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Abstract

Two dimensional superlattices of epitaxially connected quantum dots enable size-

quantization effects to be combined with high charge carrier mobilities, an essential

prerequisite for highly performing QD devices based on charge transport. Here, we
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demonstrate that surface active additives known to restore nanocrystal stoichiometry

can trigger the formation of epitaxial superlattices of PbSe and PbS quantum dots.

More specifically, we show that both chalcogen-adding (sodium sulfide) and lead oleate

displacing (amines) additives induce small area epitaxial superlattices of PbSe quantum

dots. In the latter case, the amine basicity is a sensitive handle to tune the superlat-

tice symmetry, with strong and weak bases yielding pseudo-hexagonal or quasi-square

lattices, respectively. Through density functional theory calculations and in-situ titra-

tions monitored by nuclear magnetic resonance spectroscopy, we link this observation

to the concomitantly different coordination enthalpy and ligand displacement potency

of the amine. Next to that, an initial ≈ 10% reduction of the initial ligand density

prior to monolayer formation and addition of a mild, lead oleate displacing chemical

trigger such as aniline proved key to induce square superlattices with long range, µm2

order; an effect that is the more pronounced the larger the quantum dots. As the

approach applies to PbS quantum dots as well, we conclude that it offers a repro-

ducible and rational method for the formation of highly ordered epitaxial quantum dot

superlattices.

Colloidal nanocrystals made by highly precise synthesis methods such as hot injection

have been widely used as building blocks of self-assembled nanocrystal superlattices.1–5 Es-

pecially in the case of semiconductor nanocrystals or quantum dots (QDs), formation of

highly involved binary or ternary superstructures has been demonstrated,6–10 the symme-

try of which could be rationalized using hard sphere crystallization theory.10–13 Whereas

this provides ample possibilities to combine different nanocrystals in a single, ordered crys-

tal, only few studies have shown such an approach to result in metamaterials with new

or enhanced properties.14–16 For one thing, this is due to the use of nanocrystal build-

ing blocks capped by long, organic ligands, which inevitably leads to electrically insulating

nanocrystal solids. Therefore, opto-electronic devices such as transistors,17–19 solar cells20–23

or photodetectors,24–26 are based on disordered QD solids, where the interparticle distance

is usually decreased by exchanging the long organic ligands with shorter organic or inor-
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ganic moieties.27–31 Although this makes for QD devices with ever increasing performance,

carrier mobilities remain well below 10 cm2V−1s−1 and the approach leaves no room for any

symmetry-induced collective effects.15,32,33

Recently, it was shown that PbSe QDs can be organized into ordered two dimensional

(2D) superlattices in which all QDs are epitaxially connected to their nearest neighbors.34–38

As demonstrated by Evers et al., the strong electronic interdot coupling in such epitaxially

connected 2D quantum-dot superlattices – epitaxial superlattices in short – results in carrier

mobilities of up to 260 cm2V−1s−1 as deduced from THz conductivity measurements.39 This

increase by two orders of magnitude attests the extensive potential of epitaxial superlattices

for QD-optoelectronics. In addition, it proved possible to form epitaxial superlattices with ei-

ther a square or a hexagonal, honeycomb symmetry. Theoretical investigations have pointed

out that especially the honeycomb lattices feature electronic minibands with a unique struc-

ture, including a Dirac point in the centre of the miniband formed by the lowest unoccupied

states of the connected QDs.32,40,41

Until now, the formation of 2D epitaxially connected QD superlattices has involved a

meticulous procedure, where dropcasting QDs on a liquid ethylene glycol subphase results

in epitaxial superlattices only in the case of specifically synthesized and purified PbSe QDs.

Lacking an experimental rationale, such an approach seems prone to reproducibility and

generalization issues that will slow down research on the properties and the eventual uti-

lization of epitaxial superlattices. The development of more targeted formation protocols is

bound to follow from an in-depth understanding of the surface chemistry of the nanocrys-

tals to be connected. Most relevant in this respect is the finding that PbS and PbSe QDs

synthesized using hot injection schemes tend to be cation rich, stabilized by X-type ligands

such as oleates or hydroxides.45–47 Since such surface termination precludes the formation

of epitaxial connections between neighboring nanocrystals, restoring stoichiometry seems a

key step to achieve control over epitaxial superlattices formation. A few studies on PbS

and CdSe QDs point in this direction. Both for PbS and CdSe QDs, initially separate QDs
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formed epitaxial connections after exposure to ammonium sulfide.42 In addition, epitaxially

connected patches of PbS QDs with local square ordering could be formed by treatment with

mono- and multidendate amines or by adjusting the counterion of halide salts.43,44 Although

promising, the resulting structures only show local connectivity and the methods do not

yield dense superlattices. This being the case, there remains a large gap between locally

controlling the formation of epitaxial connections and the rational fabrication of large scale,

2D superlattices usable for applications.

Here, we build on the hypothesis that epitaxial interdot connections can only form be-

tween neighboring QDs with mutually exposed stoichiometric surfaces, which allows us to

develop chemical triggers that initiate epitaxial superlattice formation. In particular, we

show that monolayers of oleate-capped PbSe QDs on ethylene glycol can be turned into

epitaxial superlattices by addition of sodium sulfide or butylamine, two additives known for

inducing a sulfide for oleate exchange or a lead oleate displacement, respectively.27,48 Focus-

ing on amine addition, we find that less basic additives such as pyridine or aniline markedly

promote the formation of cubic superstructures, where long range order can be imposed

by a selective stripping of the lead oleate ligands prior to the initial monolayer formation.

We link these observations to aniline and pyridine being weaker ligand displacing agents,

as confirmed by density functional theory, and we underscore the general character of the

approach developed here by not only demonstrating the formation of epitaxially connected

PbSe superlattices, but also of PbS epitaxial superlattices by similar methods.

Results and Discussion

Chemical Triggers for Quantum-Dot Epitaxy

PbSe QDs were synthesized by a modification of a previously published approach, based

on the injection of tri-octylphosphine-selenide (TOP-Se) into a hot solution of lead oleate

under inert atmosphere. QDs made following the same recipe were used in previous stud-
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Figure 1: (a) A schematic representation of the experimental method used in this work.
After dropcasting a QD monolayer, a chemical trigger that induces epitaxial connections is
injected. This is seen visually as a contraction and darkening of the QD monolayer. (b) A
QD crystal model showing two mechanisms to meet the requirements for QD epitaxy. Na2S
removes oleate anions and adds a stoichiometric PbS layer to the PbSe core. Alternatively,
an amine removes lead oleate molecules and exposes the underlying stoichiometric PbSe
facet.

ies on epitaxial superlattices of PbSe QDs.35,43 During purification however, the QDs were

precipitated with acetonitrile instead of methanol as the non-solvent. This prevents spuri-

ous ligand stripping during work-up and ensures that QDs with a dense and intact ligand

shell were obtained.49 Superlattices were formed by spreading as synthesized PbSe QDs on

ethylene glycol at room temperature in a nitrogen-filled glovebox, where the amount of QDs

was calculated so as to yield a single PbSe monolayer. Here, use of sufficiently concentrated

QD dispersions proved key to form homogeneous monolayers covering the entire 4.9 cm2

ethylene glycol surface, see Figure 1a. Only in a second step, after evaporation of the solvent

and formation of a self-assembled layer, the chemical trigger – typically an amine or sodium

sulfide – is slowly added to the subphase. This results in a gradual change in appearance of

the QD film, which visibly darkens and contracts as shown in Figure 1a. After this process

5



Abs
 (a.u.)

220018001400
Wavelength (nm)

EG

EG + Na2S

EG + BuNH2
Abs

(a.u.)

1000800600400
Wavelength (nm)

EG
EG + Na2S

bulk PbSe

EG + BuNH2

a cb

d e

Figure 2: (a) Hexagonal, unconnected PbSe superlattice formed after spreading the QDs
on ethylene glycol. (b)-(c) Superlattices showing chemically induced epitaxy after inject-
ing Na2S (b) or butylamine (c) into the subphase. (d) First exciton peak of superlattices
formed with Na2S, butylamine or without additional reagent. (e) Same spectrum at shorter
wavelengths showing the resemblance of the superlattices with the bulk PbSe absorption
spectrum. The dashed lines indicate the zero-lines of the spectra.

– which takes about 5 minutes upon addition of, e.g., butylamine (BuNH2) – the layer can

be readily transferred to a substrate of choice via Langmuir-Schaefer or Langmuir-Blodgett

deposition.

In first instance, we tested Na2S and BuNH2 as two different model additives to chemically

trigger the formation of epitaxial connections between neighboring quantum dots. Sulfide

has been introduced before as a metal-free inorganic ligand that can transfer, for example,

CdSe nanocrystals from apolar to polar solvents such as DMSO and formamide by an oleate-

for-sulfide exchange.27,42 In combination with the excess Pb2+ at the PbSe QD surface, this

reaction leads to an additional, stoichiometric PbS layer on top of the PbSe core as shown

schematically in Figure 1b. BuNH2 on the other hand is a Lewis base that was shown to strip

entire metal carboxylate units from the surface of CdSe and PbS QDs by the formation of

an amine-metal carboxylate complex.48 As depicted in Figure 1b, this displacement reaction

removes surface lead-oleate molecules, thus exposing the underlying stoichiometric PbSe

facets.
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Absent any chemical trigger, PbSe QDs spread on ethylene glycol to form a monolayer

with local hexagonal ordering where the quantum-dot interdistance is determined by the

originally present oleate ligands, see Figure 2a. Such monolayers can be kept stable on

ethylene glycol for at least 30 minutes if µM traces of oleic acid are added to the ethylene

glycol. Otherwise, transmission electron microscopy (TEM) images show local necking after

5 minutes, yet without the macroscopic contraction and darkening of the films induced by the

addition of a chemical trigger. Bright field TEM images of the PbSe layers transferred after

addition of a chemical trigger and visible darkening and contraction of the QD layer are shown

in Figure 2b and 2c. Clearly, both Na2S (Figure 2b) and BuNH2 (Figure 2c) addition triggers

the formation of epitaxial connections between neighboring PbSe QDs to form a locally

ordered superstructure. The idea that these chemical triggers result in either chalcogen

addition or lead displacement is supported by the average QD diameter as estimated from

the TEM images shown in Figure 2a-c, which decreases by ≈ 0.3 nm after BuNH2 addition

and increases by ≈ 0.6 nm after Na2S addition (see Supporting Information S1). These

figures are in line with the minor blue shift and more pronounced red shift of the first

exciton peak after these respective treatments, see Figure 2d and Supporting Information

S1. In the case of amine addition, we further confirmed this point by elemental analysis using

TEM-based energy dispersive X-ray spectroscopy. As shown in the Supporting Information

S2, this shows that as compared to untreated films amine-treated superlattices are enriched

in Se, a finding fully in line with the idea of a (partial) removal of surface Pb atoms by

BuNH2.

As compared to the reference monolayer, the absorption spectra of the superlattices

feature an absorption maximum at around 400 nm. Such a behavior is expected for PbSe in

the absence of dielectric screening, where this maximum is related to a saddle point in the

dispersion relation of PbSe along the ∆ direction.50 In colloidal PbSe QDs, this absorption

maximum is not observed since a progressive reduction of the dielectric screening counters the

drop in absorbance of bulk PbSe at shorter wavelengths.51 The presence of this absorbance
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maximum for epitaxially connected QDs indicates that in terms of dielectric screening, such

a superlattice behaves more like a PbSe sheet than like isolated PbSe QDs in a low dielectric

host, thereby attaining physical properties in between those of a PbSe thin film and colloidal

PbSe QDs.

Amine Basicity and Local Superlattice Symmetry

Although both Na2S and BuNH2 chemically trigger the epitaxial connection of neighboring

PbSe QDs, we henceforth focus on metal carboxylate displacement agents such as amines as

chemical triggers since these offer several advantages. First, a large variety of such triggers

– typically L-type ligands – are available. Even considering amines only, they come with

a wide range of basicity constants and steric profiles as monodentate or chelating ligands.

This offers extensive possibilities for controlling the displacement reaction and thus the

superlattice formation that is absent with small inorganic anions, where the only reaction

parameter seems the concentration of sulfide or selenide anions in the subphase. Second,

we expect lead carboxylate displacement to yield more homogeneous stoichiometric surfaces

where the density of PbSe units is independent of the initial coverage by ligands and excess

lead. In the case of an oleate-for-sulfide or selenide exchange, only excess Pb2+ ions are turned

into additional PbS(e) units in the bonding crystal facet. Especially for crystal facets where

Pb-oleate is weakly bound, such as the (100) facets, this can lead to patchy facets where

incomplete Pb-oleate coverage eventually leads to vacancies in the epitaxial interconnects.

Finally, lead carboxylate displacement via L-type ligands can better exploit the expected

difference in binding energies at different crystal facets52,53 and thus further promote long

range order in the superstructures.

Figure 3 represents TEM images of epitaxial QD superlattices triggered using BuNH2

and aniline (PhNH2), two amines with considerably different basicity constants (pKb) of

3.39 and 9.42, i.e a strong and a weak base respectively.54,55 In case of BuNH2, visible

darkening of the QD monolayer takes place within 5 minutes after adding 1 mL of a 0.1 M
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Figure 3: (a) PbSe superlattice formed with BuNH2, inset: FFT of the complete image. (b)
HRTEM image showing that the superlattice in (a) is formed by a combination of epitaxial
connections along the (100) and (110) facets. (c) PbSe superlattice formed with PhNH2,
inset: FFT of the red square. (d) HRTEM image showing that with PhNH2 triggering the
epitaxial connections occur exclusively along (100) facets.

solution to the subphase. On the other hand, after adding 1 mL of a 1 M solution of PhNH2,

visible darkening is delayed and only occurs after 20-30 minutes. The concentrations we

use result from an initial optimization. As shown in the Supporting Information, Figure

S3 for BuNH2, no complete superlattice is formed at lower BuNH2 concentrations, whereas

the use of substantially higher concentrations leads to a network of apparently molten and

recrystallized QDs. For different bases, different optimal concentrations apply in order to

obtain a homogeneous, well-connected superlattice.

Comparing Figures 3a and 3c, it is clear that the different rate of superstructure formation

results in superlattices with a different symmetry. BuNH2-triggered superlattices appear in

essence as a strongly contracted duplicate of the originally hexagonal monolayer. More

precisely, the fast Fourier transform (FFT) of the entire TEM image shown in Figure 3a

(see inset) features 6 separate spots. These form the corners of a hexagon (γ = 60◦) whose

width d−1 corresponds to an interparticle distance of 5.7 ± 0.1 nm, a number matching the
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QD diameter of 5.76 nm as determined via absorption measurements. High-resolution TEM

(HRTEM) imaging shows that by using BuNH2, epitaxial connections both form via (100)

and (110) facets (see Figure 3b). The combination of connections through (100) and (110)

facets and unconnected facets accounts for the observed long-range hexagonal ordering in

the superlattice. Indeed, such an in-plane pattern cannot be formed by connecting truncated

octagons through their (100) facets only. Importantly, whereas the QDs are positioned on

the lattice points of a 2D hexagonal lattice, no hexagonal crystallographic motif can be

discerend and local necking occurs in a random fashion. We will therefore refer to this type

of structure as pseudo-hexagonal.

PhNH2-triggered superlattices on the other hand feature a patchwork of domains, that

tend much more towards local square lattices. The Fourier transform of the selected do-

main in Figure 3c, for example, yields 4 spots forming an almost square parallellogram

(γ = 85◦) whose diagonal corresponds to an interparticle distance of 5.9 ± 0.3 nm. Here,

high-resolution TEM imaging confirms that epitaxial connections exclusively form via the

(100) facets, further indicating the difference between BuNH2 and PhNH2 (Figure 3d). Im-

portantly, the same difference in superlattice symmetry is retrieved when triggering epitaxial

superlattice formation by different amines, such as pyridine (pKb = 8.8356), triethylamine

(pKb = 3.2554) and 1,3-propanediamine (pKb1 = 3.74, pKb2 = 5.3057). As shown in the

Supporting Information, Figure S4, all superlattices formed with a low pKb amine show a

pseudo-hexagonal geometry, while the superlattices formed with pyridine – a high pKb amine

– feature a more square-like geometry.

We addressed the amine-basicity-effect in more detail by quantitatively monitoring lead

oleate displacement by amines using in-situ nuclear magnetic resonance (NMR) spectroscopy.

Focusing on the resonance of the alkene protons of the oleyl chain,45 Figure 4a shows that

upon addition of BuNH2, the single broad alkene resonance recorded in the purified PbSe

QD dispersion loses intensity whereas a second, shifted and more narrow resonance develops.

Attributing the former to oleate bound to the PbSe QDs and the latter to the released lead
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Figure 4: (a) NMR spectra of a colloidal PbSe QD solution as it is exposed to increasing
amounts of butylamine. (b) The QD ligand density calculated from NMR spectra as a
function of the excess amine. (c) Coordination reaction of 1 (i) and 2 (ii) aniline molecules
with lead oleate, modelled using DFT calculation methods.

oleate complex,48,58 integration enables us to plot the density of bound oleate ligands as

a function of the amine concentration – expressed as an equivalent of the initially present

oleate – see Figure 4b. In the case of BuNH2, which we use as an example of a low pKb

amine, we find that the originally dense ligand coverage of 4.3 nm−2 drops to 3.4 nm−2 and

2.4 nm−2 upon addition of 10 and 45 BuNH2 equivalents, respectively. A similar titration

with PhNH2 on the other hand leads to considerably larger densities of remaining ligand at

comparable equivalents. Comparing both titration curves, however, a remarkable observation

is that the extent of lead oleate displacement is similar at low equivalents of BuNH2 and

PhNH2. However, whereas PhNH2-displacement levels off at equivalents of 10 or more,

BuNH2-displacement intensifies again around these equivalents. It thus appears that ligand

displacement involves Pb oleate moieties with at least two markedly different binding energies

to the PbSe QDs.

The difference in displacement potency between BuNH2 and PhNH2 is further confirmed

by considering the coordination enthalpy, which we calculated by means of density functional

theory. Depending on the reaction stoichiometry, coordination of lead oleate by BuNH2 is

more exothermic by 15 to 27 kJ/mol than coordination by PhNH2, see Table 1 and Figure 4c.

Moreover, Sandeep et al. have shown that the overall ligand displacement energy strongly
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Table 1: Reaction enthalpy of the coordination of one or two amine molecules with lead
oleate, calculated with at density functional theory (DFT) level of theory. (Energies given
in kJ/mole.)

pKb (i) ∆E (ii) ∆E
Aniline 9.42 -62.8 0 -110.2 0
Pyridine 8.83 -57.8 5.0 -94.7 15.5
Butylamine 3.39 -78.2 -15.4 -136.8 -26.6
1,3-propanediamine 3.74/5.30 -111.0 -48.2 -171.3 -61.1

depends on the Pb oleate binding site, where displacement of excess Pb oleate from the

(100) facets is by far the most exothermic.43 Following these authors, an interpretation of

the amine-titration curves is therefore that labile Pb oleate ligands adsorbed to (100) facets

are displaced first at low displacer equivalents, followed in the case of BuNH2 with the further

displacement of more strongly bound Pb oleate moieties. Additionally, upon constructing a

QD crystal model with cut-off planes similar to those seen in TEM images (see Supporting

Information, Figure S5), we find that the (100) planes account for approximately 20 % of

the total surface area, which roughly coincides with the first phase of ligand displacement in

the amine-titration curves where ≈ 13 % of ligands are displaced. I

Interestingly, during the in-situ NMR titration with both BuNH2 and PhNH2, we found

that the displacement reaction attained a steady state prior to the first NMR spectrum

being measured. This time frame, however, is considerably shorter than the 20-30 minutes

the PbSe QD superlattice takes to form upon addition of PhNH2. We thus conclude that lead

oleate displacement is not limiting the superlattice formation rate. An alternative possibility

to relate the observations that a more potent displacer results in a more rapid formation of

superlattices with a pseudo-hexagonal symmetry, while a weaker displacer triggers the slow

formation of square lattices, follows from considering the residual lead oleate left on the PbSe

QDs by the respective displacers. Comparing the pseudo-hexagonal and square lattice, one

readily sees that the more dense packing in the former makes that the remaining interparticle

space leaves less room to accommodate residual ligands. Hence, the collapse of the original

hexagonal monolayer in a dense pseudo-hexagonal superlattice is only possible if sufficient
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Figure 5: PbSe superlattices formed with BuNH2 (a) and PhNH2 (b) starting from 5.7 nm
QDs with a partial ligand shell. (c) HRTEM image of a superlattice formed with PhNH2

showing the high degree of epitaxial connections. (d) FFT of (c), the zoom-in shows that
the superlattice is oriented along the direction of the (100) facets.

ligands are displaced, not only from the easily stripped (100) facets43,52,53 but also from other

surface facets. The NMR titration indicates that this is indeed what BuNH2 does, and what

PhNH2 does not. In the case of PhNH2-triggering on the other hand, where a large fraction

of the ligands remains on the surface, the formation of a close-to-square lattice can be a way

to alleviate the large steric hindrance between the residual ligands on all but the (100) facets

upon superlattice formation. Starting from an initially hexagonally ordered PbSe monolayer,

this requires a coherent reorientation of multiple QDs, which may slows down the process

and lead to the observed patchwork of differently oriented square-lattice like regions.

Large Area Epitaxial Superlattices by Ligand Prestripping

If selective ligand stripping is essential for the formation of square-like superlattices, one

could expect the long range order in such superlattices to improve by a partial ligand dis-

placement before forming the initial QD monolayer on ethylene glycol. We therefore treated

an initial dispersion of 5.7 nm PbSe QDs with 10 equivalents of BuNH2 as ligand displacer,

an equivalence slightly beyond – as we assume – the first phase of ligand displacement from

the (100) surface. After purification, the solution was spread on ethylene glycol and either

1 mL of a 0.1 M BuNH2 solution or 1 mL of a 1 M PhNH2 solution was slowly injected. As

indicated in Figure 5a, BuNH2 addition results in a superlattice that consists of a mixture of
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Figure 6: PbSe superlattices formed with PhNH2 starting from 7.8 nm QDs with a full (a)
and a partial (b and c) ligand shell. (d) HRTEM image showing the high degree of epitaxial
connections. The white circle represents the average particle diameter found from GISAXS
measurements (7.85 nm) and illustrates the good agreement with TEM images. (e) GISAXS
pattern of the superlattice shown in (b)-(d). The top graph shows the horizontal cut at the
dashed line. The inset shows the assignment of the peaks in real space.

pseudo-hexagonal and square-like domains. However, even if square-like domains show up,

large parts of the superlattice remain hexagonally ordered. PhNH2-triggering on the other

hand result in an almost exclusively square-like superlattice, see Figure 5b. Moreover, we

find that the combined effect of a mild ligand-displacing trigger and gentle predisplacement

markedly increases the domain size. For such domains (see Figure 5c), an analysis of high-

resolution TEM images yields an average neck width of 2.5 ± 0.05 nm and an average of 3.1

± 0.08 necks per QD (see Figure S6 for histograms). This last number signifies the amount

of epitaxial connections formed with neighboring QDs, which for a square lattice is limited

to a maximum of 4 necks per QD. Furthermore, the FFT of high-resolution TEM images

not only attests the square symmetry of the lattice but also the overall coherent alignment

of the (100) facets of individual PbSe QDs over the entire superlattice (see Figure 5d).

As argued before, a square-like superlattice may be formed upon triggering superlat-
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tice formation by a mild ligand displacer as the free space created between adjacent QDs

enables steric hindrance between residual oleate ligands to be relaxed. In that case, the

larger the QDs, the more organized the square lattice could be since the increased space left

between connected QDs offers more room to reduce steric hindrance. Moreover, the shape

of PbSe QDs is known to change from quasi-spherical to truncated cubic when their size

increases, which can further promote a square-like organization. The influence of the QD

size is demonstrated in Figure 6, which represents TEM images of superlattices formed using

7.8 nm PbSe QDs. In first instance, we spread fully passivated QDs on ethylene glycol and

triggered superlattice formation by addition of 1 mL of a 1 M PhNH2 solution. As shown

in Figure 6a, this results in a polycrystalline square-lattice with domain sizes of ≈ 100 nm.

The corresponding Fourier transformed image accordingly features several rings rather than

a collection of separate spots. After an initial ligand displacement using 10 equivalents of

BuNH2, however, the same PbSe QDs form a square-like supercrystal after PhNH2-triggering

with considerably larger domain sizes, see Figure 6b. For the example shown, the Fourier

transform of the entire image is a square-like lattice of individual spots, attesting the µm2-

ordering of the superlattice (see also Figure S7). Again, high-resolution TEM images (Figure

6d) confirm the coherent, epitaxial ordering of the PbSe QDs in the square-like lattice. The

quality of the QD epitaxy in such superstructures is expressed by an average neck width of

3.5 ± 0.06 nm and an average of 3.3 ± 0.07 necks per QD (see Figure S6).

To further demonstrate the large area homogeneity of the superlattice symmetry, we

recorded a grazing incidence small angle X-ray scattering (GISAXS) pattern of a cubic PbSe

QD superlattice deposited on a Si (100) substrate (Figure 6e). By taking horizontal cuts at

the Si Yoneda position (qz,Si = 0.48nm−1), this technique provides lateral information on the

deposited superlattice structure averaged over the illuminated area of ≈ 39 mm2.59,60 The

horizontal cut reveals three scattering maxima. The primary peak appears at a qy wavevector

component of 0.80 nm−1, which we label as q0. The positions of the two other side peaks then

correspond to
√
2q0 and 2q0, as expected for the reciprocal lattice points of a cubic structure.
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a b c d

Figure 7: PbS superlattices formed with PhNH2 starting from 7.5 nm QDs with a full (a)
and a partial (b and c) ligand shell. (d) HRTEM image showing the high degree of epitaxial
connections.

We can thus index the three peaks as the {10}, {11} and {20} reflections of a square lattice

and calculate the interparticle distance along the (10) direction as 2π/q0 = 7.85nm. As

the QDs touch each other along this direction, see Figure 6d, this distance indeed equals the

QD diameter. To stress this agreement between GISAXS and TEM, we have drawn the QD

diameter as determined from the GISAXS pattern as a white circle in the high-resolution

TEM image (Figure 6d).

Epitaxial PbS Superlattices

As mentioned before, we presumed that an important requirement for QD epitaxy is the for-

mation of stoichiometric crystal facets. One would thus expect that the method of chemically

triggering epitaxial connections by rendering nanocrystal facets stoichiometric also applies

to PbS QDs. To assess this point, we applied our method to 7.5 nm PbS QDs synthesized

via the approach recently published by Hendricks et al. yielding faceted, quasi-spherical

QDs with a very narrow size distribution.61 Figure 7 shows PbS superlattices triggered by

addition of 1 mL of a 1 M PhNH2 solution. Analogous to the case of PbSe QDs, superlat-

tices formed with fully passivated QDs result in a polycrystalline lattice with local square

ordering, resulting in concentric rings in the Fourier transformed image (Figure 7a). After

reducing the ligand shell density by treating the colloidal solution with 10 equivalents of

BuNH2, the QDs arrange in a distorted square-like lattice with significantly larger domains
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(Figure 7b and c). Also here, a high degree of epitaxial connections along the (100) facets is

observed (Figure 7d). Analysis of high-resolution TEM images reveal an average neck width

of 3.1 ± 0.05 nm and an average of 3.6 ± 0.07 necks per QD, attesting the good quality

of QD epitaxy in these superlattices. The formation of PbS epitaxial superlattices not only

underscores the general character of our approach. It also makes the proposed method more

interesting in view of device applications as PbS QDs are more often used than PbSe QDs

for IR photodetection or solar energy conversion.

Conclusion

We demonstrate that epitaxial quantum dot superlattices can be formed using additives

such as Na2S or amines that render nanocrystal facets stoichiometric as chemical triggers.

In the case of amine-triggering, we find that the extent of ligand displacement translates

into superlattices with a different symmetry with the more basic, strong displacers yielding

pseudo-hexagonal lattices and the less basic, mild displacers giving close to square lattices.

The link between the type of amine and its ligand-displacement potency is confirmed by

monitoring the displacement equilibrium using nuclear magentic resonance spectroscopy and

by calculating the coordination enthalpy of the lead carboxylate complexes formed using

DFT calculations. Furthermore, amines can be used to make colloidal dispersions of QDs

with a reduced ligand shell density. Superlattices formed with such pre-stripped QDs show a

remarkable increase of crystal domain sizes, and in combination with a mild ligand displacer

such as PhNH2, we obtain almost exclusive square-like superlattices. Slightly larger QDs have

a stronger tendency to form square lattices and we show that by combining QD size, ligand

prestripping and amine basicity epitaxially connected square superlattices are formed with

crystal domains in the µm2 range. Finally, we could transfer the approach to the formation

of epitaxial superlattices of PbS QDs. This underscores the potential of chemically triggering

superlattice formation as a rational approach to form epitaxially QD superlattices, thereby
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creating room for further improving long range order, facilitating the extension the different

materials and promoting their use in QD-based opto-electronics.

Methods

PbSe QD synthesis. A stock solution of Pb oleate was prepared by loading 3.74 g of

PbO (16.8 mmole) and 15.87 mL of oleic acid (50.3 mmole) in a three-neck flask. After

flushing the flask with N2 for 1 hour at 120 ◦C, the temperature was increased to 150 ◦C and

the mixture was left to react until a clear, pale-yellow solution was obtained. The still hot

solution was diluted with 67.96 mL of DPE and transferred to a nitrogen-filled glovebox.

TOP-Se was prepared by heating 0.7106 g of Se powder (9 mmole), 9.366 mL of tri-

octylphosphine (21 mmole) and 87 µl of diphenylphosphine (0.5 mmole) to 150 ◦C until the

Se powder was completely dissolved.

PbSe QDs with an average diameter of 5.7 nm were synthesized by heating 12.3 mL of

Pb oleate to 180 ◦C and injecting 9 mL of TOP-Se. The temperature was set at 150 ◦C right

before injecting the TOP-Se. After 60 s, the reaction mixture was quenched with 15 mL of

butanol and the synthesized QDs were precipitated by adding 15 mL of acetonitrile to the

reaction flask. After centrifugation the supernatant was discarded and the obtained QDs were

washed 2 times by dissolution in toluene, precipitation with acetonitrile and centrifugation.

After the final centrifugation, the purified QDs were dissolved in 4 mL of toluene. All

procedures were carried out under inert atmosphere to prevent oxidation of the QDs.

The size of the obtained QDs can be tuned from 3.5 nm to 8.5 nm by adjusting the

injection temperature from 140 ◦C to 210 ◦C, always setting the growth temperature 30 ◦C

below the injection temperature.

Samples for NIR-UV-VIS absorption measurements were prepared by redissolving 10 µl

of the purified QD solution in 4 mL of tetrachloroethylene.
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PbS QD synthesis. PbS QDs were synthesised by a modification of a previously described

method.61 In a three-neck flask, 0.2678 g of PbO (1.2 mmole), 765 µl of oleic acid (2.4 mmole)

and 8.735 mL of n-dodecane were flushed with N2 for 60 min at 120 ◦C. After heating the

mixture to 160 ◦C, 1 mL of a 0.8 M N-hexyl-N’-dodecylthiourea solution in diglyme was

injected. After 4 min 30 s the reaction mixture was cooled with a waterbath and the QDs

were precipitated with 4.5 mL of a 1:2 acetonitrile:isopropanol mixture. After centrifugation

the obtained QDs were washed 2 times by dissolution in toluene and precipitation with the

same acetonitrile:isopropanol mixture.

QD solutions with a partial ligand shell. QDs with a reduced ligand shell density were

obtained by reacting a colloidal QD solution with a solution containing an excess of BuNH2

compared to the total amount of oleyl chains. The number of oleyl chains were obtained

from NMR measurements. Typically, 200 µl of a BuNH2 solution was added to 600 µl of

a stirring QD solution. After reacting for about 10 minutes the mixture was purified by

precipitation with acetonitrile, centrifugation and redissolution in toluene.

QD superlattices. Self-assembled QD monolayers were made by dropcasting 0.50 µl of

a 20-40 µM QD solution on the surface of 3.3 mL ethylene glycol contained in a glass vial

with a diameter of 25 mm. QD epitaxy was induced by injecting 1 mL of amine dissolved in

ethylene glycol at a rate of 0.2 mL/min. Typical concentrations of amine solutions were 0.1

M for BuNH2 and 1 M for PhNH2. The obtained superlattice was transferred to a substrate

by stamping, either after reacting for 5 min (BuNH2) or 30 min (PhNH2). To obtain a dry

film the residual ethylene glycol was removed by dipping the substrate in acetonitrile.

NMR measurements and ligand density calculation. QD suspensions were evapo-

rated with N2 and redissolved in toluene-d8. Nuclear Magnetic Resonance (NMR) measure-

ments were recorded on a Bruker Avance II spectrometer operating at a 1H frequency of

500.13 MHz and equipped with a 1H, 13C, 31P TXI–Z probe. The sample temperature was
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set to 298.2 K throughout. One–dimensional (1D) 1H spectra were acquired using standard

pulse sequences from the Bruker library. For the quantitative 1D 1H measurements, 64k time

domain points were sampled with the spectral width set to 16 ppm and a relaxation delay

of 30 s. The 1D spectra were multiplied with an exponential window function with a line–

broadening factor of 0.3. Ligand concentrations were measured using the Digital ERETIC

method implemented in Topspin 3.1.

ligand density =
ligands/QD

AQD

(1)

DFT calculations. All calculations were carried out with the computational chemistry

program Turbomole, version 7.0.1. The calculations were done at density functional theory

(DFT) level with the exchange-correlation functional Perdew-Burke-Ernzerhof (PBE)62 and

basis set def2-SV(P).63,64 Relativistic effects were accounted for by employing the Suttgart

RSC Segmented/ECP basis set with 60 core electrons on the Pb atoms.65 All structures were

optimized in the gas phase.

GISAXS measurements. Samples for GISAXS measurements were prepared by stamp-

ing the PbSe QD superlattice on a clean Si (100) substrate of 10 x 15 mm. The GISAXS

experiments were performed at the DUBBLE BM26B beamline at the ESRF synchrotron,

Grenoble (France). The X-ray beam energy was set at 12 KeV by using a Si (111) double-

crystal monochromator. The beam size was 2.6 x 0.4 mm (H x V) at the exit of the beamline.

The X-ray grazing incidence angle was 0.3 ◦ with respect to the plane of the sample. A con-

tinuous measurement of 60s was recorded by a Pilatus 1M detector placed at 4174 mm, a

distance calculated by a silver behenate reference which allowed to calibrate the reciprocal

q space.

TEM measurements. Transmission Electron Microscopy images were recorded on a

JEOL 2200-FS operated at 200 kV.
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