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Abstract. Embedding efficient calculation instructions into biochemical system has always
been a research focus in synthetic biology. One of the key problems is how to sequence the chemical
reaction modules that act as units of computation and make them alternate spontaneously. Our
work takes the design of chemical clock signals as a solution and presents a 4-dimensional chemical
oscillator model based on relaxation oscillation to generate a pair of symmetric clock signals for
two-module regulation. We give detailed dynamical analysis of the model and discuss how to control
the period and occurrence order of clock signals. We also demonstrate the loop control of molecular
computations and provide termination strategy for them. We can expect that our design for module
regulation and loop termination will help advance the embedding of more complicate calculations
into biochemical environments.
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1. Introduction. A main objective of synthetic biology is designing program-
mable chemical controller which can operate in molecular contexts incompatible with
traditional electronics [9, 28]. We have learned plenty of algorithms from how real
life works such as artificial neural network and genetic algorithm, while on the con-
trary, inserting advanced computational methods into living organisms to accomplish
specific tasks e.g. biochemical sensing and drug delivery remains to be studied. A
great deal of related work has sprung up in recent years: Moorman et al. [23] pro-
posed a biomolecular perceptron network in order to recognize patterns or classify
cells in-vivo. The beautiful work of Vasic et al. [27] transformed the feed-forward
RRelu neural network into chemical reaction networks (CRNs for short), and per-
formed their model on standard machine learning training sets. There are also some
attempts to build CRNs capable of learning [2, 7]. However, few has implemented
the whole neural network computation into a biochemical system. The main reason
is that the algorithm based on computer instruction performs operations in a sequen-
tial manner whereas biochemical reactions proceed synchronously. This contradiction
calls for an appropriate regulation method which isolates two reaction modules [28]
from co-occurring and controls their sequence. Blount et al. [2] constructed cell-
like compartments and added electrical clock signals artificially in order to solve this
problem, which increased the difficulty of biochemical implementation. A more nat-
ural idea is to design chemical oscillators which can automatically generate chemical
species acting as periodical clock signals, taking advantage of the oscillatory changes
of their concentration between high and low phases to turn corresponding reaction
module on or off.

Oscillation phenomena are often encountered in chemical and biological systems
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e.g. Belousov-Zhabotinskii reaction [26] and circadian rhythm [15], research and de-
sign of oscillators have been extensively studied in most aspects of industrial appli-
cations [6, 18, 29], regulating reaction sequence by chemical oscillators is of course of
interest. Arredondo and Lakin [1] utilized a 20-dimensional oscillator extended from
ant colony model [22] to order the parts of their chemical neural networks. Jiang
et al. introduced a different oscillator model with 12 species and 24 reactions [17],
then chose two of these species to serve as clock signals. These works follow the same
logic: Firstly, find a suitable oscillator model with a set of appropriate selection of
parameters and initial values, then confirm that the model is indeed available for use
by simulation. There are two main drawbacks with such design. One is the lack of
analysis on oscillation mechanism, i.e., it is often unclear why oscillatory behaviour
emerges in these models. The other one is the initial concentration of these oscillators
seems too strict to be realized in real chemical reaction system, e.g., Arredondo and
Lakin demanded the initial concentration of some species equals to 10−6 while others
is 1 [1]. In view of this, we summarize the requirements for species as clock signals
and design a universal chemical oscillator model based on relaxation oscillation with
clear dynamical analysis i.e. we can explain why the oscillation behaviour occurs and
how it evolves, and make sure that the selection of initial values is broad. We also
consider the effect of parameter selection on the oscillation properties and provide the
period estimation of our clock signals.

In this paper we mainly focus on designing chemical oscillators for the sequence
execution of two chemical reaction modules. Sequence control and alternation of two
reaction modules are very common in molecular operations and synthetic biology,
such as module instructions that involve judgment statement before specific execu-
tion, and reaction modules that realize the loop of feed-forward transmission and
back-propagation learning process in artificial neural networks. We not only provide
a common approach of designing suitable chemical oscillator model for such require-
ments, but also offer strategy for spontaneous loop termination of reaction modules
to be regulated. Our oscillator model can be transformed into abstract chemical reac-
tion networks [11] through appropriate kinetics assumption (mainly the mass-action
kinetics), and finally DNA strand displacement cascades [24] or other technical means
is used to implement the CRNs into real chemistry.

This paper is organized as follows. Preliminaries and problem statements are
given in section 2. Section 3 exhibits the structure of 4-dimensional chemical relax-
ation oscillator based on 2-dimensional relaxation oscillation, which is able to generate
a pair of symmetric clock signals satisfying our requirements for module regulation.
We also provide detailed dynamical analysis based on geometric singular perturbation
theory on this model. In section 4 we discuss how to control the period and occurrence
order of the oscillating species via adjusting oscillator parameters and initial values.
Then we demonstrate the loop control of molecular computations and present termi-
nation strategy for them in section 5. And finally, section 6 is dedicated to conclusion
of the whole paper.

2. Preliminaries and problem statement. In this section we provide the
preparatory knowledge on CRN [11], and further formulate the problem by a moti-
vating example of how to construct a chemical oscillator to control the occurrence
order of two reaction modules. We first give some notations. The sets of positive
integers, real numbers, non-negative real numbers and positive real numbers are de-
noted by Z>0,R,R≥0 and R>0, respectively. We use Rn to denote an n-dimensional
Euclidean space, a vector α ∈ Rn≥0 if any component αi ∈ R≥0 with i = 1, 2, ...n and
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α ∈ Rn>0 if αi ∈ R>0.

2.1. CRN. A CRN with the jth (j = 1, ...,m) reaction following

(2.1) Rj : aj1S1 + · · ·+ ajnSn → bj1S1 + · · ·+ bjnSn

consists of three nonempty finite sets S, C and R, i.e.,
• species set S = {S1, ..., Sn};
• complex set C =

⋃m
j=1{aj1S1 + · · · + ajnSn, bj1S1 + · · · + bjnSn} with each

element to be a linear combination of species over the non-negative integers;
• reaction set R = {R1, ..., Rm} with each element including two complexes

connected by arrow, and the left complex of the arrow called reactant while
the right one called product.

Denote the concentration of species Si by si ∈ R≥0, then the dynamics describing
concentrations change of all species can be written as

(2.2)
ds

dt
= Ξ · r (s) ,

where s ∈ Rn≥0 is the n-dimensional concentration vector, Ξ ∈ Zn×m is called the
stoichiometric matrix with every entry defined by Ξij = bij − aij , and r(s) is the m-
dimensional vector-valued function evaluating the reaction rate. The most common
model to specify the reaction rate is mass-action kinetics that induces r(s) by

(2.3) r(s) =

(
k1

n∏
i=1

sa1ii , ..., km

n∏
i=1

samii

)>
with kj > 0 to represent the reaction rate constant of reaction Rj . The CRN equipped
with mass-action kinetics is called mass-action system, which is essentially a group
of polynomial ODEs. In the context, we use this class of systems for the subsequent
research. The following example gives an illustration of a mass-action system.

Example 2.1. For a reaction network taking the route

2S1
k1→ S2 + S3 , S3

k2→ 2S1 ,

the species set is S = {S1, S2, S3}, complex set C = {2S1, S2 + S3, S3}, stoichiometric

matrix Ξ3×2 =

−2 2
1 0
1 −1

, rate function r (s) =
(
k1s

2
1, k2s3

)>
, and the correspond-

ing ODEs are:

ds1

dt
= −2k1s

2
1 + 2k2s3 ,(2.4a)

ds2

dt
= k1s

2
1 ,(2.4b)

ds3

dt
= k1s

2
1 − k2s3 .(2.4c)

It has been proved that mass-action chemical kinetics is Turing universal [10].
This means that any computation can be embedded into a group of polynomial ODEs
[3], and then realizing them with mass-action systems. In practice, this process is
implemented by mapping the input of calculation into the initial concentrations of
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some species of the network and the output into the limiting value of other species,
usually taking equilibrium. We present an example of “addition calculation” to give
readers more clear illustration [28].

Example 2.2. A CRN follows

S1 → S1 + S2 , S3 → S3 + S2 , S2 → ∅

with all the reaction rate constants to be 1 (In the context, when the reaction rate
constant is 1, we just omit it), where the last reaction refers to an outflow reaction.
This network can serve for implementing addition calculation, like a+ b = c, a, b, c ∈
R. To this task, we write the ODEs of the dynamics as

ds2

dt
= s1 + s3 − s2 ,

ds1

dt
=

ds3

dt
= 0

with initial point vector to be x(0). Clearly, when all reactions reach equilibrium, the
equilibrium point vector s∗ satisfies s∗1 = s1(0), s∗2 = s∗1+s∗3 and s∗3 = s3(0). Therefore,
by letting s1(0) = a, s3(0) = b, and s∗2 = c, we realize the addition calculation by this
network.

2.2. Problem statement. When implementing calculation using chemical re-
actions, the core difficulty is to deal with the contradiction between the sequential
execution of calculation instructions and intrinsically parallel occurrence of chemical
reactions. This is special true for those compound arithmetics, like loop calculation
etc., in which the calculating procedures usually have definite priority. We consider
the task to implement the frequently-used loop iteration calculation s1 = s1 + 1 ap-
pearing in many machine learning algorithms through the following CRNs.

Example 2.3. Given two reaction modules (M)

M1 : S1 → S1 + S2 , M2 : S2 → S1 + S2 ,

S3 → S3 + S2 , S1 → ∅ ,

S2 → ∅ ;

the ODEs are

M1 :
ds2

dt
= s1 + s3 − s2 , M2 :

ds1

dt
= s2 − s1 ,

ds1

dt
=

ds3

dt
= 0 ;

ds2

dt
= 0 .

It is easy to get their solutions to be

M1 : s2(t) = s1(0) + s3(0)− (s1(0) + s3(0)− s2(0))e−t,(2.5a)

M2 : s1(t) = s2(0)− (s2(0)− s1(0))e−t.(2.5b)

M1 is actually the network given in Example 2.2, called addition module, and M2

finishes the load task, called load module [28]. When these two modules work inde-
pendently, M1 can perform the calculation of s∗2 = s∗1 + 1 by setting s3(0) = 1 while
M2 realizes s∗1 = s2(0) = s∗2. Moreover, the expressions of solutions (2.5) imply that
both of them converge to equilibrium exponentially. Therefore, alternation and loop
of M1 and M2 could realize the desired loop iteration calculation s1 = s1 + 1. How-
ever, if we directly put these two reaction modules together, there is strong coupling
on the dynamics of S1 and S2, and their concentrations would increase to infinity in
the absence of regulation, which fails to execute the calculation instruction.
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The above example suggests that we need to find a new tool to control strictly
and alternatively the “turn on” and “turn off” of occurrence of two modulesM1 and
M2. A possible solution is to introduce chemical oscillator that produces periodical
signals to control reactions. For this purpose, we modify M1 and M2 as follows.

Example 2.4. The modified reaction modules are

M̃1 : S1 + U → S1 + S2 + U , M̃2 : S2 + V → S1 + S2 + V ,

S3 + U → S3 + S2 + U , S1 + V → V .

S2 + U → U ;

Here, we introduce two species U and V that are involved in reactions as catalysts.
Their participation in reactions, on one hand, will not change themselves as reactions
go on, and on the other hand, will not affect the dynamics of the other species ap-
pearing in the original modules, i.e., not interfering with the original calculation task
of M1 and M2. The ODEs of dynamics of the whole network (M̃1 plus M̃2) are
expressed as

ds1

dt
= (s2 − s1)v ,(2.6a)

ds2

dt
= (s1 + s3 − s2)u ,(2.6b)

ds3

dt
= 0 .(2.6c)

From the route, it can be concluded that whether species U/V is existing will “turn
on” or “turn off” M̃1/M̃2. Hence, as long as the concentrations of U and V are
designed to be a pair of clock signals that oscillate with the same period, they will be
able to generate “loop” so as to control the execution sequence of M̃1 and M̃2, and
finally to realize the loop iteration calculation s1 = s1 + 1. Figure 1 gives a schematic
diagram of a pair of standard clock signals to “turn on” and “turn off” alternatively
and periodically two reaction modules.

on on

A single period T

u>0, v=0

T1

T2

u=0, v>0

Fig. 1. A schematic diagram of a pair of standard clock signals U and V for module regulation.
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Based on Example 2.4 and the usual requirements for clock signals [17], we define
ours for the current work, called symmetrical clock signals.

Definition 2.5 (symmetrical clock signals). A pair of oscillatory species U and
V are called symmetrical clock signals if

1. U and V oscillate synchronously but with abrupt transitions between their
phases;

2. concentration of U is strictly greater than 0 at high amplitude and approxi-
mately 0 at low amplitude, so is V ;

3. the amplitudes of U and V are complementary, i.e., when concentration of
U is at high amplitude, the one of V is precisely at low amplitude, and vice
versa.

Note that the last two requirements are trivial and may be generated from any form of
oscillation while the first one is not trivial, which serves for guaranteeing the accuracy
of module regulation. This motivates us to consider relaxation oscillation [13, 14,
20] as a basic oscillation structure to generate symmetrical clock signals. Thus the
following task is on how to develop chemical relaxation oscillator towards controlling
molecular computation.

3. Chemical relaxation oscillator. In this section, we introduce the mecha-
nism of relaxation oscillation and develop 4-dimensional chemical relaxation oscillator
for the current task.

3.1. Mechanism of 2-dimensional relaxation oscillator. Relaxation oscil-
lation is a type of common oscillation in biochemical systems [20], whose general form,
as an example of 2-dimensional case, is

(3.1)
ε
dx

dt
= f(x, y) ,

dy

dt
= g(x, y) , x ∈ R, y ∈ R, 0 < ε� 1 ,

where f, g are Ck-functions with k ≥ 3, and C0 , {(x, y) : f(x, y) = 0} is the critical
manifold.

Definition 3.1 (normally hyperbolic manifold [12]). A manifold C ⊆ C0 is nor-
mally hyperbolic if ∀(x, y) ∈ C , ∂f

∂x (x, y) 6= 0. Point with ∂f
∂x (x, y) = 0 is accordingly

called non-hyperbolic point or fold point. Further, a normally hyperbolic manifold C
is attracting if ∂f

∂x (x, y) < 0 for ∀(x, y) ∈ C and is repelling if ∂f
∂x (x, y) > 0.

There have been a great deal of studies [13, 19, 16, 8] on the dynamics of (3.1),
where we are rather concerned with those related to oscillation. When the critical
manifold C0 is S-shaped, the function y = ϕ(x) induced by C0 has precisely two
critical points, a non-degenerate minimum xm and another non-degenerate maximum
xM satisfying xM > xm, which together with xl : ϕ(xl) = yM = ϕ(xM ), xr : ϕ(xr) =
ym = ϕ(xm) defines a singular trajectory Γ0 by

(3.2)
Γ0 = {(x, ϕ(x)) : xl < x ≤ xm} ∪ {(x, ym) : xm < x ≤ xr}
∪ {(x, ϕ(x)) : xM ≤ x < xr} ∪ {(x, yM ) : xl ≤ x < xM} .

For this class of systems, Krupa and Szmolyan [19] gave a detailed geometric analysis
of relaxation oscillation and further suggested a sufficient condition to the existence
of a relaxation oscillation orbit Γε lying in the O(ε)-neighborhood of Γ0. Here, we
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ignore the details about this condition, and recommend reader to refer to Theorem
2.1 in that paper for more information. Note that in the common model of relaxation
oscillation, the oscillation orbit is often accompanied by an unstable equilibrium point
on the repelling part of the critical manifold, we continue to use this constraint in our
models.

Remark 3.2. The dynamics of (3.1) serving as a chemical relaxation oscillator
should satisfy the flowing three conditions:

1. it can generate a relaxation oscillation in the first quadrant;
2. its detailed expression should match mass-action kinetics;
3. the signals generated should be symmetrical according to Definition 2.5.

The van der Pol equation [4] is a typical instance of structure (3.1) with “S-
shaped” manifold, which will act as a basis to design the needed oscillator. Instead of
directly using it, we provide a coordinate-transformed version for the current purpose,
written as

ε
dx

dt
= −x3 + 9x2 − 24x+ 21− y ,(3.3a)

dy

dt
= x− 3 , x, y ∈ R>0 , 0 < ε� 1 .(3.3b)

Clearly, (x∗, y∗) = (3, 3) is its sole equilibrium and the singular trajectory is

(3.4)
Γ0 = {(x, ϕ(x)) : 1 < x ≤ 2} ∪ {(x, 1) : 2 < x ≤ 5}
∪ {(x, ϕ(x)) : 4 ≤ x < 5} ∪ {(x, 5) : 1 ≤ x < 4}

with ϕ(x) = −x3 + 9x2− 24x+ 21. The phase plane portrait is presented in Figure 2.
As can be seen, the equilibrium is unstable and the relaxation oscillation orbit Γε
which lies in the O(ε)-neighborhood of Γ0 is also in the first quadrant. Hence, the
flows starting from points in the first quadrant, except the unstable equilibrium, will
soon converge to Γε through horizontal motion. Note that the model of (3.3) does
not match the expressions of the kinetic equations (2.2) and (2.3) for a certain mass-
action system, since the terms −y and −3 cannot reflect the consumption of species X
and Y , respectively. To fix this point and also avoid destroying the inherent dynamic
property of (3.3), a naive idea is to multiply the first equation by x while the second
equation by y, which gives a modified version as follows.

Example 3.3 (Modified van der Pol model). The modified van der Pol model is
governed by

ε
dx

dt
= (−x3 + 9x2 − 24x+ 21− y)x ,(3.5a)

dy

dt
= (x− 3)y , x, y ∈ R>0 , 0 < ε� 1 .(3.5b)

Compared with (3.3), the current model adds {(x, y) : x = 0} into the critical manifold
and creates two saddle points on the axis. Figure 3 displays the oscillating diagram
of x and y by taking (x0, y0) = (5, 5) and ε = 0.001. Obviously, the corresponding
species X and Y cannot directly play the role of a pair of symmetrical clock signals as
Definition 2.5 demands. However, the oscillatory species X satisfies the requirement
that x has abrupt transitions between phases. We will utilize it and further design
other structure to build a pair of symmetrical clock signals.
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Fig. 2. Phase plane portrait of the relaxation oscillation model (3.3), where the green dotted
broken curve represents the critical manifold C0, the shadow is ε-neighbor of the corresponding C0

part, the rail enclosed by red broken lines approximates position of the relaxation oscillation orbit Γε,
the black dotted arrows describe direction of the flows and E(3, 3) is the unique unstable equilibrium.

3.2. Development of 4-dimensional chemical relaxation oscillator. As
suggested by Example 3.3, the species X from a 2-dimensional relaxation oscillator
can act as a driving signal to produce symmetrical clock signals required in Definition
2.5. However, note that this signal is not approximately 0 at low amplitude, we
thus introduce a “subtraction operation” to pull down its low amplitude to 0, i.e.,
considering the known truncated subtraction module [28, 5]

(3.6)
P → P + U , U → ∅ ,

X → X + V , U + V → ∅ .

This module may finish the task u∗ = p(0)− x(0) when p(0) > x(0) or u∗ = 0 when
p(0) ≤ x(0). Therefore, as long as the initial concentration of species P is taken be
less than that of species X, the equilibrium u∗ of species U will be “pulled down” to
0, i.e., U has the potential to be one of the symmetrical clock signals. Based on this
module, we set up the species X to follow the dynamics of (3.1) exactly, and further
modify it to be

(3.7)
P

κ→ P + U , U
κ→ ∅ ,

X
κ→ X + V , V

κ→ ∅ , U + V
κ/ε→ ∅

with κ� 1. Apparently, the modifications include: i) a new outflow reaction V
κ→ ∅

is added; ii) the reaction rate constant of U+V
κ/ε→ ∅ is set to be rather large compared

to others; iii) the overall reaction rate constants have a significant increase in order
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Fig. 3. Diagram of oscillators x and y of the model (3.5) starting from (5, 5) when ε = 0.001.

of magnitude since κ� 1. We will give reasons of making these modifications during
the subsequent analysis.

By combining the dynamics for the driving signal X, i.e., (3.1), and that of the
mass-action system (3.7), we get

ε1
dx

dt
= η1f(x, y) ,(3.8a)

dy

dt
= η1g(x, y) ,(3.8b)

ε1ε2
du

dt
= η1(ε1(p− u)− uv) ,(3.8c)

ε1ε2
dv

dt
= η1(ε1(x− v)− uv)(3.8d)

with 0 < ε1, ε2 = η1/κ � 1 and η1, p > 0. Note that we reshape the dynamics (3.1)
by multiplying η1 with the main purpose of distinguishing the time scales of reaction
rates between species X, Y and U, V . The ODEs (3.8a) and (3.8b) will degenerate to
(3.1) if η1 is modeled into f(x, y) and g(x, y). Here, f(x, y) and g(x, y) are assumed
to guarantee the existence of relaxation oscillation [19], and moreover, the relaxation
oscillation orbit Γε lies strictly in the first quadrant along with a unique unstable
equilibrium; p is a constant representing the initial concentration of catalyst P ; and
η1/ε2 � η1 ensures that U and V response quickly enough to the oscillator X so that
they can oscillate synchronously with X.

Remark 3.4. In the ODEs of (3.8c) and (3.8d), the very large reaction rate con-
stant for U + V → ∅ is set as η1/ε1, which directly borrows the small parameter ε1
for the perturbed system (3.8a) and (3.8b). The main reason is only for the conve-
nience of making dynamic analysis, but this is not necessary for developing chemical
relaxation oscillator.

For this 4-dimensional oscillator model, i.e., describing the evolution of species
set S = {X,Y, U, V }, there are two time-scale parameters ε1 and ε2 that moti-
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vates us to analyze its dynamics using singular perturbation theory [21]. Let α =
(u, v), β = (x, y), F (α, β) = (η1(p − u − uv/ε1), η1(x − v − uv/ε1)) and G(α, β) =
(η1f(x, y)/ε1, η1g(x, y)), then we define the corresponding slow-fast systems (labeled
by σsl and σfa, respectively) as follows

σsl ,

{
(α, β)

∣∣∣∣ε2 dα

dt
= F (α, β),

dβ

dt
= G(α, β) as ε2 → 0

}
,(3.9a)

σfa ,

{
(α, β)

∣∣∣∣dαdτ = F (α, β),
dβ

dτ
= ε2G(α, β), τ = t/ε2 as ε2 → 0

}
,(3.9b)

which are equivalent essentially. Further, we define their reduced version by setting
ε2 = 0, i.e.,

σrsl ,

{
(α, β)

∣∣∣∣0 = F (α, β),
dβ

dt
= G(α, β)

}
,(3.10a)

σrfa ,

{
(α, β)

∣∣∣∣dαdτ = F (α, β),
dβ

dτ
= 0, τ = t/ε2

}
.(3.10b)

The flows generated from σrsl and σrfa are called slow flow and fast flow, respectively.
They will be utilized to approximate the flows of σsl and σfa under the condition of
sufficiently small ε2. The critical manifold C0, induced by σrsl according to C0 =
{(α, β) : F (α, β) = 0}, gives

(3.11) C0 :
ε1(p− u)− uv = 0 ,

ε1(x− v)− uv = 0 ,

Lemma 3.5. The critical manifold C0 given in (3.11) is normally hyperbolic and
attracting.

Proof. In this case, ∂F
∂α (α, β) is a 2-dimensional matrix, and the condition in

Definition 3.1 correspondingly becomes a constraint on eigenvalues [12]. From the
eigenvalues of ∂F∂α (α, β), λ1 = −η1 and λ2 = −η1−η1(u+v)/ε1, we have both of them
to be less than 0, so the result is true.

By applying the Fenichel Slow Manifold Theorem [12] to the above C0, we have

Remark 3.6. There exists a slow manifold in the O(ε2)-neighborhood of C0, de-
noted by Cε2 , satisfying that Cε2 is also attracting, and moreover, Cε2 is locally invari-
ant under the flows of σsl, i.e., any flow of σsl will remain in motion on the manifold
once it enters the neighborhood of Cε2 . Cε2 can therefore be treated as a perturbation
of C0.

We can depict the evolution of trajectory of slow-fast system (3.9) more concretely
through the following theorem, which also implies that the oscillating signals U and
V can respond to the driving signal X quickly enough due to the introduction of time
scale ε2.

Theorem 3.7. For the slow-fast system (3.9), any of its trajectories originating
from the area

{
(α, β) : α ∈ R2

≥0, β ∈ R2
>0

}
will merge instantaneously into the slow

manifold Cε2 approximately along the fast flow, and moreover, will not leave the man-
ifold.

Proof. The critical manifold C0 divides the area
{

(α, β) : α ∈ R2
≥0, β ∈ R2

>0

}
into

two parts as F > 0 and F < 0. Based on Lemma 3.5, the two eigenvalues of ∂F∂α (α, β)
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are always negative at any point in the mentioned area, so fast flows of (3.10b) from
both sides of C0 tend to travel towards C0, which approximates the instantaneous
behavior of the slow-fast system (3.9). Therefore, the trajectory originating from the
area will instantaneously converge towards C0 approximately along the fast flows.
According to Remark 3.6, Cε2 lies in the O(ε2)-neighborhood of C0 and is locally
invariant, which means the trajectory will finally merge into the slow manifold Cε2
and will not leave.

Theorem 3.7 means that the long-term dynamical behavior of the slow-fast system
(3.9) is fully decided by Cε2 , which essentially results from no non-hyperbolic points
on C0. And because Cε2 can be viewed as a perturbation of C0, we just need to
pay attention on the dynamical behavior of C0. The following theorem gives an
approximation to C0.

Theorem 3.8. For the critical manifold C0 shown in (3.11), if the initial con-
centration of catalyst P , p, is set to be between the high and low amplitude of the
driving signal X, i.e., ∃δ > 0 such that x − p > δ when x is at the high amplitude
and p − x > δ when x is at the low amplitude, then the concentrations of oscillating
signals U and V can be estimated as

(3.12)

{
u(x) = 0 ,

v(x) = x− p ,

when x is at the high amplitude, and

(3.13)

{
u(x) = p− x ,
v(x) = 0 ,

when x is at the low amplitude, with each of the estimation errors to be O(ε1).

Proof. From (3.11), it is easily to get

v2 + (p− x+ ε1)v − ε1x = 0 ,(3.14a)

u2 − (p− x− ε1)u− ε1p = 0 .(3.14b)

We firstly consider the case that x is at the low amplitude, i.e. ∃δ > 0 such that
p− x > δ. Let 0 < ε1 � δ, then p− x± ε1 > 0. Under the constraint of u, v ≥ 0, the
above equations may be solved as

u(x) =
(p− x− ε1) +

√
(p− x− ε1)2 + 4ε1p

2
,(3.15a)

v(x) =
−(p− x+ ε1) +

√
(p− x+ ε1)2 + 4ε1x

2
.(3.15b)

Hence, the errors of using (3.13) to estimate them may be calculated as

|u(x)− (p− x)| =

(
2p√

(p− x− ε1)2 + 4ε1p+ (p− x− ε1)
− 1

)
ε1

<

(
p

p− x− ε1
− 1

)
ε1 <

(
p

p− x− δ
− 1

)
ε1 = O(ε1)
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and

|v(x)− 0| = 2ε1x√
(p− x+ ε1)2 + 4ε1x+ (p− x+ ε1)

<
x

p− x+ ε1
ε1 <

x

p− x
ε1 = O(ε1) .

For the case of x at the high amplitude, the analysis may be performed based on the
same logic, which completes the proof.

Remark 3.9. This theorem indicates that the time-scale parameter ε1 appearing

in the reaction rate constant of U +V
η1/ε1−→ ∅ plays an important role in generating a

pair of oscillating signals with symmetry as required by Definition 2.5. It ensures that
on the critical manifold C0 given by (3.11) there is always a species, either U or V ,
whose concentration is close to 0 no matter what the concentration of driving signal
X is, and furthermore, the approximation error is O(ε1). This encouraging result also
conversely accounts for that the modifications on greatly enlarging the reaction rate
constant of U + V → ∅ compared to others in (3.7) is quite reasonable.

The above two theorems explain how the flows of slow-fast system (3.9) evolve
towards the neighborhood of C0 and provide a more intuitive description about C0.
Now, we can announce that the constructed chemical relaxation oscillator (3.8) is
qualified to produce symmetrical clock signals as required.

Theorem 3.10. For a 4-dimensional system (3.8) describing the concentrations
evolution of species set S = {X,Y, U, V }, assume the initial concentration p of cata-
lyst P to be taken as Theorem 3.8 claims, and the positive initial concentration point
(x(0), y(0), u(0), v(0)) of the system to satisfy that (x(0), y(0)) is not the unique un-
stable equilibrium of the subsystem Σxy (governed only by (3.8a) and (3.8b)). Then
species U and V can act as a pair of symmetrical clock signals as requested by Defi-
nition 2.5.

Proof. From Theorem 3.7, we know that for the system considered, any trajectory
originating from the area {(x, y, u, v) : x, y > 0, u, v ≥ 0} will merge instantaneously
into the O(ε2)-neighborhood of critical manifold C0. Further, based on the algebraic
equation (3.11) defining C0, concentration of U and V under the conditions will os-
cillate synchronously with the driving species X. Note that abrupt transitions exist
between phases of X, so do U and V . The first item of Definition 2.5 is satisfied. The-
orem 3.8 provides an approximate description of C0, we can utilize (3.12) and (3.13)
as estimation of concentration of U and V with error O(ε1 +ε2). Then the second and
third items of Definition 2.5 correspond naturally to the conclusion of Theorem 3.8.
Therefore, as long as we avoid the unstable equilibrium point as (x(0), y(0)), the
relaxation oscillator X will drive U and V to oscillate synchronously, acting as the
desired symmetrical clock signals.

At the end of this section, we provide an instance of system (3.8) to examine the
results of our clock signal design.

Example 3.11 (standard chemical relaxation oscillator). We use the modified
van der Pol model presented in Example 3.3 as a specific 2-dimensional relaxation
oscillator to produce the driving signal X. Through replacing (3.8a) and (3.8b) by
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(3.5) in (3.8), we obtain the 4-dimensional chemical oscillator model to be

ε1
dx

dt
= η1(−x3 + 9x2 − 24x+ 21− y)x ,(3.16a)

dy

dt
= η1(x− 3)y ,(3.16b)

ε1ε2
du

dt
= η1(ε1(p− u)− uv) ,(3.16c)

ε1ε2
dv

dt
= η1(ε1(x− v)− uv) .(3.16d)

Notice that the modified van der Pol model adds {(x, y) : x = 0} into the critical man-
ifold induced by the original van der Pol model (3.3), but this will not affect the
evolution of trajectory from the latter to the former due to the selection of the initial
point (x(0), y(0)) ∈ R2

>0. We name this 4-dimensional model (3.16) as the standard
chemical relaxation oscillator in the context.

With ε1 = ε2 = 0.001, η1 = 0.1, p = 3 and initial point (x(0), y(0), u(0), v(0)) =
(5, 5, 0, 0), we show the simulation result of the oscillating species U and V in Figure 4.
Obviously, they satisfy the requirements in Definition 2.5.
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Fig. 4. The symmetrical clock signals U and V suggested in Example 3.11.

4. Period and occurrence order control of symmetrical clock signals.
In this section, based on the standard symmetrical clock signals, we discuss how
to control the period and occurrence order of the oscillating species via adjusting
oscillator parameters and initial values, respectively.

4.1. Oscillator parameters to control the period of symmetrical clock
signals. In the standard chemical relaxation oscillator of (3.16), species X is the
driving signal for symmetrical clock signals U and V , so we are only concerned with the
effect of parameters encountered in (3.16a) and (3.16b) on them. However, to ensure
a S-shaped critical manifold constructed and the unique equilibrium assigned on the
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repelling part as Figure 2 shows, we neglect to discuss those parameters in (3.16a),
but keep the current modified van der Pol model (a cubic function) completely. The
only parameter in (3.16b) that can determine the equilibrium is “3” parameter, we
thus redefine the subsystem Σxy of (3.16a) and (3.16b) to be

ε1
dx

dt
= η1(−x3 + 9x2 − 24x+ 21− y)x ,(4.1a)

dy

dt
= η1(x− `)y ,(4.1b)

where ` ∈ R replaces the original “3”, and induces an indefinite equilibrium x∗ = `
for species X. Based on the work of Krupa and Szmolyan [19], it can be inferred
that in the first quadrant (1) when ` < 2 or ` > 4, the unique equilibrium (x∗, y∗) =
(`,−`3 + 9`2 − 24`) is asymptotically stable, so trajectory will converge to it along
the critical manifold and oscillation disappears; (2) when ` = 2 or 4, the equilibrium
(x∗, y∗) = (2, 1) or (4, 5) is actually the non-hyperbolic points on the critical manifold
C0; (3) when 2 < ` < 4, there exists a relaxation oscillation that leads to the instability
of the equilibrium. Therefore, the third case 2 < ` < 4 is the available interval, but
still in need of avoiding being too close to 2 or 4 in practice. Note that in the first
quadrant the change of ` just affects the position of equilibrium of system (4.1) along
its critical manifold but does not inflect the latter, and the related singular trajectory
is exactly the same with Γ0 given in (3.4).

Lemma 4.1. Given a 2-dimensional relaxation oscillator in the form of (4.1), for
its singular trajectory of the first quadrant, i.e., Γ0 in (3.4) with ϕ(x) = −x3 + 9x2 −
24x + 21, denote the left and right part of Γ0 by Γl,0 = {(x, ϕ(x)) : 1 < x < 2} and
Γr,0 = {(x, ϕ(x)) : 4 < x < 5} separately, and their corresponding relaxation oscilla-
tion orbit parts by Γl,ε1 and Γr,ε1 , which can be described as

Γl,ε1 : y =χl(x, ε1) , 1 < x < 2 ,(4.2a)

Γr,ε1 : y =χr(x, ε1) , 4 < x < 5 .(4.2b)

Then for sufficiently small ε0 > 0, there exist differentiable mappings ψ1 and ψ2

defined separately on (1, 2)× (0, ε0) and (4, 5)× (0, ε0) as

ψ1 : (x, ε1) 7→ ϕ(x)− χl(x, ε1) ,(4.3a)

ψ2 : (x, ε1) 7→ χr(x, ε1)− ϕ(x) ,(4.3b)

and moreover, |ψ1(x, ε1)| < O(ε1) , |ψ2(x, ε1)| < O(ε1) .

Proof. Γl,0 and Γr,0 are two normally hyperbolic parts of the critical manifold,
and Γl,ε1 and Γr,ε1 actually describe the slow manifold corresponding to Γl,0 and Γr,0.
According to Fenichel Slow Manifold Theorem, Γl,ε1 and Γr,ε1 are separately differ-
ential homeomorphic to Γl,0 and Γr,0, which confirms the existence of differentiable
mappings ψ1 and ψ2. Moreover, ψ1 refers to the distance between Γl,ε1 and Γl,0,
which together with the fact that Γl,ε1 lies in the O(ε1)-neighborhood of Γl, suggests
|ψ1(x, ε1)| < O(ε1). Based on the same logic, we can get |ψ2(x, ε1)| < O(ε1), too.

The oscillating period of the driving signal X in (4.1) is the time cost to travel
along the whole singular trajectory Γ0, which can be approximately control by `
through the following theorem.
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Theorem 4.2. For the 2-dimensional relaxation oscillator (4.1), the oscillating
period of x is approximated to be T = Tl + Th, where Tl and Th separately refers to
the period of x at low amplitude and high amplitude, given by

Tl =

∫ 2

1

(ϕ′(x)− ∂ψ1

∂x (x, ε1))dx

η1(x− `)(ϕ(x)− ψ1(x, ε1))
,(4.4a)

Th =

∫ 4

5

(ϕ′(x) + ∂ψ2

∂x (x, ε1))dx

η1(x− `)(f(x) + ψ2(x, ε1))
(4.4b)

with ϕ(x), ψ1(x, ε1) and ψ2(x, ε1) to have the same meanings as those in Lemma 4.1.

Proof. We first confirm the formula for Tl. According to Lemma 4.1, we can use
y = ϕ(x)−ψ1(x, ε1) to express the orbit when x oscillates at low amplitude, i.e., Γl,ε1 .
Then we get

(4.5)
dy

dx
= ϕ′(x)− ∂ψ1(x, ε1)

∂x
.

Furthermore substituting y = ϕ(x)− ψ1(x, ε1) into the right hand of (4.1b) yield

(4.6)
dy

dt
= η1(x− `)(ϕ(x)− ψ1(x, ε1)) .

Hence the time it takes to travel along Γl,ε1 is given by

(4.7) Tl =

∫
Γl,ε1

dt =

∫ 2

1

1
dx
dt

dx =

∫ 2

1

dy
dx
dy
dt

dx =

∫ 2

1

(ϕ′(x)− ∂ψ1

∂x (x, ε1))dx

η1(x− `)(ϕ(x)− ψ1(x, ε1))
.

In the same way, we can prove Th of (4.4b). Except for Tl and Th, the whole period
of x includes the time to travel along the horizontal trajectory parts in the form of
fast flow. We thus ignore these extremely short time costs and take T = Tl + Th as
an approximation of the whole period of x.

Note that Theorem 4.2 provides an approximation to the oscillating period of
the driving signal X, but it is not a practical one. The main reason is the lack
of explicit expressions of ψi(x, ε1), i = 1, 2 in (4.4a) and (4.4b). A more practical
estimation is needed. Clearly, in those two formulas |ψi(x, ε1)| < O(ε1), i = 1, 2 are
very small for sufficiently small ε1, and can thus be considered as negligible; also,
∂ψ1(x,ε1)

∂x (or ∂ψ2(x,ε1)
∂x ) can be thought to be very small to be abandoned since the

relaxation oscillation orbit Γl,ε1 (or Γr,ε1) is nearly “parallel” to Γl,0 (or Γr,0). We
thus give a more simplified but more practical estimation to Tl and Th as

Tl ≈
∫ 2

1

ϕ′(x)dx

η1(x− `)ϕ(x)
,(4.8a)

Th ≈
∫ 4

5

ϕ′(x)dx

η1(x− `)ϕ(x)
.(4.8b)

An immediate application of these estimates is to Σxy of the standard chemical
relaxation oscillator of Example 3.11, and by setting ` = 3 and η1 = 0.1, we obtain

Tl ≈
∫ 2

1

10(−3x2 + 18x− 24)dx

(x− 3)(−x3 + 9x2 − 24x+ 21)
= 10.470 ,(4.9a)

Th ≈
∫ 4

5

10(−3x2 + 18x− 24)dx

(x− 3)(−x3 + 9x2 − 24x+ 21)
= 9.193 .(4.9b)
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In the whole standard chemical relaxation oscillator, the oscillation of the driving sig-
nal X will stimulate the symmetrical clock signals U and V to oscillate synchronously.
Under the parameters of Example 3.11, when X travels along Γl,ε1 , U will travel at
high amplitude (Let T1 represent the consumed time); when X travels along Γr,ε1 , V
will travel at high amplitude (T2 represents the consumed time). Therefore, we have
T1 ≈ Tl and T2 ≈ Th, which are basically consistent with Figure 4. This indicates
that the estimations by (4.8) are reliable.

Remark 4.3. The estimation formulas (4.8) also reveal that, compared to `, the
parameter η1 can control Tl and Th more directly. As they actually correspond to
the maximum time used for the controlled reaction modular, such as M̃1 an M̃2 in
Example 2.4, to perform computation, their adjustment can help prolong or shorten
the execution time of reaction modular quantitatively.

4.2. Oscillator initial values to control the occurrence of symmetrical
clock signals. Like discussing oscillator parameters, here we only consider the effect
of the initial values of species appearing in subsystem Σxy of the standard chemical
relaxation oscillator (3.16), i.e., the effect of (x(0), y(0)) on oscillating behaviors of U
and V . As one might know, for subsystem Σxy governed by (3.16a) and (3.16b), the
ω − limit set1 in the first quadrant only consists of the relaxation oscillation orbit
Γε1 , i.e., the O(ε1)-neighborhood of Γ0 defined in (3.4), and a unstable equilibrium
(x∗, y∗) = (3, 3). However, different initial values of (x(0), y(0)) will cause the trajec-
tory of Σxy to merge into different positions of Γε1 , which finally affects the behavior
of U and V .

To depict this effect, we look at the repelling part of its critical manifold in the
first quadrant, which takes {(x, ϕ(x)) : 2 < x < 4} with ϕ(x) = −x3 +9x2−24x+21,
and is identified by ϕre(x) for distinguishing from ϕ(x). Through rewriting it as{

(ϕ−1
re (y), y) : 1 < y < 5

}
, where ϕ−1

re (y) means the inverse function of ϕ(x), we can
divide the first quadrant of the phase plane of Σxy into two areas

A1 : {(x, y) : y ≥ 5} ∪
{

(x, y) : x < ϕ−1
re (y), 1 < y < 5

}
∪
{

(ϕ−1
re (y), y) : 3 < y < 5

}
,

A2 : {(x, y) : y ≤ 1} ∪
{

(x, y) : x > ϕ−1
re (y), 1 < y < 5

}
∪
{

(ϕ−1
re (y), y) : 1 < y < 3

}
,

where only the unstable equilibrium (x∗, y∗) = (3, 3) is excluded.

Proposition 4.4. Given the subsystem Σxy governed by (3.16a) and (3.16b),
any of its trajectories starting from an initial point (x(0), y(0)) ∈ A1 merges into
the left part of relaxation oscillation orbit Γε1 , the O(ε1)-neighborhood of Γ0 given in
(3.4). The situation changes to the right part of Γε1 if (x(0), y(0)) ∈ A2.

Proof. We focus on providing a statement about A1. The first part of A1 cor-
responds to area above Γε1 , originating from which the trajectory can only converge
horizontally towards the neighborhood of left part of the critical manifold and then
merge into the left part of Γε1 , i.e., Γl,ε1 , along the slow manifold. The trajectory
originating from the second part will merge instantaneously into Γl,ε1 because of the
effect of the repelling manifold ϕre(x). The third part describes the upper segment
of ϕre(x), from which the trajectory will immediately enter the second part of A1 for
that dy

dt > 0. The situation for (x(0), y(0)) ∈ A2 is just inverse.

1The ω − limit set refers to the invariant closed set to which the trajectory converges as time t
approaches positive infinity. The ω − limit sets of plane vector fields are usually divided into two
categories: closed orbit and equilibrium point.
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Remark 4.5. Proposition 4.4 suggests that as long as the initial point of Σxy
governed by (3.16a) and (3.16b) gets around the unique unstable equilibrium (3, 3),
the oscillation takes place. Furthermore, to change its position in A1 or A2 may
lead to the initial oscillation of x at high amplitude or at low amplitude. Frankly,
this is not a strict request on the initial point, which is quite different from the one
proposed by Arredondo and Lakin [1]. They required initial concentration of some
species to differ by an order of 106 from others. This is not easy to do in real chemical
reaction realization. Therefore the current oscillator model is quite encouraging and
competitive.

Fig. 5. Trajectory evolution diagram of subsystem Σxy of (3.16) starting from four different
initial points A(6, 6), B(2, 2) ∈ A1 and C(0.5, 0.5, D(4, 4) ∈ A2, where the green, red and black
lines express the same information as given in Figure 2.

Figure 5 displays the trajectory evolution starting from 4 different initial points
A(6, 6) ∈ A1, B(2, 2) ∈ A1, C(0.5, 0.5) ∈ A2 and D(4, 4) ∈ A2. They go towards
the corresponding part of Γε1 as Proposition 4.4 expects. We also present the time
evolution of the driving signal X from these 4 initial points in Figure 6, where the
time evolution of the X-driven symmetrical clock signals U and V are synchronously
exhibited at a fixed initial point (u(0), v(0)) = (0, 0). In these two figures, the other
parameters ε1, η1 and p of the standard chemical relaxation oscillator are taken the
same values with those in Example 3.11. Combing Figure 5 and Figure 6 might
suggest the following information.

(i) When starting from A(6, 6) or B(2, 2), the trajectory of Σxy merges into the left
part of relaxation oscillation orbit, i.e., Γl,ε1 , and x oscillates at the low amplitude first,
leading to positive concentration of U to appear, i.e., u oscillating at high amplitude.
Speaking more specifically, the trajectory originating from A(6, 6) (may extend to the
whole area {(x, y) : y > 5}) needs to first follow the slow manifold to reach Γl,ε1 , which
makes the first period of U larger than the subsequent ones as Figure 6a shows. How-
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(a) x(0) = y(0) = 6.
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(b) x(0) = y(0) = 2.
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(c) x(0) = y(0) = 0.5.
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(d) x(0) = y(0) = 4.

Fig. 6. The oscillating behaviors of the standard chemical relaxation oscillator at a fixed initial
value of (u(0), v(0)) = (0, 0) but different initial values of (x(0), y(0)).

ever, when initial point is B(2, 2) (may extend to
{

(x, y) : x < ϕ−1
m (y), 1 < y < 5

}
),

the trajectory follows the fast manifold to reach Γl,ε1 , which leads to the first period
of u smaller than the subsequent ones, as can be seen in Figure 6b.

(ii) Figures 6c and 6d exhibit the corresponding cases where the trajectory merges
into Γr,ε1 i.e. the right part of the relaxation oscillation orbit with positive concen-
tration of V in the first period. Furthermore, the first period of v also appears larger
or smaller than the subsequent ones when initial point is C(0.5, 0.5) or D(4, 4).

Remark 4.6. For the standard chemical relaxation oscillator of (3.16), the posi-
tion of initial point (x(0), y(0)) determines the oscillating position of driving signal X,
either at high amplitude or at low amplitude, in the first period. This further drives
the oscillating positions of symmetrical clock signals U and V in the first period, so it
can control their occurrence order. Noticeably, whether U (respectively, V ) is existing
or not will “turn on” or “turn off” the modular M̃1 (respectively, M̃2), as said in
Example 2.4. Thus, the position of (x(0), y(0)) can finally control the computation
order of M̃1 and M̃2. As an example of letting M̃1 execute first, the selection of
initial value (x(0), y(0)) should ensure that the trajectory merges to Γl,ε1 .

5. Loop control and termination of molecular computations. In this sec-
tion we apply the standard chemical relaxation oscillator of (3.16) to control molecular
computations periodically, and further present a termination strategy for them.

5.1. Loop control of molecular computations. We go back to the motivat-
ing example in subsection 2.2 that two reaction modules M1 and M2 are designed
towards the target of making the loop iteration calculation s1 = s1 + 1. Here, their
calculations control is just taken as an application case for the standard chemical
relaxation oscillator of (3.16). As stated in subsection 2.2, these two modules need to
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be modified as M̃1 and M̃2, given in Example 2.4, to avoid coupling between s1 and
s2. Then we can apply the standard chemical relaxation oscillator of (3.16) to control
their calculations through combining all related dynamical equations, i.e., combining
(3.16) with (2.6), which gives

(5.1)

ε1
dx

dt
= η1(−x3 + 9x2 − 24x+ 21− y)x ,

ds1

dt
= (s2 − s1)v ,

dy

dt
= η1(x− 3)y ,

ds2

dt
= (s1 + s3 − s2)u ,

ε1ε2
du

dt
= η1(ε1(p− u)− uv) ,

ds3

dt
= 0 .

ε1ε2
dv

dt
= η1(ε1(x− v)− uv) ,

The control flow goes like this: (1) the left-upper two equations produce the periodical
signal x; (2) x drives the left-lower two equations to generate symmetrical clock signals
u and v; (3) u and v control the iteration calculation s∗1 = s∗1 + s∗3 through the right
three equations according to disappearance of either u or v.

As an illustration, Figure 7a presents the time evolution of s1 and s2 of the system
(5.1) starting from (x(0), y(0), u(0), v(0), s1(0), s2(0), s3(0)) = (5, 5, 0, 0, 0, 0, 1) with
model parameters ε1 = ε2 = 0.001, η1 = 0.1, p = 3, which are exactly the same with
those in Example 3.11. Clearly, the curve of s1 is a staircase-like function, and s1

will add 1 periodically as time goes on. This indicates that the standard chemical
relaxation oscillator of (3.16) is quite valid to periodically control the execution of
computation modules M̃1 and M̃2, and finally reaches the target of performing the
frequently-used loop iteration calculation s1 = s1 + 1 encountered in many machine
learning algorithms. A further look at Figure 7b (actually an overlay of Figure 7a and
Figure 4) reveals that the calculation time for these two modules are very short, i.e.,
time used for the curve of s1 or s2 to climb stair, compared to the sum of the oscillating
periods of U and V estimated by (4.9). The main reason is that both M̃1 and M̃2

complete calculation instruction at exponential speed, whose time consumption is
far lower than T1 + T2 ≈ Tl + Th ≈ 19.6s. There is still a large room to reduce the
oscillating period of the driving signal X in the standard chemical relaxation oscillator
of (3.16) for the current purpose.
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Fig. 7. Time evolution of species S1 and S2 of the system (5.1) in response to symmetrical
clock signals U and V : (a) without and (b) with U and V exhibited.

Although there are reaction networks corresponding to the dynamical equations
(3.16c), (3.16d) and (2.6), i.e., network (3.7) with κ = η1/ε2 and M̃1 plus M̃2 given
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in Example 2.4, respectively, the ODEs of (5.1) are not enough to be representative
of calculation made by chemical molecular since there is no reaction network corre-
sponding to the equations of (3.16a) and (3.16b). It needs to find a mass-action CRN
system that has the dynamics of (3.16a) and (3.16b), which is called CRN realization
from the kinetic equations. Note that there should be many CRN realizations for the
same kinetic equations, and a great deal of algorithms [25] have been developed to
attain this purpose. Since how to realize a CRN from a group of kinetic equations is
not the main topic of this work, we only provide a naive realization by directly trans-
forming each monomial in (3.16a) and (3.16b) into an abstract reaction where the
species coefficients on the left and right sides are completely determined by the order
of the monomial, and the parameters η1, ε1 and ε2 all appear as the rate constants.
The result is as follows

(5.2)
4X

η1/ε1−−−→ 3X , 3X
9η1/ε1−−−−→ 4X , 2X

24η1/ε1−−−−−→ X ,

X
21η1/ε1−−−−−→ 2X , X + Y

η1/ε1−−−→ Y , X + Y
η1−→ X + 2Y , Y

3η1−−→ ∅ .

In the above reaction network, there include some very tiny parameters, such as
ε1 and ε2, whose values are difficult to be evaluated precisely. As a result, it seems
impossible to control the reaction rate constants as exact as assigned. Actually, these
parameters, also including η1 and even the coefficients in the S-shaped function, are
not necessary to fit perfectly the assigned values. Their real values only ensure the
system to generate oscillation and have a unique equilibrium which lies on the repelling
part of the critical manifold and stays away from the two non-hyperbolic points.

5.2. Loop termination of molecular computations. We have finished the
task of controlling iteration computation s1 = s1 + 1 through the standard chemical
relaxation oscillator of (3.16). As the driving signal X’s oscillation goes on, the
equilibrium concentration of species S1 will add 1 periodically. This phenomenon will
never stop even if there is usually a restriction of upper bound on s∗1, e.g., when it
is used to model the “iteration times” in machine learning algorithm, an instruction
of iteration termination should be necessary. For this reason, we introduce a new
species W , called counter species, which on the one hand, uses its concentration w
to measure the difference between a given loop times l, an integer representing the
concentration of termination species L, and the concentration of S1; and on the other
hand, can control the occurrence or termination of computation modules.

Towards the above first purpose, we construct the following specific truncated
subtraction module to generate the species W

L+W
η3→ L+ 2W , S1 +W

η3→ S1 , 2W
η3→W ,(5.3)

whose ODEs are expressed as

dw

dt
= η3(l − s1 − w)w ,(5.4a)

ds1

dt
=

dl

dt
= 0 .(5.4b)

Remark 5.1. The analytical solution of the ODEs (5.4) is

(5.5) w =
(l − s1)w(0)

w(0) + (l − s1 − w(0))e−η3(l−s1)t
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with l 6= s1. In the case of l > s1 and w(0) > 0, w converges exponentially to l − s1;
in the case of l = s1, w degenerates to the linear form of

(5.6) w =
w(0)

1 + η3w(0)t
;

and in the case of l < s1, the equilibrium is 0. The reaction rate constant η3 plays
the role of regulating the convergence speed of w.

Remark 5.1 suggests that species W will vanish as reactions (5.3) proceed. There-
fore this species can behave as a catalyst to serve for the previous second purpose,
i.e., controlling the occurrence or termination of computation modules. We add it as
a catalyst to each reaction of the computation modules M̃1 and M̃2, which yields
two new computation modules M̂1 and M̂2 as

M̂1 : S1 + U +W → S1 + S2 + U +W , M̂2 : S2 + V +W → S1 + S2 + V +W ,

S3 + U +W → S3 + S2 + U +W , S1 + V +W → V +W .

S2 + U +W → U +W ;

At this time the dynamics changes to be

(5.7)
ds1

dt
= (s2 − s1)vw ,

ds2

dt
= (s1 + s3 − s2)uw ,

ds3

dt
= 0 .

It is obvious that species W has the same power as species U and V , only determining
the occurrence or termination of reactions, but not changing the positive equilibrium
of system (5.7).

We couple all ODEs of (3.16), (5.3), and (5.7), and get the whole ODEs to be

(5.8)

ε1
dx

dt
= η1(−x3 + 9x2 − 24x+ 21− y)x ,

ds1

dt
= (s2 − s1)vw ,

dy

dt
= η1(x− 3)y ,

ds2

dt
= (s1 + s3 − s2)uw ,

ε1ε2
du

dt
= η1(ε1(p− u)− uv) ,

dw

dt
= η3(l − s1 − w)w ,

ε1ε2
dv

dt
= η1(ε1(x− v)− uv) ,

ds3

dt
=

dl

dt
= 0 ,

which has the function of automatically performing loop iteration calculation and
timely terminating it when calculation times is beyond a desired point. Figure 8 shows
the loop termination results by species W , where Figure 8a (respectively, Figure 8b)
simulates the case of η3 = 1 (respectively, η3 = 50), w(0) = l(0) = 4, and other
parameters and initial value information taken the same as given for Figure 7. When
η3 = 1, neither s1 nor s2 is stable at 4, but beyond a little. This means there is a
lag to terminate M̂1 and M̂2. The reason is that when s1 increases to be close to l,
w converges towards 0 at a nearly linear speed as (5.6) shows, resulting in w to shut
down the two modules lagging behind expectation. However, when a larger η3 = 50 is
selected to accelerate the convergence of w, shown in Figure 7b, the lag phenomenon
is weakened and s1 is stable at 4. In practice a relatively large η3 is thus desired to
be selected.

Remark 5.2. Our chemical relaxation oscillator design and loop termination strat-
egy achieve the iteration computation s1 = s1 + 1 well through chemical molecular
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Fig. 8. Loop termination of iteration computation s1 = s1 + 1 by counter species W in system
(5.8) with (a) η3 = 1 and (b) η3 = 50.

reactions in the form of (5.2) plus (5.3) plus M̂1 and M̂2. This is rather a basic
operation in many machine learning algorithms, and the whole modular can work as
a counter CRN to control the alternation calculations of any two target modules, la-
beled by TM1 and TM2. As long as the symmetrical clock signals U and V generated
by the standard chemical relaxation oscillator are fed into both M1, M2 and TM1,
TM2 in parallel as catalysts, and the counter species W is used to monitor the alter-
nation times of their computations, the target calculation may be implemented. We
exhibit the corresponding flowchart in Figure 9. This application is quite promising,
and may push the development of achieving all kinds of molecular computations.

Standard Chemical 
Relaxation Oscillator

Truncated Subtraction
module

 U,V: clock signals
 W: counter species
 L: termination species

Fig. 9. A schematic diagram of applying chemical oscillation-based iteration computation mod-
ulesM1 plusM2 to control the alternative calculation and termination of two target modules TM1

and TM2.

6. Conclusions. In this paper we develop a systematic approach to realize syn-
chronous sequential computation with abstract chemical reactions. Our ultimate goal
is to execute complex calculations in biochemical environments, and after setting the
initial values of species and reaction rates, the biochemical system could run auto-
matically to complete the target calculation task. For this, we design a 4-dimensional
oscillator model to generate a pair of symmetric clock signals U and V whose concen-
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trations change periodically. Different from the chemical oscillators used in previous
work, we construct the 4-dimensional oscillator model based on the architecture of
2-dimensional relaxation oscillation. We strictly analyze the dynamical properties of
the oscillator model and discuss the conditions of parameters and initial values to
control the period and occurrence order of U and V . The strength of our model lies
in a broad selection of initial values and a clear, easy-to-implement parameter choice.
We demonstrate the process of module regulation under the example ofM1 andM2,
and give a termination strategy for the loop control. Although there is very little
work that pays attention on this topic, we still believe that our consideration of loop
termination makes sense for synthesizing autonomously running life.

This paper actually provides guidance for implementing calculation instructions
and machine learning algorithms into biochemical environments, the oscillator model
we design acts as a hub connecting various parts of reaction modules corresponding
to specific calculation tasks. Oscillation, especially the relaxation oscillation, plays a
crucial role in this process. Different from modeling and analyzing the oscillation phe-
nomena observed in biochemical experiments, our work takes advantage of oscillation
as a means to achieve specific functions. Our 4-dimensional oscillator model solves
the task of two-module regulation well, but is a little weak when faced with tasks of
three or more modules. It will be the focus of our future work to find suitable oscil-
lation structure and design corresponding chemical oscillator model for multi-module
regulation.
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