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M
olecular networking1, introduced in 2012, was one of 
the first data organization approaches to visualize the 
relationships between tandem mass spectrometry (MS/

MS) fragmentation spectra. In molecular networking, relation-
ships between similar MS/MS spectra are visualized as edges. As 
MS/MS spectral similarity indicates chemical structural similarity1, 
chemical structural information can thus be represented as a net-
work and chemical relationships can be visualized. This approach 
forms the basis for the web-based MS infrastructure, global natural 
products social molecular networking2 (GNPS) (https://gnps.ucsd.
edu/), which sees ~200,000 new accessions per month. Molecular 
networking has successfully been used for a range of applications3 
in drug discovery, natural products research, environmental moni-
toring, medicine and agriculture. To tap into the chemistry of com-
plex samples through metabolomics, a subset of MS/MS spectra 
can be annotated by spectral library matching or by using in silico 
approaches. While molecular networking facilitates the visualiza-
tion of closely related molecules in molecular families, the inference 
of chemical relationships at a dataset-wide level and in the context 
of diverse sample metadata requires complementary representation 
strategies. To address this need, we developed an approach that uses 
fragmentation trees4 and machine learning5 to calculate all pair-
wise chemical relationships. These chemical relationships are rep-
resented as a chemical tree that can be visualized in the context of 
sample metadata and molecular annotations obtained from spectral 

matching and in silico annotation tools. We show that such a chemi-
cal tree representation enables the application of various tree-based 
tools, originally developed for analyzing DNA sequencing data6–9, 
for exploring mass spectrometry data.

Here, we introduce Qemistree (pronounced ‘chemis-tree’) soft-
ware that constructs a chemical tree based on predicted molecular 
fingerprints from MS/MS fragmentation spectra10. Molecular fin-
gerprints are vectors where each position encodes a substructural 
property of the molecule, and recent methods allow us to predict 
molecular fingerprints from tandem mass spectra11–15. In Qemistree, 
we use SIRIUS16 and CSI:FingerID13 to obtain predicted molecular 
fingerprints. Users can first perform feature detection17,18 to gener-
ate a list of observed ions with associated peak areas and MS/MS 
fragmentation spectra, referred to as chemical features henceforth, 
to be analyzed by Qemistree (Extended Data Fig. 1). Only chemi-
cal features with MS/MS data are included; features with only MS1 
(precursor mass) are not considered. SIRIUS then determines the 
molecular formula of each feature using the isotope and fragmenta-
tion patterns and estimates the best fragmentation tree explaining 
the fragmentation spectrum. Subsequently, CSI:FingerID operates 
on the fragmentation trees using kernel support vector machines 
to predict molecular properties (2,936 properties, Supplementary 
Dataset 1). We use these molecular fingerprints to calculate pair-
wise distances between chemical features and hierarchically cluster 
the fingerprint vectors to generate a tree representing their chemical 
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structural relationships. Although alternative approaches to hierar-
chically cluster features based on cosine similarity of fragmenta-
tion spectra exist19–21, we use molecular fingerprints predicted by 
CSI:FingerID for this. Previous work has shown that CSI:FingerID 
outperforms other tools for automatic in silico structural annota-
tion22. Therefore, we leverage it to search molecular structural data-
bases to provide complementary insights into structures when no 
match is obtained against spectral libraries. Subsequently, we use 
ClassyFire23 to assign a five-level chemical taxonomy (chemical 
kingdom, superclass, class, subclass and direct parent ontology) to 
all molecules annotated via spectral library matching and in silico 
prediction (Supplementary Tables 1 and 2 include an assessment of 
improved annotation rates as a result of in silico annotations).

Phylogenetic tools such as iTOL24 can be used to visualize 
Qemistree trees interactively in the context of sample information 
and feature annotations for easy data exploration. The outputs of 
Qemistree can also be plugged into other workflows in QIIME2 
(ref. 25) (many of which were originally developed for microbi-
ome sequence analysis) or in R, Python and so on for system-wide 
metabolomic data analyses6,7,9,26. In this study, we apply Qemistree to 
perform chemically informed comparisons of samples in the pres-
ence of technical variation such as chromatographic shifts that com-
monly affect MS data analysis. Additionally, we exemplify the use of 
a tree-based representation to visualize and explore chemical diver-
sity using a heterogeneous collection of food products. Qemistree 
can be used iteratively to incorporate multiple datasets without the 
need for cumbersome reprocessing (such as repeated feature detec-
tion or retention time alignment), allowing for large-scale dataset 
comparisons. Qemistree is available to the microbiome community 
as a QIIME2 plugin (https://github.com/biocore/q2-qemistree)  
and the metabolomics community as a workflow on GNPS2  
(https://ccms-ucsd.github.io/GNPSDocumentation/qemistree/). 

The chemical tree from the GNPS workflow can be explored inter-
actively using the Qemistree-GNPS dashboard (https://qemistree.
ucsd.edu/; see Methods).

Results
Resolving technical variation using chemical relationships. To 
verify that molecular fingerprint-based trees correctly capture the 
chemical relationships between molecules, we designed an evalu-
ation dataset using four distinct biological specimens: two human 
fecal samples, a tomato seedling sample and a human serum sam-
ple. Samples were prepared by combining them in binary, tertiary 
and quaternary mixtures in various proportions to generate a set 
of diverse but related metabolite profiles (Supplementary Table 3).  
Untargeted MS/MS was used to analyze the chemical composition 
of these samples and obtain fragmentation spectra. The MS experi-
ments were performed twice using different chromatographic elu-
tion gradients, causing a retention time shift between the two runs 
(Extended Data Figs. 2 and 3). Processing the data of these two 
experiments with traditional LC–MS-based pipelines leads to the 
same molecules being detected as different chemical features in 
downstream analysis. Figure 1 shows the analysis of three different 
sample types to demonstrate this. In Extended Data Fig. 4, we high-
light how these technical variations make the same samples appear 
chemically disjointed.

Using Qemistree, we mapped each of the spectra in the two 
chromatographic conditions (batches) to a molecular fingerprint, 
and organized these in a tree structure (Fig. 1). Because molecu-
lar fingerprints are independent of retention time shifts, spectra are 
clustered based on their chemical similarity. It is noteworthy that  
the structural information from chemical features with spectral 
library matches (typically 1–20% of all features, depending on  
how well the sample type has been investigated) or other forms of 
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predicted molecular fingerprints representing the structural relationships between compounds detected in the evaluation dataset. The outer ring shows 

the relative prevalence of molecules stratified by the MS run; the inner ring shows the same stratified by fecal, serum and tomato samples in the evaluation 

dataset. All structures shown are spectral reference library matches obtained from feature-based molecular networking17,18 in GNPS (level 2 or 3 according 

to the 2007 Metabolomics Standards Initiative40). Note that untargeted MS is blind to stereochemistry and often regiochemistry (for example, double 

bonds in a fatty acid); therefore, molecules could be related isomers of the illustrated structures.
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annotation (for example, substructure Mass2Motifs27) could also be 
used to compare the chemical composition of samples across differ-
ent MS runs. Qemistree improves on this by enabling the use of all 
MS/MS spectra with molecular fingerprints (86.90% in these data at 
the present time, Supplementary Table 1) for downstream compara-
tive analyses, by not constraining analysis to the chemical features 
with spectral matches only. This tree structure can be decorated 
using sample type descriptions, chromatographic conditions, spec-
tral matches obtained from molecular networking in GNPS (when 
available) and any other chemical annotations23,27. Figure 1 shows 
that similar chemical features were detected exclusively in one of 
the two batches. However, based on the molecular fingerprints, 
these chemical features were arranged as neighboring tips in the 
tree regardless of the retention time shifts. This result shows how 
Qemistree can reconcile and facilitate the comparison of datasets 
acquired on different chromatographic gradients.

Tree-guided system-wide comparisons in metabolomics. Having 
demonstrated Qemistree’s practical use on biologically inspired syn-
thetic datasets, we now turned to a conceptual example illustrating 
the general principle. We demonstrated an application of a chemi-
cal hierarchy in performing chemically informed comparisons of 
metabolomics profiles. In standard metabolomic statistical analy-
ses, each molecule is assumed unrelated to the other molecules in 
the dataset. Some of the pitfalls of this assumption are highlighted 
in Fig. 2a. Consider a scenario where we want to compare samples 
1–3. An analysis schema that does not account for the chemical rela-
tionships among the molecules in these samples (Fig. 2a, left), will 
assume that the sugars in samples 2 and 3 are as chemically related 
to the lipids in sample 1 as they are to each other. This would lead to 
the naive conclusion that samples 1 and 2, and samples 2 and 3 are 
equally distinct, yet from a chemical perspective they are not. On 
the other hand, if we account for the fact that sugar molecules are 
more chemically related to one another than they are to lipids, we 
can obtain a chemically informed sample-to-sample comparison.

The chemical structural compositional similarity (CSCS) 
metric28 was developed to compute pairwise sample-to-sample 
comparison by considering cosine similarity of MS/MS spectra 
from molecular networking. Here, we use a tree-based approach 
to account for chemical relationships, which allows us to adopt 
phylogeny-based tools for metabolomics analyses (Supplementary 
Table 4). Specifically, we first constructed a tree of chemical simi-
larities by hierarchical clustering molecular fingerprints from 
CSI:FingerID (using pairwise Euclidean distance between finger-
print vectors, see Methods). This tree is analogous to phylogenetic 
trees used in ecology, such that the tips of the tree are molecules 
(instead of species). We then computed weighted UniFrac9 distances 
(a tree-based metric that has widely been used in microbial ecol-
ogy to compare microbiomes) to compare metabolomic profiles. In  
Fig. 2a, we show that by using a tree of chemical relationships 
between molecules in samples 1–3, we can visualize that sample 
1 is chemically very distinct (along PC1 in a principal component 
analysis) from samples 2 and 3.

Returning to our evaluation dataset, we can highlight the impor-
tance of comparing samples by accounting for their molecular relat-
edness. Principal coordinates analysis (PCoA) of the evaluation 
dataset (including both pure samples and sample mixtures, N = 162) 
that ignores the tree structure (Fig. 2b) performs far worse than the 
Qemistree PCoA that uses the tree (Fig. 2c). With the structural 
context provided by Qemistree, the differences between replicates 
across batches are comparable to the within-batch differences 
(Extended Data Fig. 5). The retention time shift in this dataset leads 
to a strong signal due to chromatography conditions that obscures 
the biological relationships among the samples (permutational 
analysis of variance (ANOVA); tree-agnostic29 pseudo F = 120.75, 
P = 0.001 versus tree-informed9 pseudo F = 18.2239, P = 0.001). 

We observed and remediated a similar pattern originating from 
plate-to-plate variation in a recently published study investigating 
the metabolome and microbiome of captive cheetahs30 (Extended 
Data Fig. 6). In this study, placing the molecules in a tree using 
Qemistree reduced the observed technical variation (Extended 
Data Fig. 6a,c), and highlighted the dietary effect that was expected 
(Extended Data Fig. 6b,d). These results show how systematic and 
spurious molecular differences can be mitigated in an unsuper-
vised manner using chemically informed distance measures based  
on a tree structure.

Visualizing chemical prevalence in heterogeneous datasets. As a 
case study demonstrating the use of Qemistree on a set of biological 
specimens, we used the platform to explore chemical diversity in 
food samples collected in the Global FoodOmics initiative (http://
globalfoodomics.org). Understanding the chemical relationships 
between different foods is challenging because most molecules 
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within foods are unannotated. We selected a diverse range of food 
ingredients to represent animal, plant and fungal groupings31. 
We first performed feature-based molecular networking using 
MZmine17,18 to obtain spectral library matches for a subset of the 
chemical features (~20% annotated with cosine cutoff >0.7). Using 
Qemistree, we collated GNPS spectral library matches and in silico 
predictions from CSI:FingerID to annotate ~91% of the chemical 
fingerprints (total 663 after quality filtering; Supplementary Table 1)  
with molecular structures. We also retrieved chemical taxonomy 
assignments for structures that were classified by ClassyFire23 (~92% 
of all structures at the time of submission); the remaining were in 
the queue to be processed on the ClassyFire server for taxonomy 
assignment upon submission of the paper (see Methods). Labeling 
annotations allowed us to retrieve subtrees of distinct chemi-
cal classes (Fig. 3a) such as flavonoids, alkaloids, phospholipids, 
acyl-carnitines and O-glycosyl compounds in food products. We 
propagated ClassyFire annotations of chemical features (tree tips) 
to each internal node of the tree and labeled the nodes by pie charts 
depicting the distribution in chemical superclasses (Extended Data 
Fig. 7) and classes (Extended Data Fig. 8) of its tips. The molecu-
lar fingerprint-based hierarchy of chemical features agreed well 
with ClassyFire taxonomy assignment, further demonstrating that 
molecular fingerprints can meaningfully capture structural rela-
tionships among molecules in a hierarchical manner. Furthermore, 

Qemistree coupled the chemical tree to sample metadata, revealing 
distinct chemical classes expected for each sample type. Branches 
representing acyl-carnitines were exclusively found in animal prod-
ucts (Fig. 3a). In contrast, honey, although categorized as an ani-
mal product, shared most of its chemical space with plant products, 
reflective of the plant nectar and pollen-based diet of honey bees. 
We observed a clade of flavonoids in both plant products and honey 
(Fig. 3 and Extended Data Fig. 8), but no other animal-based foods.

While it is expected that a complex food such as blueberry kefir 
contains molecules from blueberries, dairy, bacteria, and yeast we 
can now visualize how individual ingredients and food prepara-
tion contribute to the chemical composition of complex foods. We 
noted that metabolite signatures that stem directly from particular 
ingredients, such as phosphoethanolamine from eggs, are present in 
scrambled egg (Fig. 4b), but not in the other two foods highlighted 
(Fig. 4a,c). We can also observe the addition of ingredients in foods 
that were not listed as present in the initial set of ingredients. We 
were able to retrieve that there is black pepper in the scrambled egg 
with chorizo and orange chicken, but that this signal is absent from 
the blueberry kefir (Extended Data Fig. 9).

Discussion
We show that our tree-based approach coherently captures chemi-
cal ontologies and relationships among molecules and samples 
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in various publicly available datasets. Qemistree depends on rep-
resenting chemical features as molecular fingerprints, and does 
share limitations with the underlying fingerprint prediction tool 
CSI:FingerID. For example, fingerprint prediction depends on the 
quality and coverage of MS/MS spectral databases available for 
training the predictive models, and these will improve as databases 
are enriched with more compound classes. Nevertheless, the use of 
CSI:FingerID-predicted molecular fingerprints is highly advanta-
geous. While annotations from spectral matches may be more accu-
rate, their coverage is too low to adequately summarize the chemical 
content of complex samples. Qemistree is also applicable in negative 
ionization mode; however, fewer molecular fingerprints can be con-
fidently predicted due to fewer publicly available reference spectra, 
resulting in less-extensive trees.

A key contribution of this work is to introduce the concept 
of building chemical hierarchies that can be used to leverage 
phylogeny-based tools (which have been highly advantageous for 
DNA sequencing analysis), for metabolomics data exploration. 
Hierarchical relationships have provided a powerful framework to 
understand the relatedness of organisms. These techniques form a 

cornerstone for the interpretation of genomics data with phyloge-
netics and phylogenomics, and even taxonomy. The suite of tools 
and algorithms that have been developed over the past few decades 
in these fields, which use hierarchical structures, potentially have 
general relevance to the investigation of MS data. Using Qemistree 
we can begin to explore the applicability of other methods, such 
as Faith’s Phylogenetic Diversity7 to understand within-sample 
complexity, or phylogenetic-independent contrasts32 with a 
metabolomics-inspired topology as these representations enter  
normal use.

We showed that a hierarchical representation could be used to 
infer chemically informed relationships between samples (Fig. 2). 
While we used molecular fingerprints predicted by CSI:FingerID 
to build chemical hierarchies here, this approach can be extended 
to incorporate other strategies to compare molecules for build-
ing chemical trees. For example, chemical relationships based on 
assigned chemical classes23, spectral motifs27, shared biosynthetic 
origin33 or other structural comparison methods34 could also be 
used as a basis for such a tree. These approaches will result in differ-
ent tree topologies capturing complementary chemical information 
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scrambled egg with chorizo (N = 126 samples). Top, the inner rings show the relative abundance of each compound across simple animal products, plant 

products, fungi and algae (other) and the seven complex foods (black). In the outer rings, the absolute abundances of compounds in blueberry kefir (a), 
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compound subtrees for representative compounds from each meal are highlighted. Note that untargeted MS is blind to stereochemistry and oftentimes 

regiochemistry (for example, double bonds in a fatty acid); the structures shown are based on the spectral annotation of the reference library. This is equal 

to level 2 or 3 according to the 2007 metabolomics standards initiative40.
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for subsequent analyses. Ultimately, a broader benchmarking effort 
would be needed to understand when each approach should be 
used, similar to benchmarking efforts in the environmental DNA 
sequencing community35.

In addition to providing a framework for chemically informed 
sample comparisons within a dataset, Qemistree also provides a 
framework for comparing independently processed datasets. In 
the Qemistree workflow, we represent chemical features as their 
molecular fingerprints; this representation is largely independent 
of the technical variation such as chromatography shifts across MS 
experiments. Therefore, the chemical content of samples from dif-
ferent experiments can be compared by using a fingerprint-based 
representation without the need to repeat feature detection and 
feature alignment. This workflow is similar to how large-scale 
sample comparisons are made possible in sequence-based analy-
ses36, where datasets are processed upfront, and rapidly coanalyzed 
according to the users’ requirements. Extending these applications 
to MS data would allow metabolomics investigations of the scale 
of the Earth Microbiome Project31 and the American Gut Project37 
to find global biochemical patterns. However, there is a need to 
benchmark experimental protocol comparability, as well as estab-
lish community-adopted standards that facilitate the global reuse of 
data. While these problems are substantial, we have seen examples 
of communities coming together to solve these issues for systematic 
and global data comparability31,38,39.

In summary, we introduce a new tree-based approach for com-
puting and representing chemical features detected in tandem 
MS-based untargeted metabolomics studies. A hierarchy enables 
us to leverage existing tree-based tools, and can be augmented 
with structural and environmental annotations, greatly facilitating 
analysis and interpretation. We anticipate that Qemistree, as a data 
organization and comparison strategy, will be broadly applicable 
across fields that perform global chemical analysis, from medicine 
to environmental microbiology to food science and well beyond the 
examples shown here.
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Methods
Qemistree algorithm. The Qemistree workflow uses MS1-based feature 
tables and MS1, MS2 fragment ion information (MGF file format) as inputs 
(Extended Data Fig. 1). These inputs can be generated by processing untargeted 
MS data using MZmine17 following the feature-based molecular networking 
method18 (an example batch file that can be used to perform feature detection 
and generate the inputs for Qemistree can be found at the accession number 
MSV000085226). The files exported from MZmine with the Export/Submit to 
GNPS and SIRIUS Export module, and are then imported into QIIME2 (ref. 25) as 
the following semantic types: FeatureTable(Frequency) (for the feature table) and 
MassSpectrometryFeatures (for the ion information).

#PREPROCESSING:

Use mzXML files from the instrument
Perform feature detection using MZmine2
 Export sirius MGF and feature table (row m/z, row ID, feature area under the 
curve per sample)
Convert the feature table to FeatureTable[Frequency] for QIIME2
Create a FeatureData[Molecules] file for QIIME2 using ‘row ID’ and ‘row m/z’
Import the MGF file as MassSpectrometryFeatures for QIIME2

We use SIRIUS (v.4.0.1), ZODIAC41 and CSI:FingerID to predict 
molecular substructures within MS features in the MGF files imported as 
MassSpectrometryFeatures. SIRIUS computes fragmentation trees for each 
molecular formula candidate of a feature (using the PubChem database by default) 
and ranks these by score. SIRIUS uses MS1 spectrum in the MGF file to determine 
the candidate ion adduct(s) to be used for the fragmentation tree computation 
of each feature. ZODIAC takes the top SIRIUS candidates as input and reranks 
molecular formula candidates considering reciprocal compound similarities in 
the dataset to increase correct molecular formula assignments. Subsequently, 
CSI:FingerID predicts molecular fingerprints for each feature based on the 
molecular formula with the highest ZODIAC score.

Note that all spectra provided to the Qemistree pipeline do not necessarily 
produce a fingerprint. SIRIUS does not compute fragmentation trees for multiply 
charged compounds and CSI:FingerID does not predict molecular fingerprints 
from spectra with fewer than three explained peaks. To ensure that high confidence 
molecular formulas are used in Qemistree, we only consider small molecules (m/z 
<600 Da) with a ZODIAC score above 0.98 (ref. 41).

#SUBSTRUCTURE PREDICTION:

For each feature with MS2 spectra in the MGF file:

•	 Compute fragmentation trees (using SIRIUS)
•	 Re-rank molecular formula candidates on the complete dataset  

(using ZODIAC)
•	 Predict fingerprints based on best molecular formula assignment  

(using CSI:FingerID)

A dataset M (that is, a set of exports from MZmine) is a matrix of size n 
rows by l columns. Each row represents a molecule (m1, m2, …, mn), and each 
column represents a molecular substructure feature. As such, each molecule mi is 
composed of a vector (with length l) of predicted probability values (one for each 
SIRIUS-generated molecular substructure). We remove from our analyses the 
features without a corresponding vector mi. In our tests, we have observed that for 
each dataset 10–15% of the input features are discarded.

For indexing purposes, we relabel each molecule mi with the MD5-checksum 
of the predicted fingerprint vector. The motivation to apply the MD5 hashing 
function is to assign a unique identifier to each feature, which is particularly 
useful when comparing datasets independently processed using MZmine. If two 
distinct molecules (i, j) have identical checksums, that is md5(mi) = md5(mj), then 
we aggregate those two vectors such that all rows in M are unique. This operation 
is also propagated down to the table of molecular intensities, in that context 
intensities are added together.

To coanalyze multiple datasets M1, M2, …, Mk, we combine the matrices into 
a new dataset M*. For any two repeated molecules mi and mj in M* we merge their 
intensities and values as described before. Last, we create a hierarchy of chemical 
relationships T using a distance matrix D measuring the distance between all pairs 
of molecules in M*. For qualitative substructure comparisons, we use the Jaccard 
distance metric and a threshold of 0.5. Otherwise, we use the Euclidean distance 
with the original probability vectors. By default, our implementation relies on the 
Euclidean distance so that a threshold value is not needed. In practice, we noted 
different metrics at this stage have only small effects on the downstream analyses. 
With D, we cluster the molecules in a hierarchical fashion using the unweighted 
pair group method with arithmetic mean. The tips in the resulting tree T have a 
one-to-one correspondence with all the molecules mi in M*.

#HIERARCHY CREATION (meta-analysis)

For each fingerprint, feature table in DATASETS:

•	 Collate fingerprints into a matrix of features by fingerprints
•	 Match the tuple to have the exact same features and same order
•	 Merge all the fingerprints and feature tables

•	 (use MD5 hash of fingerprint vectors to merge identical fingerprints)

Compute a distance matrix between fingerprints

•	 If the probability vectors are binarized use a qualitative metric (Jaccard)  
otherwise use a quantitative metric (Euclidean)

•	 Build a hierarchical tree based on the distance matrix

Qemistree analysis can be performed either through a command-line interface 
using q2-qemistree qiime2 plugin (https://github.com/biocore/q2-qemistree) or as a 
web-based workflow on GNPS (https://ccms-ucsd.github.io/GNPSDocumentation/
qemistree/). We have created a dashboard at https://qemistree.ucsd.edu for GNPS 
users to interactively explore Qemistree tree visualization. It requires the Qemistree 
task ID to import Qemistree results from GNPS, and allows users to modify the 
chemical tree visualization by changing parameters such as filtering features based 
on ClassyFire taxonomy level, label of the tips and sample metadata column for 
plotting abundance bar plots. We provide step-by-step instructions on how to use 
this dashboard at https://ccms-ucsd.github.io/GNPSDocumentation/qemistree/.

We note that molecular similarity profiling, as represented here, may 
underemphasize the large biological effects of small differences among molecules (for 
instance, a methyl group can have a large impact on the activity of a drug, but will 
have a small impact on the Qemistree profile). Whether to emphasize or attenuate 
small differences among related features is an ongoing discussion in other related 
fields, such as DNA sequencing, and the best approach depends on application42.

Qemistree leverages CSI:FingerID to increase chemical annotations in MS data 
(Extended Data Table 2). CSI:FingerID has been shown to outperform all other in 
silico methods for molecular formula identification in blind critical assessment of 
small molecule identification contests22,43. Representing molecules as CSI:FingerID 
fingerprints allows us to query rich structural databases (for example, >100 million 
compounds in PubChem) instead of spectral libraries that are sparser (~160,000 
reference spectra only covering tens of thousands of compounds).

Using Qemistree, we collate GNPS spectral library matches and in silico 
predictions from CSI:FingerID and run ClassyFire23 to assign a five-level  
chemical taxonomy (kingdom, superclass, class, subclass and direct parent) to 
all molecules annotated via spectral library matching and in silico prediction 
(Extended Data Table 3).

Note that we have developed the infrastructure such that when users 
first run ClassyFire through Qemistree, they get taxonomic assignments for 
all the structures that have previously been classified by ClassyFire and are 
retrievable by InchiKey through a GNPS API service (https://ccms-ucsd.github.
io/GNPSDocumentation/api/). The remaining structures are queued on the 
ClassyFire server for automatic and continuous taxonomy assignment. We provide 
users with a table of structures that were unclassified at the time of query; this can 
be used to retrieve additional taxonomic assignments using the Qemistree module 
get-classyfire-taxonomy downstream of the initial query (https://github.com/
biocore/q2-qemistree). As more and more classifications are recorded on GNPS, 
the users can retrieve more taxonomic assignments using Qemistree.

Evaluation dataset. Sample preparation and extraction. Four samples were used in the 
gradient benchmarking dataset: (1) the ‘serum’ sample consists of the NIST SRM 1950 
reference sample made of human serum spiked with compounds44, (2) Two human 
fecal samples from the American Gut Project37 obtained from a single male individual 
with a 35-d interval (Sample fecal-1, 10 November 2013, and fecal-2, 14 December 
2013) and (3) the ‘tomato’ seedling sample (Solanum lycopersicum plant) was prepared 
using 3-weeks post-germination specimens (fresh whole seedlings were used). 
Note that the participant had stool samples collected by consent under the Human 
Research Protection Program (HRPP) 150275 protocol (Evaluating the Human 
Microbiome). The protocol was approved by the HRPP of the University of California, 
San Diego. Written informed consent obtained from the patient concerning 
dissemination and scientific publication of the results is also included in the approved 
protocols. The NIST SRM 1950 sample (1 ml), two fecal samples (210 mg of fresh 
material each) and the tomato seedlings (800 mg of fresh material) were dissolved in 
1 ml of 7:3 methanol:water in a 1-ml polypropylene round-bottom tube (QIAGEN) 
and homogenized in a tissue lyser (Tissue Lyser II, Qiagen) at 25 Hz for 5 min. The 
tubes were then centrifuged at 15,000 r.p.m. for 15 min, and 600 µl of the supernatant 
was collected and loaded on solid-phase extraction cartridges (Oasis HLB, Waters) 
made of hydrophilic-lipophilic balance stationary phase (30 mg and 30 µm particle 
size), that were first activated with 100% methanol and 100% water (1 ml each). After 
loading the supernatants on the cartridges, washing elution was carried out with 95:5 
methanol:water (1 ml), and the samples were eluted with 7:3 methanol:water (2 ml), 
followed by 100% methanol (1 ml). The samples were dried down with a vacuum 
concentrator (Centrivap, Labconco) and resuspended in 2.5 ml of 7:3 methanol:water 
containing 0.5 µM of amitriptyline as an internal standard. Samples were prepared 
by mixing the four different samples in various proportions. The resulting extracts 
were analyzed by MS along with binary, and quaternary mixtures of these samples in 
different proportions (Extended Data Table 3). For example, the serum and tomato 
samples were mixed in the following ratios: 100:0, 75:25, 50:50, 25:75 and 0:100.

LC–MS experiments. Samples were analyzed using ultra high-performance liquid 
chromatography (Vanquish, Thermo Scientific) coupled to a quadrupole-Orbitrap 
mass spectrometer (Q Exactive, Thermo Scientific). The quadrupole-Orbitrap 
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mass spectrometer (Q Exactive, Thermo Scientific) was fitted with an electrospray 
source (HESI-II) operating in positive ionization mode. The source used the 
following parameters: spray voltage, +3,500 V; heater temperature, 437.5 °C; 
capillary temperature, 268.75 °C; S-lens RF, 50 arbitrary units (a.u.); sheath gas 
flow rate, 52.5 a.u. and auxiliary gas flow rate, 13.75 a.u. The samples were acquired 
in nontargeted MS2 acquisition mode, with up to four MS2 scans of the most 
abundant ions per MS1 scan. The spectra were recorded from 0.48 to 17 min. The 
following parameters were used for full MS scan: resolution (35,000), Automatic 
Gain Control target (1.0 × 106), maximum injection time (125 ms) and scan range 
(150–1,500 m/z). For the data-dependent in MS2, the following parameters were  
used: resolution (17,500), AGC target (2.5 × 105), maximum injection time (125 ms), 
loop count (4), isolation window (1.5 m/z) fixed first mass (70 m/z) (70–1,500 m/z)  
and up to four MS/MS scans of the most abundant ions per duty cycle. 
Higher-energy collision induced dissociation was performed with a normalized 
collision energy of 30 (20, 35, 50). The data-dependent settings were set as follows: 
minimum AGC (1.25 × 104 (intensity threshold 1.0 × 105)), apex trigger 3 to 15 s, 
charge exclusion 3–8 and >8, exclude isotopes (on), dynamic exclusion (14.0 s).

Two different chromatographic conditions were used for the mass spectrometer 
(named C18, C18-RTshift). In each case, a Phenomenex Kinetex C18 1.7-µm column 
(100 A) 100 × 2.1 was used. The column was equipped with a C18 guard cartridge 
(Phenomenex). The mobile phases consisted of A (100% water + 0.1% formic 
acid) and B (100% acetonitrile + 0.1% formic acid), and the flow rate was set to 
500 µl min−1 throughout the experiment, and the column maintained at 40 °C. The 
chromatographic elution method was set as follows. For the C18: 0–0.25 min, 20% 
B; 0.25–4 min, 50% B; 4–15 min, 100% B; 15–15.90 min, 100% B; 16–18 min, 20% 
B. For the C18-RTshift: 0–0.25 min, 20% B; 0.25–4 min, 50% B; 4–13 min, 100% B; 
15–15.90 min, 100% B and 16–18 min, 20% B. Each sample was analyzed in triplicate, 
and the injection sequence was randomized. A ‘QC mix’ made of the four samples 
was used to optimize the experiment parameters and injected them periodically 
throughout the sequence. No carry over was observed. Successful injections had a 
relative standard deviation of no more than 15% for replicates and QC mix samples, 
and the retention time deviation for the internal standards (amitriptyline m/z 278.190 
and 3.57 min) was observed below 1 s for replicates and QC (quality control) mix, and 
not more than 2–3 s for replicates and QC mix samples (see feature m/z 485.366 at 
11.0 min). For most ions shifts of 1–2 min are observed. The difference between  
LC–MS/MS profiles for a pooled sample analyzed in the chromatographic conditions 
C18 and C18-RTshift are presented as 2D maps in Extended Data Figs. 2 and 3.

MS data processing. Thermo MS (.RAW) were converted to m/z extensible markup 
language (mzML)45 in centroid mode using MSConvert ProteoWizard46 (release 
201812). The mzML files were processed with MZmine toolbox17 (v.2.38) on 
Ubuntu 18.04 LTS 64-bits workstation (intel Xeon 5E-2637, 3.5 GHz, eight cores, 
64 Gb of RAM) following the feature-based molecular networking method18.

Global FoodOmics dataset. Sample preparation and extraction. Samples were 
collected, extracted and MS data were acquired as a part of the Global FoodOmics 
project according to the sampling and data acquisition protocols described 
in Gauglitz et al.47. Briefly, 126 food samples were selected from the Global 
FoodOmics dataset. One hundred and nineteen simple food samples (simple in 
contrast to complex and defined as a single-ingredient food) were selected to cover 
a broad spectrum of fruits, vegetables, meat and fungi. Each food was represented 
in at least triplicate in the data subset. Additionally, seven complex samples were 
selected that contained simple foods from the simple food subset in their ingredient 
lists. The complex foods were from two separate meals of orange chicken, a cooked 
cucumber and the sauce from a meal (schmorgurken; in a tomato and sour cream 
sauce), sour cream, blueberry kefir and scrambled egg with chorizo. Sample 
metadata describes the food samples based on a food hierarchy beginning with 
plant versus animal versus fungus (sample_type_group1) and increasing in detail 
down to persian cucumber versus cherry tomato and so on (sample_type_group6).

Briefly, samples were extracted in 95% LC–MS grade ethanol; 5% LC–MS grade 
water. Samples were analyzed using the same LC–MS/MS setup and software as 
described above for the maXis II QTOF mass spectrometer (Bruker Daltonics), 
using a Phenomenex Kinetex C18 1.7 µm (100 A) 100 × 2.1 column equipped with 
a guard cartridge (Phenomenex). The instrument tuning and internal calibrant 
remained the same as described above. MS spectra were acquired in a positive 
ion mode in the range m/z 50–1,500. The mobile phases consisted of A (100% 
water + 0.1% formic acid) and B (100% acetonitrile + 0.1% formic acid), and 
the flow rate was set to 0.5 µl min−1 throughout the experiment and the column 
maintained at 40 °C.

MS data processing. The MS data (.d) were converted to .mzXML with lock mass 
calibration applied using CompassXport batch mode in Data Analysis v.4.4 
software (Bruker Daltonics) running on a Windows 10 PC. The MS data was 
processed with MZmine toolbox17 (v.2.38) using the parameters outlined in an 
XML batch file (see Data availability).

Multivariate comparisons. To evaluate the benefits of using a tree for multivariate 
analysis, we generated pairwise sample distances using Bray–Curtis29 (agnostic 
of chemical relationships) and Weighted UniFrac9 (chemical relationship 

tree-informed). Both of these metrics compare samples quantitatively; that is, using 
the abundances of each feature. Notably, UniFrac weights the distances based on 
the shared branches of the tree used for computation. The distances within- and 
between-sample groupings were compared using a one-sided permutational 
ANOVA test.

Comparison to cosine-score-based clustering. We compared the clustering of samples 
using Weighted UniFrac on molecular fingerprint-based hierarchy to Bray–Curtis 
metric (which does not account for chemical relationships) and two MS/MS cosine 
similarity informed methods: CSCS distance metric28 and Weighted UniFrac on 
MS/MS cosine-score-based hierarchy. We include a direct comparison of the three 
approaches in performing chemically meaningful clustering of samples in the 
Global FoodOmics dataset (N = 126; Extended Data Table 4). Food ontology level 
1 corresponds to animal, plant and fungal samples in Earth Microbiome Project 
Ontology31 and levels 2 to 4 represent progressively more detailed food categories. 
We note that both cosine-based and fingerprint-based pipelines cluster sample 
groups reasonably well, with molecular fingerprint-based hierarchy leading to 
improved sample clustering in this dataset.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The MS data, metadata and methods for the evaluation dataset have been 
deposited on the GNPS/MassIVE public repository2,32 under the accession number 
MSV000083306. Source data for the figures are available as Supplementary 
Datasets 2–5. The parameters used for molecular networking are available on 
GNPS at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=efda476c72724b29
a91693a108fa5a9d. The chemical hierarchy generated by Qemistree (v.2020.1.2) 
is available on iTOL24 at https://itol.embl.de/tree/709513416494381587432576. 
The MS data, metadata and methods for Global FoodOmics dataset have been 
deposited on the GNPS/MassIVE public repository2,32 under the accession number 
MSV000085226. The parameters used for molecular networking are available on 
GNPS at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=ceb28a199d6b4f4fb
f08490d9c96d631. The chemical hierarchy generated by Qemistree (v.2020.1.2) 
is available on iTOL24 at https://itol.embl.de/tree/13711034118313741584046
018. The MS data, metadata and methods for Cheetah fecal dataset have been 
deposited on the GNPS/MassIVE public repository2,32 under the accession number 
MSV000082969. The parameters used for molecular networking are available on 
GNPS at https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=093798dffe244823941
0c3d465ef9fea.

Code availability
All source code is publicly available under BSD-2-Clause on GitHub at https://
github.com/biocore/q2-qemistree. Qemistree is also available as an advanced 
analysis workflow on GNPS at https://ccms-ucsd.github.io/GNPSDocumentation/
qemistree/. All analyses are documented in Jupyter Notebooks available at https://
github.com/knightlab-analyses/qemistree-analyses.
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Extended Data Fig. 1 | End-to-end Qemistree analysis using GNPS and QiiME2. Qemistree analysis can be performed using two required input files: 1)  

A table of molecule (or chemical feature) abundances per sample and 2) an MGF file with MS1 and MS2 ion information. These inputs can be generated 

by processing mass spectrometry files (.mzXML) through MZmine for feature detection. In Qemistree, these input files are processed through SIrIUS and 

CSI:FingerID to generate molecular fingerprints and in silico structural annotations (SMILES) per MS feature. We use the predicted molecular fingerprints 

to generate a phenetic tree of relationships between MS features based on sub-structural similarity. This tree can be visualized in iTOL for further data 

exploration. If the user inputs a sample metadata file, they can also visualize the abundances of each MS feature stratified by sample grouping of interest. 

Additionally, the Qemistree queries ClassyFire to classify the structural annotations into chemical ‘kingdom’, ‘superclass’, ‘class’, ‘subclass’ and ‘direct 

parent’. We further allow the users to input a file with MS/MS spectral library matches (optional) into the workflow such that these library matches 

(typically, 2-20% of all MS features), instead of in silico annotation, are used for ClassyFire queries whenever available. All the outputs of the Qemistree 

workflow can be analyzed further using QIIME 2 tools (such as tree-based alpha and beta diversity, mmvec: https://github.com/biocore/mmvec, songbird: 

https://github.com/biocore/songbird) or explored in Python, r etc. as needed.
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Extended Data Fig. 2 | 2D map of the LC-MS/MS data of the pooled sample for the C18 chromatographic conditions.
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Extended Data Fig. 3 | 2D map of the LC-MS/MS data of the pooled sample for the C18-rTshift chromatographic conditions.
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Extended Data Fig. 4 | Technical variation in mass-spectrometry due to chromatographic shifts. Sample (y-axis) by molecule (x-axis) heatmap of 2 fecal 

samples, tomato seedling samples, and serum samples in the evaluation dataset grouped by chromatography conditions.
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Extended Data Fig. 5 | Qemistree reduces the differences between biological replicates across mass-spectrometry runs. A comparison of distances 

between sample replicates within and across chromatography gradients when using tree-agnostic (Bray-Curtis) distances and tree-based (Weighted 

UniFrac) distances.
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Extended Data Fig. 6 | Qemistree mitigates plate-to-plate variation in fecal metabolomics study to highlight a biologically-relevant effect. a) Principal 

coordinate analysis (PCoA) of tree-agnostic distances (Bray-Curtis) colored by plate number (pseudo-F = 32.39, p = 0.001). b) PCoA of tree-informed 

distances (Weighted UniFrac) colored by plate number (pseudo-F = 15.67, p = 0.001). The same PCoA of (c) Bray-Curtis distances (pseudo-F = 33.50, 

p = 0.001) and (d) Weighted UniFrac distances (pseudo-F = 48.42, p = 0.001) colored by cheetah location which governed the diet of cheetahs. CBC: 

Cheetah Breeding Center; WD: Wildlife Discoveries.
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Extended Data Fig. 7 | Chemical taxonomy of food-derived compounds at chemical superclass level. Chemical hierarchy of compounds (tree tips) 

detected in simple food products (single ingredient foods, N = 119). Internal nodes are labeled by pie charts of the superclass level taxonomy of children 

tips. Outer ring shows the relative abundance of each compound across simple animal products, plant products, and other (fungi and algae). The chemical 

hierarchy iTOL link: https://itol.embl.de/tree/7095134164128581587333337.
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Extended Data Fig. 8 | Chemical taxonomy of food-derived compounds at chemical class level. Chemical hierarchy of compounds (tree tips) detected 

in simple food products (single ingredient foods, N = 119). Internal nodes are labeled by pie charts of the class level taxonomy of children tips. Outer ring 

shows the relative abundance of each compound across simple animal products, plant products, and other (fungi and algae). The chemical hierarchy iTOL 

link: https://itol.embl.de/tree/7095134164128581587333337.
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Extended Data Fig. 9 | Chemical hierarchy of the compounds observed in simple foods and seven complex samples. a,b,c) 2 meals of orange chicken, 

a cooked cucumber and the sauce from a meal (schmorgurken), sour cream, blueberry kefir, and egg scramble with chorizo (N = 126 samples). The 

inner ring shows the relative abundance of each compound across simple animal products, plant products, fungi and algae (other) and complex foods. 

The absolute abundances of compounds in blueberry kefir (a), scrambled eggs with chorizo (b), and orange chicken (c) (outer bars) are overlaid on the 

tree to illustrate the shared and unique chemistry of complex foods. We highlight a classifier subtree annotated as benzodioxoles, compounds found in 

black pepper (in black) that are almost exclusively detected in complex foods. Note that untargeted mass-spectrometry is blind to stereochemistry and 

oftentimes regiochemistry (for example double bonds in a fatty acid); the structures shown are based on the spectral annotation of the reference library.
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