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Chemically intuited, large-scale screening of MOFs by

machine learning techniques
Giorgos Borboudakis1,2, Taxiarchis Stergiannakos3, Maria Frysali3, Emmanuel Klontzas3, Ioannis Tsamardinos 1,2,4 and

George E. Froudakis3

A novel computational methodology for large-scale screening of MOFs is applied to gas storage with the use of machine learning

technologies. This approach is a promising trade-off between the accuracy of ab initio methods and the speed of classical

approaches, strategically combined with chemical intuition. The results demonstrate that the chemical properties of MOFs are

indeed predictable (stochastically, not deterministically) using machine learning methods and automated analysis protocols, with

the accuracy of predictions increasing with sample size. Our initial results indicate that this methodology is promising to apply not

only to gas storage in MOFs but in many other material science projects.
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INTRODUCTION

Metal–organic frameworks (MOFs) or porous coordination poly-
mers are a rapidly growing family of hybrid inorganic–organic
nanoporous materials, which belong to the category of coordina-
tion polymers.1–3 These relatively new materials consist of a three-
dimensional periodic network, constructed from molecular build-
ing blocks, such as metal clusters and organic linkers (Fig. 1). The
possible combinations of these numerous building blocks under
different topologies result is an almost unlimited number of
potential MOFs!
Since their discovery4 MOFs have attracted significant scientific

attention due to their extraordinary properties. As “skeleton”
materials, they pose very large pores and outstanding apparent
surface area. If we were able to unwrap the surface of only one
gram of these “very empty”materials, we could cover the area of a
football court! These unique characteristics of the MOFs made
them excellent candidates for catalysis and gas storage
applications.
MOFs have shown exceptional performance in gas storage and

separation. Both useful and harmful gases can be absorbed in
their pores in very large amounts. The storage of hydrogen,5

methane,6,7 carbon dioxide,8,9 ammonia,10,11 hydrogen sulfide,11,12

etc. have been intensively investigated in MOFs and many new
MOFs have been designed for that purpose.13 Some MOFs pose
today the world record value for the storage of several gases.14,15

The two most studied gases in MOFs are H2 and CO2. The
reasons are obvious: the 1st could solve the energy transferring
problem, while the 2nd is responsible for global warming. There
are several review papers presenting collections of MOFs and their
youngest brothers—covalent organic frameworks,16,17 zeolitic
imidazolate frameworks18,19 etc., with very high performance in
gas storage.
Together with the experimental work, there is also a substantial

theoretical support in the field. Theory undoubtedly plays a

significant role in the development of the field, mainly in two
ways: by explaining the experimental results20 and by leading the
experiments.21 In the literature, there are several methodologies
investigating the gas storage problem in MOFs. There are accurate
ab initio quantum chemical approaches,22 computational light
and fast classical Monte Carlo and molecular dynamics techni-
ques23 and “multi-scale” methods that try to combine both.22 All
of them address specific MOFs, either synthesized earlier, or
designed for a specific application following chemical intuition.
Lately, a completely different computational approach

appeared based on a large-scale screening of hypothetical
MOFs.24,25 This new approach firstly generates all conceivable
MOFs from a given chemical library of building blocks ending up
in thousands of combinations. Then, a low computational cost
screening is taking place using Monte Carlo classical techniques,
ending up in the most promising candidates for a specific
application.
Both general approaches have advantages and disadvantages

in investigating existing MOFs and designing novel architectures.
The 1st, that uses ab initio techniques and based in quantum
theory is very accurate and the results are in most cases
unquestionable. But unfortunately, since the computational cost
is very high (approximately a week/MOF in a typical computer) it
can be applied in very limited systems.
On the other hand, the large-scale screening with cost effective

computational methods can monitor rapidly any MOF (approxi-
mately a minute/MOF in a typical computer) and thus thousands
can be evaluated in the same period of time. But, as the authors
state, “chemical intuition is absence and low-level computations
can lead to unreal results or miss important species in the
screening” .24

The ultimate computational technique should have the
accuracy of the ab initio methods and the speed of the classical
approaches, strategically combined with the chemical intuition of
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the researcher. But is this possible? “Can the computer learn
chemistry?”
In this communication, we go one step further and we

introduce “machine learning” for predicting gas adsorption in
MOFs. Machine Learning is not new in the scientific community.
Machine learning is the subfield of artificial intelligence that
studies methods that can automatically learn interesting patterns
from data. It overlaps with statistics in scope. The latter is a sub-
branch of mathematics and so it traditionally favors problems with
mathematical analytic solutions and arguably focuses less on
automation and computation. The fields of statistics, machine
learning, pattern recognition, and data mining are gradually
merging into the emerging field of data science. Machine learning
techniques have been successfully applied in a variety of domains.
Examples of such applications include: recommender systems,26

automatic speech recognition,27 real-time face detection,28

identification of protein-protein interactions in yeast,29 peptide
identification from tandem mass spectra,30 prediction of brain
maturity from fMRI data,31 prediction of diffuse large B-cell
lymphoma32 and hepatocellular carcinoma33 from gene expres-
sion data.

RESULTS

In our study, we carefully collected from the literature 100 MOFs
that have been synthesized in different laboratories around the
world and their CO2 and H2 storage properties were accurately
measured in specific thermodynamic conditions. For the H2 we
gather data from different MOFs measured at 1 bar, 77 K. For the
CO2 a small pressure and temperature range (0.99–1.20 bar in
293–313 K) was unavoidable since the 100 selected experiments
were not in identical thermodynamic conditions. Nevertheless, we
believe this small deviation will not affect the findings of our
investigation, which is the testing of a new methodology based in
machine learning.
With those we construct a small database (also called “dataset”)

containing their key structural parameters like organic linker,
metal cluster and functional groups. Across all selected MOFs, 62

organic linkers, 18 metal clusters and 12 functional groups were
identified. Each such structural property can be encoded as a
binary parameter (also called variable or feature), indicating its
presence or absence in a specific MOF. A matrix representation
was used to represent each dataset, with one row for each MOF
(100 in total) and one column for each structural feature (92 in
total). The datasets are provided as Supplementary Material.
A Machine Learning algorithm then learns a function (also

called “model”) f that approximates the storage properties of
MOFs given their structural parameters (Fig. 2). The hope is that
the model f can generalize and accurately predict an approximate
value for a new material, never seen before, represented with the
values of its structural parameters. If the predicted property for the
new material is not in the desired level, there is no point in
synthesizing the material and vice-versa. Thus, an accurate
predictive model can guide the synthesis of new materials and
experimentation.
For our computational experiments, we used a customized

version of the Just Add Data v0.6 tool (JAD Bio; Gnosis Data
Analysis; www.gnosisda.gr). JAD has also been recently success-
fully applied to the prediction of proteins to periplasmic or
cytoplasmic given their mature amino acid sequence.34 Though, a
totally different problem, the application shows the ability of the
automated pipeline to learn patterns from data that generalize to
new data. JAD employs a fully-automated machine learning
pipeline for producing a model from a dataset and an estimate of
its predictive performance on new, unseen MOFs. The latter is
especially important, as the main goal is to create a model that is
able to perform well on new data, rather than the data used for
producing it.
We performed a computational experiment to validate the

predictive performance estimation of the model provided by JAD
on new MOFs. For each original dataset, sub-samples (i.e., subsets
of MOFs) were randomly selected (without replacement) of size
40, 50, …, 100%, and a model was learned using JAD from each
such sub-dataset. In other words, we simulate the scenario where
only a portion of the original data is available, the tool is run to
learn a predictive model on them, and subsequently more data is

Fig. 1 Metal–Organic Frameworks (MOFs). The combination of a variety of available inorganic and organic Building Blocks (BB) which are
suitable with a selected framework topology can lead to a huge number of designed porous MOFs
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collected prospectively upon which the predictive performance of
the model is estimated. JAD outputs a predictive performance
estimation derived from its input dataset. This is compared against
the remaining data held out to obtain a second performance
estimation, simulating the application of the predictive models on
new MOFs. The above was repeated 100 times for each sub-
sample size. This experiment is used only as a verification of the
whole procedure and the estimation of its variance.

DISCUSSION

It can be clearly seen in Fig. 3 that the error decreases with
increased sample size. For both datasets, the mean absolute error
on the test set is lower than that estimated on the training set,
suggesting that the data analysis pipeline used by JAD does not
provide optimistic estimations; on the contrary, it provides slightly
conservative performance estimates. This allows us to have
confidence in the performance estimation provided by the tool
of the final models trained on the full dataset. Note that, even

when 100% of the MOFs are used by JAD there is still some
variance on the estimated error, which is the reason why all
experiments were repeated 100 times. The (conservative)
estimated mean absolute error of the models (when 100% of

the available sample is used for training) is 4.07 g _CO2/g_MOF
and 0.47 g_H2/g_MOF.
Internally, in order to provide with a conservative predictive

performance estimate JAD also (repeatedly) holds out some of the
input data and evaluates predictions of the model learnt on the

remaining data on the held out set. These are called “out-of-
sample” predictions. JAD also outputs the out-of-sample predic-
tions on the input MOFs (see “Methods” for a detailed description).
Figure 4 shows the average predicted values over 100 repeated

executions of JAD on the complete set of MOFs. There is a clear
positive relationship between the predicted and actual values
(Pearson correlation of 0.68 and 0.61 for CO2 and H2, respectively),
although the ones on the lower and upper ranges are over-

estimated and underestimated respectively. It is expected that

Fig. 2 Schematic representation of our machine learning algorithm

Fig. 3 Estimated mean absolute error as a function of the sample-size percentage used for training the model. The average estimations over
100 repetitions of the computational experiment and the 2.5th and 97.5th percentiles of the performance estimation by JAD are shown. In
addition, the average of the estimation on the hold-out set is shown too. The metric shown is the Mean Absolute Error. Results for both gases
CO2 and H2 are shown in each column, respectively. Values are grams of absorbed gas per grams of material
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predictions would further improve if more MOFs were used for
training the models.
To gauge the practical significance of the results we check the

accuracy of the model in filtering in practically useful and
promising-to-synthesize MOFs. Specifically, we use the model to
select the MOFs that are above a given threshold t, which is
deemed of practical significance. We then measure how many
predictions are indeed above the threshold. We used all
predictions of JAD using the complete datasets and across all
100 repetitions. The results are shown in Table 1. The thresholds
have been pre-selected and not optimized for performance
through repeated trials. For example, for threshold 16 (gr_CO2/
gr_MOF) for a researcher employing the model to synthesize a
MOF with predicted CO2 above the threshold would expect 86%
chance that the MOF actually exhibits a CO2 retention above 16
(gr_CO2/gr_MOF). In contrast, if the model is not employed for
predictions, random guessing has a chance of about 21% to
synthesize high retention MOFs.
Overall, the results demonstrate that:
(a) the chemical properties of MOFs are predictable (stochas-

tically, not deterministically)
(b) the accuracy of predictions increases with sample size
(c) modern machine learning algorithms and automated

predictive analytics pipelines can learn predictive models that
generalize to unseen MOFs, and guide experiments in material
discovery by predicting properties of new materials.

Limitations

Despite the promising results, both the theory and the scope of
the computational experiments have limitations that need to be

considered. First, we note that the performance estimation is
correct when employed on new MOFs coming from the same
statistical distribution as the MOFs employed during training. The
collection of MOFs used for training is a selection from a
“universe” of possible MOFs. If new MOFs are selected for testing
with a different probability, the performance of predictions may
increase or decrease.
Another limitation of the approach is that the models cannot be

expected to generalize to unseen linkers or metals. This is a
restriction of the data representation, rather than machine
learning in general. If for example, the representation of a MOF
included not just the presence or absence of a linker or metal, but
in a finer detail, chemical properties of the linker or metal, then
potentially a model could learn to predict gas storage in new
MOFs employing new linkers not seen in the training test.

METHODS

The problem that we study, that is, to predict the gas adsorption properties
of MOFs given their structural properties, is called “supervised” learning in
the field of machine learning. In “supervised learning”, the computer learns
from labeled historical examples where the outcome is known, to
generalize and make predictions on future data where the outcome is
unknown.
Just Add Data (JAD Bio; Gnosis Data Analysis PC; www.gnosisda.com) is

an automated tool that produces a supervised machine learning model
and an estimate of its predictive performance. For regression problems
(i.e., when the outcome is a continuous value, like CO2 and H2 adsorption),
JAD employs state-of-the-art machine learning algorithms, such as
“random forest regression” (RF),35 “support vector regression” (SVR)36

using both polynomial and Gaussian kernels and “ridge linear regression”37

although the list is continuously being enriched. In the computational

Table 1. Predicting MOFs with high gas adsorption

CO2 Dataset H2 Dataset

Cutoff threshold t Correct predictions Random guessing Cutoff threshold t Correct predictions Random guessing

(gr_CO2/gr_MOF) (gr_H2/gr_MOF)

16 85.7% 21.6% 1.6 80.4% 45.9%

18 66.8% 18.6% 1.8 77.7% 32.7%

20 46.7% 13.7% 2.0 46.7% 23.5%

Cutoff thresholds were used to classify MOFs into ones with high or low gas adsorption ability. Correct predictions using machine learning models correspond

to correctly predicted values at least as large as t

Fig. 4 Predicted gas adsorption values by JAD for each MOF. Each point is the average predicted value over 100 executions of JAD on the
complete sets of MOFs. Predicted values are obtained on hold-out data, and not on MOFs used for training the models. The red curve shows
the smoothed predictions. Values are grams of absorbed gas per grams of material
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experiments, out of 100 repetitions on the full set of MOFs, RF and ridge
regression were selected two times each and SVR 96 times for the H2 data,
while for the CO2 data only SVR models were selected. This happens due to
the random split of the data in the cross-validation procedure. Overall
however, the results are fairly robust.
Recently it has been shown experimentally on a variety of problems that

random forests and support vector machines outperform other algorithms
on average,38 and thus these were deemed sufficient choices for the
moment. We note however that the best algorithm depends on the
problem (see the no free lunch theorem for machine learning,39 and thus
there may be better suited algorithms for the problems considered in this
work. A high-level overview of the pipeline used by JAD is shown in Fig. 5.
A detailed description of the pipeline follows.
All those algorithms require the user to set a number of parameters

(called “hyper-parameters” in this context) that determine their behavior,
and whose optimal values are problem-dependent. Results can greatly

vary depending on correctly tuning the values of the hyper-parameters.
The hyper-parameters are depicted as sliders in Fig. 5. Their optimal values
cannot be found analytically; their values must be found by trial-and-error.
JAD uses the statistical properties of the input data (such as the number of
training examples and number of features) to determine a set of hyper-
parameter combinations (called “configuration” hereafter) to try. In order
to find the best algorithm and hyper-parameter configuration and to learn
a final model, JAD uses the “K-fold cross-validation protocol”,40 described
next.
The K-fold cross-validation protocol splits the data into K non-

overlapping approximately equal-sized sets (called “folds”) of MOFs. In
this work, we used K = 5. Each of them is held-out for testing purposes
and the rest are used for training. It proceeds by keeping each fold out
once, training models using all configurations on the remaining K-1 folds,
and estimating their performance on the held-out fold. The held-out test
sets are used to simulate the application of the models on new MOFs.

Fig. 5 Schematic representation of the analysis pipeline employed by JAD. Based on the type of data and its size, the tool determines a set of
combinations of tuning hyper-parameter values to try, called configurations. Hyper-parameters are depicted as tuning sliders. The data are
partitioned to K-folds and for each fold and configuration a predictive model is trained. These are evaluated on the held-out folds and the
average performance of each configuration is estimated. Based on the best configuration found a final model is produced on all data. The
estimate of the best configuration is optimistic (see ref. 44 for an explanation); the optimism is removed using a bootstrap procedure before it
is returned in a similar fashion as in ref. 44
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In the end, K performance estimates are computed for each configura-
tion, and the one with the best average performance is selected as the
best configuration. A final model is produced by applying the best
configuration on the complete set of MOFs. Note that, the predictions
obtained for each MOF when in the hold-out test set can also be
returned, and can be used to get an idea of how the final model would
perform on unseen MOFs; these are the predictions used for Fig. 4 and
Table 1.
Unfortunately, the estimation of this best performing configuration is

optimistically biased because numerous models have been tried.41 The
optimistic estimation is equivalent to the problem of multiple testing in
statistics, called “the multiple induction problem in Machine Learning”.42

The problem is created because the test sets (folds) are employed multiple
times, once for each configuration tried. The optimism problem has been
noted both theoretically as well as experimentally. JAD estimates the bias
of the performance using a bootstrap method,43,44 and removes it to
return the final performance estimate.

Data availability

The 2 databases of the 100 MOFs (one for CO2 and one for H2 gases) used
for this study are available as Supplementary Material.
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