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Abstract: To improve lithium and sodium ion battery technology it is imperative to understand how 

the properties of the different components are controlled by their chemical structures. Operando 

structural studies give us some of the most useful information for understanding how batteries work, 

but it remains difficult to separate out the contributions of the various components of a battery stack 

(e.g. electrodes, current collectors, electrolyte and binders) and examine specific materials. We have 

used operando X-ray diffraction computed tomography (XRD-CT) to study specific components of an 

essentially unmodified, working cell and extract detailed, space resolved structural information on 

both crystalline and amorphous phases present during cycling by Rietveld and pair distribution 

function (PDF) methods. We illustrate this method with the first detailed structural examination of 

the cycling of sodium in a phosphorus anode, revealing surprisingly different mechanisms for 

sodiation and desodiation in this promising, high capacity anode system. 

 

One of the biggest problems in studying battery structures in general, and in particular when using 

total X-ray scattering methods, is the contribution to the data from parts of the battery other than 

those in which we are interested[1]. This is less significant for conventional X-ray diffraction 

studies of crystalline materials where it is usually possible to mask the background features and 

concentrate on the Bragg peaks from the component of interest[2]. Unfortunately, many of the 

most interesting battery materials are amorphous at some stages of cycling. Studying amorphous 

materials with X-ray scattering requires us to use the total scattering of the sample to calculate 

the PDF. To do this the non-sample contributions must be removed.[3] Allan et al[4] and Chapman 

et al[5] have addressed  this by using background subtraction methods and adapting their 

batteries significantly for total scattering experiments. Here we propose an alternative and much 

more informative method based on the PDF-CT approach first reported by Jacques et al[6]. 

Although operando tomographic imaging has recently revealed significant information on the 

macrostructure of batteries[7]   and been combined with scanning XRD[8], the tomographic 

technique has not been applied using atomic structural data. Jensen et al studied commercial 



lithium ion and nickel metal hydride batteries with XRD-CT methods, mapping the distribution of 

LiCoO2 from the intensity of a single peak and obtaining information on its orientation from the 

2D diffraction patterns[9]. By reconstructing the entire battery system with XRD-CT and carrying 

out Rietveld and PDF analysis of the data as a function of charge state we have, firstly, obtained 

data focussing specifically on the phosphorus anode of a basically unmodified (i.e. not significantly 

different from a normal coin cell; this may be compared to the highly adapted electrode particles 

studied with absorption CT    by Ebner et al.[7b]), working sodium ion battery (SIB) and secondly, 

removed all contributions from the other   components of the cell and sample container, giving 

the best quality data on the anode for Rietveld and PDF analysis. As we have shown 

elsewhere[10], the use of full structural methods allows data to be extracted from tomograms 

which would have been considered useless if analysed with conventional phase contrast and 

absorption tomography techniques. 

Phosphorus is one of the most promising alloying anodes for SIBs due to its high capacity 

(theoretical capacity 2596 mAh g-1, reversible capacity of up to 1890 mAh g-1 as a composite with 

carbon and considerable cycling stability[11]). Its structure has not previously been studied under 

working conditions and is amorphous except when fully sodiated to form crystalline Na3P[12]. 

Combined operando XRD/PDF-CT reveals with full clarity the different mechanisms of sodiation 

and desodiation of phosphorus (despite its low X-ray scattering factor and location inside an 

electrochemical cell), in good agreement with cycling data and density functional theory (DFT) 

calculations. The technique described here was also combined with operando X- ray absorption 

tomographic imaging to provide additional information on the battery’s macrostructure (e.g. 

volume changes, dendrite formation). This allows us to identify potential problems such as 

movement and expansion of the battery components,   particularly   relevant   for   alloying   

anodes   like phosphorus which can undergo volume changes of as much as 400 % during cycling 

(see ESI movie). 

Initial analysis of the reconstructed XRD-CT data for the anode region using “surface” Rietveld 

methods (with the crystalline Na3P structure) showed limited structural variations within the 

individual tomographic slices (Figure 1), but confirmed the stability of the methods and the location 

of the anode material at this stage. Slices 4 and 5 of the tomogram contain significant amounts of 

glass fibre separating material, with slice  5 containing virtually no anode material despite the 

volume expansion. The resolution of the tomograms in XRD-CT is  limited by the size of the beam 

(see experimental section) and was also optimised to give enough tomograms during battery cycling 

to see the structure at different points in the charge/discharge curve. Improvements in both beam 



line optics and detector technology (in place at ID15 since January 2017) will improve the space and 

time resolution of the method, and may allow extraction of structural data from individual particles 

in future. Variations in the parameters between the layers are probably due principally to the 

changes in charge state during the 7 minute slice acquisition time (see charge states in Figure 3). 

The central section of slice 4, however, does seem to have a well determined Na3P c-axis parameter 

which is similar to that of slice 1 (close to the current collector). The reconstructed diffractograms 

from the centre of slices 2, 3 and 4 (ESI, Figure S17) are of similar quality. This may indicate that the 

reaction is at a different stage close to the electrolyte and current collector, than  in  the  central  

slices.  Note, however  that  sodiation     is complete  at  slice  4,  with  the  final  capacity  of  1471   

mAhg-1 reached, while in slices 1, 2 and 3 sodiation is still in progress. It is therefore possible that 

the structure relaxes when the final, open circuit voltage is reached. Further analysis focussed on 

the central voxels of the slices. Reconstructed diffractograms of the voxel at position (15,15) in slice 

3 for desodiation and second sodiation are shown in Figure 2. The Bragg peaks from the Na3P phase 

are clearly  visible when the anode is fully sodiated and a broad feature in the diffraction patterns at 

2θ ≈ 4 ° appears during sodiation but not during desodiation. The broad peak at ~2.5 ° is due to 

phosphorus nanoparticles. 

Rietveld analysis of voxel (15,15) in tomographic slices 2 and 3 showed the appearance of the 

crystalline Na3P phase during sodiation and its disappearance during desodiation. Trends in the 

crystallite size, unit cell axes and occupancy of the Na atom sites of the layered Na3P structure are 

shown in Figure 3 along with the voltage profiles. A clear decline in crystallite size is observed 

during desodiation with a corresponding growth in the crystallite size during sodiation when the 

phase reappears. The two Na sites are seen to depopulate during desodiation and gradually 

repopulate as the Na3P phase reappears during sodiation. This suggests high mobility of Na in the 

phase, in agreement with the findings of Qian et al[11a]. High Na mobility was also observed in 

Na3Sb[4]. In addition, the occupancies of the Na sites never reach 100%, suggesting that 

stoichiometric Na3P is not formed. The lattice parameter data show small variations in the a-axis 

while the c-axis extends significantly during the first desodiation and contracts slightly during the 

second sodiation. 

The fitted PDFs (G(r)) are shown in the ESI (Figure S3-S15),  with the fit agreement factors (Table 

S1). Despite the high noise levels in the G(r)s during the amorphous stages of cycling, our models 

explain the key features of the PDFs. From the extent of the peaks in the PDF we extracted 

crystallite/cluster sizes at each charge state. The simplest possible cluster models were used in 

fitting to avoid fitting noise at high G(r) in the amorphous materials. Scale factors for the fitted 



phases are plotted in Figure 4 with the voltage curves above. The crystallite size from the Rietveld 

refinement is plotted on the same axes for comparison. The G(r) when fully desodiated has only 

one peak at approx. 

2.25 Å (the approximate length of a P-P bond) indicating a cluster of a few phosphorus atoms with 

no order beyond the first shell of P-P bonds. We fitted this using a model cluster of 4 P atoms 

(Figure 5). 

The PDF analysis shows clearly that NaP (with a cluster size of less than 10 Å) is formed during 

sodiation but not during desodiation, while Na3P is present for longer during desodiation. 

Compared to the Rietveld analysis of Na3P we observe the phase later during desodiation and 

earlier during sodiation in the PDF data, suggesting that amorphous Na3P exists before the 

crystalline form. 

DFT calculations were used to construct a convex energy hull diagram for the Na/P system (Figure 

6) which is in agreement with that reported by Mayo et al.[13] The hull shows the most 

thermodynamically favourable route between P and Na3P. In agreement with our PDF results, the 

lowest energy  route  to Na3P passes through the rather stable NaP helical P-chain structure 

(Figure 1b). This acts as an intermediate in a  two phase type mechanism, easing the transition to 

layered Na3P. We have so far found no evidence for the presence of any of the other stable Na/P 

phases lying on or close to the energy hull at any stage of cycling, though this cannot be entirely 

ruled out. It  is possible that they may be observed with better time/space resolution   and   that   

the   tiny   clusters   may   exhibit  varying 

stoichiometry. These phases would further ease the transition from very small P clusters to the 

layered structure of Na3P (see ESI). The NMR work of Xu et al also shows NaP as an intermediate 

structure[12b]. 

The energy hull does not help us to understand why the thermodynamic route is not followed on  

desodiation.  We therefore carried out further calculations on the deintercalation of Na from Na3P, 

maintaining the layered structure as observed in the operando tomographic experiment. We found 

that several stable phases exist, suggesting that a smooth transition from Na3P through Na3-xP to P 

should be favoured by kinetics over   the nucleation of NaP. i.e. in the case of high Na mobility as is  

the case here, NaP should not form. Na2.6P and Na2.36P are the possible stable Na deficient 

structures in the Na3P matrix  and  are included as points in Figure 6 (the red dotted line indicates 

the kinetically favoured path from Na3P to P). Furthermore, we calculated that Na2P, which might 

serve as an intermediate on the path to NaP during desodiation, is highly unstable  (this phase is 

also shown, well above the convex hull, in Figure 6).  We believe that the small plateau observed at 



~0.7 V during desodiation for phosphorene/graphene anodes[14] is a sign that the thermodynamic 

mechanism (Na3P-NaP-P) co-exists with the kinetic deintercalation mechanism to some degree at 

lower rates of desodiation. A similar kinetic mechanism was observed during desodiation of the 

Na/Sb system[4]. These mechanisms are supported by the lattice parameter values presented in 

Figure 3c. The large extension and small contraction of the c-axis during desodiation and second 

sodiation respectively indicate that the structure is retained for longer during desodiation, and that 

increasing levels of Na probably serve to hold the layered structure together. 

The reasons for the different mechanisms of sodiation and desodiation of the group 15 elements 

are still unclear, though size effects may be significant. P (0.44 Å) and Sb (0.90 Å) have sodiation 

routes different from those of their desodiation, which include significant amorphous components. 

The somewhat  larger Bi (1.03 Å[15]) follows the same route on sodiation and desodiation and 

retains crystallinity at all stages, with the crystal structure of Na3Bi depending on the crystallite 

size[16]. Also, the size of Bi is similar to that of Na+  (1.02 Å effective ionic   radius), while P and Sb 

are smaller. No experimental data on the Na/As system is available, although gallium arsenide has 

recently been studied as an anode for LIBs[17]. The rate of deintercalation of Na from crystalline 

Na3P is probably too rapid for the formation of intermediates except at very low rates of 

desodiation[11a, 14]. Na3Sb is similar, with the deintercalation leading to other clearly identifiable 

amorphous intermediates, but not NaSb[4]. The 23Na NMR results reported by Allan and co-

workers show high Na mobility (which they relate to the excellent high rate performance 

of Sb anodes) in crystalline Na3Sb, which supports the idea that fast Na deintercalation is 

connected to the differences between sodiation and desodiation routes in P and Sb anodes[4]. The 

thermodynamic sodiation route from P nanoclusters to NaP chains to layered Na3P, involves the 

breaking and forming of many bonds and should be significantly slower than deintercalation.     A     

similar     scheme     with     kinetic     and thermodynamic routes for charge and discharge 

respectively is described for the Na/Co3O4 system[18]. 

 

Using XRD-CT methods allows us to study specific components of a working battery, obtaining high 

quality data with no additional signals beyond those from the component of interest, even for a 

weakly scattering material. This allows us to combine Rietveld analysis of the crystalline phases 

with PDF analysis of the amorphous material even in a moving or expanding electrode, as 

illustrated here by the example of an essentially unmodified, working phosphorus SIB anode. Our 

XRD-CT structural data combined with DFT calculations and cycling data show the different 



structural mechanisms of sodiation and desodiation in the phosphorus anode. We believe this 

technique can offer very significant benefits for future structural studies of crystalline and 

amorphous battery materials. 

 

Experimental  
 

Amorphous phosphorus was  prepared  by  milling  red  phosphorus (99.99 %, Sigma Aldrich) in a 

Fritsch Planetary Micro Mill Pulverisette 7 at 720 rpm with a ball-to-powder ratio of 20:1 for 24 h. 

A composite of amorphous phosphorus with CNTs (purified and multi-walled, n-tec) was formed 

by milling them in a mass ratio of 7:3 in a Fritsch Mini-Mill Pulverisette 23 at 50 Hz with a ball-to-

powder ratio of 10:1 for 20 min.  The working electrode was prepared by spreading slurry 

composed of 70 wt % of the composite, 10 wt % of conductive carbon black (Super P, Timcal) and 

20 wt % poly(acrylicacid) (PAA, Sigma Aldrich) as binder dissolved in ethanol on the Al pistons used 

in the operando sample container. Drying of the electrodes was carried out at 60  °C overnight. 

The electrodes were thereafter handled under inert atmosphere. The working electrode was 

separated from the Na metal disk as counter electrode by electrolyte soaked glass fibres (GF/C, 

Whatman). As electrolyte a 1 M solution of NaPF6 in ethylene carbonate/diethyl carbonate 

(EC/DEC, 1:1 in wt) solution with the addition of 5 wt % FEC was prepared. All electrolyte 

constituents were purchased from Sigma Aldrich.  The battery was  galvanostatically cycled in a 

voltage range    of 0.01 V to 2 V vs Na/Na+  using a Biologic SP150 with low current   option. The 

specific capacity values are expressed on the basis of the mass of phosphorus. 

 

Half cells were assembled in a specially constructed X-ray transparent electrochemical container 

for operando XRD/PDF-CT and absorption tomography measurements (see ESI). The sample 

container consists of  a sealed Teflon cylinder containing two Al pistons on which working and Na 

metal counter electrode are directly deposited. The electrodes are separated by glass fibres 

soaked with electrolyte. The sample container is aligned such that the working electrode layer 

(about 30 μm thick and containing about 0.1 mg of amorphous phosphorous) oriented in plane 

with the X-ray beam and can be rotated by up to 360° around its vertical axis during the 

measurement. The thickness of the anode layer is slightly greater than normal, but otherwise this 

construction is very similar to  what would be used in a coin cell for electrochemical testing, 

 
Data were collected on beamline ID15A of the European Synchrotron (ESRF). The XRD/PDF-CT data 

were collected at an energy of 69.8 keV (λ = 0.1779 Å) with a beam size of 200×16 μm2 (horizontal 

x vertical). Absorption tomography data were collected using a CMOS camera at an energy of 46.3 

keV, field of view 1.3×1.3mm2 and pixel size of 1.2×1.2μm2). XRD/PDF-CT tomograms were 

collected with 5 vertical slices spaced by 8 μm followed by an absorption tomography 

measurement. The raw 2D diffraction images were azimuthally integrated to give 1D powder 

diffraction patterns which were used in the tomographic reconstruction. The strategy used for 

collection and reconstruction of the diffraction tomographic slices is described elsewhere[6,   19].  

The  data  collection  took  about  7  min  per  slice    for XRD/PDF-CT, while each absorption 

tomography measurement took about 15 min. The sequence of measurements was repeated 



several times during the first desodiation and second sodiation of the Na/P half- cell, which lasted 

about 4 h. 

 

Corrections were applied for artefacts in the filtered back projection tomogram caused by the 

Teflon walls of the sample container. A three dimensional map of the battery absorption coefficient 

was measured by a conventional absorption micro-tomography scan. An XRD-CT scan of the empty 

sample container was then measured. The absorption caused by the sample on the Teflon signal of 

the empty sample container was calculated using the 3-D absorption map. The calculation was done 

using a ray tracing program which computes the absorption correction for the diffracted signal 

generated by each voxel as a function of the sample orientation, 2-theta angle and azimuthal angle. 

The absorption corrected Teflon signal was removed from the battery diffraction signal for each 

voxel.  The  final  reconstructed  slices  had  a  30  x  30  voxel  grid.  The corrected  diffractograms  

were  processed  using  PDFGETX3[20]   to give radial pair distribution functions. Further details of 

the reconstruction and corrections are given in ESI section S2. 

 

Rietveld refinements were carried out using a “surface” strategy (i.e. treating all the diffractograms 

as a single 3D “surface“ of data with some parameters linked for the entire dataset but no use of 

parametric equations) based on the parametric Rietveld method in TOPAS V5[21]. Background, 

lattice parameters, atom positions, peak broadening (Lorentzian  crystallite  size  based  on  a  

fundamental  parameters peak shape) thermal parameters and scale factors were refined  

simultaneously for all diffraction patterns in each group (usually a complete slice of the 

tomogram[10]) while the zero error and tan-θ broadening[22] were refined as single parameters for 

the whole dataset. Adsorption was handled using the parallel beam capillary correction in TOPAS 

with a fixed adsorption value. A typical fit is shown in the ESI (Figure S16) along with the Rwp values 

for the fits (table S2). 

 

The size values from the Rietveld analysis are not absolute as we could not fully characterise the 

instrumental resolution for ID15A; the trends however are real. (crystallite size is used to indicate 

the presence of crystalline Na3P as the Rietveld scale factor is highly influenced by increases in the 

peak width when there are no longer clear Bragg peaks in the patterns and therefore fails to clearly 

indicate the appearance and disappearance of the crystalline phase) 

 

The PDF data were analysed using routines adapted from diffpy-CMI[23]. Corrections and model 

design are described in ESI section S4. Scale factors were refined for all phases and lattice 

parameters were refined for the Na3P. A global bond length variation parameter was refined for 

the NaP and P clusters. Thermal parameters for the Na and P were constrained to be constant 

during all fits and across all of the phases.  The instrumental parameter “qdamp” was held constant 

during all refinements, as was “delta2” for each phase. 

 



Total energies were calculated by the projected-augmented plane-wave (PAW) implementation of 

the Vienna ab initio simulation package (VASP).[24] The methods used for the calculations are 

described more fully in ESI section S3. 
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Figures 

 



 

 

Figure 1. Tomographic slices at the end of the second sodiation, reconstructed on the c-axis of Na3P 

extracted by parametric Rietveld methods. Slices (thickness 16 µm) were collected a different 

distances from the current collector. Slice 1 is closest to the current collector and slices 4 and 5 

partly cut into the glass fibre separator. Note that c-axis variation within the slices is minimal. The c-

axis variations between the slices are probably due in the most part to changes in the charge state 

during the 7 min acquisition time per slice. Electrochemical cycling curves showing the points at 

which each tomographic slice was acquired are shown in the ESI (Figure S19). 

 

 

 

Figure 2. Reconstructed XRD data of the voxel at position (15, 15) in tomographic slice 3 at different 
charge states for the first desodiation (a) and second sodiation (b). The broad feature observed at 2θ 
≈ 4 ° is marked with *. 

 



 

 

Figure 3. Voltage profiles for desodiation and sodiation (a) and data from Rietveld refinements of 

Na3P in voxel at position (15,15) of tomographic slice 3: crystallite size (b), lattice parameters (c) 

and Na site occupancy (d). Lattice parameter and site occupancy results from diffractograms 

collected at charge states where crystalline Na3P is not present are omitted. 

 

Figure 4. Voltage profiles for desodiation and sodiation (a) and plots of the PDF scale factor for all 

phases (b). Crystallite size obtained from Rietveld refinement of Na3P is plotted for comparison. 

 



 

Figure 5. Models used in the PDF analysis: (a) amorphous P nano-cluster, (b) amorphous NaP 

nano-cluster and (c) crystalline Na3P. 

 

Figure 6. DFT energy hull diagram showing the lowest energy phases in the P-Na phase diagram 

and formation enthalpies for Na deficient Na3-xP structures (coloured in magenta). The black line 

indicates the lowest energy route, while the blue and red dotted lines show the observed routes of 

desodiation and sodiation, respectively. 

 

 

 

 

 


