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Abstract: Utilization of biofuels generated from renewable sources has attracted broad attention
due to their benefits such as reducing consumption of fossil fuels, sustainability, and consequently
prevention of global warming. The production of biodiesel causes a huge amount of by-product,
crude glycerol, to accumulate. Glycerol, because of its unique structure having three hydroxyl
groups, can be converted to a variety of industrially valuable products. In recent decades, increasing
studies have been carried out on different catalytic pathways to selectively produce a wide range
of glycerol derivatives. In the current review, the main routes including carboxylation, oxidation,
etherification, hydrogenolysis, esterification, and dehydration to convert glycerol to value-added
products are investigated. In order to achieve more glycerol conversion and higher desired product
selectivity, acquisition of knowledge on the catalysts, the type of acidic or basic, the supports, and
studying various reaction pathways and operating parameters are necessary. This review attempts to
summarize the knowledge of catalytic reactions and mechanisms leading to value-added derivatives
of glycerol. Additionally, the application of main products from glycerol are discussed. In addition,
an overview on the market of glycerol, its properties, applications, and prospects is presented.

Keywords: glycerol; carboxylation; oxidation; etherification; hydrogenolysis; esterification; dehydration;
heterogeneous catalyst

1. Introduction

Glycerol is an industrial chemical, which can be used as a multipurpose substance
with hundreds of applications due to its unique physical and chemical properties [1].
Glycerol can be either produced by synthetic or as a by-product of biodiesel production,
the soap manufacturing, and the hydrolysis reaction [2,3]. In recent years, biodiesel has
emerged as a remarkable and renewable alternative to fossil fuels. The dramatic growth
of biodiesel production results in an increased abundance of glycerol, which is the main
by-product (about 10 wt.% of biodiesel) in the biodiesel industry [4–6]. Figure 1 shows
the increase in the production of biodiesel and accumulated crude glycerol from 2003 to
2020. It can be observed that as a result of this accumulation, the price of crude glycerol
has been decreased. The biodiesel-derived glycerol (crude glycerol or waste glycerol)
contains various impurities such as methanol, free fatty acids, fatty acid methyl ester, salt,
water, etc. [4,7,8]. The impurities limit the utilization of crude glycerol obtained from the
biodiesel industry and need to be removed to increase its value [9,10]. In addition, if a
large amount of crude glycerol cannot be disposed properly it can cause environmental
problems. However, purification of crude glycerol is costly and not feasible for some small
sized plants. Therefore, it is necessary to explore alternative use for crude glycerol to make
biodiesel production more profitable. After purified to high purity product, glycerol from
the biodiesel industry can be industrially applicable [9].
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Glycerol market is expected to keep growing in upcoming years [12]. Researchers
showed profound interest in developing novel approaches for crude glycerol recovery and
utilization. Glycerol, renewable carbon source, can be converted through bioconversion
to a wide range of products [12]. The conversion of glycerol to produce commodities
is viable and eco-friendly [13]. Proper utilization of glycerol will greatly improve the
economic viability of biodiesel production [14]. Therefore, it becomes industrially important
to find new fields to use glycerol. The attractive pricing and large availability make
glycerol an appealing feedstock employed in the production of value-added chemicals
such as ethanol [15], hydrogen [16], glycerol ethers [17], 1,3-propanediol [18], glycerol
carbonate [19], 1,2-propanediol [20], acrolein [21], epichlorohydrin [22], citric acid [23], and
lactic acid [24].

The catalytic conversion of glycerol to value-added chemicals through reactions such
as carboxylation, dehydration, oxidation, hydrogenolysis, esterification, and etherification
was undertaken [25,26]. Heterogeneous catalysts have been widely studied for catalytic
conversion of glycerol and they are easy to be removed from products. However, the draw-
backs of some heterogeneous catalysts, such as poor thermal stability, poor regeneration
ability, deactivation, low surface area, and side-product formation limit their use and need
to be overcome [25,27]. Several factors such as size and shape control, thermal/chemical
stability, spatial distribution, electronic state, and surface composition must be consid-
ered to tailor an appropriate catalyst for conversion of glycerol to new products. This
work presents detailed discussion on glycerol conversion to various chemicals via many
processes, and on suitable heterogeneous catalysts for many important glycerol-derived
value-added products. This review summarizes recent studies on approaches to transform
glycerol to value-added chemicals. The involved heterogeneous catalysts are discussed
in detail.

2. Glycerol Properties

Glycerol, synonyms of 1,2,3-propanetriol, glycerin and 1,2,3-trihydroxypropane, is a
low toxicity alcohol having three hydrophilic hydroxyl groups [1,4]. The word “glycerol”
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specifically refers to the pure chemical compound 1,2,3-propanetriol, while the word
“glycerin” often refers to commercial products with more than 95% glycerol [28]. Glycerol
is a colorless, viscous, odorless, hygroscopic liquid with sweet taste, which is very soluble
in water and many alcohols because it contains three hydrophilic hydroxyl groups [1].
It is slightly soluble in ether and dioxane, partially insoluble in fatty acids, benzene,
hexane and chloroform, insoluble in hydrocarbons [26,28]. Under water-free condition and
1 atm, glycerol has a density of 1.261 kg/L, melting point of 18.2 ◦C and boiling point of
290 ◦C [29]. Glycerol is a trihydric alcohol and a highly flexible molecule forming both
intra- and intermolecular hydrogen bonds [29]. Glycerol can be used as a multipurpose
substance in many applications due to its unique physical and chemical properties [1].

Glycerol can be produced by hydrolysis of sugars, soap production by saponification
and biodiesel production by transesterification as the by-product [3]. Saponification is now
less important in many countries since detergents are used instead of soap [30]. It is also
derived from chemical synthesis and microbial fermentation [30,31]. Yeast fermentation as a
process to produce glycerol has been well recognized. In Saccharomyces cerevisiae, during
redox-neutral process of the fermentation of sugar to ethanol, glycerol is produced as the
by-product [30]. Biodiesel-derived glycerol (crude glycerol) is produced from the transes-
terification of vegetable oil with alcohol by acidic, basic, or enzymatic catalysts [13]. During
the transesterification process, approximately 10 wt.% glycerol and 90 wt.% biodiesel are
produced [32].

3. Applications of Glycerol

The increased quantities of crude glycerol due to the expanding biodiesel production
may cause environmental problems [14]. To address the challenge, more alternative ap-
plications of crude glycerol are developed. Glycerol is a renewable source with hundreds
of applications. Based on different properties, glycerol has a wide range of applications
in different industries such as food, medical, pharmaceuticals, personal care, botanical
extracts, antifreeze, chemical intermediates, etc. [33]. Figure 2 shows the main areas of
glycerol application with the percentage distribution. Glycerol is safe and suitable for food
use. It can be used as a solvent, sweetener, softening agent and preservative agent for food
and beverage [4]. It is a major ingredient in some personal care products such as toothpaste,
skin, and hair care products to provide moisture and improve smoothness [4].
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Glycerol can be supplemented for animal diets to improve energy availability [35].
Nutritional analysis of glycerol produced by the fresh oils indicated very high carbohydrate
content, and glycerol could be used as a feed supplement [36]. Glycerol is a renewable
feedstock in the production of value-added products. It is estimated to have more than
two thousand end uses in the chemical industry [12]. Glycerol was reported to be converted
to amino acids by the multifunctional catalytic system (Ru1Ni7/MgO) [37]. Glycerol, which
is suitable for microorganisms’ growth, is an excellent carbon substrate to produce com-
modities including 1,3-propanediol, lactic acid, docosahexaenoic acid (DHA), bioethanol,
hydrogen, fuel additives, etc. [9,38]. The bioconversion of partially treated crude glycerol
to useful chemicals using enzymes and microbes is eco-friendly but less productive [13].

Crude glycerol can be directly converted to derivatives such as hydrogen, propylene
glycol, acrolein, polyglycerols, etc., and the effects of the impurities on the conversion
performance need to be further investigated [26]. It was employed as the alternative green
solvent in the aldol condensation and Pd catalyzed Heck C-C coupling reaction [39]. It was
also used as a promoter in bio-oil manufacture during the liquefaction of biomass [40]. One
possible use of glycerol from biodiesel production was to prepare the inexpensive deep
eutectic solvents with choline chloride for the esterification of palmitic acid [41]. Crude
glycerol has been studied as a supplement to the components in biogas production to
increase gas production and methane contents [42]. Currently, some studies provide a
considerable way to utilize crude glycerol in co-digestion and co-gasification by blending
with hardwood chips, solid waste, agro-industrial by-products, and waste water [43–45].

Crude glycerol can be purified to high quality to be used as glycerol. The catalytic con-
version of glycerol to high-value chemicals and catalysts development are appealing and
still under investigation. It was reported that glycerol can be utilized as low-cost raw mate-
rial to derive valuable chemicals such as glycerol ethers, 1,3-propanediol, epichlorohydrin,
glycerol carbonate, 1,2-propanediol, etc. through carboxylation, dehydration, oxidation,
hydrogenolysis, esterification, etherification, and reduction [46,47]. These conversion
processes and involved heterogeneous catalysts are highlighted in the following sections.

4. Methods of Conversion

Different methods of glycerol conversion to value added products and some of the
important derivatives are shown in Figure 3. Application of the products, various reactants
and reaction conditions are discussed in the following sections.

4.1. Carboxylation

Carboxylation is a chemical transformation in which a carboxyl group is added to a
compound. The main product which is derived from glycerol carboxylation is glycerol
carbonate (CAS number: 931-40-8). Glycerol carbonate has been recognized as an important
product derived from glycerol over recent years. Being inexpensive to act as a new reactant
material has created an opportunity of glycerol carbonate to produce polyurethanes and
polycarbonates [48]. It is also employed as a solvent, personal care product, and lubricant.
One major reason for researchers’ interest is its wide reactivity, which makes it appropriate
for many applications. The reason of this feature of glycerol carbonate is the existence of
hydroxyl and 2-oxo-1,3-dioxolane groups in its structure [49]. The physical properties of
glycerol carbonate also make this material suitable to be applied in industry. The flash
point of glycerol carbonate is 190 ◦C, therefore, it is not easily flammable. Furthermore,
it is a nontoxic, bio sustainable, biodegradable, and viscous liquid with low evaporation
rate [50].
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Numerous reactions as well as various heterogeneous catalysts have been reported in
the literature for catalytic conversion of glycerol to glycerol carbonate. Table 1 represents
several pathways and the performance of different catalysts for this conversion and the
reaction conditions. In each case, glycerol reacts with a carbonate source chemical to
produce glycerol carbonate. The most common reactants for this purpose are carbon
monoxide [51,52], carbon dioxide [53–58], urea [59–61], ethylene carbonate, propylene
carbonate, dimethyl carbonate [50,62–65], diethyl carbonate [66], propylene oxide, and
ethylene oxide (oxirane). Among all carbonate sources mentioned above, urea, ethylene
carbonate, propylene carbonate, carbon dioxide, dimethyl carbonate and propylene oxide
are relatively low-cost materials in comparison with others. Besides, urea and dimethyl
carbonate are molecules synthesized from CO2, therefore, the carboxylation of glycerol
performed directly with CO2 has one less step. Additionally, conversion of carbon dioxide
and glycerol to a glycerol carbonate is a promising process since carbon dioxide is a
greenhouse gas. In spite of all mentioned, there are challenges, which makes this reaction
more difficult.

In some studies, carbon dioxide could not be used successfully as the reactant for the
glycerol conversion to glycerol carbonate due to its inertness and thermodynamic stability.
Metallic oxide catalysts have attracted attentions due to their suitable CO2 adsorption
and activation and their subsequent activity in carbon dioxide transformation. It is also
noticeable that using 2-cyanopiridine or acetonitrile as dehydrator is common in the reaction
between glycerol and carbon dioxide. With their use, the reaction sets a new and favorable
equilibrium. When the produced water is absorbed by these chemicals, because of the
reduction in water, a new equilibrium is set. Based on Le Chatelier’s principle, the reaction
moves towards producing more glycerol carbonate.
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Table 1. Catalysts used for the synthesis of glycerol carbonate (GC).

Catalyst Molar Ratio Solvent Temp.
(◦C)

Pressure
(MPa)

Reaction
Time (h)

GC Yield
(wt%) Ref.

Glycerol + CO2
Molar Ratio G to

CO2
1 mol% n-Bu2SnO Excess CO2 MeOH 80 3.5 4 35 [53]
Bu2SnO _ Methanol/Zeolite 120 13.8 4 35 [53]
6 mol% n-Bu2Sn(OMe)2 Excess CO2 free 180 5 15 7 [67]
Zn/Al/La/M
(M = Li, Mg, Zr)

Zn:La:Al =
4:1:1 free 170 4 12 15.1 [56]

CeO2 Excess CO2 DMF 150 4 5 78.9 [57]
Cu/La2O3 Excess CO2 Acetonitrile 150 7 12 15.2 [55]
La2O2CO3/ZnO La:Zn = 1:4 Acetonitrile 170 4 12 14.3 [54]
Zr-Ce Oxide Excess CO2 DMF 150 3 5 36.3 [58]

Glycerol + urea Molar Ratio G to
Urea

ZnO 1:1 free 140 - 6 57.86 [59]
ZnO/SiO2 1:1 free 140 - 6 64.3 [59]
MoO3 + SnO2 1:3 free 150 - 4 67 [60]
Au/Fe2O3 1:1.5 free 150 - 4 38 [68]
Co3O4/ZnO 1:3 free 145 - 4 60 [60]
Zn/MCM-41 1:1 free 145 - 3 73 [61]
Ni/MCM-41 1:1 free 145 - 3 53 [61]
Cu/MCM-41 1:1 free 145 - 3 45 [61]
CaO, La2O3, MgO, ZrO2,
Al2O3

3:2 free 150 - 3 28–93 [69]

0.5 wt% calcined La2O3 3:1 free 140 - 1 91 [70]
manganese sulfate 1:1 free 150 - 2 61 [71]
Zinc sulfate 1:1 free 140 - 2 86 [71]
Sn/W mixed oxide 2:1 free 140 - 4 49.7 [72]
1wt% Au/MgO 1:1.5 free 110 - 4 46 [68]
1wt% Pd/MgO 1:1.5 free 110 - 4 62 [68]
1wt% Au-Pd/MgO 1:1.5 free 110 - 4 67 [68]
Cu-Mn 1:1.5 free 140 - 6 90.2 [73]
Zn-Sn 1:1 free 155 - 4 97.6 [74]
Zr-Phosfate 1:1 free 145 - 3 80 [75]
Glycerol + dimethyl
carbonate

Molar Ratio G to
DMC

CaO 1:3.5 free 95 1.5 95 [50]
CaO 1:2 free 70 1.5 68 [62]
MgO 1:2 free 70 1.5 23 [62]
Mg0.9Ca1.1O2 1:2 free 70 1.5 75.4 [62]
Mg1.2Ca0.8O2 1:2 free 70 1.5 100 [62]
Mg-Al hydrotalcite
(Mg/Al = 2) 1:3 Methanol 70 3 65 [64]

LiNO3/Mg4AlO5.5 1:3 free 80 1.5 96 [76]
ZnO/La2O3 1:4 free 150 2 97 [63]
K-zeolite 1:3 Methanol 75 1.5 96 [77]
Na2O 1:2 free 75 0.5 92 [78]
trisodium phosphate
(TSP) 2:1 free 70 1 99.5 [65]

hydrotalcite-
hydromagnesite 1:5 DMF 100 0.5 79 [79]

Mg/Al/Zr 1:5 free 75 1.5 95 [80]
Mg–Al hydrotalcite 1:5 DMF 100 2 75 [81]
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Table 1. Cont.

Catalyst Molar Ratio Solvent Temp.
(◦C)

Pressure
(MPa)

Reaction
Time (h)

GC Yield
(wt%) Ref.

K2CO3 1:3 free 75 3 97 [82]
BaCO3 1:5 DMF 140 2 96.4 [83]
Ti/Si 1:3 free 65 7 52 [84]
TiO2 1:3 free 65 7 4 [84]
Ni-Mg Oxide 1:4 free 90 1.5 82 [85]
Glycerol + carbon
monoxide

Molar Ratio G to
CO

K2CO3/Se Excess CO and O2 DMF 20 0.1 4 84 [52]
Glycerol + diethyl
carbonate

Molar Ratio G to
DEC

Ce-NiO 1:3 free 85 - 8 85.6 [66]

Use of n-Bu2Sn(OMe)2 and n-Bu2SnO as two metal alkoxide catalysts for this reaction
led to low glycerol conversion as a result of the low activity of carbon dioxide [67]. In
another research, one mol% nBu2SnO was used as a catalyst of this reaction in presence
of methanol. The results showed the glycerol carbonate yield of 35% [53]. In a previous
study, Cu/La2O3 catalyst was prepared for this reaction while acetonitrile was used as the
dehydrator. A total of 2.3% Cu additive in the catalyst showed 33.4% glycerol conversion
and glycerol carbonate selectivity of 45.4% at 150 ◦C, 7.0 MPa and reaction time of 12 h [55].
CeO2 catalysts in form of nanoparticles or nanorods could reach a relatively higher yield
(~79 wt%) of glycerol carbonate. The amount of acidity and basicity in these catalysts
impact their activities. The higher yield of glycerol carbonate is due to the presence of
acidic and basic sites in the catalyst. The hydroxyl groups of glycerol are well adsorbed
and activated by the Lewis acidic sites of the catalyst and carbon dioxide is adsorbed and
activated by the basic sites [57].

Besides the direct carboxylation by CO2, the indirect pathways may proceed with the
reaction with more benefits. Nguyen & Demirel [86] concluded that the net present value
of the glycerol carboxylation by using urea is higher than that of direct carboxylation with
carbon dioxide for a duration of 12-year operation with the same capacities. The by-product
of the carboxylation with urea is ammonia, which needs reduced pressure to be removed
and shift the equilibrium to products’ side. Krisnandi et al. [59] studied the performance of
ZnO/SiO2 catalyst on the reaction of glycerol and urea. ZnO catalyst showed high glycerol
conversion of 82.38%; but the selectivity and yield of glycerol carbonate were as low as
40.46% and 33.33%, respectively. Applying a porous silica support with the ZnO catalyst
enhanced the selectivity and yield of glycerol carbonate to 77.83% and 64.30%, respectively.
In another study [61], wet impregnation method was applied to prepare Zn/MCM-41
catalyst for the reaction of glycerol and urea to produce glycerol carbonate. The glycerol
conversion of 75% and glycerol carbonate selectivity of 98% selectivity were obtained due
to the simultaneous existence of acidic and basic sites in the catalyst. Acidic sites activate
glycerol and basic sites activate urea. Tin-tungsten mixed metal oxide was also used as a
catalyst for the reaction of glycerol with urea. The catalysts with different tin/tungsten
ratio were prepared and it was observed that the catalyst with tin/tungsten ratio of 2:1
calcinated at 500 ◦C showed glycerol conversion of 52% and glycerol carbonate selectivity
of over 99% [72]. The catalyst with gold and palladium nanoparticles and magnesium
oxide support has also been studied for the reaction of conversion of glycerol to glycerol
carbonate in the presence of urea. Rahim et al. [68] concluded that 1 wt% AuPd/MgO
at the reaction temperature of 150 ◦C showed the best result (glycerol conversion of 87%,
and glycerol carbonate selectivity of 77%) among other tested catalysts including MgO, 1%
Au/MgO, 2.5 wt% Au/MgO, and Pd/MgO. However, the results were not much better
than using magnesium oxide as catalyst (glycerol conversion of 84%, and glycerol carbonate
selectivity of 57%), but it still shows the positive synergistic effect of using two metals
combined as a catalyst for glycerol conversion and glycerol carbonate selectivity.
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Most studies on glycerol carboxylation have been carried out on dimethyl carbonate
reactant since it reacts at mild conditions and low duration of reaction time. Several metal
oxides and mixed metal oxides such as ZnO, Na2O, CaO, MgO, MgCa-oxide, MgAl-oxide
and NiMg-oxide, and metal salts such as LiNO3, K2CO3 and BaCO3 have been examined
as catalysts in this reaction. Khayoon and Hameed [62] made a comparison between the
efficiency of magnesium oxide and calcium oxide in the reaction. It was revealed that
CaO reached a higher yield of glycerol carbonate up to 68% at 70 ◦C under 90 min of
reaction time with 1:2 molar ratio of glycerol to dimethyl carbonate. The research of Ochoa-
gomez et al. [50] concluded that by varying the reaction condition to 1:3.5 molar ratio of
glycerol to dimethyl carbonate, and the temperature of 95 ◦C, with the same CaO catalyst,
the glycerol carbonate yield of 95% was achieved. The best result was obtained from
Mg1.2Ca0.8O2 catalyst at 70 ◦C and 90 min reaction time, which led to producing glycerol
carbonate with the yield of 100 wt% [62]. Figure 4 shows a possible reaction mechanism
of glycerol and dimethyl carbonate (DMC) with CaO catalyst. Active Ca species in the
catalyst is attacked by a glycerol molecule and a DMC molecule. This is characterized as
Ca(C3H7O3)(OCO2CH3) (II) as shown in Figure 4. Then, glycerol molecule collides with
intermediate Ca species II and releases a methanol molecule, generating Ca species III.
Glycerol carbonate was produced via an intermolecular nucleophilic substitution and the
catalyst is generated.
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Glycerol carbonate can also be converted to glycidol through catalytic decarboxylation
process [88,89], ultrasonic activation, conventional thermal activation, and microwave-
assisted activation [90].

4.2. Oxidation

Oxidation refers to a reaction in which oxygen is added as a reactant, or an element
loses electrons accompanied, which led to increasing the valence number of the component.
General oxidation of glycerol involves oxidation by adding oxygen atoms or dehydro-
genation by removing hydrogen atoms. Electrocatalysis, defined as an electrochemical
reaction in which electrode acts as both catalyst and electron accepter/donor, can be used
for glycerol oxidation. A review has been performed by Coutanceau et al. [91] on different
catalytic systems and conditions on glycerol electro-oxidation. They concluded that a
wider potential range of the catalyst activity, and a lower glycerol oxidation onset potential
are two of the essential parameters for obtaining the highest selectivity toward a desired
product at the best conversion rate. The process of oxidizing glycerol can be carried out
by any of the three hydroxyl groups of the component. Several products can be synthe-
sized from glycerol by different oxidizing agents. Figure 3 shows the main derivatives
of glycerol through these reactions. To study more closely, the derivatives are divided
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into three categories named as C1, C2 and C3 products, based on the number of backbone
carbon atoms.

One of the main C1 products of glycerol oxidation is formic acid (CAS number 64-18-6).
Commonly, formic acid is used in agriculture, pharmaceutical industry, rubber, chemical,
leather, and textile manufacturing [92]. This compound also has the potential of serving
a supply of hydrogen [92,93]. For this purpose, several catalytic reactions can be used
to easily decompose formic acid to hydrogen and carbon dioxide under moderate condi-
tions [94–100]. Therefore, it can be utilized directly in formic acid fuel cells or indirectly
in hydrogen fuel cells [101]. Low toxicity and being liquid at ambient conditions make
this chemical safer and easier to store and transport as compared to hydrogen. Due to this
reason, scientists consider formic acid, as a renewable derivative of biomass to be used as
an alternative to hydrogen gas [102,103].

Several catalysts have been used for the conversion of glycerol to formic acid as sum-
marized in Table 2. Mainly, the oxidant, which is used for reaction with glycerol, is oxygen,
and the reaction usually occurs at medium to high pressure. As a case study, Xu et al. [92]
used Ru(OH)4 nanoparticles reduced on graphite in aqueous solutions of Lewis acids
of FeCl3, AlCl3, CrCl3 and ZnCl2 to convert glycerol and oxygen to formic acid at the
temperatures between 160 to 180 ◦C and 0.5 to 1.5 MPa pressure. It was observed that
acidity of FeCl3 had the highest synergistic effect with the Ru(OH)4 nanoparticles and
resulted in formic acid yield of around 60%. In another study [104], catalytic oxidation
reaction was carried out for conversion of glycerol to formic acid using H4PVMo11O40 as a
vanadium substituted phosphomolybdic catalyst. The formic acid selectivity of around
50% was observed at 2 MPa of oxygen pressure, 150 ◦C and 1 wt% initial glycerol con-
centration during 3h reaction time. In this reaction, glycerol was completely consumed.
Phosphomolybdic acid performs as a catalyst to catalyze the oxidation reaction. Results
also were attributed to the selective oxidative cleavage of C–C bonds by the vanadium
atoms. Ntho et al. [105] investigated the effects of gold catalyst particle size on glycerol
oxidation. Using Au/Al2O3, it was observed that the formic acid was obtained as the major
product when Au particles were large up to 20 nm.

Another reactant, which has been utilized for the conversion of glycerol to formic acid,
is hydrogen peroxide. A cost–benefit point by selecting H2O2 as reactant is that atmospheric
pressure is used since the oxidant is liquid. Lin et al. [106] used gold nanoparticles and
phosphotungstic acid (PTA) located inside nano channels of mesoporous silica as catalyst
in conversion of glycerol to formic acid in the presence of hydrogen peroxide. At 80 ◦C
and 24 h reaction time, selectivity of 79.2% was achieved, with formic acid yield of 26.6%.
Kong et al. [107] also investigated using H2O2 as the oxidant and different metal (III)
triflate-based catalysts. Among metals such as Bi, Ce, Zn, Ag, Y, In, Al, and Sn, aluminum
(III) triflate had the highest catalyst performance in conversion of glycerol to formic acid. At
conditions of 70 ◦C and 12 h reaction time, glycerol was consumed completely and formic
acid yield of 72% was achieved. Farnetti and Crotti [108] studied glycerol oxidation using
H2O2 with iron salts. They succeeded to obtain both glycerol conversion and selectivity of
formic acid up to 99% by using Fe(OTf)2 catalyst.

Oxone as another oxidant has been used as well [109], but this reaction showed lower
selectivity of formic acid production since the reaction produced more side-products [101].

Glycolic acid or hydroxyethanoic acid (CAS number: 79-14-1) and oxalic acid or
ethanedioic acid (CAS number: 144-62-7) are the two most important C2 oxygenated prod-
ucts derived from glycerol. Oxalic acid is applied in cleaning or bleaching. Glycolic acid
is highly soluble in water and has been employed in skincare manufactured goods [110].
The main C3 products of glycerol oxidation are lactic acid (CAS number: 50-21-5), mostly
used for preservation and flavoring; dihydroxyacetone (CAS number: 96-26-4) principally
applied as a constituent in tanning products and cosmetic industry; glyceraldehyde (CAS
number: 497-09-6), which is an intermediate in carbohydrate metabolism; tartronic acid
(CAS number: 80-69-3), which is applied in the reaction of catalytic oxidation with air
to produce mesoxalic acid; glyceric acid (CAS number: 473-81-4), as its derivatives are
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significant intermediates in reaction of glycolysis; and hydroxypyruvic acid (CAS num-
ber: 1113-60-6), an intermediate in metabolism of glycine and serine, and mesoxalic acid
(CAS number: 473-90-5).

Table 2. Catalysts used for C1 derivative by glycerol oxidation and the reaction conditions.

Catalyst Molar Ratio Temp.
(◦C)

Pressure
(MPa)

Reaction
Time (min)

Formic Acid
Yield (wt%) Ref.

Glycerol + oxygen Molar Ratio of O2 to G
H4PVMo11O40 - 150 2.0 180 Around 50 [104]
Ru(OH)4/
Reduced graphite oxide
+ FeCl3

Excess O2 160 0.5 60 Around 60 [92]

Glycerol + hydrogen peroxide Molar Ratio of H2O2 to G
Au-phosphotungstic acid/Silica
nanoparticles 5:1 80 - 1440 26.6 [106]

Aluminum (III) triflate 10:1 70 - 720 72 [109]
Fe(OTf)2 * 11.2:1 21 - 36 98 [108]
Fe(OTf)2 + BPA ** 11.2:1 21 - 280 92 [108]
Fe(OTf)2 + BPA 2.8:1 21 - 90 6 [108]
FeCl2 4.2:1 21 - 6 94 [108]
FeCl3 4.2:1 21 - 6 96 [108]

Glycerol + oxone Molar Ratio of oxone to
G

Glycerol
conversion

NHC–Pd complex 1:1 room - 360 10 [109]

* Tf = trifluoromethanesulfonate, ** bis(2-pyridinylmethyl)amine.

In most of the research, a variety of products have been obtained through glycerol
oxidation. Therefore, the selectivity of each product in a mixture is usually reported. Table 3
presents the results of studies on glycerol oxidation reactions using a variety of catalysts.
Carrettin et al. [111] enhanced the reactivity of the catalysts by increasing the purity of
oxygen as the oxidant of the reaction. Pd, Pt and Au nanoparticle catalysts with graphite
or activated carbon supports were used for oxidation of glycerol in a batch mode at the
temperature of 60 ◦C and pressure of 1 bar, employing air as oxidant. It was observed
that Au catalysts were inactive, and Pd and Pt catalysts generated by-products such as
CO2, HCHO, and HCOOH, which are not favorable. Using pure oxygen instead of air at
the pressure of 3 bar enhanced the reactivity and adding NaOH to the reaction led to the
elimination of C1 by-products. They also used Au/activated carbon and Au/graphite with
1 wt.% of Au, 100% selectivity of glyceric acid, and 54–56% conversion of glycerol were
achieved, respectively. The most common catalysts used in oxidation of glycerol are Au, Pt,
Ag, Pd, and Pb. In a study carried out by Skrzynska et al. [112], noble metals were used
as catalysts for pure glycerol oxidation reaction. The alumina was used as a support and
Ag (up to 1.13 wt.%), Au (up to 0.98 wt.%), Pd (0.96 wt.%) and Pt (0.95 wt.%) were used
as catalysts. Additionally, a comparison was made between applying pure glycerol and
the glycerol with impurities. After 2 h of reaction, it was observed that the most efficient
catalyst for the reaction using impure glycerol was Au/Al2O3 with 50% glycerol conversion
loss for the reaction and the selectivity of 80–90% towards glyceric acid. Au/Al2O3 catalyst
showed the highest activity considering the initial rate of reaction.
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Table 3. Performance of different catalysts used in oxidation of glycerol.

Catalyst
Glycerol

Conv.
(%)

Selectivity (%)
Ref.Glycolic

Acid
Oxalic
Acid

Glyceral
Dehyde

Dehydroxy
Acetone

Glyceric
Acid

Tartronic
Acid

Formic
Acid

Pt-Bi/SBA-15 (0.4 wt.% Bi) 63.2 - - - 63.3 5.4 - - [113]
Ag–Pd/CeO2 37.1 44.9 0.0 - - 25.8 4.8 24.5 [114]
Ag–Au/CeO2 43.8 46.2 0.0 - - 23.3 1.8 25.2 [114]
Ag–Pt/CeO2 54.2 51.0 0.0 - - 18.9 2.7 27.4 [114]

Ag/Al2O3 30.0 44.8 0.0 - - 27.2 0.0 28.0 [112]
Au/Al2O3 30.0 20.7 0.2 - - 60.4 0.9 12.5 [112]
Pd/Al2O3 30.0 2.6 0.3 - - 85.8 5.7 1.0 [112]
Pt/Al2O3 30.0 9.9 2.6 - - 74.0 5.1 8.1 [112]

Pt/C 70.3 8.0 0.0 1.3 9.2 66.4 - - [115]
5% Pt-3% Bi/C 74.4 6.6 19.5 0.0 46.5 10.2 - - [115]
5% Pt-5% Bi/C 91.5 0.0 39.9 0.0 49.0 5.4 - - [115]
5% Pt-7% Bi/C 72.0 14.1 18.6 0.0 38.8 15.6 - - [115]

Au-Pt (1:3)/hydrotalcite 57 10 0.5 12 - 72 5 - [116]
V2O5 5 1 0.0 - - 1 - 22 [117]

Au/V2O5 20 4 0.0 - - 29 1 3 [117]
Ta2O5 2 6 0.0 - - 3 - 2 [117]

Au/Ta2O5 13 6 0.0 - - 6 3 3 [117]
TiO2 (P25) ~36 - - 13 7.5 - - 8 [118]

The synergistic effect of bi-metallic catalysts has shown higher glycerol conversion and
selectivity of some derivatives. The effect of using bimetallic Pt-Cu catalyst in comparison
with using Pt over carbon nano tube in glycerol oxidation has been investigated by Ribeiro
et al. [119]. Products such as dihydroxyacetone or glyceric acid were obtained from the
oxidation reaction of glycerol using Pd and Pt catalysts with carbon nanotube support.
Glycerol conversion of approximately 90% and a selectivity of 60–70% towards glyceric
acid was obtained in alkali medium. Pt-Cu catalyst and Pt catalyst were compared for a
reaction, which produced glyceric acid, dihydroxyacetone and glyceraldehyde, in base-free
circumstances when carbon nanotube was used as the support. It was observed that the
Pt-Cu catalyst over carbon nano tube (CNT) support showed a higher efficiency than the
Pt catalyst over the same support in the oxidation of glycerol. Another study [114] has
investigated the performance of synergetic bimetallic catalyst for the glycerol oxidation
producing glycolic acid. The effect of metal additives on silver catalyst with CeO2 support
was studied, and it was noticed that addition of 5% platinum to the silver catalyst enhances
the catalyst performance with a glycerol conversion of approximately 54% and glycolic
acid selectivity of 51% at the reaction temperature of 60 ◦C after 5 h. This selectivity was
the highest among the results of the other side-products including glyceric acid, formic
acid, oxalic acid, and tartronic acid.

The effects of acidic/basic sites of support in oxidation reaction of glycerol have been
investigated by Xu et al. [116] using Au-Pt catalyst. Several acidic and basic supports such
as TiO2, CeO2 (acidic supports), MgO and Mg(OH)2 (basic supports), and amphoteric
supports such as Al2O3 and hydrotalcite were employed. The products selectivity was
affected by the acidic/basic properties of the catalyst support. For catalysts with supports
containing more basic sites, glyceraldehyde’s selectivity decreased and the selectivity of
tartronic acid, glycolic acid, or glyoxalic acid increased. Glyceric acid’s selectivity was not
affected by the acidic or basic sites of the support. Reaction pH is important to influence the
reaction. Primary alcoholic groups are produced in basic circumstances while secondary
alcoholic groups are produced in acidic circumstances. Production of glyceraldehyde
and tartaric acid occurs at basic pH. Strongly acid pH is favorable for the production of
dihydroxyacetone and hydroxypyruvic acid [33].

Augugliaro et al. [118] examined glycerol photocatalytic oxidation using a cylindrical
photoreactor under TiO2 P25 (Degussa) photocatalyst in an aqueous suspension. In photo-
catalytic reaction, TiO2 P25 was used as a standard material, which comprises of anatase
and rutile phases (ratio of about 4 to 1). The liquid products from glycerol oxidation were
formic acid, glyceraldehyde, and 1,3-dihydroxyacetone. Glycerol conversion of 36% was
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obtained after 10 h. The highest selectivity of 13 wt.% of glyceraldehyde was achieved from
this process.

4.3. Etherification

Etherification is defined as a transformation of glycerol molecules to form polyg-
lycerols. For instance, condensation of two glycerol molecules leads to the formation of
diglycerol with linear, branched, or cyclic isomers [120]. Etherification is associated with
development of mono-, di-, and tri-tert-butylglycerol ether mixtrures [121] as shown in
Figure 3. In etherification process, glycerol reacts with alcohols or alkenes to produce
branched compounds with oxygen atoms such as tert-butyl ethers, which can be used as
fuel additives. Production of fuel additives and the intermediates applied in pharmaceuti-
cals, non-ionic surfactants, and agrochemicals directly through glycerol etherification has
made this process appealing among various processes for glycerol conversion [122,123].
Poly-substituted ethers (di- and tri-ethers) are ideal fuel additives because of their potential
miscibility with commonly used diesel fuels. When these additives are used in blending
with diesel fuels, they make the engine’s performance better by reducing the production
of suspended matter, carbon dioxide, and hydrocarbons. They also help to decrease the
release of unregulated aldehydes [123,124].

A list of some catalysts used in etherification of glycerol has been shown in Table 4.
Heterogeneous catalysts used in this reaction might be either acidic or basic. Mostly, acidic
catalysts are used in etherification of glycerol due to their fast speed of reaction. This class
of catalysts also make higher conversion of glycerol in comparison with basic catalysts.
When the reaction takes place with acidic catalysts and in presence of tert-butyl alcohol as
the reactant, water is produced as a side product which infers the necessity of catalyst to be
active in water [125]. Studies on etherification of glycerol with isobutene and tert-butanol
revealed that the reaction with isobutene brought a higher conversion value in various
temperatures. Glycerol was fully converted when reacted with isobutene in presence
of silica catalysts [33]. Applying sulfonated graphene as the catalyst in etherification of
glycerol with isobutene led to complete conversion of glycerol with a high selectivity of
nearly 92 mol% of di- and tri-substituted ethers after 7 h [126]. The reaction conditions
were temperature range of 333–343 K, catalyst loading of 4 wt.% and isobutene to glycerol
ratio of 4 (molar basis). High activity of this catalyst in water makes it suitable for the
etherification reaction with tert-butyl alcohol. Miranda et al. [125] used the sulfonated
reduced graphene oxide in the reaction of glycerol with tert-butyl alcohol. The highest
conversion of glycerol of 77% was obtained with the selectivity of 73% towards MTBG (3-
tert-butoxy-1,2 propanediol and 2-tert-butoxy-1,3 propanediol), and 27% towards DTBG
(2,3-di-tert-butoxy-1-propanol and 1,3-di-tert-butoxy-2- propanol) after 10 h.

Table 4. Performance of different catalysts used in etherification of glycerol.

Catalysts Reactant
Time

(h)
Glycerol
Conv. (%)

Selectivity (%)
Ref.Mono Glycerol

Ether
Di Glycerol

Ether
Tri Glycerol

Ether

SnSO4 tert-butyl alcohol 4 ~30 ~15 0 0 [127]
Sn1.5PW12O40 tert-butyl alcohol 4 ~90 ~72 ~24 ~1 [127]
Sn2SiW12O40 tert-butyl alcohol 4 ~57 ~53 ~22 ~1 [128]
Sn3PMo12O40 tert-butyl alcohol 8 ~71 ~71 ~28 ~1 [129]

Montmorillonite-Al-Pillared tert-butyl alcohol 6 ~86 ~75 ~0 ~25 [130]
Montmorillonite-K-10 tert-butyl alcohol 6 ~92 ~87 ~4 ~4 [130]

Montmorillonite-KSF/O tert-butyl alcohol 6 ~95 ~83 ~10 ~2 [130]
Amberlyst-15 Ethanol 4 90 87 5 8 [131]
Amberlyst-15 Ethanol 8 96 65 19 16 [131]
H-Beta zeolite Ethanol 8 92 71 17 12 [131]

H-ZSM-5 zeolite Ethanol 8 61 94 4 2 [131]
Sulfonate graphene Isobutene 7 99.7 7.9 56.4 35.7 [126]

sulfonated reduced graphene oxide Tert-butyl Ether 10 77 73 27 - [125]
Cs/ZSM-5 - 8 13 100 0 0 [123]
Cs/ZSM-5 - 24 42 80 20 0 [123]
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Utilization of acid zeolites has been investigated by Veiga et al. [132]. The perfor-
mance of acid zeolite catalysts on etherification of glycerol has been examined with ethyl
alcohols and tert-butyl alcohol. It was observed that the catalysts containing Lewis acid
and Bronsted acid sites can be efficiently used for this conversion. The catalysts with
the best performances showed glycerol conversion of up to 75% with tert-butyl alcohol
and 81% with ethyl alcohol. Pinto et al. [131] focused on glycerol etherification with the
reactant of ethanol. They used some solid acid catalysts such as zeolites, sulfonic resins,
and clays in the etherification reaction of glycerol with ethanol, and the products were
mono-glycerol-ethers, di-glycerol-ethers, and tri-glycerol-ethers, which are applied as con-
stituents of biodiesel fuel. The best glycerol conversion and ethyl ether selectivity (96% and
80%, respectively) were obtained using the catalyst of Amberlyst-15 acid resin with the
temperature of 180 ◦C, ethanol glycerol ratio of 3 (molar basis) and reaction time of 4 h.

The selectivity cannot be effectively controlled in glycerol etherification process when
an acid catalyst is applied since a mixture of linear or cyclic polyglycerols, a mixture of
di- to hexa-glycerol chemicals, are produced [133]. Using a basic catalyst is shown to be
more effective than applying acidic catalysts in a reaction with cyclic polyglycerols since
there are some drawbacks for the acidic catalysts with this reaction. Some disadvantages
include low selectivity and a drop in product quality due to secondary reactions such as
dehydration and oxidation leading to intermediate products [134].

In case of using basic catalysts in etherification of glycerol, zeolite catalysts such as
ZSM-5, and zeolite type X, Y, and A have been applied by Clacens et al. [123]. When
Cs/ZSM-5 was used, selectivities of 80% for diglycerol and 20% for triglycerol were
achieved at the temperature of 260 ◦C and 1000 Si/Me ratio. Si/Al ratio was investigated as
a factor in etherification of glycerol reaction using ZSM-5 catalyst and a considerable effect
was observed due to the variation in acidity and basicity of the catalyst. Zeolite Y, another
form of zeolite, is extensively applied in industry because of its good stability and its ability
to accommodate molecules with diameters higher than 1.2 nm [135]. Gholami et al. [134]
reported 2 wt.% catalyst as the optimum value for etherification of glycerol. They noticed
that increasing the catalyst amount did not improve the product’s yield.

4.4. Hydrogenolysis

Hydrogenolysis of glycerol is a reaction in which a hydrogen molecule causes a break-
ing down (meaning of lysis) of C-C or C-O bonds of glycerol. This process begins with
dehydration which includes cleavage of C-O and C-H bonds. This step is promoted by
catalysts which contain acidic sites. Lewis acids bring about dehydration at primary hy-
droxyl groups while Bronsted acids cause dehydration at secondary hydroxyl groups [136].
It is followed by a hydrogenation step in which C-H and O-H bonds are formed and/or
another dehydration step occurred.

By hydrogenolysis of glycerol with hydrogen, a variety of products with different
number of carbons are produced. The main products are methanol (CAS number: 67-56-1),
methane (CAS number: 74-82-8), ethylene glycol (CAS number: 107-21-1), 1,2-propanediol
(1,2-PDO) (Propylene Glycol) (CAS number: 57-55-6), 1,3-propanediol (1,3-PDO) (CAS
number: 504-63-2), allyl alcohol (CAS number: 107-18-6), acetone (CAS number: 67-64-1),
propanal (propionaldehyde) (CAS number: 123-38-6), 1-propanol (CAS number: 71-23-8),
2-propanol (CAS number: 67-63-0), propylene (CAS number: 115-07-1), and propane (CAS
number: 74-98-6). Among these products, 1,2-PDO and 1,3-PDO have been investigated in
several research studies due to their applications. 1,2-PDO is applied in pharmaceutical,
antifreeze and tobacco industries and 1,3-PDO is applied in the production of polymers
such as polytrimethylene terephthalate (PTT), numerous polyesters and copolyesters [137].

Transition metals such as Cu, Co and Ni have been active and selective for 1,2-PDO
production when used as catalysts of hydrogenolysis of glycerol. The catalysts based on Cu
are commonly used for this reaction due to their activity and selectivity for cleavage of the
C-O bond [138]. Cost-effective transition metal catalysts have shown high selectivity and
yield for 1,2-PDO, while numerous noble metals showed good performances to produce
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1,3-PDO. When the reaction is controlled in a way that just one hydroxyl is dissociated,
C-C cleavage is prevented and cleavage of the C–O bond occurs, then high values of
propanediol yield can be attained. Hence, it is crucial to control the bifunctional properties
of a catalyst such as hydrogenation and dehydrogenation function of the metals and the
hydrolysis function of acidic and basic sites [139].

Table 5 presents results of studies on glycerol hydrogenolysis reaction using a variety
of catalysts. In a study, by Shan et al. [140], Cu catalysts with SBA-15 support were used for
hydrogenolysis of glycerol in the liquid phase, and the selectivity of 1,2-propanediol was
observed to be about 97%. NaY-zeolite supports were used by De andrade et al. [141], with
20 wt.% metal catalysts of Cu, Ni and Cu-Ni for hydrogenolysis reaction of glycerol in an
alkaline condition. The reaction occurred in continuous flow mode for 30 h at a temperature
of 260 ◦C and pressure of 4.6 MPa. Cu-Ni was found as the most effective catalyst to produce
1,2-propanediol. By adding NaOH to the reaction, the yield for 1,2-propanediol could be
enhanced. Using glycerol to NaOH ratio of 5 (molar basis) led to glycerol conversion
of 96.4% and 1,2-propanediol yield of 31.8%. Pandey and Biswas [142] employed Cu-
Ru/MgO catalyst for propylene glycol (1,2-propanediol) production, and it was observed
that this product can be produced at high reaction pressures, while atmospheric pressure is
more suitable for hydroxyacetone (acetol) production. 6Cu–4Ru/MgO catalyst showed the
performance that almost a full conversion and propylene glycol selectivity of approximately
75% at H2/glycerol ratio of 66.8 (mole basis) under reaction pressure of 0.8 MPa. A novel
catalyst of 3Cu/2Zn/1Cr/3Zr was used by Sharma et al. [143] at 240 ◦C and 4 MPa for
the same reaction. Propylene glycol selectivity enhanced to 97% and glycerol was fully
converted after 10 h.

Table 5. Performance of different catalysts used in hydrogenolysis of glycerol.

Catalyst Temperature
(◦C)

Pressure
(MPa) Time (h)

Conversion
of Glycerol

(%)

Selectivity
Ref.

1,2-PDO 1,3-PDO 1-Propanol

Ni/γ-Al2O3 220 - 5 100 87.0 - 0.1 [144]
Ni/CS-P * 260 - 5 100 0.0 - 71.0 [144]
Ni/CS-P * 260 - 2 100 0.0 - 91.0 [144]

Ni/Y-Zeolite 260 4.5 23–30 95.6 42.9 - - [141]
Cu/Y-Zeolite 260 4.5 23–30 71.1 12.6 - - [141]

Ni-Cu/Y-Zeolite 260 4.5 23–30 96.4 43.9 - - [141]
Cu/SBA-15 230 4 1.5 90.3 97.3 - - [140]
Ag/Al2O3 220 1.5 10 46.0 96 - - [145]

Pt/SiO2-Al2O3 220 4.5 24 19.8 32 - - [146]
Ru/CeO2 180 5 10 85.2 62.7 - - [147]
Cu/ZnO 200 2 16 37.0 92 - - [148]

Cu/Al2O3 220 5 6 61 93.3 - - [149]
Cu/MgO 180 3 20 72 97.6 - - [150]

Cu/MgAlO 180 3 20 80 98.2 - - [151]
Cu-Pd/MgAlO 180 2 10 77 97.2 - - [152]

Pt(0.5)-Ir-ReOx/SiO2 190 2 17 30 19 - 4.1 [153]
Ir-ReOx/SiO2 120 8 36 81 - 46 - [154]
Pt-WO3/ZrO2 170 8 18 86 - 28 - [155]

Pt/WO3-TiO2/SiO2 180 5.6 12 15.3 - 50 - [156]
Pt/WOx-TiOx 180 5.6 12 18.4 - 40.3 - [157]

Ir/ZrO2 with HZSM-5 ** 250 1 2 100 - - - [158]

* Phosphorous-impregnated carbon composite, ** Gives propene selectivity 85%.

Some noble metal-based catalysts such as Pt-Re and Pt-WOx have shown to be effective
for the production of 1,3-propanediol [139]. Catalysts containing Pt, WOx and Al2O3 were
used for glycerol hydrogenolysis, and it was observed that Pt and W content have significant
effects on the yield of 1,3-propanediol and the highest yield of 28.4 wt.% was obtained at
Pt/W ratio (molar basis) of 6/12.9 [159]. Different supports such as C, CeO2, TiO2, Al2O3,
ZrO2, and MgO were also employed with Ir-ReOx catalyst to produce 1,3-propanediol
through glycerol hydrogenolysis and it was observed that 1,3-propanediol productivity
depended on the metal loading. Ir loading of 6 wt.% with 6 m2/g rutile TiO2 support
demonstrated the highest catalyst activity [160].
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Two main drawbacks of the process are the batch mode of the reaction and a high
pressure of hydrogen, which is required to attain an acceptable performance in terms of
conversion and selectivity [161]. Furthermore, hydrogen is available at refineries and is
produced from fossil fuel sources. Another drawback is the potential hazard of using hy-
drogen due to its flammability and diffusivity at high pressures. Two methods of hydrogen
production are glycerol reforming in aqueous phase and catalytic transfer hydrogenation
by hydrogen donors. In situ production of propanediol from glycerol and hydrogen is
discussed in a review by Martin et al. [137].

Allyl alcohol is another value-added product derived from hydrogenolysis of glycerol.
This product can be obtained from acrolein hydrogenation [136] as well as from glycerol
transformation and dehydration of both 1,2-propanediol and 1,3-propanediol [162]. 1,2-
propanediol dehydration leads to production of acetone, propanal, and allyl alcohol. When
an acid catalyst is applied for 1,2-propanediol dehydration, propanal would be the major
product. One limitation in production of allyl alcohol is its hydrogenation into 1-propanol
in presence of hydrogen gas. Therefore, a hydrogen transfer reaction with mono alcohol or
acids, which are H donors, are used in place of hydrogen gas for production of allyl alcohol
from glycerol. For example, Arceo et al. [163] used formic acid H donor in hydrogenolysis
of glycerol and obtained the allyl alcohol yield of 89% at 230–240 ◦C. Formic acid also
played a role as the catalyst in this reaction.

Propylene (also called propene) is another value-added product of glycerol, which
can be synthesized by dehydration of both 1-propanol and 2-propanol. This product
is extensively applied in petrochemical industry [162] and its synthesis from renewable
resources is not studied well. There is not much research on producing this product from
glycerol hydrogenolysis. Mota et al. [164] studied preparation of green propene using
metallic catalysts with supports in the reaction of glycerol and hydrogen. The conversion
was approximately full, and the selectivity was reliant on the catalyst composition. When
activated carbon was used as a support, Ru and Ni/Mo catalysts majorly produced propane,
Pd majorly produced methane/ethane and Zn/Mo and Cu/Mo catalysts on activated
carbon brought about production of oxygenated intermediates. Fe/Mo catalyst with
activated carbon support showed up to 90% propene selectivity. This formation might be
due to weak reducibility of iron-molybdenum catalyst.

4.5. Esterification

Esterification is a chemical reaction in which two reactants form an ester as a reaction
product. Generally, any reaction between glycerol and a fatty acid, counts as an esterifica-
tion reaction which can lead to produce monoglycerides, diglycerides, and/or triglycerides.
Monoglyceride can also be obtained from triglyceride by glycerolysis reaction via base
catalysts or enzymes or methyl ester and glycerol trans-esterification reaction. This product
is a good surfactant and can be employed in pharmaceutical, food and cosmetic indus-
tries [165]. It is possible to convert waste oils to distilled fatty acids through two process
steps: splitting and distillation. The product can be employed for synthesis of value-added
products via esterification of glycerol [166]. Oleic acid, acetic acid and lauric acid are some
of the fatty acids which have been used in esterification [167,168]. The structures of the
products are shown in Figure 3.

Biocatalysts, multivalent metal catalysts, acidic and basic catalysts have been mostly
used for glycerol esterification [169]. Table 6 presents results of studies on glycerol ester-
ification reaction using a variety of catalysts. Corma et al. [170] examined the effect of
using Lewis acid catalyst and Bronsted basic catalyst on the yield of monoglycerides in
this reaction. It revealed that the yield of monoglycerides was 60% by using Lewis acid
catalyst, while it improved to 80% by changing the catalyst with Brønsted basic catalyst at
the same conditions.
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Table 6. Performance of different catalysts used in esterification of glycerol.

Catalyst Reactant
Acid/Glycerol

Ratio
Temp.
(◦C)

Time
(h)

Glycerol
Conv.
(%)

Selectivity (%)
Ref.

Mono Di Tri

Glycerol-based carbon catalyst Acetic acid 1:3 110 3 99 - 88 [171]

Layered double hydroxide of MgAlCO3 Oleic acid 2:1 180 2 '63 '51
mono-olein

'44
di-olein

'5
tri-olein [172]

Layered double hydroxide of MgAlCO3 Oleic acid 3:1 140 2 '56 '88
mono-olein

'10
di-olein

'0
tri-olein [172]

MgAlCO3 Lauric acid 3:1 180 2 99 90 mono- and di-laurine - [173]
HPW/SBA-15 Lauric acid 1:4 160 6 70 50 - - [174]
ZnO/Zeolite Oleic acid 1:4 150 6 85 70 - - [165]

Sn-EOF
(Organic framework) Oleic acid 1:1 150 20 40 98 - - [175]

Several studies have focused on the catalysts containing metal oxides/salts for this
reaction. Bombos et al. [176] made a comparison for catalysts including zinc oxide, tin
(II) oxide, and ferrous oxide. Zinc oxide was observed as the most likely catalyst for
glycerol and oleic acid esterification. Nevertheless, there is a leaching problem for zinc
oxide powder. Since Zn particles were leached in the solution, Singh et al. [165] used ZnO
on a zeolite support to prevent the leaching. Oleic acid esterification led to monoglyceride
selectivity of 70–80% and the conversion of 60–90%. When zeolite was used as a support,
less leaching of metal catalysts is observed compared to alumina and silica supports [177].
In another study [175], Sn leaching was successfully controlled by keeping the oleic acid at
lower amount in the initial mixture. A Sn–organic framework catalyst was employed in
esterification of glycerol in the presence of oleic acid. The catalyst acted highly selective
towards mono-glyceride with 98% selectivity at oleic acid conversion of 40% at the reaction
condition of 150 ◦C for 20 h.

Hamerski et al. [172] examined the effect of reaction temperature while using layered
double hydroxide catalysts for glycerol esterification. It was revealed that at higher tem-
perature (180 ◦C), a darker product was achieved and glycerol conversion and product
selectivity (in order of mono-, di, and tri-olein) were higher in comparison to that of lower
temperature (160 ◦C). Esterification reaction of glycerol without using a solvent has been
investigated in some research [173,178]. Hamerski and Corazza [173] tried esterification
of glycerol with lauric acid using a layered double hydroxide, Mg-Al-CO3, as the catalyst
in absence of solvent. The reaction was carried out under the conditions of temperature
between 100 to 180 ◦C, lauric acid/glycerol molar ratio (1:1 to 3:1) and catalyst amount of
2 to 8 wt%. A high glycerol conversion of 99% was obtained for the reaction, and the prod-
uct was monolaurine and dilaurine. Ahmad et al. [179] claimed that in transesterification
reactions, those reactions, which are carried out without a solvent, showed higher reaction
rate in comparison with those using the solvents with low methyl ester solubility, which
makes the reaction slower.

4.6. Dehydration

Glycerol dehydration is a reaction in which one or more water molecules are removed
from glycerol structure. It is possible to selectively convert glycerol to acrolein (CAS
number: 107-02-8) or acetol (hydroxyacetone) (CAS number: 116-09-6) through dehydration
reaction using appropriate catalysts and reaction conditions. Besides acrolein and acetol,
which are commercially key compounds, dehydration of glycerol also produces acrylonitrile
(CAS number: 107-13-1) and acrylic acid (CAS number: 79-10-7) [180]. Acrolein is applied
as a source of polyester fibre production as well as its application as an herbicide and a
detergent [179]. Acrolein can also be employed as an intermediate or chemical reactant to
synthesize materials such as methionine, acrylic acid, esters, propanol, allyl alcohol, and
propanal [181]. Acetol is another value-added product which is a source compound for
1,2-propanediol. This chemical is environmentally friendly and reactive, has a wide range
of applications due to its hydroxyl and carbonyl functional groups. Some applications
include solvent usage, hydrogen production industry and textile industry [180].
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At dehydration of glycerol, heterogeneous catalysts such as oxides and mixed oxides,
as well as liquid catalysts such as mordenite, are commonly used. Some of different
catalysts used in dehydration of glycerol are listed in Table 7. A study has been carried
out by Stosic et al. [182] on the effect of varying Ca/P ratio (1.39 to 1.77) in calcium
phosphate catalyst during dehydration reaction of glycerol. They observed that changing
the Ca/P ratio influences the acidic and basic properties of the catalyst. Their investigation
revealed that for selectively production of acrolein, the catalyst needs to have more number
and higher strength of acidic sites and the amount of by-product (acetol) increase as the
basic sites rise. To increase the number of acidic sites of the catalyst and gain benefit
from this fact to increase acrolein yield in dehydration reaction, Garcia-Sancho et al. [183]
investigated the effect of phosphoric acid treatment on the performance of Nb2O5 catalyst
with zirconium doped silica support (Si/Zr = 5). The molar ratio of Nb/P varied between
0.1 and 1. Characteristic tests revealed the presence of zirconium hydrogen phosphate
on the surface of the catalyst which enhanced the stability of the catalyst and the yield of
acrolein production as well, because of the acidic sites. The best result of this study was 74%
of acrolein selectivity at 350 ◦C. Another study [181] investigated conversion of glycerol to
acrolein through dehydration reaction by hiring three catalysts using zeolite-Y including
HY, LaY, and Pd/LaY. The activity analysis of the catalysts was carried out in the presence
of hydrogen, and it was observed that both glycerol conversion and acrolein yield were
enhanced with La ions exchanged in the zeolite-Y. With the reaction progress for 3 h, glycerol
conversion was constant because of the presence of Pd metal and hydrogen gas in the feed.
Since the reaction is exothermic below 480 K, acetol production was favored and a complete
conversion was obtained. At the temperatures higher than 480 K, more energy is consumed
in the system which promotes acrolein generation with a maximum concentration at the
temperature of 600 K. As given in Table 7, temperature range of 200–320 ◦C is suitable for
dehydration reaction of glycerol to produce acrolein. Temperature lower than 200 ◦C is
needed for production of acetol.

Table 7. Performance of different catalysts used in dehydration of glycerol.

Catalyst Temp. (◦C) Reaction Time
(h)

Glycerol Conv.
(%)

Selectivity (%)
Ref.

Acrolein Acetol

Al2O3–PO4 280 10 100 42 23 [184]
TiO2–PO4 280 10 98 37 30 [184]
SAPO-34 280 10 59 72 6.8 [184]

Ca/Ca10(PO4)6(OH)2 350 1.5 85 9 22 [182]
P/Ca10(PO4)6(OH)2 350 1.5 97 35 19 [182]

Zr 325 2 91 25 5 [183]
ZrNb 325 2 80 36 8 [183]

ZrNbP0.2 325 2 100 56 10 [183]
WO3/ZrO2 at SiC 250 - 100 71.1 8.1 [185]

30 wt% HPW/MSU-x 300 4 100 69.5 7.5 [186]
30 wt% HPW/SBA-15 300 4 100 61 4.5 [186]

nanosheet MFI zeolite (Si/Al = 30) 320 8 98.3 82.8 8.4 [187]
nanosheet MFI zeolite (Si/Al = 50) 320 4 99.8 85.4 4.9 [187]

SiCuCr40-Ce5 200 3 98.6 - 60.35 [188]
Hydrotalcite type-M2+/M3+ = 4 240 1–9 6.9 - 39 [189]

5.0% Cu-Hydrotalcite
type-M2+/M3+ = 4 240 1–9 64.1 - 52.2 [189]

A sample for observing the effect of acidity is Suprun et al.’s work [184]. They
compared the performance of aluminum oxide and titanium oxide supports, which are
modified by phosphates, with SAPO-34 catalyst. They expressed that the selectivity of
acrolein as a product and glycerol conversion are dependent on the amount of acidity and
the textural properties of the catalyst. The first couple of catalysts have relatively lower
acidity amount (170 µmol NH3/g for Al2O3–PO4 and 150 µmol NH3/g for TiO2–PO4), and
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acidity of SAPO-34 was 280 µmol NH3/g. It was observed that higher natural acidity of
catalyst lead to higher acrolein selectivity and lower acetol selectivity. It is noteworthy to
mention that glycerol conversion in Al2O3–PO4 and TiO2–PO4 was nearly complete, while
it was 59% by using SAPO-34. Production of acrolein through glycerol dehydration can take
place in liquid or gas phase; but it seems that in both, the major obstacle in the industrial
manufacture pathway is the fast deactivation of the catalysts by carbon deposition [190].

The production of acetol, another product of glycerol dehydration, has been inves-
tigated by Basu et al. [188]. CuCr catalyst over silica support was promoted by different
amount of cerium. It has been reported that SiCuCr40-Ce5 catalyst showed the highest
acetol selectivity (60.4%). It seems that Ce promotion caused higher glycerol conversion,
lower reaction temperature and more acetol selectivity. Pathak et al. [191] examined some
acid catalysts for dehydration of glycerol at 380 ◦C. The maximum product of acrolein,
around 25/100 g feed, was obtained by using γ-alumina, while using silica-alumina led to
maximum amount of acetaldehyde product, almost 24.5/100 g feed. The highest amount of
acetol (14.7/100 g feed) and formaldehyde (9/100 g feed) was achieved with the catalysts
of HY and silica-alumina, respectively.

5. Industrial Prospects and Barriers

The market price of glycerol is dependent on the supply. The downward trend of
glycerol price is caused by the growth of biodiesel plant in which glycerol is produced as a
by-product [4]. Crude glycerol plays an important role in bio-refining industry based on
oilseeds [192]. The glycerol production from biodiesel industry promoted the applications
of glycerol in value-added chemicals production, which offset biodiesel production cost
and expand the existing market. Utilization of glycerol generated by biodiesel industry
will benefit the local and global economy and environment [13]. Glycerol utilization can
also change the market of other industries, which relies on the glycerol production [5]. The
advancement in glycerol utilization will help to move towards a circular bioeconomy [13].

The economic studies of glycerol purification after biodiesel production indicated that
glycerol purification process could reduce wastewater treatment cost and get benefits from
glycerol recovery [193]. The potential benefits of conversion purified glycerol to value-
added fuel additives, solketal and glycerol carbonate, was evaluated by Chol et al. [194].
In simulation process, solid catalyst Amberlyst-15 and dibutyltin oxide were used for
ketalization and carboxylation of glycerol. The simulation results showed the estimated
annual revenue (USD 80.36/kg) was higher than annual cost (USD 50.45/kg), and the
process was more profitable when more glycerol was converted to solketal and glycerol
carbonate. Thus, it’s worth investing in extra process of glycerol purification and conversion
in addition to a biodiesel plant [194].

Though utilization of crude glycerol for high value product formulation has been
widely investigated, these processes are not widely commercialized [13]. Enzyme proper-
ties and low product yield and low conversion limit its industrial application in conversion
of glycerol. The homogeneous catalysts may cause disposal, recycling, and corrosion
problems, which may increase the production cost [25]. The heterogeneous catalyst can
be easily recovered and reused; hence intensive research trend to focus on heterogeneous
catalyzed process to convert glycerol to value added products. The deactivation of some
heterogeneous catalysts limits their utilization. Thus, the reusability and stability must be
further improved for industrial application. The reusable heterogeneous catalysts with
high stability and capacity during the reaction process are highly desirable in industry.
The reusability is generally studied for heterogeneous catalysts. The anhydrous trisodium
phosphate catalyst was repeatedly used for nine cycles without deactivation in glycerol
carbonate synthesis from glycerol and dimethyl carbonate [65]. The preserved crystalline
phase after the nine times indicated high structural stability of trisodium phosphate cat-
alyst. Transesterification of glycerol over Mg-Al hydrotalcites catalysts was studied by
Zheng et al. [64]. The catalyst activity decreased slightly but can be maintained by regener-
ation after each experiment. ZnO/La2O3 mixed oxides, catalysts used in the production
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of glycerol carbonate from glycerol, can be fully regenerated by calcination [63]. The cata-
lyst HSiW/ZrO2 was used for acetylation of glycerol, and the catalytic activity remained
constant for all the cycles [195]. The heterogeneous Ti-SBA-15 catalyst was used to convert
glycerol to glycerol carbonate, and the reusability study showed that this catalyst was
stable and economically feasible [84]. The transformation of glycerol to valuable products
by appropriate heterogeneous catalysts has commercialization potential [84]. To be reused
with constant activity, various methods such as solvent wash, oven drying and calcination
were developed to regenerate the above-mentioned catalysts [25,63,64,195]. In general,
deactivation problem caused by leaching, harsh conditions, or contaminants deposition in
activity sites need to be considered in design of catalysts. Effective and simple regeneration
need to be developed for glycerol conversion catalysts to enhance feasibility and economic
viability in industry. The transformation of glycerol to valuable products by appropriate
heterogeneous catalysts, which have low leaching and high stability and can be easily
recovered, is promising and competitive for industrialization.

The price of crude glycerol is much lower than that of purified glycerol. Direct
conversion of crude glycerol to value-added products seems to be more cost-effective.
The glycerol transformation commercialization might be limited by the high price of pure
glycerol. Currently, crude glycerol instead of purified glycerol was studied to be directly
converted to various value-added derivatives [196–198]. However, the yield, selectivity
and catalysts performance need to be improved. The production cost, feedstock quality,
followed by separation and purification need to be considered [26]. The viability of crude
glycerol conversion to value added products still needs to be enhanced [33].

6. Discussion on the Products

Applications of biofuels as an alternative for fossil fuels has attracted attentions
to reduce carbon dioxide emission and its subsequent global warming. An increase in
demand for biodiesel has led to the production and accumulation of glycerol, which is
a high value commercial chemical with a verity of applications in personal care and
pharmaceutical products, chemical industry, textile industry, food industry and food
supplements for animals. There are numerous chemical products which can be produced by
the conversion of the excess produced glycerol. Being a molecule with three hydroxyl group
gives a valuable opportunity to be converted via carboxylation, oxidation, etherification,
hydrogenolysis, esterification, and dehydration as the most important processes.

The main product of glycerol carboxylation is glycerol carbonate. There are many
carbonate source materials which have been considered to react with glycerol to produce
glycerol carbonate. Important factors such as accessibility and price, being eco-friendly,
reaction conditions and reactivity lead to select a reactant for this reaction. In reaction
with carbon dioxide, the main by-product is water, so, using two dehydrators is common:
acetonitrile and 2-cyanopyridine. The reaction with carbon dioxide needs high pressure,
while using urea needs a slight vacuum to remove gaseous by-product, ammonia. Dimethyl
carbonate is the most frequently used chemical in recent decades to react with glycerol and
produce glycerol carbonate, because of its relatively low price and mild reaction conditions.
Among heterogeneous catalysts, which have been used to produce glycerol carbonate with
any carbonate source, metal oxides and mixed metal oxides have shown relatively better
results due to their co-existence of acidic and basic sites on the catalyst. Glycerol oxidation
takes place when glycerol reacts with oxygen or hydrogen peroxide as the main oxidant. In
the reaction with oxygen, medium to high pressure is needed. The most common catalysts
using in glycerol oxidation are Au, Pt, Ag, Pd, and Pb. Bimetallic catalysts have shown
higher conversion of glycerol during the reaction. Products’ selectivity is highly affected
by the feature of acidic or basic nature of the catalyst. For catalysts with higher number of
basic sites, the selectivity of glycolic acid, tartronic acid, or glyoxalic acid increase, while
the selectivity of glyceric acid is not affected by acidity or basicity of the catalyst.

Reaction pH is another important factor, which affects the formation of intermediates
of the reaction. Primary alcoholic groups are formed in basic conditions, while secondary
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alcoholic groups are produced in acidic circumstances. Production of glyceraldehyde and
tartaric acid occurs at basic pH. Strongly acid pH is favorable to produce dihydroxyacetone
and hydroxypyruvic acid. Etherification of glycerol occurs when glycerol reacts with
alcohols or alkenes. Reaction with isobutene bring higher conversion compared with
tert-butanol.

Products from etherification reaction are mono-, di-, and tri-glycerol ethers. Generally,
using acidic catalysts in etherification reaction leads to faster reaction and higher conversion,
but low selectivity; in contrast, by using basic catalysts, the reaction will be slower, but have
more selectivity. Hydrogenolysis of glycerol occurs when hydrogen reacts with glycerol,
and advances to a variety of products. Two of the most important ones are 1,2-PDO
(propylene glycol) and 1,3-PDO. Most transition metals such as Cu, Co, and Ni have been
active for production of propylene glycol, while noble metals such as Pt have shown better
performance in 1,3-PDO synthesis. The common reaction condition from these studies is
the temperature range of 120–260 ◦C, and high pressure up to 50 atm. Due to flammability
and diffusivity of hydrogen under high pressure condition, H donors such as formic acid
may be used instead of hydrogen.

Esterification of glycerol occurs while glycerol reacts with oleic acid, acetic acid, or
lauric acid. The products classify in three groups: mono-, di-, and tri-glycerides. Most of the
studies in this review show the temperature range of 110–180 ◦C. It has been observed that
with increasing the temperature, more glycerol conversion can be achieved. Additionally,
hiring basic catalysts lead to more monoglyceride selectivity. Metal and mixed metal
oxides are common catalysts which have been used for this reaction. Leaching, as the main
problem, has been solved to some extent, by using supports or keeping the amount of the
reactant to a lower concentration.

Two main products named acrolein and acetol are produced during glycerol dehydra-
tion. Generally, temperatures less than 200 ◦C are suitable for synthesis of acetol, and the
range of 200–320 ◦C shows better results of acrolein production. On the other hand, higher
catalyst acidity results in higher acrolein selectivity and lowers conversion of glycerol. The
opposite works for acetol, means lower catalyst acidity leads to higher acetol selectivity
and higher glycerol conversion.

7. Conclusions

The surplus of crude glycerol due to the expanding biodiesel production makes it
urgent to explore alternative applications of crude glycerol. Glycerol is an appealing
feedstock employed in the production of value-added chemicals. Conversion of waste
glycerol is a favorable way to produce value-added products as well as overcome the
problem of accumulation of glycerol, as the bottleneck of biodiesel production process.
There are some major categories of the conversion of glycerol for instance carboxylation,
oxidation, etherification, hydrogenolysis, esterification, and dehydration, based on the
changes which are applied to the structure of the glycerol molecule, which are studied in
detail in this review.

Heterogeneous catalysts play a crucial role to enhance the yields of the desired prod-
ucts along these reactions. Different factors of the catalyst such as the amount of acidity
or basicity, the catalyst phase, surface area, and catalyst synthesis parameters, must be ad-
justed for production of the specific desired outcome. For instance, metal oxide and mixed
metal oxide catalysts have shown better performance towards the production of glycerol
carbonate, and esterification reaction of glycerol. Precious metal catalysts have mostly
shown better performance in glycerol oxidation rather than other catalysts, while noble
metals are favorable to produce 1,3-PDO, and transition metals showed better functioning
towards the production of propylene glycol. Strong basic catalysts are more suitable to
produce glycolic acid, tartronic acid, glyoxalic acid or monoglyceride, while moderate basic
ones are appropriate for glyceraldehyde production. Hydroxypyruvic acid and dihydroxy-
acetone have shown more yield in presence of strong acidic catalysts. Acidic catalysts are
also favorable in etherification of glycerol since they provide more glycerol conversion.
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The heterogeneous catalysts have been widely studied for glycerol conversion to value
added products. Their performances are acceptable, and they are easy to be separated
and reused. However, the direct conversion of crude glycerol by heterogeneous catalysts
needs more effort to be enhanced. Expanding the areas of glycerol and crude glycerol
consumption will help to have more circular bioeconomy. It can also affect the market of
other industries, which are dependent to glycerol as their feedstock.
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