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Abstract—The set covering problem (SCP) is one of the rep-
resentative combinatorial optimization problems, having many
practical applications. This paper investigates the development
of an algorithm to solve SCP by employing chemical reaction
optimization (CRO), a general-purpose metaheuristic. It is tested
on a wide range of benchmark instances of SCP. The simulation
results indicate that this algorithm gives outstanding performance
compared with other heuristics and metaheuristics in solving
SCP.

Index Terms—Set covering problem, chemical reaction opti-
mization, heuristic, metaheuristic.

I. INTRODUCTION

THE SET covering problem (SCP) is one of the representa-
tive combinatorial optimization problems. It has many

real-world applications, e.g. bus, railway and airline crew
scheduling, vehicle routing, facility location, and political
districting [1]. More recent applications of SCP are on sen-
sor lifetime maximization [2] and phasor measurement unit
placement [3].

SCP is formally defined as follows. We have a set of m
elements M = {1, · · · ,m} and a collection of n subsets N =
{Sj ⊆M, 1 ≤ j ≤ n}, each of which is associated with a cost
Sj , denoted as cj . We say a collection of subsets X ⊆ N is a
cover of M if

⋃
Sj∈X Sj = M holds. X is a prime cover of M

if there is no redundant subset in X, i.e., X will not cover M
if any subset is removed from X. The goal of SCP is to find
an X with the minimum cost.

SCP is usually formulated as a binary integer programming
problem as follows:

min

n∑
j=1

cjxj

s.t.
n∑

j=1

aijxj ≥ 1, i = 1, 2, · · · ,m,

xj ∈ {0, 1}, j = 1, 2, · · · , n,

(1)

where aij = 1 if i ∈ Sj and aij = 0 otherwise. The decision
variable xj is set to one if subset Sj is selected in the cover
X.

It is also common to formulate SCP into matrix form. In
this formulation, SCP is the problem of covering the rows of

an m × n matrix by a subset of the columns at a minimal
cost. We use A = {aij , 1 ≤ i ≤ m, 1 ≤ j ≤ n} to represent
the matrix, and we say the k-th element is covered by the l-th
subset if akl = 1. We use C = {cj , 1 ≤ j ≤ n} as the cost
coefficient vector. Then SCP is defined as follows:

min C>X

s.t. AX ≥ b,
(2)

where X = {xj , 1 ≤ j ≤ n} is the solution vector and b is the
unit vector of length m. The constraint ensures that each row
is covered by at least one column. If the costs for all subsets
are identical, then the SCP is named unicost SCP. Otherwise,
it is called weighted or non-unicost SCP.

SCP is known to be an NP-hard optimization problem [4],
and metaheuristics have been shown to be effective in solving
complex problems. Chemical reaction optimization (CRO) is
one of the general-purpose metaheuristics which has shown its
capability in solving similar NP-hard combinatorial problems,
e.g. the quadratic assignment problem [5]. CRO is inspired
by chemical reactions, where reactant molecules collide with
container walls or with each other. During the collision, the
structure of these molecules may change and the energy hold
by these molecules may be transferred to other molecules or
transformed into other energy forms. The changes made by the
collision follow a natural tendency that the potential energy of
product molecules is smaller than that of reactant molecules
macroscopically [5]. CRO utilizes this tendency to perform
optimization.

In this paper, we propose a heuristic-based CRO algorithm
to solve SCP, named hCRO. We perform a series of simu-
lations to test its performance. This paper is organized as
follows. We perform a brief survey on previously proposed
approaches to solve SCP, and some prior efforts on CRO in
Section II. Section III presents the design and implementation
of our proposed hCRO algorithm. The performance of our
proposed algorithm is illustrated with the help of a series of
benchmark problems in Section IV. Finally we conclude our
work and propose some potential future work in Section V.



II. BACKGROUND

SCP is a classical NP-hard combinatorial optimization prob-
lem, and has attracted the interests of researchers for several
decades. Many exact algorithms, heuristic, and metaheuristic
approaches have been proposed and reported in the literature.

Existing exact algorithms to solve SCP is mainly based on
the branch-and-bound and branch-and-cut search algorithms
[6]. Fisher and Kedia proposed an exact branch-and-bound al-
gorithm based on a dual heuristic [7]. This algorithm is capable
of solving SCP instances with up to 200 elements and 2000
subsets (200×2000). Beasley combined a Lagrangian-based
heuristic, sub-gradient optimization, and linear programming
to improve the branching strategy [8]. He then enhanced this
algorithm using feasible solution exclusion constraints and
Gomory’s f-cut in [9]. The algorithm is tested on instances
with matrices up to the order of 400×4000. Harche and
Thompson developed a column subtraction exact algorithm to
solve sparse instances of SCP up to the order of 900×8000
[10]. All the above exact algorithms are based on the tree-
search algorithm, which has limitations such as extremely
high computational complexity, very large searching space,
and relatively poor performance [6]. Due to these drawbacks,
researchers resorted to approximate algorithms to meet the
requirement of less stringent computation with satisfactory
solution quality.

Greedy algorithms are one of the heuristic approaches to
quickly solve large combinatorial problems. Chvatal proposed
the very first greedy algorithm to solve SCP in 1979 [11].
However, due to its deterministic and myopic feature, this
algorithm can rarely generate good solutions despite it is
fast and simple. In order to improve the performance of the
canonical greedy algorithm, researchers have tried to introduce
some stochastic features into it [12] [13]. Generally, greedy al-
gorithms with stochastic features can generate better solutions
than the canonical greedy ones. There are also some non-
greedy-based heuristics. Caprara’s work [14] is an example
which gives good solutions. This work introduced variable
fixing and pricing techniques into a Lagrangian heuristics.

The research on employing metaheuristic algorithms, espe-
cially evolutionary algorithms, to solve SCP has been intensely
investigated in the last decade. A wide range of metaheuristics
have been utilized, including genetic algorithm [15] [16],
ant colony optimization [17], simulated annealing [18], and
artificial neural networks [19]. The high adaptability and
superior performance of metaheuristic make it a competitive
approach to solve SCP. Moreover, due to the characteristics
of unicost SCP, researchers have proposed some algorithms to
solve this special kind of SCP. Grossman and Wool designed
an artificial neural network framework to solve unicost SCP
[20]. However, the existing algorithms to solve SCP have two
drawbacks in general. Firstly, most algorithms are designed
to solve non-unicost SCP. Beasley and Chu pointed out that
their algorithms based on Lagrangian relaxation and genetic
algorithm were not recommended for unicost problems [15].
From the literature, very few algorithms are found to work

effectively for both unicost and non-unicost problem. Sec-
ondly, most algorithms which can generate satisfactory results
are difficult to implement, while the simple algorithms, e.g.,
greedy algorithms, are less competitive in performance.

In order to overcome these two drawbacks, the goal of this
work is to design a robust and simple metaheuristic based
on CRO that can generate good results for both unicost and
non-unicost SCP. CRO is a recently proposed general-purpose
metaheuristic, which has been developed intensely in the past
few years. CRO was proposed by Lam et al. in 2010 [5], and
was originally designed for solving combinatorial optimization
problems. They solved some classical problems, e.g., quadratic
assignment problem and channel assignment problem. CRO
is also applied to solve some real world applications like
real-time monitoring [21] and smart grid [22]. For continuous
problems, Lam et al. also proposed a variant of CRO, i.e., real-
coded CRO, which has demonstrated superior performance
in many real-world applications, e.g., training artificial neural
networks [23] and optimal power flow problem in power grid
[24].

III. ALGORITHM DESIGN

In this section we will first introduce CRO. Then the
implementation of operators used in CRO will be presented.

A. Chemical Reaction Optimization

We consider a number of molecules in a closed container
with an attached energy buffer. Molecules are the basic operat-
ing agents of CRO. CRO manipulates and controls a collection
of molecules to explore the solution space of an optimization
problem. CRO considers the molecular structure as the feasible
solution of the optimization problem. Besides the molecular
structure, a molecule also has some other attributes that
help the algorithm to perform optimization. Typically each
molecule possesses two different kinds of energy, namely,
potential energy (PE) and kinetic energy (KE). We use PE
to represent the solution quality, or objective function value,
of the corresponding molecular structure. The solution space is
decribed by the potential energy surface (PES). The molecules
can move freely on the PES. Every position on the PES is
associated with a PE value. The lower the PE (for objective
function minimization), the better is the solution. KE quantifies
the ability of the molecule to move towards an area on the PES
with higher values. The larger a molecule’s KE, the higher it
can position itself on the PES, which means that this molecule
can accept worse solutions. This feature is very important for
the cases when CRO tries to manipulate the molecules to jump
out of a local optimum in the solution space.

CRO controls and manipulates the molecules with four
different elementary reactions, namely, on-wall ineffective
collision (on-wall), decomposition (dec), inter-molecular in-
effective collision (inter), and synthesis (syn), each of which
is described by an operator. Each operator modifies the
molecular structures of some molecules, performing stochastic
exploration or exploitation in the solution space. The four
elementary reactions have different energy handling schemes



and molecular structure operations. Meanwhile, they share a
feature, which distinguishes CRO from other metaheuristics.
All the operations in CRO must comply with the energy
conservation law, which states that although energy is allowed
to transform between types, the total energy in an isolated
system (i.e. the container in CRO) shall remain constant.
In CRO, the total energy of the system before and after an
elementary reaction is constant. Interested reader can refer to
[25] for the detailed implementation of CRO.

B. Encoding Scheme

There are two major encoding schemes to solve SCP in the
literature. The first one is the natural encoding scheme. This
scheme uses a binary vector of length n for a solution. Each
element in the vector represents the status of one particular
subset. In other words, this encoding scheme uses the X in
(2) as the solution for optimization. This encoding scheme
is easy to implement, but a random solution generated from
this scheme is not guaranteed to be a cover of M. In order to
overcome this drawback, a second type of encoding scheme
is developed for SCP.

The second encoding scheme, which we adopt to solve SCP
with CRO, has each value in the solution vector representing a
subset index. The values are selected from the indices of those
subsets that cover the corresponding element. For example,
consider a solution vector [2, 6, 7, 2, · · · ]. This solution uses
the second subset to cover the first and fourth elements in M,
and the sixth subset to cover the second element and so forth.
Solutions in the second scheme have shorter length than those
in the first in general (for most non-unicost SCP, m is smaller
than n). Moreover, all the solutions generated by this encoding
scheme satisfy the constraints of SCP naturally [6].

C. Algorithm Design

CRO defines four different types of elementary reactions,
which possess different functionalities. So we design a corre-
sponding operator for each of them. We also design an initial
solution generator to generate the solution structures of new
molecules. We generate all random numbers uniformly in the
solution space, unless stated otherwise.

1) Initial Solution Generator: This operator is applied
whenever a new molecule is generated. Instead of randomly
assigning subset indices (this is common when we solve other
optimization problems), we use a reverse cumulative scheme
to select a random subset to cover this element. The scheme
is stated in Algorithm 1.

In Algorithm 1, the variables are calculated by

vj = cmax + cmin − cj (3)

and
pj =

vj∑|Xi|
k=1 vk

(4)

This scheme renders the initial solution more likely to
include those subsets with lower cost, while ensuring the
solution complies with all constraints. This scheme assigns the
subsets with lower cost a larger possibility of being selected

Algorithm 1 REVERSE CUMULATIVE SCHEME

1: for all Elements i in a solution do
2: Find all subsets Xi that cover the i-th element in M.
3: Find the maximum cost cmax and the minimum cost

cmin of subsets in Xi.
4: for all Sj ⊆ Xi do
5: Assign a reverse cumulative value vj .
6: Assign its probability of being selected pj .
7: end for
8: Select the value of Element i according to each

subsets’ pj .
9: end for

by (3) and (4). For example, the first element in M can be
covered by Subsets 1, 3, and 6, whose costs are 2, 4, and 5,
respectively. Then the reverse cumulative value of Subset 1 is
calculated by 5 + 2− 2 = 5, and that for Subsets 3 and 6 are
3 and 2. Thus the probability of being selected are 0.5, 0.3,
and 0.2, respectively.

2) Neighborhood Search Operator: This operator is applied
to the two ineffective elementary reactions, namely, on-wall
and inter. This operator modifies the input solution slightly to
perform a local search. We employ a perturbation heuristic
to act as the neighborhood search operator in CRO. The
algorithm is stated in Algorithm 2.

Algorithm 2 PERTURBATION HEURISTIC

1: for all Subsets Sj in the solution do
2: Calculate its cost efficiency value ecj .
3: end for
4: Find the Subset Si with the lowest cost efficiency.
5: Remove all i in the solution and leave blanks.
6: while There are blanks in the solution do
7: for all Subsets Sk ⊆ N do
8: Calculate its repair efficiency value erk
9: end for

10: for all Subsets Sk ⊆ N do
11: Calculate its probability of being selected pk
12: end for
13: Select a subset Slto repair the solution according to

each subsets’ pk.
14: Use l to fill all the blanks which can be covered by

Sl.
15: end while

In Algorithm 2, the variables are calculated by

ecj =
nj

cj
, (5)

where nj is the occurrence of j in the solution, and

erk =
sk
ck

, (6)

where sk is the number of blanks that Subset Sk can cover in
the solution, and

pk =
erk∑|X|
j=1 e

r
j

(7)



TABLE I
BEASLEY’S OR LIBRARY NON-UNICOST INSTANCES

Set Instances Size (m× n) Costs Density Opt. Solution
4 10 200×1000 1-100 2% Known
5 10 200×2000 1-100 2% Known
6 5 200×1000 1-100 5% Known
A 5 300×3000 1-100 2% Known
B 5 300×3000 1-100 5% Known
C 5 400×4000 1-100 2% Known
D 5 400×4000 1-100 5% Known

NRE 5 500×5000 1-100 10% Unknown
NRF 5 500×5000 1-100 20% Unknown
NRG 5 1000×10000 1-100 2% Unknown
NRH 5 1000×10000 1-100 5% Unknown

This perturbation heuristic can be divided into two major
parts: remove and repair. In the remove phase (Lines 1 to 5
of Algorithm 2), the least efficient subset is removed from
the solution. Its cost efficiency value is calculated by (5).
Assume a Subset 2 with cost 10. If it covers two elements
in the solution, its cost efficiency value is 5. At the end
of the remove phase, we have an incomplete solution with
one or several blank positions. Then in the repair phase, we
select a most efficient subset to fill in the blank(s). This
repair efficiency value is calculated by (6). With the repair
efficiency values, we can calculate the probability of being
selected for repairing using (7). For example, assume we have
an incomplete solution [1, , 4, , , · · · ] where the underline
positions are blank positions. Subset 3 can cover two blanks
with a cost 20, and Subset 5 can cover three blanks with a
cost 40. So the repair efficiency values of Subsets 3 and 5 are
0.1 and 0.075, respectively. If there are no other subsets, the
probabilities of selecting Subsets 3 and 5 are 57% and 43%,
respectively. If the algorithm chooses Subset 3 for repairing,
the two blanks which can be covered by Subset 3 is filled with
3. This completes one iteration of the repairing phase and this
process iterates until all blanks are filled.

For on-wall, we directly employ this perturbation scheme
to the molecule, while for inter, we apply the scheme to the
two input molecules simultaneously.

3) Dec and Syn Operators: The main purpose of dec and
syn is to help the molecules jump out of local optimum. So
we usually impose severe changes to the input molecule(s).
For dec operator, we first copy the input molecule to the two
output molecules, then perform the neighborhood search op-
erator on each molecule for 10 times separately. The resultant
molecules are regarded as the final output molecules. For the
syn operator, we introduce a probabilistic combination scheme
to combine the two input molecules and create a new one.
Assume the two input solutions are X1 and X2, and their costs
are c1 and c2, respectively. Each element in the output new
solution is drawn from the same position of either X1 or X2

with the probability of c2
c1+c2

and c1
c1+c2

, respectively.

IV. SIMULATION RESULTS

In this section we will first introduce the benchmark in-
stances used to evaluate the performance of our proposed

TABLE II
BEASLEY’S OR LIBRARY UNICOST INSTANCES

Set Instances Size (m× n) Density Opt. Solution
E 5 50×500 2% Known

CLR.10 1 511×210 2% Unknown
CLR.11 1 1023×330 5% Unknown
CLR.12 1 2047×495 2% Unknown
CLR.13 1 4095×715 5% Unknown
CYC.6 1 240×192 2% Known
CYC.7 1 672×448 5% Unknown
CYC.8 1 1792×1024 10% Unknown
CYC.9 1 4608×2304 20% Unknown

CYC.10 1 11520×5120 2% Unknown
CYC.11 1 28160×11264 5% Unknown

TABLE III
HCRO PARAMETER VALUES

Parameter Value
Initial population size 10

Initial molecular kinetic energy 1000
Initial central energy buffer size 10000

Collision rate 0.1
Energy loss rate 0.1

Decomposition threshold 10000
Synthesis threshold 1000

hCRO algorithm. Then the detailed simulation parameter set-
tings, results, and comparisons are presented.

A. Benchmark Instances

We will test the performance of our proposed hCRO using
65 non-unicost SCP test instances from Beasley’s OR Library
[26]. We note that almost all SCP algorithms developed in
the past two decades were tested using these problems. The
instances are divided into 11 different sets, as listed in Table
I, where the density is the percentage of non-zero entries in
the SCP matrix A.

We also test the performance of hCRO with the unicost
instances in Beasley’s OR Library and the information about
these instances are listed in Table II.

B. Parameter Tuning and Simulation Environment

When applying hCRO to perform simulation, several param-
eters must be set. Coy et al. note that it is often very difficult
to find appropriate parameter settings for metaheuristics, and
common procedures of generating proper parameter values
have ranged from simple trial-and-error to complicated sen-
sitivity analysis [27]. In this work, we use the trial-and-error
method to tune the hCRO parameters, as in some previous
CRO efforts [21] [28]. The first instances in the SCP problem
set 4, 5, 6, A, B, C, and D are selected as representative
instance for parameter tuning and we perform a series of test
runs on these instances, using the methodology described in
[28]. The final parameters used for all test instances are listed
in Table III.

Our proposed approach was implemented in C++ on a com-
puter with an Intel Core i5 3.1-GHz processor and MinGW
compiler. In our experimental study, 100 trials of hCRO were
conducted for each of these test problems. The maximum



function evaluation limit is set to n× 1000, which is smaller
or equal to that in all the metaheuristics we compare with.

C. Simulation Results and Comparison with Other Algorithms

The simulation results are presented in Table IV. In this
table, “Inst.” is the instance index, “BKS” is the optimum
solution or the best known value, “Opt.” is the number of
trials that hCRO is able to find the optimum solution or the
best known value. We also present the mean, best, and worst
objective function values of the 100 trials, and their respective
percentages above the optimal value. The results of hCRO on
unicost SCP instances are also presented in Table V.

From Tables IV and V, we can see that hCRO has excellent
performance in non-unicost instances, and all 65 optimum
solutions are generated in every run for all instances. For
unicost-SCP instances, hCRO obtains 12 optimums out of
15. For the remaining instances, hCRO can also generate a
satisfactory result (error percentage around 1% of best results).

In order to further demonstrate the performance of hCRO,
we also compare hCRO with other algorithms proposed in
the recent literature. We compare the performance on non-
unicost instances of hCRO with the Lagrangian heuristic by
Beasley (Be) [26], the genetic algorithm by Beasley and Chu
(BeCh) [15], the Lagrangian heuristic by Caprara et al. (CFT)
[14], a probabilistic greedy search heuristic by Haouari and
Chaouachi (PROG) [13], an indirect genetic algorithm by
Aickelin (IGA) [16], a metaheuristic for randomized priority
search by Lan et al. (RaPS) [29], and a metaheuristic algorithm
based on gravity by Balachandar and Kannan (GRA) [6]. The
comparison is presented in Table VI, where the row of “Opt.
Found” is the number of instances in which the corresponding
algorithm finds the optimal value or the best known solution
out of the all 65 instances. The table shows the average gap
of the global optimal found by the algorithm and BKS. For
example, an algorithm generates an optimal value of 52 on a
problem instance with a best known value of 50, the gap is
defined as (52 − 50)/50 = 4%. From the table we can see,
hCRO is one of the best four algorithms that can find the
optimal value or best known solution 100% of the time.

We further demonstrate the performance of hCRO by com-
paring the simulation results on unicost instances with other
algorithms. These algorithms include the heuristic random
approximation by Peleg et al. (RR) [30], a greedy heuristic
by Chvatal (Gr) [11], three algorithms proposed by Grossman
and Wool in [20] (Alt-Gr, NN, and R-Gr), and a mean-
field approach by Ohlsson et al. (MF) [19]. The results are
presented in Table VII. From the comparison we can see hCRO
again outperforms all other algorithms dramatically. Therefore,
hCRO is an effective algorithm in solving both non-unicost
and unicost set covering problems.

D. Analysis on Performance Contribution of the Proposed
Heuristic Schemes and CRO Framework

In order to analyze the contribution of different proposed
heuristic schemes and the CRO framework to the outstanding

TABLE IV
HCRO RESULTS ON NON-UNICOST INSTANCES

Inst. BKS Opt. Best Mean Worst
Value Pct. Value Pct. Value Pct.

4.1 429 100 429 0 429 0 429 0
4.2 512 100 512 0 512 0 512 0
4.3 516 100 516 0 516 0 516 0
4.4 494 100 494 0 494 0 494 0
4.5 512 100 512 0 512 0 512 0
4.6 560 100 560 0 560 0 560 0
4.7 430 100 430 0 430 0 430 0
4.8 492 100 492 0 492 0 492 0
4.9 641 100 641 0 641 0 641 0
4.10 514 100 514 0 514 0 514 0
5.1 253 100 253 0 253 0 253 0
5.2 302 100 302 0 302 0 302 0
5.3 226 100 226 0 226 0 226 0
5.4 242 100 242 0 242 0 242 0
5.5 211 100 211 0 211 0 211 0
5.6 213 100 213 0 213 0 213 0
5.7 293 100 293 0 293 0 293 0
5.8 288 100 288 0 288 0 288 0
5.9 279 100 279 0 279 0 279 0
5.10 265 100 265 0 265 0 265 0
6.1 138 100 138 0 138 0 138 0
6.2 146 100 146 0 146 0 146 0
6.3 145 100 145 0 145 0 145 0
6.4 131 100 131 0 131 0 131 0
6.5 161 100 161 0 161 0 161 0
A.1 253 100 253 0 253 0 253 0
A.2 252 100 252 0 252 0 252 0
A.3 232 100 232 0 232 0 232 0
A.4 234 100 234 0 234 0 234 0
A.5 236 100 236 0 236 0 236 0
B.1 69 100 69 0 69 0 69 0
B.2 76 100 76 0 76 0 76 0
B.3 80 100 80 0 80 0 80 0
B.4 79 100 79 0 79 0 79 0
B.5 72 100 72 0 72 0 72 0
C.1 227 100 227 0 227 0 227 0
C.2 219 100 219 0 219 0 219 0
C.3 243 100 243 0 243 0 243 0
C.4 219 100 219 0 219 0 219 0
C.5 215 100 215 0 215 0 215 0
D.1 60 100 60 0 60 0 60 0
D.2 66 100 66 0 66 0 66 0
D.3 72 100 72 0 72 0 72 0
D.4 62 100 62 0 62 0 62 0
D.5 61 100 61 0 61 0 61 0
NRE.1 29 100 29 0 29 0 29 0
NRE.2 30 100 30 0 30 0 30 0
NRE.3 27 100 27 0 27 0 27 0
NRE.4 28 100 28 0 28 0 28 0
NRE.5 28 100 28 0 28 0 28 0
NRF.1 14 100 14 0 14 0 14 0
NRF.2 15 100 15 0 15 0 15 0
NRF.3 14 100 14 0 14 0 14 0
NRF.4 14 100 14 0 14 0 14 0
NRF.5 13 100 13 0 13 0 13 0
NRG.1 176 100 176 0 176 0 176 0
NRG.2 154 100 154 0 154 0 154 0
NRG.3 166 100 166 0 166 0 166 0
NRG.4 168 100 168 0 168 0 168 0
NRG.5 168 100 168 0 168 0 168 0
NRH.1 63 100 63 0 63 0 63 0
NRH.2 63 100 63 0 63 0 63 0
NRH.3 59 100 59 0 59 0 59 0
NRH.4 58 100 58 0 58 0 58 0
NRH.5 55 100 55 0 55 0 55 0



TABLE V
HCRO RESULTS ON NON-UNICOST INSTANCES

Inst. BKS Opt. Best Mean Worst
Value Pct. Value Pct. Value Pct.

E.1 5 100 5 0 5 0 5 0
E.2 5 100 5 0 5 0 5 0
E.3 5 100 5 0 5 0 5 0
E.4 5 100 5 0 5 0 5 0
E.5 5 100 5 0 5 0 5 0
CLR.10 25 100 25 0 25 0 25 0
CLR.11 23 100 23 0 23 0 23 0
CLR.12 23 100 23 0 23 0 23 0
CLR.13 23 100 23 0 23 0 23 0
CYC.6 60 100 60 0 60 0 60 0
CYC.7 144 11 144 0 146.7 0.0188 152 0.0556
CYC.8 344 14 344 0 349.2 0.0151 361 0.0494
CYC.9 780 0 789 0.0115 797.3 0.0221 819 0.05
CYC.10 1792 0 1802 0.0056 1832.6 0.0226 1872 0.0446
CYC.11 4103 0 4113 0.0024 4159.2 0.0137 4201 0.0239

TABLE VI
PERFORMANCE GAP COMPARISON ON NON-UNICOST INSTANCES (%)

Problem Set hCRO RaPS GRA CFT BeCh IGA PROG Be Greedy
4 0.00 0.00 0.00 0.00 0.00 0.00 0.57 0.06 3.78
5 0.00 0.00 0.00 0.00 0.09 0.00 0.88 0.18 5.51
6 0.00 0.00 0.00 0.00 0.00 0.00 0.69 0.56 7.22
A 0.00 0.00 0.00 0.00 0.00 0.00 0.75 0.82 5.61
B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.81 5.57
C 0.00 0.00 0.00 0.00 0.00 0.00 0.87 1.93 6.88
D 0.00 0.00 0.00 0.00 0.00 0.32 0.00 2.75 9.79
NRE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.50 12.75
NRF 0.00 0.00 0.00 0.00 0.00 0.00 1.43 7.16 12.98
NRG 0.00 0.00 0.00 0.00 0.13 0.13 1.18 4.83 8.49
NRH 0.00 0.00 0.00 0.00 0.63 1.30 1.68 8.12 11.78
Overall 0.00 0.00 0.00 0.00 0.08 0.16 0.72 2.36 8.21
Opt. Found 65/65 65/65 65/65 65/65 61/65 61/65 22/65 20/65 0/65

TABLE VII
PERFORMANCE GAP COMPARISON ON UNICOST INSTANCES (%)

Problem Set hCRO RR Gr Alt-Gr NN R-Gr MF
Overall 0.62 20.34 10.50 7.29 10.07 9.85 6.51

performance of hCRO, we also construct different hCRO
variations and a heuristic-based Genetic Algorithm (hGA).

To determine the impact of our initialization operator (Al-
gorithm 1) and our neighborhood search operator (Algorithm
2), we create alternative operators for these two schemes and
construct two new hCRO variations:

• hCRO/IR: This variation of hCRO utilizes our previ-
ously proposed perturbation heuristic as the neighborhood
search operator, with a “random pick scheme” as the
initial population generator. In the “random pick scheme”,
we first construct a permutation vector of all elements
in M. We then start from the first element i in this
permutation vector and find all subsets Xi that cover i.
Then we randomly select one such subset and go on to
the next element j. If j is not covered yet, we repeat
the previous step, i.e. find all subsets that cover j and
randomly select one. If j is already covered, we go to
the next element. This process repeats until all elements
are covered by at least one subset.

• hCRO/NR: This variation of hCRO utilizes our previ-
ously proposed reverse cumulative scheme as the initial
population generator, with a “remove-repair scheme” as
the neighborhood search operator. In the “remove-repair
scheme”, we first randomly remove one subset in the
solution. Then we determine all elements not yet covered
by any subsets. The remaining part is similar to the
“random pick scheme”, where we build a permutation
vector, find all subsets that cover the current element and
randomly select one such subset.

Besides hCRO/IR and hCRO/NR, we also develop hGA to
solve SCP in order to reveal the contribution of the CRO
framework in hCRO:
• hGA: We utilize our previously proposed reverse cumu-

lative scheme as the initial population generator. We use
the inter-molecular ineffective collision operator in hCRO
as the crossover operator in hGA, i.e., two perturbation
heuristics are executed simultaneously. As for the mu-
tation operator, we adopt the decomposition operator in



TABLE VIII
PERFORMANCE GAP COMPARISON ON HCRO, HCRO/IR, HCRO/NR,

AND HGA (%)

Problem Set hCRO hCRO/IR hCRO/NR hGA
Non-unicost 0.00 0.04 1.78 0.11
Unicost 0.62 2.19 14.64 3.82

hCRO and select the better-performing solution as the
mutated chromosome. We set the population size the
same with hCRO. The crossover rate and mutation rate
are set at 0.8 and 0.2, respectively, which is a commonly
used combination of parameters for GA.

We perform simulations of hCRO, hCRO/IR, hCRO/NR,
and hGA on both unicost and non-unicost instances. The
simulation results are presented in Table VIII.

From the results we can see that hCRO always performs the
best. While hCRO/IR can generate similar results as hCRO,
there is still a small gap between the performance of the two
algorithms. This demonstrates the superiority of the reverse
cumulative scheme. hCRO/NR performs much worse than all
other algorithms, and this observation underlines the impor-
tance of the perturbation heuristic in generating good results.
The results also show that the CRO framework is superior
to conventional problem solver frameworks like GA. This is
probably due to the unique energy conservation design in
CRO as well as its tolerant, energy-related individual selection
pattern [5].

V. CONCLUSION

In this paper we develop a heuristic-based CRO algorithm to
solve non-unicost and unicost SCP. This algorithm introduces
two heuristics into the operators of CRO. We study the per-
formance of hCRO with a series of benchmark test instances
from the Beasley’s OR Library and show that hCRO enjoys
superior performance in terms of the solution quality when
compared with other algorithms. hCRO is able to find all 65
optimal solutions in non-unicost instances and it demonstrates
outstanding performance when applied to unicost SCP. We also
perform a series of test over different variations of hCRO as
well as a heuristic-based GA to demonstrate the contribution
of these two heuristics and the CRO framework on the final
performance.

Further research includes the improvement of the perfor-
mance for huge SCP problems. We can also introduce some
implementation techniques that are commonly used by other
SCP algorithms, e.g., group memory between iterations, to
CRO. Some of the heuristics developed in our proposed
algorithm can also be applied to solve other applications
of CRO, such as the bin packing problem and the multi-
dimensional knapsack problem. Last but not least, we can
use the proposed algorithm to solve real-world applications
of SCP.
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