of neighborhood search op-
erator is unique which helps to fnd a minimum
weighted neighbor.

(5) We have designed a novel repair operator where three
properties of nodes are introduced which are uniquely
identifed to solve the MWDS problem. Tis operator
can fnd the minimum weighted node with a maxi-
mum number of neighbors in minimum time.

(6) In our proposed method another state-of-the-art
repair operator is introduced to eliminate common
neighbors of the vertices of dominating set. Tis
operator helps to prevent taking similar nodes into
the dominating set which are the neighbors of an-
other node of dominating set.

Te rest of this paper is organized as follows:Te recently
developed approaches with their pros and cons are described
in Section 2. Section 3 describes the chemical reaction
optimization algorithm. Te proposed technique for solving
the MWDS problem using the chemical reaction optimi-
zation algorithm is explained in Section 4. Section 5 shows
the results of the experiments with proper graphical and
tabular representations. Te conclusion of our work is de-
lineated in Section 6.

2 Applied Computational Intelligence and Soft Computing

1.1. Basic Concept. MWDS is a graph-based problem where
it can be related to the set-covering problem [46]. According
to the MWDS problem, it is a set of vertices of a large graph
that are connected with every other vertex of the graph (i.e.,
covered all vertices of the graph) and the weight of the set of
vertices is minimum.

Let G� (V, E) be an undirected graph with
V � v1, v2, v3, . . . , vn􏼈 􏼉 being the set of vertices and
E � e1, e2, e3, . . . , em􏼈 􏼉 being the set of edges. Each edge e �

u, v{ } joins two vertices u and v, and these vertices represent
the endpoints of e. In order to acquire the smallest domi-
nating set, we must know the neighbor of any vertex and
include those vertices with the greatest number of neighbors.

Te following equations are used to obtain the minimum
weight dominating set, where N [i] denotes the closed
neighbor of vertex i (i.e., N[i] � N(i)cupi), D denotes the
dominating set and DinV, omega represents the weight of
each vertex, and x is the decision variable, which is set to 1 if
the vertex is included in the dominating set; otherwise, it is 0
[12]. For getting the minimum weight dominating set,
equation (2) is introduced, and equations (3) and (4) have
been used as constraints.

Tω � 􏽘
v∈D

ω(v)x(v), (1)

Dmω � min Tω(􏼁, (2)

􏽘
k∈N[[i]

x(k)≥ 1, ∀i ∈ D, (3)

x(v) ∈ 0, 1{ }. (4)

Here, Tω denotes the total weight of the members of the
dominating set and Dmω denotes the minimum weight
dominating set.

Figure 1 shows an example of the MDS problem where
the graphs are unweighted. Both Figures 1(a) and 1(b) depict
the minimum dominating set. As in Figure 1(a), the vertex
set v1, v2􏼈 􏼉 is selected where N[v1] � v1, v2, v3, v4, v5, v6􏼈 􏼉

and N[v2] � v1, v2, v3, v4􏼈 􏼉 and in Figure 1(b) v1, v4􏼈 􏼉 is
selected in which N[v1] � v1, v2, v3, v4, v5, v6􏼈 􏼉 and N[v4] �

v1, v2, v3, v4􏼈 􏼉. Tough Figure 1(c) denotes a dominating set,
it is not a minimum one as in this set three vertices are
selected where the set is v4, v5, v6􏼈 􏼉.

Figure 2 shows an example of theMWDS problemwhere
the weights of the graphs are introduced. In Figure 2(b) total
weight, Tω1 � (14×1 + 10×1 + 80× 0 + 60× 0 + 75× 0 + 45
× 0� 24). In Figure 2(a) the dominating set is {v1, v4} and
total weight, Tω2 � (14×1 + 10× 0 + 80× 0 + 60×1 + 75× 0
+ 45× 0� 74). Now, Dmow �min ω(Tω1, Tω2)�min (24,
74)� 24, so Figure 2(b) shows the minimum weight dom-
inating set.

2. Literature Review

In recent years, MWDS has demonstrated its importance in
addressing a wide range of social data and network-related
issues. Many academics have been drawn to it because it is

nearly impossible to work with massive amounts of data in a
graph if each vertex should always be traversed one by one
using an exact algorithm. As a result, researchers presented
algorithms that can be divided into two groups to handle this
problem; one of them is approximation algorithms, and
another is metaheuristic algorithms [22]. According to Alon
et al. [12] if P≠NP then set-cover is inapproximable pol-
ynomially within a factor c lnn, where c is a constant and
1> rbinc> rbin 0. Te MWDS problem is ambiguous with
the set-cover problem in polynomial cases [46]. Terefore, it
is also inapproximable for the case when P≠NP.

However, several researchers focused on redesigning
heuristic algorithms to solve general graphs, more precisely
the MWDS problem, to acquire optimal solutions. In recent
times, to overcome the MWDS problem, Lin et al. [26]
presented a hybrid memetic method. Teir frst step was the
formulation of the MWDS problem as a constrained 0-1
programming problem and then transfgured to an equiv-
ocal unconstrained 0-1 problem using an adaptive penalty
function. A hybrid memetic algorithm (HMA) was used on
this resulting unconstrained 0-1 problem to obtain optimal
dominating sets. In this hybrid algorithm, they merged the
greedy randomized adaptive construction procedure, a tabu
local search procedure, a crossover operator, a population
updating method, and a path relinking procedure. Teir
proposed algorithm had a comparison with RAKA-ACO
[23], HGA, ACO-LS, and ACO-PP-LS [24], where the
computation time was almost six times faster in HMA.
However, for diferent instances, the average objective
function values were not optimal in this algorithm.

Another algorithm used by researchers to deal with the
MWDS problem is CC2FS. Wang et al. [27] proposed a new
form of the confguration checking heuristic algorithm
called two-level confguration checking (CC2), which they
paired with a novel scoring function based on the frequency
of vertices being uncovered. Tis hybrid algorithm is named
as CC2FS. According to their intended algorithm, the ex-
perimental result was quite mesmerizing. In every instance,
this algorithm outperformed any other algorithms. How-
ever, another newly generated optimization algorithm, as
well as some other versions of confguration checking such
as strong confguration checking, was not tested on the
MWDS problem according to them. On the other hand, they
were not sure enough to get good results according to their
experiment in larger graphs.

Following the sequence of solving the MWDS problem
using a variant of metaheuristic algorithms, in 2018, two
methods were introduced. One was a Binary Particle
Swarm Optimization (BPSO). In this proposed method-
ology, Lin and Guan [22] redesigned BPSO for the MWDS
problem by combining Tabu search, where tabu search
was introduced to enhance the solution quality rapidly.
Tey also used stochastic strategies to prevent premature
convergence and diversify the search. According to their
experimental result, the average CPU time needed for
every instance was far less than previously proposed al-
gorithms, though they did not show their solution as the
benchmark as in some cases this algorithm cannot fnd the
best solution. Another algorithmic model for solving the

Applied Computational Intelligence and Soft Computing 3

MWDS problem initiated in 2018 was an efcient meta-
heuristic algorithm. In this model, Albuquerque and Vidal
[21] suggested a metaheuristic model, whereas meta-
heuristic refers to algorithms in which metaheuristic al-
gorithms are linked with mixed-integer programming
(MIP) strategies and software [47, 48]. According to their
suggested architecture, four strategies were combined to
reproduce a novel solution. Tabu search had been initiated
for searching the efcient neighborhood, and to promote
exploration perturbation had been introduced. Te
method is introduced as a hybrid tabu search meta-
heuristic (HTS-DS). In their architecture, they used a
node elimination procedure which elapsed more CPU
time, though according to their experimental result, the
CPU time was much less than other proposed systems as
well as their suggested methodology outperforms any
other previous architecture.

At the beginning of 2019, Yuan et al. [49] came up with a
fresh architecture using a hybrid algorithm to solve the mini-
mum total dominating set (MTDS) problem. In this proposed
architecture, a local search and genetic algorithm have been
merged. Score based heuristic algorithm was generated to en-
hance the search efectiveness and then a repair-based crossover
operation was implemented to get viable solutions. Tough this
algorithm is better for some instances, it cannot help to get a
good result for every instance.

In 2020, Shetgaonkar and Singh [50] introduced hybridized
method using an artifcial bee colony algorithm with the esti-
mation of distribution algorithm (ABC-EDA). In this method,
they hybridized the algorithms by merging them and used
guided mutation as a repair operator. Albeit of the minimum
run time, they could not be able to obtain the minimum weight
of the dominating set.

3. Chemical Reaction Optimization

Te inspiration for the chemical reaction optimization algorithm
comes from the behavior of chemical reactions. It is a pop-
ulation-based metaheuristic optimization algorithm. Te
property of a chemical reaction is to transform any unstable
molecule into a stable one by a natural process. Tis process is
similar to a step-wise search for optimization problems [51].

Like other metaheuristics, the CRO algorithm consists of
three stages. Tey are the initialization, iteration, and termi-
nation stages [32]. Te initialization stage promotes the initial
population besides the parameters such as population size (Pop-
Size), kinetic energy loss rate (KElossRate), MoleColl, Bufer,
initial kinetic energy (InitialKE), and two thresholds (α and β).

Te initialization stage begins with the initialization of
the diferent parameters [51]. In the iteration step, one el-
ementary reaction from four runs in each iteration. A
random number b between 0 and 1 determines whether the
reaction operator is unimolecular or not. If b> rbin
MoleColl, there is a unimolecular reaction otherwise, there is
a bimolecular reaction. At the end of each iteration, we have
to identify the conclusion principle. Te last step controls
when the conclusion principle of the iteration step is ful-
flled. In the fnal stage, the algorithm aborts, and the
premier solution is the outcome.

Te unimolecular collision has two types of reactions
which are on-wall inefective collision and decomposition.
Similarly, the intermolecular collision has two reaction
operators, which are intermolecular inefective collision and
synthesis.

Te molecules in CRO have several parameters, some of
which are optional to the basic operations. Table 1 depicts
the diferent parameters of CRO.

60

75

10 14

45
80

V1V2

V3 V6

V5V4

(a)

V3

V4

V6

V560

75

10
14

4580

V1V2

(b)

Figure 2: An example of a minimum weight dominating set.

V4 V5

V1V2

V3 V6

(a)

V2

V3 V6

V5V4

V1

(b)

V2

V3

V4 V5

V6

V1

(c)

Figure 1: An example of a minimum dominating set.

4 Applied Computational Intelligence and Soft Computing

4. MWDS Using Chemical
Reaction Optimization

Te chemical reaction optimization algorithm (CRO) is used
in this study to get a minimum weighted dominating set.
Initial values for diferent CRO parameters are introduced at
the preliminary stage, and populations are produced. Fol-
lowing initialization, one of the four operators is used to
begin the iteration process to acquire a better solution from
solution space. To attain a better solution, we also used repair
operators besides the operators of CRO. Te iteration
process runs until the termination criteria are met. After
termination, the repair operator and integer linear pro-
gramming (ILP) are used to obtain the further minimum
weighted solution. Te workfow of the proposed archi-
tecture to fnd the minimum weight dominating set is as
follows:

(1) Initially from the data fle, the graph structure has
evolved and then the initial population has been
generated

(2) Molecule intensifcation procedure has been ap-
plied to every molecule of the population to obtain
the initial minimum weighted dominating set

(3) Based on the comparison of a random number
between 0 and 1 and the parameter value of mol-
ecule collision rate (MoleColl), one or more mol-
ecule(s) has/have been selected

(4) Based on the condition of decomposition (for a
single molecule) or synthesis (for more than one
molecule) operator has been chosen and new
molecule(s) are found

(5) Local search procedure is applied to the newly
found molecule(s) to cover up all the vertices

(6) If the ftness value of generated molecule is better
than the original molecule then the original one is
replaced with the up-to-date molecule in the
population set

(7) Otherwise, the original molecule remains in the
population set

(8) Steps 3 to 7 to be repeated till it is unworthy for
termination condition

(9) Repair operator is applied on the molecules found
from early steps

(10) Common neighbor elimination procedure is ap-
plied to eliminate common neighbors of vertices
that are the members of dominating set

4.1. Generation of Population. Te technique of obtaining a
feasible solution to the MWDS problem from search space
can be divided into three approaches. Tese approaches are
penalty-based procedure [21], preserving-based approach
[24], and repair-based approach [49]. From these three
approaches to obtain the feasible population, repair based
approach is initiated in our proposedmethod.Te technique
of generating a molecule is divided into three distinct stages.

Te frst stage of this technique is to obtain a feasible solution
based on the cost of the node and the second one is to obtain
a feasible solution based on the weight of the node and the
degree of the node. Finally, the solutions of both of these
stages are merged. Tis merging process occurs based on the
similarity between taken nodes. If the nodes are taken in
both solutions then the nodes are kept as the member of the
dominating set.

Te representation of a solution (molecule) in our
proposed architecture is based on 0 and 1. If any vertex is
taken as themember of dominating set, then in themolecule,
it is represented by the value 1 and reported as an active
node. Otherwise, the value with 0 is represented as an in-
active node. Figure 3 shows the molecule representation.

Te fnal feasible molecule according to the represen-
tation in Figure 3 is generated after processing three stages of
molecule generation which are the initial stage, middle stage,
and fnal stage. Te population set is generated by the it-
eration of this process twenty times as the taken population
size of this work is twenty.

4.1.1. Initial Stage. Primarily, the vertices with minimum
weight are considered by comparing cost with a specifc
value with the help of randomness. If the cost of any vertex is
less than the diference between the average cost (μ) and the
product of epsilon (∈) and the standard deviation (σ) of the
cost then the vertex is selected randomly. Here, epsilon (∈) is
a new parameter that is introduced in the initial stage of the
population generation method to obtain better random
molecules for further operation. Te cost is calculated as
follows:

ci �
ωi

di

. (5)

Here, ci, ωi, and di refer to the cost, weight, and degree of
vertex i, respectively.

After this procedure, to make the solution feasible by
covering all vertices and reducing search space, the prop-
erties of vertices are checked.Te vertex of minimum weight
and maximum uncovered neighbors properties is the highly
prioritized vertex to count as the member of dominating set.
Te priority of the vertex depends on the probability score,
which is calculated as follows:

Pi �
PCi

􏽐j∈N[i]PCj

(6)

Here, Pi refers to the probability score and PCi denotes
the probable cost of vertex i. PCj is the probable cost of
neighboring vertices of vertex i. Te probability cost of
vertex i is determined as follows:

PCi �
di × 􏽐j∈N[i]ωj

ωi

. (7)

After the initial process to cover up the uncovered nodes,
priority-based nodes are selected randomly from the frst 30% of
highly prioritized nodes if the ratio of the number of vertices and
the number of edges is greater than the constant value of 0.3.

Applied Computational Intelligence and Soft Computing 5

Otherwise, the nodes are selected based on the percentage of the
ratio. For example, if there is a sample graph with 500 vertices
and 20000 edges, then the ratio is 500/20000 � 0.025. According
to the delineation of the process, the active nodes are chosen
from the frst 2.5%of highly prioritized nodes. After the selection
process, the highly dominating nodes are considered active
nodes. Despite selecting highly dominating nodes, it cannot be
able to cover all the nodes. Again, to fnd a feasible solution, the
nodes that are not covered are picked as spared nodes and put in
a list. From this list, active nodes are selected randomly until all
nodes are covered. Algorithm 1 shows the initial stage of the
population generation procedure.

4.1.2. Middle Stage. In this stage, to minimize the computa-
tional time for large graphswe check for the nodewith zero, one,
and two degrees. Te node with zero degree means the node is
not connected with any other nodes and automatically will be
themember of dominating set.Te node with degree onemeans
the node is connected with only one neighbor. Hence from these
two nodes which one is minimum weighted is taken as the
member of dominating set. Te node with two degrees is re-
ferred to as the triangle node. Tese types of the node have two
neighbors. From these three nodes, one node is selected as the
member of dominating set based on weight. Te minimum
weighted node is taken as the dominating member. To take the
node into dominating set the property of neighbors are also
checked to determine whether the neighbor nodes are the
member of dominating set or not. Let, q, r andp are three nodes
and q, r􏼈 􏼉 ∈ N(p) and p is the node with minimumweight, so,
ifD is the dominating set,D′ is the dominated set and p􏼈 􏼉 ∉ D′
then, p􏼈 􏼉 ∈ D. Tese nodes are taken in a molecule as a per-
manent node.

After accomplishing this procedure there are some nodes to
be covered that still remain uncovered. From the list of the
uncovered nodes, the size of common nodes is checked which
technique helps to fnd the nodes that can cover the maximum
number of nodes. If for all of the uncovered nodes the total
number of uncovered neighbor nodes is one then the node with

minimum weight is taken as the member of dominating set.
After this process, if any of the nodes remains uncovered then
the neighbor node with a minimum weight of the uncovered
node is taken as themember of the dominating set. Algorithm 2
shows the initial stage of the population generation procedure.

4.1.3. Final Stage. In this stage, two diferent techniques of
generating molecules are merged together to obtain feasible
molecules for searching using CRO. Te nodes which are
common in bothmolecules are considered active nodes.Tis
procedure can make the molecule infeasible. To make this
molecule feasible, a local search procedure has been applied
and fnally, the molecule is prepared for deployment in the
searching paradigm.Te whole process from the initial stage
to the fnal stage works twenty times to generate twenty
diferent molecules as members of the population.

4.2. Molecule Intensifcation Procedure. After generating
molecules, to intensify searching, a molecule intensifcation
procedure is introduced. Every molecule has gone through
this procedure to fnd the optimal or best solution so far.Tis
procedure is also a ranking-based system of the nodes. After
the production of the molecules, some nodes are the
neighbors of the neighbors, of active nodes. Initially, they are
not considered active nodes deliberately. However, there is
some chance to get an optimal solution or intensifed
searching space for taking those nodes. For the selection of
the nodes for which the molecules will be optimal, the
molecules have been made infeasible intentionally by re-
moving active nodes, which are low-ranked based on
equation (7). Te size of the neighbors of each node is
counted based on the list of low-ranked nodes.Ten for each
node, the cost is calculated as follows:

ci �
L(NC(N(i)))

ωi

. (8)

Here, ci refers to cost, and L(NC(N(i))) refers to the
length of the uncovered neighbors of the vertex i from the

0 0 1 1 1 1 1 1 10 0 0 00 00

Figure 3: Example of a molecule.

Table 1: Parameters of CRO.

No. Symbol Algorithmic defnition
1 PopSize Te number of molecules in a population or simply the population size
2 KELossRate Te loss rate of kinetic energy (KE) during the reaction

3 MoleColl A parameter varying between 0 and 1 decides whether the chemical reaction is unimolecular or
intermolecular

4 Bufer Te initial energy in the surroundings
5 InitialKE Te initial energy
6 α and β Two parameters controlling the intensifcation and diversifcation
7 Number of hits (NumHit) Te total number of hits a molecule has taken

8 Minimum structure
(MinStruct) Te molecule structure that has minimum potential energy

9 MinimumPE (MinPE) When a molecule attains its MinStruct, MinPE is its corresponding PE

10 Minimum hit number
(MinHit)

It is the number of hits when a molecule has MinStruct. It is an abstract notation of the time when
MinStruct is achieved

6 Applied Computational Intelligence and Soft Computing

Input: properties of graphs.
Output: feasible solution.

(1) M⟵∅
(2) for i⟵ 0 to len(V) do
(3) if c[i]< μ − ϵ × σ and random value ≥ 0.5 then
(4) M[i]⟵ 1
(5) end
(6) else
(7) M[i]⟵ 0
(8) end
(9) end
(10) Calculate the probability score using equation (6)
(11) Select high prioritized node based on the probability score
(12) Create a list of spared nodes
(13) Select nodes from spared nodes until all nodes are covered

ALGORITHM 1: Te initial stage of population generation.

Input: properties of graphs.
Output: feasible solution.

(1) M⟵∅
(2) Add nodes with zero degree, one degree, and two degrees as active nodes into M.
(3) for uc≠∅ do//uc refers to the list of uncovered nodes
(4) for vi ∈ uc do
(5) cn⟵N(vi)∩ uc; //cn refers to the list of common nodes between the neighbor node of vi and the list of uncovered nodes
(6) if cn≠∅ then
(7) pn⟵ vi; //pn is the probable member of dominating set
(8) cnl⟵ cn; //cn is the list of the common node
(9) Len⟵ len(cn)

(10) end
(11) else
(12) Continue
(13) end
(14) end
(15) if Len≠∅ then
(16) ML⟵max(Len); //ML is the maximum size from all the common nodes’ size
(17) ifML> 1 then
(18) M[vm]⟵ 1; //vm is the node that can cover the maximum number of uncovered nodes
(19) end
(20) else
(21) ifωi >ωN[i] then
(22) M[vi]⟵ 1
(23) end
(24) else
(25) M[vN[i]]⟵ 1
(26) end
(27) end
(28) end
(29) else
(30) Find uncovered nodes.
(31) Find the minimum weighted node (vmin) associated with uncovered nodes.
(32) M[vmin]⟵ 1
(33) end
(34) end

ALGORITHM 2: Te second stage of population generation.

Applied Computational Intelligence and Soft Computing 7

12

0

45

23

39

1
3

2
37 21

294

5

6

12

0

45

23

39

1

Randomly
selected node

Newly selected
node afer using
neighbourhood
search operator

3

2

37 21

294

5

6

12

0

45

23

39

1
3

2
37 21

294

5

6

0 1 0 1 10 0 0 1 0 1 10 0

1 0 0 1 10 0

Figure 4: Illustration of a neighborhood search operator.

Input: one molecule, M

Output: updated molecule, M′
(1) Count total active nodes (Tn)

(2) total search, Sn⟵ 0
(3) while True do
(4) An active node (Vi) has been chosen randomly from the molecule
(5) ωmin⟵ωi

(6) Vprev⟵Vi for j ∈ N[i] do
(7) ifωj <ωmin then
(8) ωmin⟵ωjVtaken⟵Vj

(9) end
(10) end
(11) Sn⟵ Sn + 1
(12) if Vprev ≠Vtaken then
(13) M′[taken]⟵ 1
(14) M′[prev]⟵ 0
(15) break

(16) end
(17) if Tn � Sn then
(18) break

(19) end
(20) else
(21) continue

(22) end
(23) end

ALGORITHM 3: Neighborhood search.

8 Applied Computational Intelligence and Soft Computing

low-ranked list. From these vertices, the cost with the
maximum value is selected as active nodes. Tis process is
iterated till all the vertices are covered.

4.3. Operator Design. In the proposed method, four oper-
ators of CRO and three supportive operators have been
designed to solve the MWDS problem. Te delineation of
operators is as in the following subsections.

4.3.1. Neighborhood Search Operator. A small amount of
change occurs due to the reaction of both on-wall inefective
collision and intermolecular inefective collision, which is
similar to the local search of any other evolutionary algorithms.
Te inspiration for the neighborhood search operator comes
from this concept. In this operator, the neighbor node with
minimumweight has been searched from any active nodes. An

active node is picked randomly, and the searching occurs
among all neighbor nodes inclusive of the active node for the
lowest weight. If the active node is not the lowest weighted,
then the lowest-weighted neighbor is activated, the active node
becomes deactivated, and the process terminates. Otherwise,
the same procedure occurs to fnd another active node ran-
domly. Tis process runs until obtaining a molecule diferent
from the given one. Te fnal termination occurs due to the
unavailability of any new node after checking all active nodes.
Algorithm 3 shows the neighborhood search procedure.

Figure 4 depicts the search procedure of the neighbor-
hood search operator.

4.3.2. Local Search Procedure. After using neighborhood
search on on-wall inefective collision, intermolecular inef-
fective collision, decomposition, or synthesis, some vertices of

Input: infeasible molecule, M

Output: feasible molecule, M′
(1) whileNC≠∅ do
(2) Calculate the greedy value for vi ∈ NC

(3) gall⟵ greedy values of vi ∈ NC

(4) gmax⟵max(gi)

(5) forgv ∈ gall do
(6) ifgv≥ δ × gmax then
(7) M′[gv]⟵ 1
(8) break

(9) end
(10) else
(11) continue

(12) end
(13) end
(14) Check for uncovered vertices
(15) update NC

(16) end

ALGORITHM 4: Local search.

Input: molecule, M

Output: updated molecule, M′
(1) whileR≠∅ do
(2) ωmax⟵ 0
(3) veliminate⟵ 0
(4) for rv ∈ R do
(5) ifωmax <ωrv then
(6) ωmax⟵ωrv

(7) veliminate⟵ rv

(8) end
(9) else
(10) continue

(11) end
(12) end
(13) M′⟵ 0 Check for redundant vertices
(14) update R

(15) end

ALGORITHM 5: Redundant vertices elimination.

Applied Computational Intelligence and Soft Computing 9

a molecule can be uncovered, and the solution becomes in-
feasible. To make the solution feasible by covering all the
uncovered vertices, a technique suggested by Potluri and Singh
[24] has been used in our method. Tey proposed four greedy
approaches for searching a node from the set of vertices. From
these four approaches, the assimilation of the fourth approach
occurs in our system due to its better performance than the
other three approaches. Te greedy approach follows the
following equation to calculate the value of a vertex (vi):

gi � di ×
􏽐j∈N(i)ωj

ωi

. (9)

Here, 􏽐j∈N(i)ωj denotes the summation of all uncovered
neighbors of a single vertex (vi), ωi represents the weight,
and di is the degree of vi.

Te calculation of greedy values of every uncovered vertex
takes place by using equation (9). Ten a vertex is activated if
gi ≥ δ × max(gi); ∀ vi ∈ NC􏼈 􏼉. Here, NC represents the set of
uncovered vertices, and δ is a controlling parameter for
obtaining a better vertex. Te procedure runs until all vertices
are covered. Algorithm 4 shows the local search procedure.

4.3.3. Redundant Vertices Elimination. If any vertex (vi) is a
member of dominating set and all of its neighbors inclusive of
the vertex are the neighbors of one or more members of

dominating set, then the vertex is defned as the redundant
vertex. Removal of redundant vertices can minimize the total
weight of the dominating set. Tus the redundant vertices with
maximum weights have been removed from the molecule to
obtain the minimum weighted solution. If R is a set of re-
dundant vertices where vi ∈ R and ωi is maximum, then vi is
removed from the molecule, and then further redundant
vertices are checked and removed. Tis process runs until the
removal of all the redundant vertices. Te procedure for
eliminating redundant vertices has been shown in Algorithm 5.

Randomly
selected node

Neighbor of
randomly

selected node

M

M1
Neighborhood search

Local search

M'

0 1 0 0 0 1 1 0 1 0

1 0 0 0 0 1 1 0 1 0

1 0 0 1 0 1 1 0 1 0

Figure 5: Illustration of on-wall inefective collision.

Input: one molecule, M

Output: updated molecule, M′
(1) Copy M to M′
(2) Randomly select a position i from M′
(3) ifM′[i] � 1 then
(4) Run neighborhood search operator
(5) end
(6) else
(7) M′[i]⟵ 1
(8) end
(9) Run the local search.
(10) Run redundant vertices elimination.

ALGORITHM 6: On-wall inefective collision.

M

M'1

M'2

Generated using local search

Generated using local search

1 0 0 1 0 1 1 0 1 0

0 1 0 0 0 1 1 0 1 0

0 1 0 0 0 1 0 0 0 1

Figure 6: Illustration of decomposition.

10 Applied Computational Intelligence and Soft Computing

4.3.4. On-Wall Inefective Collision. It is a unimolecular
reaction. So in this operator, initially, a molecule has been
selected randomly. Ten the molecule is modifed to gen-
erate a new optimal molecule. Primarily, a random selection
of a position from the molecule takes place for propagating
the latest molecule. If the node of the randomly selected
position is active, then the position changes according to the
neighborhood search operator. Otherwise, the inactive node
becomes active. Finally, for any uncovered nodes, the nodes
are covered using the local search procedure. Likewise, for
any redundant nodes, the redundant vertices elimination
procedure takes place to eradicate redundancy. Figure 5
depicts the MWDS problem’s on-wall inefective collision,
where M denotes the molecule (i.e., solution) and M′ de-
notes the newly created molecule after applying both
neighborhood and local search. Te procedure of on-wall
inefective collision is shown in Algorithm 6.

4.3.5. Decomposition. It is also a unimolecular reaction
where the molecule can be divided into two or more. To fnd
a better solution for theMWDS problem, the search happens
in the search space according to this reaction by dividing the
parent molecule into two. Both two new molecules inherit a
portion from the parent molecule. Te parent molecule is
divided from the middle. Ten the frst portion of the parent
molecule becomes the frst portion of the frst child mole-
cule, and the other portion of the parent molecule becomes
the last portion of another child molecule. Ten for both
molecules, uncovered vertices are covered using a local
search procedure. Figure 6 shows the decomposition pro-
cedure. Here, in the frst child molecule (M1′), the frst
portion is similar to the frst portion of the parent molecule,
and in the second child molecule (M2′), the last portion is the
same as the last portion of the parent molecule. Algorithm 7
depicts the working procedure of decomposition.

4.3.6. Intermolecular Inefective Collision. It is a multimo-
lecular reaction operator where two or more parent mole-
cules can react with each other and generate newmolecule(s)
where the change in the new molecule is little. Tis operator
searches locally in search space such as the on-wall inef-
fective collision. In the proposed method, two molecules are
used to generate new molecules by implementing this op-
erator. A single position (i.e., vertex) from both parent

molecules is considered randomly. Ten the values from
both positions are interchanged in child molecules. Ten
uncovered nodes are covered, and redundant vertices are
removed from both child molecules. Figure 7 depicts the
intermolecular inefective collision where M1 and M2 are
the parent molecules and M1′ and M2′ are denoted as child
molecules. Algorithm 8 shows the working procedure of
intermolecular inefective collision.

4.3.7. Synthesis. It is also a multimolecular reaction oper-
ator. In this operator, the amalgamation of two molecules
generates a child molecule to obtain a better ofspring. Let,
there are two molecules M1 and M2 in the population set. If
any vertex in both parent molecules is active, then the vertex
remains active in the child molecule (M′). Other vertices of
the child molecule become inactive. Ten local search
procedure is applied to the childmolecule to obtain a feasible
solution. Figure 8 shows the illustration of the synthesis
reaction, and Algorithm 9 depicts the working procedure of
synthesis.

4.4. Operator Selection. Some comparisons occur to select
one of the four operators of CRO for the MWDS problem.
Te intermolecular collision occurred based on the com-
parison between a random value and MoleColl. If the
random value between 0 and 1 is less thanMoleColl, then the
collision is unimolecular. Otherwise, the reaction is

Input: one molecule, M

Output: updated molecules, M1′ and M2′
(1) for i⟵ 0 to len (V)/2 do
(2) M1′[i]⟵M[i]

(3) end
(4) Run a local search on M1′
(5) for i⟵ len (V) /2 to len (V) do
(6) M2′[i]⟵M[i]

(7) end
(8) Run the local search on M2′

ALGORITHM 7: Decomposition.

M1

M'1

M2

M'2

Randomly
chosen position

1 0 0 1 0 1 0 0 1 0

0 1 0 0 0 1 0 0 0 1

1 0 0 1 0 1 1 0 1 0

0 1 0 1 0 1 0 0 0 1

Figure 7: Illustration of intermolecular inefective collision.

Applied Computational Intelligence and Soft Computing 11

intermolecular. If it is unimolecular, then the collision can be
an on-wall inefective collision or decomposition. Te de-
cision of on-wall or decomposition reaction comes from the
following equation.

hit_diff > α. (10)

Here, hit_diff refers hit diference of the selected mol-
ecule. If equation (10) is satisfed, decomposition occurs.
Otherwise, we get an on-wall inefective collision. In the
same manner, synthesis or intermolecular inefective reac-
tion can occur if the random value is greater than the value of
MoleColl. Te decision of synthesis or intermolecular in-
efective reaction is taken based on the following equation:

KE≤ β. (11)

Here, KE is the kinetic energy of the molecule. If the
kinetic energy of all molecules is less than or equal to β, then
synthesis occurs. Otherwise, the reaction is an intermolec-
ular inefective collision. To get rid of the local minima
synthesis is triggered based on the parameter values.

By following this approach, better ofspring is found in
which the number of vertices is minimum. Ten using the
repair operator and ILP, the ofspring is checked for a better
solution. If the ofspring is better than the previous one then
the candidate solution is updated, and the vertices of the

candidate solution are taken as the member of the minimum
weighted dominating set.

Te reaction operators of CRO for the MWDS problem
have been triggered based on the parameter values of Table 2,
and an optimal solution has been obtained. Te proposed
fowchart of the CRO algorithm of the MWDS problem is
shown in Figure 9.

4.5. Repair Operator. After using CRO operators with other
supporting operators, there are some operations to obtain a
better solution from the search space. As in the local search
procedure, minimum weighted nodes are bound to inherit
the solution; the search space is confned and cannot search
for a further better solution. Alongside this drawback, there
is another pitfall. In previous searching procedures, the
properties of nodes are not updated after including the best
node. Tus nodes are included every time by using old
properties. For example, let a vertex (v1) is taken as the best
active node in the solution and the neighbors of v1 are v6, v8,
and v9. If v8 be the second-best node with the highest greedy
value then this node is taken as the active node in the so-
lution. But as v8 is already dominated by v1, by eliminating
this, a better solution can be obtained.

To get rid of the aforementioned problems, a new repair
operator has been proposed in our method with some other

Input: two molecules, M1 and M2
Output: updated molecules, M1′ and M2′

(1) Copy M1 to M1′
(2) Copy M2 to M2′
(3) Select a vertex vi from M1 randomly
(4) Select a vertex vj from M2 randomly
(5) M1′[i]⟵M2[j]

(6) M2′(j)⟵M1[i]

(7) Run a local search on M1′
(8) Run redundant vertices elimination on M1′
(9) Run the local search on M2′
(10) Run redundant vertices elimination on M2′

ALGORITHM 8: Intermolecular inefective collision.

0 1 0 1 0 1 0 0 1 0

M1

M2

Local
Search

0 1 0 0 0 1 0 0 1 1

0 1 0 1 0 1 1 0 1 0

M' M'

0 1 0 0 0 1 0 0 1 0

Figure 8: Illustration of synthesis.

12 Applied Computational Intelligence and Soft Computing

properties of nodes. As the feasible solution has been ob-
tained from the CRO operators to apply repair operator on
the solution, the solution is converted into an infeasible
solution by uncovering some vertices. Forty percent (40%) of
vertices with maximum weights from the dominating set are
removed intentionally to make the infeasible solution. Ten
to fnd the better solution vertices are searched based on
three properties. Te properties of a vertex (vi) are the
weight of the vertex, uncovered neighbors of the vertex, and
the ratio of weight and uncovered neighbor nodes. Ten
these properties are scaled based on minimum or maximum
values of corresponding properties according to the fol-
lowing equations: (12)–(14).

Sωi
�
ωmin

ωi

. (12)

SNC(N(i)) �
NC(N(i))

NC(N(max))
, (13)

Sri
�

rmin

ri

. (14)

Here, ωi refers to the weight of the uncovered node vi

and ωmin is the node with minimum weight from all un-
covered nodes. S represents the scaled property, NC(N(i))

represents the number of total uncovered neighbors of the
node vi, and NC(N(max)) represents the maximum
number of all uncovered neighbors. Te ratio (ri) of the
node vi is calculated as follows:

ri �
ωi

NC(N(i))
. (15)

All these three properties of a vertex are considered by
combining these properties. To make the solution feasible
based on these properties, if any vertex has two or more
uncovered neighbors, the vertex with the maximum ag-
gregated value of the properties is selected as an active
vertex. Otherwise, the vertex is selected as active based on
weight. If the weight is minimum then the vertex becomes
active. Tis procedure terminates when all the vertices are
covered. Te operator can fnd the minimum weighted node
with the maximum number of neighbor nodes which helps
obtain a better solution in minimal time.

Figure 10 shows the procedure of the repair operator. Let
after using all of the previous operators on the graph of
Figure 10 the selected nodes are 1, 3, and 6 and the dom-
inating set is 1, 3, 6{ }. Te weights of these three nodes are 6,
12, and 5 and the total weight is 23. As the nodes with
maximum weights are removed, nodes 1 and 3 are removed
from the dominating set and 6 remains in the dominating
set. Now, three properties of uncovered nodes are checked.
After removing nodes 1 and 3, nodes 1, 2, 3, and 5 become
uncovered. Te weights of these four nodes are 6, 10, 12, and
5, and the total number of uncovered neighbors of these four
nodes are 1, 2, 2, and 1. Here, from the four uncovered
nodes, the minimum weight is 5, and the maximum number
of uncovered neighbors is 2. Now according to equation (12),
the values of nodes 1, 2, 3, and 5 are 5/6 � 0.83, 5/10 � 0.5,

Input: two molecules, M1 and M2
Output: updated molecule, M′

(1) for i⟵ 0 to len (V) do
(2) ifM1[i] � 1 and M2[i] � 1 then
(3) M′[i]⟵ 1
(4) end
(5) else
(6) M′[i]⟵ 0
(7) end
(8) end
(9) Run the local search on M′

ALGORITHM 9: Synthesis.

Table 2: Initialization of parameters for proposed MWDS_CRO algorithm.

Parameters Initialized values
Epsilon (ϵ) 0.9
Delta (δ) 1.45
Total iteration 100
Initial population size 20
KELossRate 0.1
MoleColl 0.1
Energy bufer 0
Hit_dif 0
Alpha (α) 10000
Beta (β) 1000
Kinetic energy (KE) 100

Applied Computational Intelligence and Soft Computing 13

5/12 � 0.417, and 5/5 � 1. According to equation (13), the
values of nodes 1, 2, 3, and 5 are 1/2 � 0.5, 2/2 � 1, 2/2 � 1,
and 1/2 � 0.5�. Te ratios according to equation (15) are
6/1 � 6, 10/2 � 5, 12/2 � 6, and 5/1 � 5. According to
equation (14), the values of nodes 1, 2, 3, and 5 are 5/6 � 0.83,
5/5 � 1, 5/6 � 0.833, and 5/5 � 1. Te combined values of
these three properties for nodes 1, 2, 3, and 5 are 2.16, 2.5,
2.25, and 2.5. Here the values of nodes 2 and 5 are maximum
which is 2.5 for both cases. So for the frst iteration fromnodes
2 and 5, one of them is selected randomly.Ten to cover up all
the nodes, another node is selected. Finally, the minimum
weighted dominating set is found, which is 2, 5, 6{ } and the
weight of this set is 20. Te weight of the previous set was 23.
So it is clear that repair operator helps to provide better
results.

4.6. CommonNeighbor Elimination. Tis method eliminates
nodes that are common in the neighbor of any node and
dominating set based on total weights. Te process iterates
for every node in a graph. In this process, the intersection
between dominating set and the neighbor of a node has been
produced for obtaining the total weight of the nodes of the
intersection set. If the total weight of the intersection set is
greater than the weight of the node then the node becomes
an active node. Ten the nodes of the intersection set have
been deactivated by checking the covering condition. If any
node becomes uncovered then it remains active. Finally,
nodes in the intersection set have been removed from
dominating set one by one by checking the objective value. If
the objective value decreases then the molecule is updated
with a new molecule, otherwise, it remains the same.

START Input weighted graph

Calculate the probability
of vertices

Generate the molecule
based on probability and

priority ranking

Molecule Intensification
Procedure

No

No

Inter-molecular collision
(random_val>molecoll)?

One molecule is
selected

Two molecules are
selected

Satisfy the criteria
of synthesis?

Synthesis

Stopping criteria
matched?

Solution has been
found

END
Use common neighbor

elimination procedure to
obtain optimal solution

Use repair operator on
the solution

Use redundant vertices elimination
procedure to remove redundant

vertices

Use local search procedure to
cover all the nodes

Satisfy the criteria
of decomposition?

On-wall Ineffective collision
using Neighborhood Search

operator

Inter-molecular Ineffective
collisionDecomposition

Yes

YesNo Yes No

Yes

Figure 9: Flowchart of CRO for MWDS problem.

14 Applied Computational Intelligence and Soft Computing

Algorithm 10 demonstrates the procedure of eliminating
neighbor members of dominating set.

5. Experimental Results

In this section, experimental results of CRO on given
datasets are reported. Te proposed CRO was run on a
computer with a 2.7GHz Intel Core i5 processor and 8GB of
RAM. Te algorithm was run using python 3.7. Firstly, we
introduce the used benchmark datasets. Ten, we describe
the method for setting the parameter values. Finally, com-
putational results and comparisons are reported.

5.1. Dataset. In our proposed system two types of bench-
mark datasets were used which were used by diferent re-
searchers to solve the MWDS problem using heuristic
algorithms [21–24, 27]. Te benchmark data are of two types
(TI and TII), and another class is BHOSLIB. Tese datasets
can be found in [21]. Each vertex weight of the type I is
randomly generated in between 20 to 70. For the instances in
type II, the weight of vertex i is randomly generated in (1,
degree(i)2), where degree(i) is the degree of vertex i. Both
types I and II have 53 groups. Tere are 10 instances (the
names of these 10 instances are n_m_0 to n_m_9) in each

group. Instances with the same number of vertices (n) are
classifed as the same group. On the other hand, the com-
plement graphs of the remaining instances in the BHOSLIB
dataset were taken as useable graphs for the MWDS problem.
To obtain the weights of the nodes of graphs, for each node, it
is calculated as ω(i) � (i%200) + 1. Here, ω(i) refers to the
weight of a single node i.

5.2. Setting Parameters. Because the initialization of pa-
rameters in CRO is not guaranteed, obtaining an appropriate
parameter value for the optimal molecule is a difcult
process. In our study, we strive to discover the best molecule
with the smallest weight by adjusting various factors, and we
provide the fndings for several parameter sets. In the
population generation stage, a new parameter (ϵ) is intro-
duced. Figure 11 shows the tuning results of this parameter
on some graph data of the TI instance. Besides this,
Figures 12–14 refer to the diferent parameter tuning results
of CRO which are the kinetic energy, alpha, and beta tuning.
In all the graphs X-axis represents the total weight of the
dominating set, and the Y-axis represents the parameter
values. From the results of tuning, the parameter values are
shown in Table 2.

10

2

12

3
6

1

1 0 1 10 0 0 0

Remove 40% nodes
from the dominating set

Add new nodes
based on values from equation

11, 12 and 13

0 10 0

0 1 0 10 1

8

4

6

5

5

5

10

2
12

36

1

8

4

6

5

5

5

10

2

12

3
6

1

8

4

6

5

5

5

Figure 10: Illustration of repair operator.

Applied Computational Intelligence and Soft Computing 15

5.3. Performance Analysis. To analyze the performance of
the proposed algorithm the minimum weights of the
dominating set and the run time of the algorithm were
considered. Te existing related algorithms used diferent
CPUs and diferent programming languages to obtain the
output. Tus to compare the running time we implemented
the HTS-DS approach in our implementation environment.
As the HTS-DS approach obtained the best time compared
with other algorithms, we show only the comparison be-
tween the proposed CRO-based method and the HTS-DS
approach.

Te comparison regarding minimum weights between
MWDS_CRO with other algorithms has been shown in
Tables 3–7. Tese tables depict the outcomes for types TI,
TII, and BHOSLIB datasets, respectively. For both types TI
and TII, the instances are divided into two classes which are
small and medium particle instances (SMPI) and large
particle instances (LPI). Here, the graphs with (50–250)
nodes are classifed as SMPI class while the others are
represented as LPI class. Table 3 illustrates the minimum
weights of class SMPI of type TI which are obtained after the
implementation of diferent algorithms. Here, |V| and |E|

refer to the number of vertices and edges in a graph. Te
outcome regarding weights of diferent algorithms of LPI
class from TI type can be obtained from Table 4. Tables 5 and
6 refer to the minimum weights of various algorithms of

classes SMPI and LPI of type TII. Table 7 shows the com-
parison of performance between HTS-DS andMWDS_CRO
for the BHOSLIB dataset.

Tables 8 and 9 demonstrate the run times for all instances
of types TI and TII successively for every individual
algorithm.

From the tables, it is clear that the average results, as well
as the run times for diferent instances of the proposed
algorithm, are better than all other existing related
algorithms.

Table 10 shows the total number of the best-known
results obtained by each algorithm for every dataset. For
example, the CC2 FS algorithm has the best-known results in
24 instances out of 32 instances in the data set type TI, class-
SMPI. Here, ′−′ denotes the comparison of results with
respect to best-known results that are not available for CC2

FS, FBPSO, and ABC-EDA algorithms for the BHOSLIB
dataset. In the column with the caption “improvement%” we
compute the results as follows:

Improvement% �
(TBR_MWDS_CRO − TBR_HTS − DS)

TS
× 100,

(16)

where TBR_MWDS_CRO means the total number of best-
known results by the MWDS_CRO method and
TBR_HTS − DS denotes the total number of best-known

Input: one molecule, list of neighbors (N), dominating set (D), the weight of vertices.
Output: updated molecule.

(1) forN(vi) ∈ N do
(2) CN⟵N(vi)∩D;// CN refers to the list of common neighbors between the neighbor node of vi and dominating set
(3) Tω⟵ 􏽐ω(vj ∈ CN)

(4) ifTω >ω(vi) then
(5) M[vi]⟵ 1 for vj ∈ CN do
(6) M[vj]⟵ 0
(7) Check the feasibility of the molecule.
(8) if infeasible then
(9) M[vj]⟵ 1
(10) end
(11) else
(12) check the objective value of both the previous and updated molecule.
(13) if infeasible then
(14) f⟵ 0
(15) end
(16) else
(17) f⟵ 1
(18) end
(19) end
(20) end
(21) end
(22) iff � 1 then
(23) updated molecule⟵ molecule with minimum objective value.
(24) end
(25) else
(26) continue.
(27) end
(28) end

ALGORITHM 10: Common neighbor elimination.

16 Applied Computational Intelligence and Soft Computing

20000
17455.6 16978.4 16907 16521.6 16362.5 16907

13026.5 12749.2 12275.7 12160.9 12007.3 12275.7

8249.6 8023.1 8049.1 7968.7 7882 8049.1

3908.1 3827.2 3767.8 3707.9 3681.6 3767.8

658.5 640.8 641.5 627.2 617.1 641.5

18000

16000

14000

12000

10000

8000

6000

4000

2000

0
0.5 0.75 1 1.25 1.45 1.5

800-2000
1000-1000

50-50
250-250
800-1000

Figure 11: Epsilon (ϵ) tuning.

10695.7 10607.2 10902.1 10815.3 10913.7 10913.7

7751.1 7657.1 7665.3 7731.2 7773.7 7773.7

6121.5 5991.1 5997.3 6021.9 6014 6014

2687.3 2634.3 2641.2 2649.1 2645.6 2645.6

578.1 537.1 546.7 564.3 537.1 554.1

12000

10000

8000

6000

4000

2000

0
50 100 150 200 250 300

800-2000
1000-1000

50-50
250-250
800-1000

Figure 12: Kinetic energy (KE) tuning.

10815.3 10804.5 10902.1 10804.5 10913.7 10607.2

7731.2

6021.9 6021.5

7699.4 7665.3

5997.3

2641.22634.3

7699.4

6021.5

2634.3

7773.7

6014

2645.6

7657.1

5991.1

2634.3

10000

531.3537.1

50001000

533.2546.7

500

2649.1

564.3

4 50

539.3

0

2000

4000

6000

8000

10000

12000

800-2000
1000-1000

50-50
250-250
800-1000

Figure 13: Alpha (α) tuning.

Applied Computational Intelligence and Soft Computing 17

0

2000

4000

6000

8000

10000

14000

12000 10913.7 10815.3
11617.3

10902.1 10804.5 10607.2

7657.1

5991.1

2634.3

531.3

2634.3

6021.5

7699.4

539546.7

2641.2

5997.3

7756.5 7665.37731.27773.7

6014 6021.9 6003.1

2633.72649.12645.6

554.1 564.3 541.5

10005001005010 16

800-2000
1000-1000

50-50
250-250
800-1000

Figure 14: Beta (β) tuning.

Table 3: Type TI class SMPI-comparison of MWDS_CRO for various parameters with recent state-of-the-art algorithms.

|V| |E| CC2 FS FBPSO HTS-DS ABC-EDA MWDS_CRO Best known

50

50 531.3 531.3 531.3 531.3 531.3 531.3
100 370.9 370.98 370.9 370.9 370.9 370.9
250 175.7 175.7 175.7 175.7 175.7 175.7
500 94.9 94.9 94.9 94.9 94.9 94.9
750 63.3 63.16 63.1 63.1 63.1 63.1
1000 41.5 41.5 41.5 41.5 41.5 41.5

100

100 1061.0 1062.99 1061.0 1061.4 1061.0 1061.0
250 618.9 619.48 618.9 621.1 618.9 618.9
500 355.6 355.74 355.6 355.8 355.6 355.6
750 255.8 255.95 255.8 258.0 255.8 255.8
1000 203.6 203.6 203.6 205.2 203.6 203.6
2000 107.4 107.88 107.4 107.9 107.4 107.4

150

150 1580.5 1585.71 1580.5 1583.8 1580.5 1580.5
250 1218.2 1223.31 1218.2 1223.2 1218.2 1218.2
500 744.6 747.45 744.6 747.5 744.6 744.6
750 546.1 548.15 546.1 549.2 546.1 546.1
1000 432.9 433.93 432.8 434.8 432.8 432.8
2000 240.8 241.47 240.8 243.7 240.8 240.8
3000 166.9 167.53 166.9 169.3 166.9 166.9

200

250 1910.4 1918.82 1909.7 1916.7 1909.7 1909.7
500 1232.8 1239.71 1232.8 1243.4 1232.8 1232.8
750 911.2 918.47 911.2 924.2 911.2 911.2
1000 724.0 727.09 723.5 729.0 723.5 723.5
2000 412.7 415.46 412.9 417.9 412.9 412.7
3000 292.8 294.03 292.8 298.1 292.8 292.8

250

250 2633.4 2649.73 2633.0 2647.0 2633.0 2633.0
500 1805.9 1813.03 1805.9 1817.9 1805.9 1805.9
750 1362.2 1375.32 1361.9 1382.6 1361.9 1361.9
1000 1091.1 1099.65 1090.1 1107.7 1089.9 1089.9
2000 621.9 625.41 621.9 628.6 621.6 621.6
3000 447.9 452.45 448.0 457.1 448.0 447.9
5000 289.5 291.18 289.6 297.4 289.5 289.5

18 Applied Computational Intelligence and Soft Computing

results by HTS-DS, and TS is the total number of instances of
the respective data set. We considered HTS-DS for com-
parisons because this algorithm is a state-of-the-art method.

In Table 11, we have shown the comparison in average
time improvement for all the test datasets. Te time im-
provement in % has been computed using by using the
following equation:

Time improvementin% �
Avg THTS−DS(􏼁 − Avg TMWDS_CRO􏼐 􏼑

Avg THTS−DS(􏼁
× 100,

(17)

where Avg(THTS−DS refers to the average running time in
second(s) for HTS-DS and Avg(TMWDS_CRO) denotes the
average running time in second(s) for MWDS_CRO. Here
we have considered the time of HTS-DS and MWDS-CRO
algorithms. Since these two algorithms have the best-known
results for most of the instances of all datasets. Our method
improves average computational time by 92.97% for the TI-
SMPI dataset which is the highest compared to all datasets,
whereas the lowest improvement is 71.43% which is for the
TII-SMPI dataset.

Table 12 shows the outcome for diferent components of
the Type TI dataset. According to the table, it is clear that
from the basic CRO operators, the best outcome is obtained
for most instances. However, there are some instances in
which the best results cannot be found after the basic CRO
operators. In these cases, repair operators and common
neighbor elimination procedure work to obtain the best
results.

Te time complexity of metaheuristic algorithms for
searching the global optimal solution cannot be determined
because these algorithms do not guarantee the fnding of the
global optimal solution within a given time limit. Te
metaheuristic algorithms such as CRO, GA, PSO, and ACO

have no predefned end. Some metaheuristics need a few
hundred or thousand iterations (with a big computational
efort for each iteration) to obtain good or best results, while
others need several million iterations (with only a tiny
computational efort for each iteration).

In the proposed algorithm, the CRO performed 100
iterations in one run. Moreover, in one full iteration, the
algorithm performs 20 evaluations (popSize� 20). So, the
number of evaluations in one run is 100 × 20 � 2000. After
performing the basic CRO operators, the obtained solutions
went through repair operators and a common neighbor
elimination procedure. Both of these methods run 1 time on
the solution to obtain the best solution. For repair operator
time complexity is O(n) and for the common neighbor
elimination procedure it is O(mn). Here, n refers to the total
number of nodes in a graph and m refers to the total number
of neighbors of any node. So fnally the total number of
evaluations is 100 × 20 + 1 � 2001.

5.4. Statistical SignifcanceTest. Te statistical signifcance of
MWDS_CRO over other algorithms is shown in this sub-
section by showing Wilcoxon signed-rank test. From Ta-
bles 13 and 14, it is clear that MWDS_CRO is more
signifcant than any other algorithms for both TI and TII
instances. For the Wilcoxon test, for both instances, the
value of the signifcance level is 0.05, and the hypothesis is
two-tailed.

Due to the insufcient sample size of MWDS_CRO
and HTS-DS in Table 11 for the type TII instance, mean
(W), standard deviation (W), and p value can not be
calculated. Tus the signifcance of the result cannot be
shown as the signifcance of the result depends on the p

value. If the p value is less than 0.05 then the result is
signifcant.

Table 4: Type TI class LPI-comparison of MWDS_CRO for various parameters with recent state-of-the-art algorithms.

|V| |E| CC2 FS FBPSO HTS-DS ABC-EDA MWDS_CRO Best known

300

300 3178.6 3203.62 3175.4 3193.0 3175.4 3175.4
500 2438.1 2453.57 2435.6 2461.3 2435.6 2435.6
750 1854.6 1870.8 1853.9 1876.0 1853.8 1853.8
1000 1495.0 1506.56 1494.1 1516.7 1494.0 1494.0
2000 862.5 871.89 862.4 878.8 862.4 862.4
3000 624.3 628.24 624.4 636.8 624.1 624.1
5000 406.1 409.08 406.3 417.7 406.1 406.1

500

500 5305.7 5392.45 5304.7 5370.7 5304.7 5304.7
1000 3607.8 3659.87 3608.6 3652.1 3607.6 3607.3
2000 2181.0 2210.28 2177.8 2225.0 2176.8 2176.8
5000 1043.3 1054.88 1044.2 1073.5 1042.3 1042.3
10000 587.2 594.32 587.2 605.8 587.2 587.2

800

1000 7663.4 7771.52 7655.0 7755.7 7655.0 7655.0
2000 4982.1 5060.73 4991.7 5079.1 4987.3 4982.1
5000 2441.2 2470.38 2435.8 2492.2 2432.6 2432.6
10000 1395.6 1417.16 1395.1 1440.0 1393.7 1393.7

1000

1000 10585.3 10785.37 10574.4 10766.4 10574.4 10574.4
5000 3671.8 3713.22 3662.7 3757.4 3656.6 3656.6
10000 2109.0 2132.76 2102.2 2180.8 2099.8 2099.8
15000 1521.5 1542.64 1521.9 1573.6 1519.7 1519.7
20000 1203.6 1215.98 1205.6 1242.1 1200.9 1200.9

Applied Computational Intelligence and Soft Computing 19

Table 5: Type TII class SMPI-comparison of MWDS_CRO for various parameters with recent state-of-the-art algorithms.

|V| |E| CC2 FS FBPSO HTS-DS ABC-EDA MWDS_CRO Best known

50

50 60.8 60.8 60.8 60.8 60.8 60.8
100 90.3 90.3 90.3 90.3 90.3 90.3
250 146.7 146.7 146.7 146.7 146.7 146.7
500 179.9 179.9 179.9 179.9 179.9 179.9
750 171.1 171.1 171.1 171.1 171.1 171.1
1000 146.5 146.5 146.5 146.5 146.5 146.5

100

100 123.5 123.5 123.5 123.5 123.5 123.5
250 209.2 209.23 209.2 209.6 209.2 209.2
500 305.7 305.72 305.7 305.7 305.7 305.7
750 384.5 384.5 384.5 384.5 384.5 384.5
1000 427.3 427.3 427.3 427.3 427.3 427.3
2000 550.6 550.6 550.6 550.6 550.6 550.6

150

150 184.5 184.59 184.5 184.5 184.5 184.5
250 232.8 233.04 232.8 233.1 232.8 232.8
500 349.5 349.68 349.5 349.5 349.5 349.5
750 452.4 452.4 452.4 452.8 452.4 452.4
1000 547.2 547.2 547.2 547.2 547.2 547.2
2000 720.1 720.1 720.1 720.1 720.1 720.1
3000 792.4 792.48 792.4 792.4 792.4 792.4

200

250 271.7 272.06 271.7 271.7 271.7 271.7
500 386.7 386.77 386.7 386.8 386.7 386.7
750 497.1 497.15 497.1 497.3 497.1 497.1
1000 596.8 597.21 596.8 597.3 596.8 596.8
2000 884.6 884.63 884.6 884.6 884.6 884.6
3000 1019.2 1019.45 1019.2 1022.4 1019.2 1019.2

250

250 306.1 306.79 306.0 306.1 306.0 306.0
500 440.7 441.72 440.7 440.8 440.7 440.7
750 567.4 568.63 567.4 568.2 567.4 567.4
1000 668.6 669.26 668.6 669.5 668.6 668.6
2000 1007.0 1007.91 1007.0 1010.2 1007.0 1007.0
3000 1250.6 1251.57 1250.6 1250.6 1250.6 1250.6
5000 1464.2 1464.2 1464.2 1464.2 1464.2 1464.2

Table 6: Type TII class LPI-comparison of MWDS_CRO for various parameters with recent state-of-the-art algorithms.

|V| |E| CC2 FS FBPSO HTS-DS ABC-EDA MWDS_CRO Best known

300

300 369.9 370.63 369.9 369.9 369.9 369.9
500 477.8 478.32 477.8 478.4 477.8 477.8
750 613.3 614.73 613.3 613.9 613.3 613.3
1000 737.9 738.93 737.7 738.1 737.7 737.7
2000 1093.8 1094.23 1093.8 1095.2 1093.8 1093.8
3000 1358.5 1359.57 1358.5 1361.3 1358.5 1358.5
5000 1682.7 1683.2 1682.7 1682.7 1682.7 1682.7

500

500 623.6 627.24 623.6 623.7 623.6 623.6
1000 899.8 904.24 899.6 901.6 899.6 899.6
2000 1363.3 1373.33 1362.2 1367.3 1362.2 1362.2
5000 2333.7 2335.41 2326.6 2342.1 2326.6 2326.6
10000 3211.5 3211.8 3211.5 3214.5 3211.5 3211.5

800

1000 1104.3 1113.03 1103.9 1104.5 1103.9 1103.9
2000 1632.3 1641.87 1630.8 1636.1 1630.8 1630.8
5000 2878.5 2901.62 2876.6 2888.1 2876.0 2876.1
10000 4105.6 4107.19 4104.0 4121.5 4102.1 4102.8

1000

1000 1237.7 1249.7 1237.5 1239.4 1237.5 1237.5
5000 3178.7 3206.7 3180.0 3194.4 3172.9 3172.9
10000 4711.8 4733.58 4709.9 4748.1 4704.5 4704.8
15000 5874.2 5896.91 5862.4 5897.6 5856.4 5856.4
20000 6662.1 6681.64 6657.9 6691.5 6655.1 6655.1

20 Applied Computational Intelligence and Soft Computing

Table 7: BHOSLIB-comparison of MWDS_CRO for various parameters with the recent state-of-the-art algorithm.

Instances HTS-DS MWDS_CRO Best known
Name |V| |E| Avg T (s) Avg T (s) —
frb30-15-1 450 17827 212.0 41.6 212.0 8.12 212.0
frb30-15-2 450 17874 242.0 14.32 242.0 4.56 242.0
frb30-15-3 450 17809 175.0 21.67 175.0 5.51 175.0
frb30-15-4 450 17831 166.0 14.57 166.0 2.23 166.0
frb30-15-5 450 17794 160.0 17.3 160.0 3.59 160.0
frb35-17-1 595 27856 274.0 44.55 274.0 10.76 274.0
frb35-17-2 595 27847 208.0 18.17 208.0 3.02 208.0
frb35-17-3 595 27931 201.0 19.61 201.0 6.63 201.0
frb35-17-4 595 27842 286.0 52.87 286.0 13.33 286.0
frb35-17-5 595 28143 295.0 12.74 295.0 2.41 295.0
frb40-19-1 760 41314 262.0 20.22 262.0 5.60 262.0
frb40-19-2 760 41263 243.0 80.41 243.0 12.51 243.0
frb40-19-3 760 41095 250.0 78.71 250.0 16.06 250.0
frb40-19-4 760 41605 249.1 71.87 249.0 14.18 249.0
frb40-19-5 760 41619 272.0 63.69 272.0 10.87 272.0
frb45-21-1 945 59186 328.0 76.98 328.0 13.96 328.0
frb45-21-2 945 58624 259.2 87.38 259.0 22.34 259.0
frb45-21-3 945 58245 233.0 132.06 233.0 30.53 233.0
frb45-21-4 945 58549 399.0 79.67 399.0 19.49 399.0
frb45-21-5 945 58579 312.5 92.06 312.0 20.79 312.0
frb50-23-1 1150 80072 261.0 159.38 261.0 37.11 261.0
frb50-23-2 1150 80851 277.0 161.75 277.0 38.93 277.0
frb50-23-3 1150 81068 281.0 125.9 281.0 25.07 281.0
frb50-23-4 1150 80258 265.0 191.06 265.0 40.58 265.0
frb50-23-5 1150 80035 404.3 108.5 408.0 12.10 404.0
frb53-24-1 1272 94227 229.0 86.89 229.0 7.99 229.0
frb53-24-2 1272 94289 298.0 348.12 298.0 52.68 298.0
frb53-24-3 1272 94127 182.0 212.98 182.0 41.26 182.0
frb53-24-4 1272 94308 189.0 284.44 189.0 58.56 189.0
frb53-24-5 1272 94226 204.0 78.23 204.0 16.21 204.0
frb56-25-1 1400 109676 229.0 107.66 229.0 12.90 229.0
frb56-25-2 1400 109401 319.0 145.09 319.0 39.02 319.0
frb56-25-3 1400 109379 336.0 163.23 336.0 48.88 336.0
frb56-25-4 1400 110038 265.0 169.65 265.0 51.09 265.0
frb56-25-5 1400 109601 411.4 128.27 408.0 32.88 408.0
frb59-26-1 1534 126555 262.6 192.54 262.0 54.39 262.0
frb59-26-2 1534 126163 386.6 159.25 383.0 33.74 383.0
frb59-26-3 1534 126082 246.7 348.38 246.0 92.40 246.0
frb59-26-4 1534 127011 248.0 357.5 248.0 86.66 248.0
frb59-26-5 1534 125982 288.0 396.44 288.4 98.23 288.0
frb100-40 4000 572774 350.0 963.58 350.0 181.16 350.0

Applied Computational Intelligence and Soft Computing 21

Table 8: Type TI-run time comparison in second of MWDS_CRO with the recent state-of-the-art algorithm.

|V| |E| HTS-DS MWDS_CRO

50

50 0.42 0.36
100 0.42 0.36
250 1.10 1.07
500 2.01 1.81
750 1.82 2.25
1000 2.59 3.01

100

100 0.64 0.90
250 1.61 1.01
500 2.93 2.13
750 3.25 3.18
1000 6.89 5.39
2000 12.93 13.41

150

150 1.61 1.01
250 1.93 0.77
500 9.63 1.24
750 22.47 2.79
1000 26.00 4.14
2000 25.04 14.66
3000 30.08 26.79

200

250 1.93 1.19
500 6.42 1.58
750 25.04 11.56
1000 25.04 19.92
2000 25.68 16.04
3000 23.11 12.09

250

250 3.53 1.38
500 7.70 1.81
750 26.32 18.20
1000 25.36 21.26
2000 26.96 16.62
3000 24.40 26.53
5000 25.04 1.33

300

300 4.17 1.58
500 5.14 1.08
750 24.08 3.29
1000 27.93 4.78
2000 28.57 2.49
3000 30.50 1.26
5000 26.00 1.92

500

500 8.67 3.17
1000 33.38 8.69
2000 34.67 7.29
5000 34.99 6.48
10000 31.78 4.25

800

1000 16.69 6.16
2000 45.90 7.80
5000 45.58 8.96
10000 44.62 7.26

1000

1000 27.93 8.02
5000 50.40 12.56
10000 51.04 13.65
15000 52.00 9.68
20000 57.46 10.28

22 Applied Computational Intelligence and Soft Computing

Table 9: Type TII-run time comparison in second of MWDS_CRO with the recent state-of-the-art algorithm.

|V| |E| HTS-DS MWDS_CRO

50

50 0.32 0.13
100 0.32 0.12
250 0.13 0.10
500 0.13 0.08
750 0.13 0.08
1000 0.32 0.07

100

100 0.64 0.24
250 0.32 0.23
500 0.32 0.26
750 0.64 0.26
1000 0.64 0.28
2000 0.96 0.24

150

150 1.61 0.47
250 0.96 0.32
500 0.96 0.39
750 1.28 0.40
1000 1.28 0.39
2000 1.61 0.45
3000 2.57 0.43

200

250 1.61 0.56
500 1.28 0.56
750 1.28 0.47
1000 1.61 0.51
2000 1.93 0.62
3000 3.21 0.61

250

250 3.53 0.79
500 2.25 0.90
750 2.25 0.89
1000 2.25 0.69
2000 3.53 1.01
3000 4.49 1.12
5000 7.06 0.97

300

300 4.17 1.20
500 2.89 1.54
750 2.89 1.36
1000 3.21 1.78
2000 3.53 2.00
3000 4.82 1.82
5000 8.99 1.50

500

500 8.99 1.06
1000 6.42 1.89
2000 7.70 2.88
5000 10.91 2.68
10000 27.29 4.07

800

1000 13.80 9.29
2000 13.16 12.80
5000 34.67 24.34
10000 69.02 20.65

1000

1000 28.25 8.06
5000 53.29 9.12
10000 100.15 13.17
15000 117.17 10.18
20000 178.48 12.87

Table 10: Comparison of results with respect to best-known results.

Data set No. of instances CC2 FS FBPSO HTS-DS ABC-EDA MWDS_CRO Improvement (%)
TI-SMPI 32 24 5 27 6 30 9.38
TI-LPI 21 3 0 6 0 19 61.9
TII-SMPI 32 31 14 32 20 32 0
TII-LPI 21 8 0 16 2 21 23.81
BHOSLIB 41 — — 33 — 39 14.63

Applied Computational Intelligence and Soft Computing 23

Table 11: Comparison in average time improvement for datasets.

Data set No. of instances Avg T (s) in HTS-DS Avg T (s) in the proposed method Avg T (s) improvement Improvement in (%)
TI-SMPI 32 10.95 0.77 10.18 92.97
TI-LPI 21 32.45 6.22 26.23 80.83
TII-SMPI 32 1.61 0.46 1.15 71.43
TII-LPI 21 33.32 6.87 26.45 79.38
BHOSLIB 41 144.62 31.42 113.2 78.27

Table 12: Type TI comparison of MWDS_CRO for diferent components.

|V| |E|
Ranking based
population

Without repair operator and
common neighbor elimination

Without common
neighbor elimination

With repair operators and common
neighbor elimination

50

50 555.7 531.3 531.3 531.3
100 427.6 370.9 370.9 370.9
250 217.0 175.7 175.7 175.7
500 148.8 94.9 94.9 94.9
750 92.9 63.1 63.1 63.1
1000 62.6 41.5 41.5 41.5

100

100 1189.4 1090.0 1061.0 1061.0
250 765.5 618.9 618.9 618.9
500 480.5 355.6 355.6 355.6
750 346.1 255.8 255.8 255.8
1000 293.7 203.6 203.6 203.6
2000 167.1 107.4 107.4 107.4

150

150 1760.6 1580.5 1580.5 1580.5
250 1466.3 1218.2 1218.2 1218.2
500 983.6 744.6 744.6 744.6
750 753.7 546.1 546.1 546.1
1000 591.5 432.8 432.8 432.8
2000 344.8 240.8 240.8 240.8
3000 252.3 166.9 166.9 166.9

200

250 2234.6 1909.7 1909.7 1909.7
500 1588.4 1308.4 1238.2 1232.8
750 1240.9 1038.6 911.2 911.2
1000 1022.4 912.8 723.5 723.5
2000 578.3 412.7 412.7 412.7
3000 429.9 344.6 312.2 292.8

250

250 3030.5 2812.8 2633.0 2633.0
500 2303.2 2108.0 1805.9 1805.9
750 1861.2 1421.7 1361.9 1361.9
1000 1486.6 1242.2 1089.9 1089.9
2000 891.4 621.6 621.6 621.6
3000 657.7 447.9 447.9 447.9
5000 452.2 289.5 289.5 289.5

300

300 4221.6 3456.5 3223.9 3175.4
500 3040.2 2652.7 2556.4 2435.6
750 2256.6 1853.8 1853.8 1853.8
1000 2052.4 1816.2 1652.4 1494.0
2000 1240.7 862.4 862.4 862.4
3000 1080.7 624.1 624.1 624.1
5000 623.7 406.1 406.1 406.1

500

500 9852.4 6121.3 5702.1 5304.7
1000 6045.7 4087.3 3607.3 3607.3
2000 3668.0 2176.8 2176.8 2176.8
5000 3351.7 1624.2 1218.6 1042.3
10000 867.2 587.2 587.2 587.2

800

1000 12232.6 8765.4 7655.0 7655.0
2000 8668.0 5246.7 4982.1 4982.1
5000 4612.2 2432.6 2432.6 2432.6
10000 1890.9 1393.7 1393.7 1393.7

1000

1000 18656.8 12231.7 10574.4 10574.4
5000 6221.3 3656.6 3656.6 3656.6
10000 4152.6 2099.8 2099.8 2099.8
15000 2051.3 1519.7 1519.7 1519.7
20000 1621.5 1200.9 1200.9 1200.9

24 Applied Computational Intelligence and Soft Computing

6. Conclusion

More research on theMWDS problem is unavoidable because
it has a wide range of practical applications, including data
mining, the study of social networks and infuence trans-
mission, protein interaction networks, and covering codes.
Due to its NP-hardness, this problem cannot be solved in a
limited time using an exact algorithm. Tus implementation
of a metaheuristic algorithm can obtain the proper solution.
To cope with the issue, in this experiment, CRO based model
has been proposed to solve the MWDS problem where
population generates based on ranking. Ten the population
is intensifed by applying the molecule intensifcation pro-
cedure. Ten CRO operators work on the generated pop-
ulation. Besides CRO operators, the coordination of three
supporting operators helps to eradicate infeasibility and re-
dundancy from the up-to-date population. Te further
procurement of better ofspring depends on the repair op-
erator and the common neighbor elimination procedure. To
prove the supremacy of our model, we compare the results
with other well-known related algorithms, and the signif-
cance test is also provided. From the signifcance tests and
comparison results, it is clear that our proposed model
outperforms the other related existing algorithms.

Data Availability

Te data sets used in this research are available publicly at
the following link: https://drive.Google.com/drive/folders/
1bTuTVYorJ6Qy5uwNLq5XAKIPKyu84zL4?usp�sharing.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work was supported by ICT-Division, Ministry of Posts,
Telecommunications and Information Technology, Ban-
gladesh. Tis support is gratefully acknowledged.

References

[1] M. M. Daliri, A. Rezvanian, N. Bagherpour, and
M. R. Meybodi, “Minimum positive infuence dominating set
and its application in infuence maximization: a learning
automata approach,” Applied Intelligence, vol. 48, no. 3,
pp. 570–593, 2018.

[2] J. C. Nacher and T. Akutsu, “Minimum dominating set-based
methods for analyzing biological networks,” Methods,
vol. 102, pp. 57–63, 2016.

[3] S. Wuchty, “Controllability in protein interaction networks,”
Proceedings of the National Academy of Sciences, vol. 111,
no. 19, pp. 7156–7160, 2014.

[4] J. Yu, N. Wang, G. Wang, and D. Yu, “Connected dominating
sets in wireless ad hoc and sensor networks–a comprehensive
survey,” Computer Communications, vol. 36, no. 2,
pp. 121–134, 2013.

[5] P. R. J. Ostergard, “Constructing covering codes by tabu
search,” Journal of Combinatorial Designs, vol. 5, no. 1,
pp. 71–80, 1997.

[6] Y. Wang, W. Wang, and X. Y. Li, “Efcient distributed low-
cost backbone formation for wireless networks,” IEEE

Table 13: Wilcoxon signed-rank test for TI instances.

MWDS_CRO and CC2 FS MWDS_CRO and
FBPSO

MWDS_CRO and HTS-
DS

MWDS_CRO and ABC-
EDA

W value 31.5 0 0 0
Mean diference 2139.51 1311.64 3647.31 1345.55
Sum of positive ranks 403.5 1176 153 1128
Sum of negative ranks 31.5 0 0 0
Z value −4.0219 −6.0308 −3.6214 −5.9683
Mean (W) 217.5 588 76.5 564
Standard deviation (W) 46.25 97.5 21.12 94.5
Sample size (N) 29 48 17 47
p value <0.00001 <0.00001 0.0003 <0.00001
Result Signifcant Signifcant Signifcant Signifcant

Table 14: Wilcoxon signed-rank test for TII instances.

MWDS_CRO and CC2 FS MWDS_CRO and
FBPSO

MWDS_CRO and HTS-
DS

MWDS_CRO and ABC-
EDA

W value 0 0 0 0
Mean diference 4057.2 1461.05 9461.65 1837.74
Sum of positive ranks 105 780 21 496
Sum of negative ranks 0 0 0 0
Z value −3.2958 −5.4424 −2.2014 −4.8599
Mean (W) 52.5 390 — 248
Standard deviation (W) 15.93 71.66 — 51.03
Sample size (N) 14 39 6 31
p value 0.00096 <0.00001 — <0.00001
Result Signifcant Signifcant — Signifcant

Applied Computational Intelligence and Soft Computing 25

https://drive.Google.com/drive/folders/1bTuTVYorJ6Qy5uwNLq5XAKIPKyu84zL4?usp=sharing
https://drive.Google.com/drive/folders/1bTuTVYorJ6Qy5uwNLq5XAKIPKyu84zL4?usp=sharing

Transactions on Parallel and Distributed Systems, vol. 17, no. 7,
pp. 681–693, 2006.

[7] D. Dai and C. Yu, “A 5+ approximation algorithm for
minimum weighted dominating set in unit disk graph,”
Teoretical Computer Science, vol. 410, no. 8-10, pp. 756–765,
2009.

[8] F. Zou, Y. Wang, X. H. Xu et al., “New approximations for
minimum-weighted dominating sets and minimum-weighted
connected dominating sets on unit disk graphs,” Teoretical
Computer Science, vol. 412, no. 3, pp. 198–208, 2011.

[9] M. El Houmaidi and M. A. Bassiouni, “k-weighted minimum
dominating sets for sparse wavelength converters placement
under nonuniform trafc,” in Proceedings of the 11th IEEE/
ACM International Symposium on Modeling, Analysis and
Simulation of Computer Telecommunications Systems,
pp. 56–61, Manhattan, NY, USA, October 2003.

[10] D. Subhadrabandhu, S. Sarkar, and F. Anjum, “Efcacy of
misuse detection in ad hoc networks,” in Proceedings of the
2004 First Annual IEEE Communications Society Conference
on Sensor and Ad Hoc Communications and Networks,
pp. 97–107, Santa Clara, CA, USA, October 2004.

[11] P. Wu, J. R. Wen, H. Liu, and W. Y. Ma, “Query selection
techniques for efcient crawling of structured web sources,” in
Proceedings of the 22nd International Conference on Data
Engineering (ICDE’06), p. 47, IEEE, Atlanta, GA, USA, April
2006.

[12] N. Alon, D. Moshkovitz, and S. Safra, “Algorithmic con-
struction of sets for k-restrictions,” ACM Transactions on
Algorithms, vol. 2, no. 2, pp. 153–177, 2006.

[13] W. Liu, Y. J. Gong, W. N. Chen, Z. Liu, H. Wang, and
J. Zhang, “Coordinated charging scheduling of electric ve-
hicles: a mixed-variable diferential evolution approach,”
IEEE Transactions on Intelligent Transportation Systems,
vol. 21, no. 12, pp. 5094–5109, 2020.

[14] F. Zhao, R. Ma, and L. Wang, “A self-learning discrete jaya
algorithm for multiobjective energy-efcient distributed no-
idle fow-shop scheduling problem in heterogeneous factory
system,” IEEE Transactions on Cybernetics, vol. 52, no. 12,
pp. 12675–12686, 2022.

[15] F. Zhao, X. He, and L. Wang, “A two-stage cooperative
evolutionary algorithm with problem-specifc knowledge for
energy-efcient scheduling of no-wait fow-shop problem,”
IEEE Transactions on Cybernetics, vol. 51, no. 11, pp. 5291–
5303, 2021.

[16] F. Zhao, L. Zhang, J. Cao, and J. Tang, “A cooperative water
wave optimization algorithm with reinforcement learning for
the distributed assembly no-idle fowshop scheduling prob-
lem,” Computers & Industrial Engineering, vol. 153, Article ID
107082, 2021.

[17] F. Zhao, S. Di, J. Cao, and J. Tang, “A novel cooperative multi-
stage hyper-heuristic for combination optimization prob-
lems,” Complex SystemModeling and Simulation, vol. 1, no. 2,
pp. 91–108, 2021.

[18] S. Zhou, L. Xing, X. Zheng, N. Du, L. Wang, and Q. Zhang, “A
self-adaptive diferential evolution algorithm for scheduling a
single batch-processing machine with arbitrary job sizes and
release times,” IEEE Transactions on Cybernetics, vol. 51, no. 3,
pp. 1430–1442, 2021.

[19] M. R. G. Johnson, “Computers and intractability: a guide to
the theory of np-completeness,” WH Freeman & Company,
New York, NY, USA, 1979.

[20] E. J. Cockayne, R. M. Dawes, and S. T. Hedetniemi, “Total
domination in graphs,” Networks, vol. 10, no. 3, pp. 211–219,
1980.

[21] M. Albuquerque and T. Vidal, “An efcient matheuristic for
the minimum-weight dominating set problem,” Applied Soft
Computing, vol. 72, pp. 527–538, 2018.

[22] G. Lin and J. Guan, “A binary particle swarm optimization for
the minimum weight dominating set problem,” Journal of
Computer Science and Technology, vol. 33, no. 2, pp. 305–322,
2018.

[23] R. Jovanovic, “Ant colony optimization applied to minimum
weight dominating set problem,” in Proceedings of the 12th
WSEAS International Conference on Automatic Control,
pp. 29–31, Modelling & Simulation, Catania, Italy, July 2010.

[24] A. Potluri and A. Singh, “Hybrid metaheuristic algorithms for
minimum weight dominating set,” Applied Soft Computing,
vol. 13, no. 1, pp. 76–88, 2013.

[25] S. Bouamama and C. Blum, “A hybrid algorithmic model for
the minimum weight dominating set problem,” Simulation
Modelling Practice and Teory, vol. 64, pp. 57–68, 2016.

[26] G. Lin, W. Zhu, and M. M. Ali, “An efective hybrid memetic
algorithm for the minimum weight dominating set problem,”
IEEE Transactions on Evolutionary Computation, vol. 20,
no. 6, pp. 892–907, 2016.

[27] Y. Wang, S. Cai, and M. Yin, “Local search for minimum
weight dominating set with two-level confguration checking
and frequency based scoring function,” Journal of Artifcial
Intelligence Research, vol. 58, pp. 267–295, 2017.

[28] J. Q. James, A. Y. S. Lam, and V. O. K. Li, “Evolutionary
artifcial neural network based on chemical reaction opti-
mization,” in Proceedings of the 2011 IEEE Congress of Evo-
lutionary Computation (CEC), pp. 2083–2090, IEEE, New
Orleans, LA, USA, June 2011.

[29] T. K. Truong, K. Li, and Y. Xu, “Chemical reaction optimi-
zation with greedy strategy for the 0–1 knapsack problem,”
Applied Soft Computing, vol. 13, no. 4, pp. 1774–1780, 2013.

[30] M. D. Islam, C. M. Saifullah, and M. D. Mahmud, “Chemical
reaction optimization: survey on variants,” Evolutionary In-
telligence, vol. 12, pp. 1–26, 2019.

[31] B. Pan, A. Y. S. Lam, and V. O. K. Li, “Network coding
optimization based on chemical reaction optimization,” in
Proceedings of the 2011 IEEE Global Telecommunications
Conference-GLOBECOM 2011, pp. 1–5, IEEE, Houston, TX,
USA, January 2011.

[32] R. Islam, I. H. Arif, and R. H. Shuvo, “Generalized vertex
cover using chemical reaction optimization,” Applied Intel-
ligence, vol. 49, no. 7, pp. 2546–2566, 2019.

[33] P. Khan-Boni and B. Shahriar-Abir, “Handwritten bangla
digit recognition using chemical reaction optimization,” in
Proceedings of the 2018 9th International Conference on
Computing, Communication and Networking Technologies
(ICCCNT), pp. 1–7, IEEE, Bengaluru, India, July 2018.

[34] C. M. Khaled-Saifullah and M. Rafqul-Islam, “Chemical
reaction optimization for solving shortest common super-
sequence problem,” Computational Biology and Chemistry,
vol. 64, pp. 82–93, 2016.

[35] A. Y. S. Lam and V. O. K. Li, “Chemical reaction optimization
for cognitive radio spectrum allocation,” in Proceedings of the
2010 IEEE Global Telecommunications Conference GLOBE-
COM 2010, pp. 1–5, IEEE, Miami, FL, USA, December 2010.

[36] J. Xu, A. Y. S. Lam, and V. O. K. Li, “Stock portfolio selection
using chemical reaction optimization,” International Journal
of Chemical and Molecular Engineering, vol. 5, no. 5,
pp. 423–428, 2011.

[37] A. Y. S. Lam and V. O. K. Li, “Chemical-reaction-inspired
metaheuristic for optimization,” IEEE Transactions on Evo-
lutionary Computation, vol. 14, no. 3, pp. 381–399, 2010.

26 Applied Computational Intelligence and Soft Computing

[38] J. Xu, A. Y. S. Lam, and V. O. K. Li, “Parallel chemical reaction
optimization for the quadratic assignment problem,” inWorld
Congress in Computer Science, Computer Engineering, and
Applied Computing, World 2010, Te World Congress on
Engineering, London, UK, 2010.

[39] M. R. Islam, M. R. Mahmud, and R. M. Pritom, “Trans-
portation scheduling optimization by a collaborative strategy
in supply chain management with tpl using chemical reaction
optimization,” Neural Computing & Applications, vol. 32,
no. 8, pp. 3649–3674, 2019.

[40] R. Kabir and R. Islam, “Chemical reaction optimization for
rna structure prediction,” Applied Intelligence, vol. 49, no. 2,
pp. 352–375, 2019.

[41] M. R. Islam, C. M. K. Saifullah, Z. T. Asha, and R. Ahamed,
“Chemical reaction optimization for solving longest common
subsequence problem for multiple string,” Soft Computing,
vol. 23, no. 14, pp. 5485–5509, 2019.

[42] M. Shams Wadud, M. R. Islam, N. Kundu, and M. Rayhanul
Kabir, “Multiple sequence alignment using chemical reaction
optimization algorithm,” in Proceedings of the International
Conference on Intelligent Systems Design and Applications,
pp. 1065–1074, Springer, Berlin, Germany, September 2018.

[43] A. Bhattacharjee, M. Rahad, and I. Rafqul, “Phylogenetic tree
construction using chemical reaction optimization,” in Pro-
ceedings of the International Conference on Intelligent Systems
Design and Applications, pp. 915–924, Springer, Berlin,
Germany, July 2018.

[44] M. R. Islam, R. A. Smrity, S. Chatterjee, and M. R. Mahmud,
“Optimization of protein folding using chemical reaction
optimization in hp cubic lattice model,” Neural Computing &
Applications, vol. 32, no. 8, pp. 3117–3134, 2019.

[45] M. R. Islam, M. S. Islam, and N. Sakeef, “Rna secondary
structure prediction with pseudoknots using chemical reac-
tion optimization algorithm,” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 18, no. 3,
pp. 1195–1207, 2021.

[46] R. Bar-Yehuda and S. Moran, “On approximation problems
related to the independent set and vertex cover problems,”
Discrete Applied Mathematics, vol. 9, pp. 1–10, 1984.

[47] M. O. Ball, “Heuristics based onmathematical programming,”
Surveys in Operations Research and Management Science,
vol. 16, no. 1, pp. 21–38, 2011.

[48] C. Archetti and M. Speranza, “A survey on matheuristics for
routing problems,” EURO Journal on Computational Opti-
mization, vol. 2, no. 4, pp. 223–246, 2014.

[49] F. Yuan, C. Li, X. Gao, M. Yin, and Y. Wang, “A novel hybrid
algorithm for minimum total dominating set problem,”
Mathematics, vol. 7, no. 3, p. 222, 2019.

[50] S. Shetgaonkar and A. Singh, “Hybridization of artifcial bee
colony algorithm with estimation of distribution algorithm
for minimum weight dominating set problem,” in ICT Sys-
tems and Sustainability, pp. 607–619, Springer, Berlin, Ger-
many, 2021.

[51] A. Y. S. Lam and V. O. K. Li, “Chemical reaction optimization:
a tutorial,” Memetic Computing, vol. 4, no. 1, pp. 3–17, 2012.

Applied Computational Intelligence and Soft Computing 27

