
RESEARCH ARTICLE

Cheminformatics-aided discovery of small-
molecule Protein-Protein Interaction (PPI)
dual inhibitors of Tumor Necrosis Factor (TNF)
and Receptor Activator of NF-κB Ligand
(RANKL)

Georgia Melagraki1,2‡, Evangelos Ntougkos1‡, Vagelis Rinotas1,3,

Christos Papaneophytou4,5,6, Georgios Leonis2, Thomas Mavromoustakos7,

George Kontopidis4,5, Eleni Douni1,3, Antreas Afantitis1,2*, George Kollias1,8*

1 Division of Immunology, Biomedical Sciences Research Center ’Alexander Fleming’, Vari, Greece,
2 NovaMechanics Ltd, Nicosia, Cyprus, 3 Laboratory of Genetics, Department of Biotechnology, Agricultural

University of Athens, Athens, Greece, 4 Veterinary School, University of Thessaly, Karditsa, Greece,
5 Institute for Research and Technology Thessaly (IRETETH), Volos, Greece, 6 Department of Life and
Health Sciences, School of Sciences and Engineering, University of Nicosia, Nicosia, Cyprus, 7 Laboratory of

Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens,
Greece, 8 Department of Experimental Physiology, Medical School, National and Kapodistrian University of

Athens, Athens, Greece

‡ GM and EN are co-first authors

* afantitis@novamechanics.com (AA); kollias@fleming.gr (GKol)

Abstract

We present an in silico drug discovery pipeline developed and applied for the identification

and virtual screening of small-molecule Protein-Protein Interaction (PPI) compounds that

act as dual inhibitors of TNF and RANKL through the trimerization interface. The cheminfor-

matics part of the pipeline was developed by combining structure–based with ligand–based

modeling using the largest available set of known TNF inhibitors in the literature (2481 small

molecules). To facilitate virtual screening, the consensus predictive model was made freely

available at: http://enalos.insilicotox.com/TNFPubChem/. We thus generated a priority list of

nine small molecules as candidates for direct TNF function inhibition. In vitro evaluation of

these compounds led to the selection of two small molecules that act as potent direct inhibi-

tors of TNF function, with IC50 values comparable to those of a previously-described direct

inhibitor (SPD304), but with significantly reduced toxicity. These molecules were also identi-

fied as RANKL inhibitors and validated in vitro with respect to this second functionality. Direct

binding of the two compounds was confirmed both for TNF and RANKL, as well as their abil-

ity to inhibit the biologically-active trimer forms. Molecular dynamics calculations were also

carried out for the two small molecules in each protein to offer additional insight into the inter-

actions that govern TNF and RANKL complex formation. To our knowledge, these com-

pounds, namely T8 and T23, constitute the second and third published examples of dual

small-molecule direct function inhibitors of TNF and RANKL, and could serve as lead com-

pounds for the development of novel treatments for inflammatory and autoimmune diseases.

PLOSComputational Biology | https://doi.org/10.1371/journal.pcbi.1005372 April 20, 2017 1 / 27

a1111111111
a1111111111
a1111111111
a1111111111
a1111111111

OPENACCESS

Citation:Melagraki G, Ntougkos E, Rinotas V,

Papaneophytou C, Leonis G, Mavromoustakos T,

et al. (2017) Cheminformatics-aided discovery of

small-molecule Protein-Protein Interaction (PPI)

dual inhibitors of Tumor Necrosis Factor (TNF) and

Receptor Activator of NF-κB Ligand (RANKL). PLoS
Comput Biol 13(4): e1005372. https://doi.org/

10.1371/journal.pcbi.1005372

Editor: Alexander MacKerell, Baltimore, UNITED

STATES

Received: July 8, 2016

Accepted: January 17, 2017

Published: April 20, 2017

Copyright: © 2017 Melagraki et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was funded by Greek

“Cooperation” Action project TheRAlead (09SYN-

21-784) co-financed by the European Regional

Development Fund and NSRF 2007–2013 (http://

www.gsrt.gr), the Innovative Medicines Initiative

(IMI) funded project (http://www.imi.europa.eu/)

http://enalos.insilicotox.com/TNFPubChem/
https://doi.org/10.1371/journal.pcbi.1005372
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005372&domain=pdf&date_stamp=2017-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005372&domain=pdf&date_stamp=2017-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005372&domain=pdf&date_stamp=2017-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005372&domain=pdf&date_stamp=2017-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005372&domain=pdf&date_stamp=2017-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1005372&domain=pdf&date_stamp=2017-04-20
https://doi.org/10.1371/journal.pcbi.1005372
https://doi.org/10.1371/journal.pcbi.1005372
http://creativecommons.org/licenses/by/4.0/
http://www.gsrt.gr
http://www.gsrt.gr
http://www.imi.europa.eu/


Author summary

Developing drugs that disrupt protein-protein interactions (PPIs) is a difficult task in

pharmaceutical research. The interaction between protein Tumor Necrosis Factor (TNF)

and its receptors is implicated in several physiological functions and diseases, such as

rheumatoid and psoriatic arthritis, Crohn’s disease, and multiple sclerosis. Despite their

potency, current medications that block the interaction between TNF and its receptors

are also associated with many adverse functions. Here, we employ comprehensive compu-

tational and experimental methods to discover novel small molecules that are direct inhib-

itors of TNF function. Functionality for RANKL, a second, clinically-relevant member of

the TNF protein family, was also examined. Using a combination of an in silico drug dis-

covery pipeline, which includes structure- and ligand-based modeling, and in vitro experi-

ments, we identified compounds T8 and T23 as dual inhibitors of TNF and RANKL.

These compounds present low toxicity and may be further optimized in drug design tar-

geting TNF and RANKL to develop improved treatments for a range of inflammatory and

autoimmune diseases.

Introduction

Tumor Necrosis Factor (TNF) is a pro-inflammatory cytokine[1] that is associated with a

variety of important physiological processes and pathological conditions, including rheuma-

toid arthritis (RA), psoriatic arthritis, Crohn’s disease, and multiple sclerosis.[2,3] To control

the adverse functions of TNF, efforts have focused on blocking TNF binding to its receptors.

[4] TNF is generated as a transmembrane protein (tmTNF), which is proteolytically cleaved

by tumor necrosis factor-α-converting enzyme (TACE) to its soluble form (sTNF).[5] sTNF

and tmTNF bind to two different receptors, TNFR1 (TNF receptor type 1) and TNFR2

(TNF receptor type 2) with differential capacities, exerting differential functions.[6,7] While

TNFR1 is expressed on most cell types, TNFR2 is expressed mainly on immune cells[6] and

its complete activation requires the presence of tmTNF.[8] It has been demonstrated that

tmTNF and sTNF differ in their physiological functions[9,10] and inhibitors that distinc-

tively target them may result in differential effects.[11] Early studies in our lab provided in

vivo evidence that deregulated TNF production is causal to the development of chronic poly-

arthritis in a transgenic animal model and that anti-TNF treatment is efficacious for treating

the modeled disease.[12] These studies were instrumental in mobilizing the interest of the

anti-TNF industry, which led to the first successful clinical trials performed initially for RA

[13] and then for other chronic inflammatory diseases, such as Crohn’s disease, psoriasis,

psoriatic arthritis, juvenile idiopathic arthritis, spondylarthritis and Behçet’s disease.[14]

Thus far, four synthetic antibodies have been approved by the FDA as effective TNF inhibi-

tors, namely infliximab, adalimumab, certolizumab pegol[15] and golimumab[16] as well

as the Fc-p75 receptor etanercept.[17] However, their discovery did not limit the ever-

increasing research efforts towards the development of new anti-TNF drugs, mainly due to

impediments, such as unwanted side effects (e.g. high risk of hepatitis B and tuberculosis),

insufficient clinical response, the need for intravenous administration, and high cost. Drug

development that leads to small-molecule inhibitors may overcome several of the above

drawbacks by offering important advantages, such as oral administration, shorter half-lives

with lower immunosuppression, easier manufacturing and reduced cost.[14]

The development of small-molecule inhibitors for protein-protein interactions (PPIs) is a

nontrivial task in drug research.[18–21] Successful drug design requires the identification of
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compounds with low molecular weight, something extremely challenging, especially when

attempting to block interactions between large molecules, such as proteins.[22] The successful

recognition of small-molecule inhibitors is also hampered by the difficulty to identify potential

“hot spots” as unique binding targets that are crucial for the disruption of biomolecular inter-

actions.[23,24] Regarding TNF–TNF receptor interactions, the majority of small molecules

proposed to date interact with TNF indirectly by down-regulating the expression of the pro-

tein; direct disruption of the interaction between TNF and its receptors has been reported only

for a handful of small molecules.[22] These include suramin and its analogs,[25,26] as well as

the indole-linked chromone SPD304 (Fig 1).[27] The biologically active state of TNF is a

homotrimer; direct inhibition by SPD304 disrupts the binding of TNF dimer with the third

subunit, thus preventing the formation of the active complex.[28,29] The binding site of the

TNF dimer comprises mostly hydrophobic residues, and particularly glycine, leucine and tyro-

sine. Predominant interactions between the dimer and small molecules have been reported to

be hydrophobic and shape-driven, since ligand structures need to be large enough to directly

interact with both subunits and also to promote disassembly of the third subunit.[27,30]

Despite their promising effectiveness, the agents that directly disrupt the interaction

between TNF and its receptor are also associated with adverse functions, such as low potency,

poor selectivity and significant side effects (suramin),[31] as well as cell toxicity (SPD304).[32]

Recently, additional small molecules have been proposed for direct TNF inhibition, namely

two natural product-like small molecules, which are currently under hit-to-lead optimization

studies,[30] two FDA–approved drugs (darifenacin and ezetimibe),[33] and a metal–based

compound [iridium(III) biquinoline complex].[34]

Notwithstanding the aforementioned advancements, development of medications aiming

at small-molecule inhibition of TNF with reduced toxic effects and high potency remains inad-

equate; this study has thus aimed at the identification of novel compounds that fit this desir-

able profile. We combined a variety of cheminformatics techniques,[35–37] such as structure-

based virtual screening, ligand-based modeling and molecular dynamics (MD), with the exper-

imental evaluation of selected compounds, to identify small-molecule candidates for TNF

Fig 1. Chemical structures of compounds SPD304 (published inhibitor), and T8, T23 (the twomost
potent inhibitors identified by our pipeline).

https://doi.org/10.1371/journal.pcbi.1005372.g001
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inhibition. 14,400 diverse drug-like compounds were initially virtually-screened[38] from the

Maybridge HitFinder database[39] and were docked into the binding site of the TNF dimer

(PDB ID: 2AZ5). The 30 compounds with the closest docking score and binding conformation

to SPD304 were further filtered through a ligand-based predictive model based on the largest

dataset available, containing 2481 known TNF inhibitors,[40] to afford 9 active compounds,

which were subsequently tested in vitro to evaluate their potency against TNF. Our ligand-

based model developed for the prediction of small-molecule TNF inhibition was made publicly

available through the Enalos Cloud platform (http://enalos.insilicotox.com/TNFPubChem/).

In vitro evaluation of functional inhibition and direct binding pointed to two compounds,

namely T8 and T23, as the most potent TNF inhibitors (Fig 1).

RANKL (Receptor activator of nuclear factor kappa-B ligand), another member of the TNF

superfamily, is the master mediator of osteoclast formation and bone resorption. Its specific

inhibition with a monoclonal antibody (denosumab) effectively reduces the incidence of

fractures in postmenopausal women[41] and emerges as the latest therapeutic achievement

against osteoporosis. It has been demonstrated that SPD304 also binds to RANKL and inhibits

RANKL-mediated osteoclastogenesis.[42] This motivated us to perform additional computa-

tions and biological assays for the T8 and T23 complexes with RANKL. In vitro proof of this

second functionality thus established these two compounds as dual inhibitors[43] of TNF

and RANKL. MD and free energy calculations for both structures and SPD304 in complex

with TNF and RANKL were carried out to offer additional insight into the interactions that

govern TNF and RANKL complex formation. Finally, direct and specific binding of the two

compounds was confirmed both for TNF and RANKL, as well as their ability to inhibit the bio-

logically-active trimer forms.

Materials andmethods

In summary, our strategy for identifying the new dual TNF and RANKL inhibitors, T8 and

T23, is shown below (Fig 2):

All steps, including structure–and ligand–based modeling, in vitro evaluation and molecu-

lar dynamics calculations, are discussed below.

Virtual screening and molecular docking calculations

As a first step in our pipeline, all 14,400 compounds included in the Maybridge database were

in silico investigated in a structure-based approach using docking and molecular modeling

approaches. All the compounds of the abovementioned database passed the Lipinski “rule of

five” for drug likeness and are non-reactive, ensuring fewer false positives and higher quality

results. The crystal structure of TNF dimer in complex with inhibitor SPD304 (PDB code:

2AZ5)[27] was used as the molecular template for our investigation. Each compound was

docked into the active site of the protein using the Surflex-Dock module of SYBYL 8.0 suite.

[44] Based on the docking scores of the ligand poses, we generated a prioritized list of 30 com-

pounds for further consideration. Detailed information on the molecular modeling methodol-

ogy is presented in the Supporting Information (S1 Text).

Ligand–based predictive model development

A ligand–based model was developed to complement our methods in an effort to identify the

most promising compounds among those proposed in the previous structure–based approach.

Our model was built based on the KNIME platform with the help of our in-house developed

Enalos KNIME nodes.[45]
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Data set. The model was based on the largest available dataset of TNF inhibitors, includ-

ing 2481 compounds that were retrieved from the PubChem database and had been tested in

an HTS assay for NF-κB induction by TNF. TNF is one of the key cytokines that initiate the

signaling cascade that leads to NF-κB induction[40]. Among the available compounds, the

1149 that exhibited inhibition more than 50% were characterized as active and the remaining

1332 were characterized as inactive.[40]

Descriptor calculation–training and test set separation. For each compound included

in the dataset, 777 descriptors were calculated using the Mold2 software[46] through the

Enalos Mold2 KNIME node.[45] After normalizing the data and applying the low variance

filter, 616 descriptors remained. For validation purposes, our original dataset was also

divided into training and test sets using the Fuzzy c-Means clustering approach included in

KNIME [47]. First, the dataset was divided into 5 clusters and within each cluster, com-

pounds were divided into training and test set in a ratio of 80:20. Training and test com-

pounds from all clusters were then compiled and in total 1985 compounds constituted the

training set and 495 the test set.

Modeling and validation. KNIME analytics platform[48] offers the opportunity to exper-

iment with a large number of methodologies simultaneously and to explore which best fits

our data. After doing so, we concluded in a consensus approach that outperformed all other

Fig 2. Strategy for the identification of new small-molecule PPI inhibitors for TNF and RANKL.

https://doi.org/10.1371/journal.pcbi.1005372.g002
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methodologies tested. We built three different models based on the k-Nearest Neighbor, the

Nearest Neighbor and Random Forest. For each methodology used, we selected different vari-

able selection methods, including GainRatioAttribute Evaluator combined with Ranker search

method, CfsSubset Evaluator combined with Best First search method and InfoGainAttribute

Evaluator combined with Best First search method, respectively, for each of the aforemen-

tioned models. Details on these methodologies can be found in the literature.[49,50] On top of

these models, a consensus model was also built based on majority vote from each of the indi-

vidual models. This model outperformed all others based on validation metrics that were used

to assess the predictive power of each model, namely specificity, sensitivity, accuracy and pre-

cision. Confusion matrix is also provided for each methodology tested. Details on these met-

rics are given in the Supporting Information (S1 Text).

Domain of applicability. Our developed model aspires to emerge as a useful tool for the

virtual screening of newly introduced small molecules not included in our original dataset.

In this virtual screening framework,[51] the reliability of provided predictions needs to be

assessed and thus it is important that the domain of applicability of the model is well defined.

When the model’s applicability limits are known, predictions for new molecular entries can be

highlighted as reliable or not.

For the developed model, in order to define the domain of applicability, Euclidean distances

between each compound in the test set and its nearest neighbor in the training set are calcu-

lated and then compared to a calculated threshold. For a distance greater than the threshold

the prediction is considered unreliable. Details on the domain of applicability calculation are

given in the literature.[52–57] To implement the domain of applicability calculation, we used

the Enalos Domain–Similarity node.

Enalos cloud platform

The Enalos Cloud Platform[58,59] is a platform that hosts several predictive models for drug

discovery and risk assessment of small molecules and nanoparticles.[60] In the previous steps,

we succeeded to develop a predictive consensus model for TNF inhibition. Since, to the best of

our knowledge, this is the only ligand–based model developed from an extensive dataset of

TNF inhibitors, we decided to release it as a web service to facilitate the need for the design

and virtual screening of novel potent small–molecule inhibitors of TNF, by providing immedi-

ate access to the model’s results. The model can be easily accessed through http://enalos.

insilicotox.com/TNFPubChem. The interested user can initiate a prediction through a user

friendly graphical interface following a minimum-step procedure. The user can submit a struc-

ture by using one of the following ways: (i) draw a structure using the sketcher provided in the

first page,[61] (ii) submit a SMILES notation of a molecule, or (iii) upload an sdf file. In any

case, more than one compound can also be submitted. When the “TNFPubChem” workflow

is selected, the compounds are submitted and the prediction is generated. The results page

includes the predicted classification and an indication based on the domain of applicability on

whether the provided prediction can be considered reliable or not. Screenshots of this online

tool are shown and discussed in the Results and Discussion Section.

TNF–induced death assay in L929 cells[62]

L929 cells were cultured on 96-well plates (3×104 cells/well) overnight. Then, 0.25 ng/mL

human TNF (PeproTech) and 2 μg/mL actinomycin D (Sigma–Aldrich) were added. TNF

with the compounds were pre-incubated for 30 min at room temperature before adding them

to cells to assess inhibition. Background death was estimated using an actinomycin D treated-

only control. After approximately 24 h, dead cells were cleared away by washing with PBS. The
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remaining live cells were then fixed with methanol and stained with crystal violet. After solubi-

lization with acetic acid, staining was quantified spectrophotometrically at 570 nm. Cytotoxic-

ity is expressed with respect to the background death control and also relative to the toxicity of

compounds. Experiments were repeated three times.

Measurement of cytotoxicity in L929 cells[62]

L929 cells were seeded onto a 96-well plate (3x104 cells/well). After 24 h, cells were treated

with the compounds at increasing concentrations. DMSO was used in the untreated control.

The next day, a PBS-washing step was performed to remove dead cells. The remaining live

cells were next fixed with methanol and stained with crystal violet. After solubilization with

acetic acid, staining was quantified spectrophotometrically at 570 nm. Survival is expressed

with respect to the untreated control. Experiments were performed in triplicate.

TNF/TNFR1 ELISA assay[62]

96-well plates were coated with 0.1 mg/mL recombinant soluble human TNFR1 (PeproTech)

in PBS overnight at 4˚C. Next, blocking was performed with 1% BSA in PBS after carrying out

four washes with PBS containing 0.05% Tween-20. 0.025 mg/mL recombinant human TNF

(PeproTech) in PBS was added and the plates were incubated for 1 h at room temperature.

After two consecutive rounds of washes, plates were incubated with a rabbit anti-human-TNF

antibody (provided by Prof. W. A. Buurman, University of Maastricht) and an anti-rabbit sec-

ondary antibody conjugated with HRP (Vector Laboratories). Both incubations were for 1 h

and were performed at room temperature. Following a last round of washes, the signal was

finally developed using the TMB Substrate Kit (ThermoFisher Scientific) and was measured

spectrophotometrically at 450 nm. Experiments were performed in triplicate.

RANKL-induced osteoclastogenesis assay

Bone marrow cells (BMs) were collected after flushing out of femurs and tibiae, subjected to

gradient purification using ficoll-paque (GE Healthcare), plated on 96-well plates at a density

of 6 × 104 cells per well in αMEM (GIBCO) containing 10% fetal bovine serum supplemented

with 50 ng/ml human RANKL, 25 ng/ml M-CSF[42] in the presence or absence of T8 and T23

compounds in the indicated concentrations (1, 2, 5, 10 and 20 μM) for 5 days. To visualize

osteoclasts, cell cultures were stained with TRAP (tartrate-resistant acid phosphatase), using

an acid phosphatase leukocyte (TRAP) kit (Sigma-Aldrich). Osteoclasts were identified as

TRAP-positive multinucleated cells containing more than three nuclei.

Osteoclastic (TRAP) activity assay

To measure osteoclast activity, bone marrow cells were cultured for four days as described

above and lysed with 0.2% Triton X-100. TRAP activity was measured by the conversion of p-

nitrophenyl phosphate to p-nitrophenol in the presence of sodium tartrate. Thus, cell lysates

were incubated with 5.5 mM phosphatase substrate diluted in 100 mM citrate buffer and 10

mM sodium tartrate, for 40 minutes at 37˚C. The reaction was stopped by addition of 0.4 N

sodium hydroxide and absorbance was measured at 405 nm using a microplate reader (Molec-

ular Devices). TRAP activity was normalized to total protein content as determined by the

Bradford assay (Bio-Rad protein assay). TRAP activity per μg of total protein was expressed as

a percentage of the positive control treated without compounds. IC50 values were calculated as

mean ± SEM from three independent experiments performed in duplicate.
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BM viability

BMs were plated on 96-well plates at a density of 105 cells/well and treated with T8 and T23 at

various concentrations, in the presence of M-CSF (25 ng/mL) for 48 hours. Cell viability was

determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) col-

orimetric assay, which measures the ability of viable cells to reduce a soluble tetrazolium salt

to an insoluble purple formazan precipitate.[63] After removal of the medium, each well was

incubated with 0.5 mg/mLMTT (Sigma-Aldrich, St. Louis, MO) in serum-free α-MEM at

37˚C for 3 h. At the end of the incubation period, the medium was removed and the intracellu-

lar formazan was solubilized with 200 μL DMSO and quantified by reading the absorbance at

550 nm on a microplate reader (Optimax; Molecular Devices, Sunnyvale, CA). Cell viability

(%) was expressed as a percentage of the negative control treated without compounds. LC50

values were calculated as mean ± SEM from three independent experiments.

RANKL homology modeling

The homology structure of RANKL in complex with SPD304 was constructed based on the

mouse RANKL crystal structure (PDB code: 1S55) and the TNF dimer with SPD304 (PDB

code: 2AZ5) using the jFATCAT pairwise structure alignment algorithm.[64] The derived

structure was used for the subsequent MD calculations.

Molecular dynamics calculations

Unrestrained MD simulations in water were performed for TNF and RANKL complexes with

compounds T8 and T23 using AMBER 12.[65,66] Water molecules were discarded from the

crystal structures and hydrogen atoms were added to the proteins with AMBER. TNF and

RANKL missing residues were included in the crystal structures with Modeller 9.10.[67,68]

Atomic partial charges, bonded and non-bonded parameters for the proteins were represented

by the modified ff99SB force field.[69] Geometry optimization of the compounds was

obtained with Gaussian 09[70] at the HF/6-31G� level and the ANTECHAMBER program was

employed to derive the RESP atomic partial charges for T8 and T23. Force field parameters for

T8 and T23 were represented by the general AMBER force field (GAFF).[71] The complexes

were neutralized by adding 4 Na+ (TNF complexes) and 7 Cl− (RANKL complexes) counter-

ions. TIP3P water molecules[72] were used to model explicit solvation in a truncated octahe-

dron, with a cutoff 10 Å. Long-range electrostatics were considered by the particle mesh Ewald

(PME) approach.[73] A combination of lengthy, multi-step steepest descent and conjugate gra-

dient iterations were performed to achieve thorough energy minimization of the complexes:

initially, a 500 kcal mol−1Å−2 restraint was applied to the solute (ligand−protein) to allow mini-

mization of the positions of water molecules only. Then, minimization continued for two more

steps with diminished restraints on the solute (10 and 2 kcal mol−1Å−2), before totally remov-

ing the restraint for the last step of the minimization. Each minimization stage was carried out

in 5000 cycles with a 20 Å cutoff. Subsequently, the systems were gently heated in the NVT

ensemble for 100 ps, from 0 K until the target temperature of 310 K was reached. Hydrogen

motion was not included in the calculations by applying the SHAKE algorithm[74], thus allow-

ing a 2 fs time step to be used. The Langevin thermostat[75] (collision frequency = 2.0 ps−1)

was employed to control the temperature. During heating, the solute was also moderately

restrained (force constant 10 kcal mol−1 Å−2). This restraint was kept for the subsequent 100 ps

of equilibration in constant pressure. A final unrestrained MD equilibration step of 100 ps was

carried out for each complex. Constant-pressure MD simulations for 50 ns were produced with

the GPU (CUDA) version of PMEMD in AMBER 12.[76] The same procedure was applied

for two additional simulations, namely for complexes SPD304–TNF and SPD304–RANKL to
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compare our results with those of the known TNF inhibitor. Trajectory analysis (RMSD,

atomic fluctuations, and hydrogen bond calculations) was performed with the ptraj module of

AMBER. Donor−acceptor distance and donor−hydrogen−acceptor angle cutoffs of 3.5 Å and

120˚, respectively, were used to calculate hydrogen bond (HB) interactions.

MM–PBSA free energy calculations

The Molecular Mechanics Poisson-Boltzmann Surface Area (MM−PBSA) method estimates

free energies of (bio)molecular systems in solution by performing end-state calculations.[77–

80] The division of the binding free energy into individual components offers additional infor-

mation regarding complex formation. For an inhibitor–protein complex, the following process

directs the binding free energy change (ΔGbind):

Proteinþ Inhibitor ! Complex

Calculations were performed on 5000 frames from each trajectory after all water molecules

and counterions were removed. For every snapshot, the binding energy is calculated with the

following equation:

DGbind ¼ Gcomplex � ðGprotein þ GinhibitorÞ; ð1Þ

where ΔGbind is the total binding free energy, Gcomplex, Gprotein, and Ginhibitor are the energies

for the complex, the protein (TNF or RANKL), and the inhibitor (T8, T23, SPD304), respec-

tively. The binding free energy can be divided into enthalpy and entropy contributions:

DGbind ¼ DH � TDS ð2Þ

The enthalpy is given by

DH ¼ DEMM þ DGsol; ð3Þ

where ΔEMM is the interaction energy between the protein and the inhibitor and is approxi-

mated with the molecular mechanics (MM) method, while ΔGsol defines the change in the free

energy of solvation upon ligand binding. ΔEMM is further separated into:

DEMM ¼ DEelec þ DEvdW ð4Þ

ΔEelec is the electrostatic interaction energy and ΔEvdW is the van der Waals interaction

energy; no cutoff was applied for the calculation of these two terms. Moreover, the solvation

energy (Eq 3) may be expressed in electrostatic (ΔGPB) and nonpolar (ΔGNP) terms:

DGsol ¼ DGPB þ DGNP ð5Þ

The electrostatic (ΔGPB) energy is estimated by the Poisson−Boltzmann (PB) approach[81]

through the PBSA module of AMBER, and a solvent-accessible surface area (SASA) term is

used to express the hydrophobic contribution to solvation (ΔGNP):

DGNP ¼ g � SASA þ b ð6Þ

For the surface tension (γ) and the offset (β), the default values of 0.005420 kcal mol−1 Å−2

and −1.008000 kcal mol−1, respectively, were considered. A probe radius of 1.4 Å was applied

for the solvent (water) in the SASA calculation. ΔGNP (Eq 6) was computed with the linear

combinations of pairwise overlaps (LCPO) method.[82] The values of solvent and solute

dielectric constants were fixed at 80.0 and 1.0, respectively.[83] The finite-difference grid spac-

ing was 0.5 Å and the ratio between the longest dimension of the grid and that of the solute
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was set to 4.0. The ionic strength was considered to be 0.1 M. The contribution of entropy (Eq

2) was calculated with the nmode routine of AMBER 12 over the last 100 snapshots of the tra-

jectories, for computational efficiency.

Cross-linking experiments

100 ng of recombinant human TNF or RANKL (Peprotech) were incubated with the inhibitors

for 30 min at room temperature and then subjected to cross-linking, using 4.8 mM BS3 (Ther-

moFisher Scientific) for 30 min at room temperature. The reaction was stopped by adding 1/

10th volume of 1 M Tris-HCl, pH 7.5. Samples were then subjected to SDS-PAGE and western

blotting using an anti human-TNF or RANKL antibody (both R&D Systems).

Binding affinity assay

For use in the binding assays, recombinant TNF and RANKL were expressed and purified as

previously described.[84–86] Fluorescence intensity was measure with a Synergy H1 Multi-

Mode Reader (BioTek) in 96-well microplates (black) at 25˚C. Briefly, a series of solutions (0.1

mL) containing either TNF (0.75 μM) or RANKL (0.5 μM) and increasing amounts of the

ligands were prepared. During preparation of the solutions the buffer was firstly added to all

wells followed by the ligand solution and finally the protein was added. All solutions were

mixed by pipetting and equilibrated for 1h at 25˚C before measurement. Differences in fluo-

rescence intensity values (λex = 274 nm; λem = 302 nm) between the various protein/ligand

complexes and free protein were fitted on a second order equation as described in the Support-

ing Information (S2 Text) in order to determine the dissociation constant (Kd) of TNF and

RANKL with SPD304, T23 and T8. Experiments were performed for TNF in 10 mM citrate-

phosphate (pH 6.5) and for RANKL in 25 mM Tris–HCl buffer, 100 mMNaCl (pH 7.5); both

buffers were supplemented with PEG3350 at the concentrations indicated in the respective fig-

ures. Kd values were calculated as mean ± SEM from three independent experiments.

Results and discussion

We initiated our cheminformatics-aided workflow for the identification of novel TNF inhib-

itors with an in silico approach based on the TNF crystal structure in complex with SPD304

and a pool of small molecules included in the Maybridge Hitfinder database. The biologi-

cally-active TNF is a trimer of identical subunits and SPD304 has been reported to displace

one of the subunits, thus resulting in inactive species; that means that functional inhibition is

affected by obstructing trimerization. [22,27] The binding site of TNF dimer in this protein-

protein interaction is characterized as predominantly hydrophobic, consisting of glycine,

leucine and tyrosine residues. Reported interactions with small molecules are described as

hydrophobic and shape-driven as the molecular structures need to be large enough to inter-

act with both subunits to prevent the binding of the third subunit to the TNF dimer. All the

14400 small molecules included in the Hitfinder database were in silico explored in a struc-

ture-based framework using molecular modeling and docking scoring. The crystal structure

of TNF dimer with SPD304 (PDB code: 2AZ5) was used as the molecular model for our

investigation and the compounds were docked into the enzyme’s active site. The molecular

docking studies were performed using the Surflex-Dock algorithm of SYBYL.[44] Based on

the structure-based results, a prioritized list of 30 compounds was constructed by a combina-

tion of high docking scores with optimal placements into the binding cavity that resemble

the SPD304 binding arrangement for further in silico screening with a ligand-based devel-

oped model. The ranking of these prioritized 30 compounds is given in Table 1 and in Sup-

porting Information (S1 Table).
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Table 1. Ligand–based predictions through the Enalos cloud platform (http://enalos.insilicotox.com/TNFPubChem/), Tanimoto similarity to
SPD304, PAINS check.

ID InChI Consensus
Prediction

Domain of
Applicability

Tanimoto
Similarity to
SPD304

PAINS
[87]

SPD304 InChI = 1S/C32H32F3N3O2/c1-21-14-28-30(15-22(21)2)40-20-24(31
(28)39)18-37(4)13-12-36(3)17-23-19-38(29-11-6-5-10-27(23)29)26-9-7-
8-25(16–26)32(33,34)35/h5-11,14–16,19-20H,12–13,17-18H2,1-4H3

Active Reliable - No

1 InChI = 1S/C28H33N3O4S/c32-26-21-28(18-17-22-9-3-1-4-10-22,27(33)
31(26)24-11-5-2-6-12-24)29-23-13-15-25(16-14-23)36(34,35)30-19-7-8-
20-30/h1,3–4,9–10,13–18,24,29H,2,5–8,11–12,19-21H2/b18-17+/t28-/
m0/s1

Active Reliable 0.29 No

2 InChI = 1S/C27H29NO4/c1-20(28-26(29)18-21-9-5-3-6-10-21)13-14-23-
15-16-24(25(17–23)31-2)32-27(30)19-22-11-7-4-8-12-22/h3-12,15–
17,20H,13–14,18-19H2,1-2H3,(H,28,29)/t20-/m1/s1

Active Reliable 0.34 No

3 InChI = 1S/C25H15F3N2O6/c26-25(27,28)16-12-13-20(19(15–16)30(32)
33)35-21-10-4-5-11-22(21)36-24(31)18-9-6-14-29-23(18)34-17-7-2-1-3-
8-17/h1-15H

Active Reliable 0.42 No

4 InChI = 1S/C26H28FN3O4/c1-31-23-9-8-17(13-24(23)32-2)12-22-21-16-
26(34–4)25(33–3)14-18(21)10-11-30(22)29-28-20-7-5-6-19(27)15-20/
h5-9,13–16,22H,10-12H2,1-4H3/b29-28+/t22-/m0/s1

Inactive Reliable 0.31 Yes

5 InChI = 1S/C21H19Cl3N4O3/c1-12-20(30-18-5-3-15(22)4-6-18)13(2)28
(26–12)8-7-19(25)27-31-21(29)14-9-16(23)11-17(24)10-14/h3-6,9-
11H,7-8H2,1-2H3,(H2,25,27)/p+1

Inactive Reliable 0.28 No

6 InChI = 1S/C28H35NO8S2/c1-6-35-28(36-7-2)20-29(38(30,31)24-13-8-
21(3)9-14-24)19-23-12-17-26(34–5)27(18–23)37-39(32,33)25-15-10-22
(4)11-16-25/h8-18,28H,6–7,19-20H2,1-5H3

Inactive Reliable 0.26 No

7 InChI = 1S/C19H25N5O4/c1-13(25)21-14-6-4-7-15(10–14)28-9-5-8-24-
11-16-17(20-12-24)22(2)19(27)23(3)18(16)26/h4,6–7,10,20H,5,8–9,11-
12H2,1-3H3,(H,21,25)/p+1

Inactive Reliable 0.32 No

8 InChI = 1S/C22H17BrO4/c1-25-18-11-10-15(23)12-14(18)13-26-22(24)
21-16-6-2-4-8-19(16)27-20-9-5-3-7-17(20)21/h2-12,21H,13H2,1H3

Inactive Reliable 0.3 No

9 InChI = 1S/C25H27NO2/c1-19-10-13-24-21(15–19)9-6-14-26(24)17-22-
11-12-23(16-25(22)27-2)28-18-20-7-4-3-5-8-20/h3-5,7–8,10–13,15-
16H,6,9,14,17-18H2,1-2H3

Inactive Reliable 0.37 No

10 InChI = 1S/C20H29NO12/c1-11(22)29-10-16(30-12(2)23)17(31-13(3)24)
18(32-14(4)25)19(33-15(5)26)20(27)21-6-8-28-9-7-21/h16-19H,6-
10H2,1-5H3/t16-,17-,18+,19-/m1/s1

Active Unreliable 0.22 No

11 InChI = 1S/C21H25N3O9S/c1-4-30-21(25)14-12-17(31-10-8-28-2)18(32-
11-9-29-3)13-16(14)24-34(26,27)19-7-5-6-15-20(19)23-33-22-15/h5-
7,12–13,24H,4,8-11H2,1-3H3

Inactive Reliable 0.29 Yes

12 InChI = 1S/C28H26ClN3O2/c1-18-26(27(31-34-18)22-12-6-7-13-23(22)
29)28(33)30-24-14-8-4-10-20(24)17-25-21-11-5-3-9-19(21)15-16-32(25)
2/h3-14,25H,15-17H2,1-2H3,(H,30,33)/t25-/m0/s1

Active Reliable 0.29 No

13 (T8) InChI = 1S/C26H22ClF3N6O3S2/c27-18-7-5-17(6-8-18)24(37)31-32-25
(35-13-1-2-14-35)34-41(38,39)20-11-9-19(10-12-20)36-21(22-4-3-15-
40-22)16-23(33–36)26(28,29)30/h3-12,15–16,25,34H,1–2,13-14H2/b32-
31+/t25-/m0/s1

Active Reliable 0.3 No

14 InChI = 1S/C20H20N2O5S3/c23-29(24,16-6-2-1-3-7-16)19-10-11-20
(28–19)30(25,26)21-17-8-4-5-9-18(17)22-12-14-27-15-13-22/h1-
11,21H,12-15H2

Inactive Reliable 0.2 No

15(T23) InChI = 1S/C22H22O10/c1-11(23)29-17-9-19(27–5)21(31-13(3)25)7-15
(17)16-8-22(32-14(4)26)20(28–6)10-18(16)30-12(2)24/h7-10H,1-6H3

Active Reliable 0.25 No

16 InChI = 1S/C27H19ClN8/c28-21-13-11-19(12-14-21)25-20(17-35(34–25)
22-7-3-1-4-8-22)15-31-33-26-24-16-32-36(27(24)30-18-29-26)23-9-5-2-
6-10-23/h1-14,16-18H,15H2/b33-31+

Active Reliable 0.24 No

17 InChI = 1S/C27H26N2O5/c1-18(30)29-26(21-13-15-22(32–3)16-14-21)
27(34-19(2)31)25(28–29)23-11-7-8-12-24(23)33-17-20-9-5-4-6-10-20/
h4-16,26-27H,17H2,1-3H3/t26-,27-/m0/s1

Inactive Reliable 0.33 No

(Continued )
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After the initial structure-based screening of our original datasets, we filtered out less prom-

ising compounds by developing and applying a ligand-based predictive model. Our model was

built on a set of almost 2500 compounds that are included in the PubChem database and have

been identified as TNF inhibitors based on an in vitroHTS assay.[40] The ligand-based model

was implemented through the KNIME platform[48] with the aid of our in-house developed

Enalos KNIME nodes[45] that execute several tasks that are crucial for model development. In

particular, we used the Enalos Mold2 node that calculates hundreds of molecular descriptors

to encode structural information of compounds, and the Enalos Domain of applicability that is

used to define the area of reliable predictions. Details on the Mold2 descriptors are provided in

the Supporting Information (S1 Text and S2 Table).

Since the developed KNIME workflow allows this flexibility, we experimented with a great

variety of variable selection and model development methods. Moreover, we experimented

with consensus approaches and concluded in the most accurate and predictive model, which is

Table 1. (Continued)

ID InChI Consensus
Prediction

Domain of
Applicability

Tanimoto
Similarity to
SPD304

PAINS
[87]

18 InChI = 1S/C19H36N4OS/c1-3-4-5-6-7-8-9-10-11-12-13-14-15-20-18
(24)16-25-19-22-21-17-23(19)2/h17H,3-16H2,1-2H3,(H,20,24)

Active Reliable 0.15 No

19 InChI = 1S/C22H23NO11/c1-10(24)30-9-16-18(31-11(2)25)19(32-12(3)
26)17(22(34–16)33-13(4)27)23-20(28)14-7-5-6-8-15(14)21(23)29/h5-
8,16–19,22H,9H2,1-4H3/t16-,17-,18-,19-,22-/m1/s1

Active Unreliable 0.29 No

20 InChI = 1S/C25H26F3N3O2/c1-32-23-15-22(33-18-19-5-3-2-4-6-19)9-7-
20(23)17-30-11-13-31(14-12-30)24-10-8-21(16-29-24)25(26,27)28/h2-
10,15-16H,11–14,17-18H2,1H3

Inactive Reliable 0.45 No

21 InChI = 1S/C20H21N3O4S/c1-14-17(20(22-27-14)15-6-4-3-5-7-15)13-
21-28(24,25)16-8-9-19-18(12–16)23(2)10-11-26-19/h3-9,12,21H,10–
11,13H2,1-2H3

Inactive Reliable 0.3 No

22 InChI = 1S/C26H30N4O2S2/c1(3-11-17-23-27-29-25(31–23)33-19-21-
13-7-5-8-14-21)2-4-12-18-24-28-30-26(32–24)34-20-22-15-9-6-10-16-
22/h5-10,13-16H,1–4,11–12,17-20H2

Inactive Reliable 0.15 No

23 InChI = 1S/C24H26N4O4S2/c1-17-7-9-19(10-8-17)34(31,32)28-13-11-
27(12-14-28)16-22(29)26-20-15-21(33-23(20)24(25)30)18-5-3-2-4-6-18/
h2-10,15H,11–14,16H2,1H3,(H2,25,30)(H,26,29)

Inactive Reliable 0.24 No

24 InChI = 1S/C23H18N6OS/c1-16-22(28-12-6-5-11-20(28)25-16)23(30)26-
24-14-17-15-29(18-8-3-2-4-9-18)27-21(17)19-10-7-13-31-19/h2-
15H,1H3,(H,26,30)/b24-14-

Inactive Reliable 0.26 No

25 InChI = 1S/C22H27NO11/c1-12(24)30-11-18(31-13(2)25)19(32-14(3)26)
20(33-15(4)27)21(34-16(5)28)22(29)23-17-9-7-6-8-10-17/h6-10,18-
21H,11H2,1-5H3,(H,23,29)/t18-,19-,20+,21-/m0/s1

Active Unreliable 0.25 No

26 InChI = 1S/C18H20FNO4S/c1-23-17-11-8-14(12-18(17)24-15-4-2-3-5-
15)20-25(21,22)16-9-6-13(19)7-10-16/h6-12,15,20H,2-5H2,1H3

Inactive Reliable 0.24 No

27 InChI = 1S/C25H27NO2S/c1-28-24-12-5-4-11-23(24)20-13-15-26(16-14-
20)25(27)18-29-17-21-9-6-8-19-7-2-3-10-22(19)21/h2-12,20H,13-
18H2,1H3

Inactive Reliable 0.36 No

28 InChI = 1S/C17H16N4O/c22-17(11-21-16-8-4-3-7-15(16)19-20-21)18-
14-9-12-5-1-2-6-13(12)10-14/h1-8,14H,9-11H2,(H,18,22)

Inactive Reliable 0.28 No

29 InChI = 1S/C25H32N2O2/c1-3-29-25(28)20-12-15-26(16-13-20)23-9-5-
4-7-22(23)18-27-14-6-8-21-17-19(2)10-11-24(21)27/h4-5,7,9–
11,17,20H,3,6,8,12–16,18H2,1-2H3

Inactive Reliable 0.32 No

30 InChI = 1S/C17H21N5O3S2/c23-27(24,15-8-2-1-3-9-15)21-16(22-10-4-
5-11-22)19-20-17(26)18-13-14-7-6-12-25-14/h1-3,6–9,12,16,21H,4–
5,10–11,13H2,(H,18,26)/b20-19+/t16-/m0/s1

Active Reliable 0.22 No

https://doi.org/10.1371/journal.pcbi.1005372.t001
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a consensus model based on the majority vote of the results of three different modeling meth-

odologies, namely k-Nearest Neighbor, Nearest Neighbor and Random Forest.[49]

The proposed models were validated both internally and externally in terms of goodness-

of-fit, robustness and predictivity and were proven to successfully fulfill the criteria recom-

mended by the Organization for Economic Cooperation and Development (OECD) for model

validation.[88] For validation purposes, the dataset was separated into training and test sets.

The small molecules included in the latter were kept as a blind set and were not used during

the development of the model.

The validation results for each methodology and the consensus model are shown in Tables

2 and 3. Based on these metrics, the consensus model outperformed the individual models that

were built and thus was considered as the most accurate and reliable to be used in our virtual

screening process.

A crucial aspect, which is often neglected by similar studies presented in the literature, is

the dissemination of the results to the wider community.[89] It is of major importance that the

developed model is not retained only for developers’ use, but is broadly distributed to the sci-

entific community so that it could serve as a direct source of information. Furthermore, as

recently highlighted by several initiatives, this is most effectively achieved by providing open

source tools that could be easily implemented and adjusted to the distinctive requirements of

each project.

To encourage and facilitate the reuse of our predictive model, the consensus model has

been made publicly available online via the Enalos Cloud Platform. Our model is hosted under

the following url: http://enalos.insilicotox.com/TNFPubChem/ and is easily accessible online

from any browser, also supporting mobile devices. The interested user can make their own

predictions using the user friendly graphical interface that allows multiple options for submit-

ting a new structure. First, as seen in the screen shot below (Fig 3), a sketcher is available

where a new molecule can be drawn and structurally modified. The structure can be either

Table 3. Confusionmatrix.

kNN Positive Predicted (Active) Negative Predicted (Inactive)

Positive Observed (Active) 153 77

Negative Observed (Inactive) 70 195

Nearest Neighbor Positive Predicted (Active) Negative Predicted (Inactive)

Positive Observed (Active) 162 68

Negative Observed (Inactive) 68 197

Random Forest Positive Predicted (Active) Negative Predicted (Inactive)

Positive Observed (Active) 145 85

Negative Observed (Inactive) 77 188

Consensus Positive Predicted (Active) Negative Predicted (Inactive)

Positive Observed (Active) 165 65

Negative Observed (Inactive) 56 209

https://doi.org/10.1371/journal.pcbi.1005372.t003

Table 2. Validation results for the test set.

Precision Sensitivity Specificity Accuracy

kNN 0.686 0.665 0.736 0.703

Nearest Neighbor 0.704 0.704 0.743 0.725

Random Forest 0.653 0.630 0.709 0.673

Consensus 0.747 0.717 0.789 0.756

https://doi.org/10.1371/journal.pcbi.1005372.t002
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directly submitted to generate a prediction or can be copied as SMILES. The second option

includes the SMILES notation submission in the upper right of the web page, where the user

can paste one or more SMILES notations for one or a batch of molecules and then submit the

whole list for prediction. Finally, with the third option the user can upload an SDF file with

multiple entries and submit the file for prediction.

When the model “TNFPubChem” is selected and the structures are submitted in either

way, the prediction is generated as an html page or a CSV file. The prediction outcome

includes a classification for each of the given structures and an indication of whether the pre-

diction can be considered reliable or not, based on the domain of applicability of the model

(Fig 4). The web service does not require special computational skills and can be easily used

by scientists of different disciplines, including chemists, biologists, physicists, and engineers,

involved or interested in the biological evaluation of TNF inhibitors.

The consensus model was finally used to predict TNF inhibition by the 30 compounds pro-

posed in the previous step. Among those, the top 9 commercially-available small molecules

Fig 3. The sketching and structural modification facility for the prediction of new TNF inhibitors as provided by the Enalos cloud platform
(screen shot).

https://doi.org/10.1371/journal.pcbi.1005372.g003

Fig 4. Prediction and reliability results regarding TNF inhibition upon structure submission of T23, T8
and SPD304 (see SMILES Fig 3) to the Enalos cloud platform.

https://doi.org/10.1371/journal.pcbi.1005372.g004
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being predicted as active by the ligand-based model within its domain of applicability

(Table 1) were selected for experimental validation to quantify their inhibitory potency against

TNF. These computationally-identified hits were also filtered for Pan Assay Interference Com-

pounds (PAINS).[87,90] As shown in Table 1, none of the predicted active compounds was

identified as PAINS and thus none was excluded from the subsequent experimental validation.

Moreover, we tested whether a simpler approach using 2D similarity search based on Tani-

moto metric between the known active compound (SPD304) and our identified hits would

have yielded comparable results with our proposed methodology. Low similarity between

SPD304 and identified hits in the range of 0.15–0.45 (Table 1) confirmed that a simpler

approach could not have proposed the structures identified based on our methodology.

Biological screening of the compounds examined their capacity to block TNF function in a

modified TNF bioactivity assay.[91] The basis of this test is the death-inducing function of

TNF in the murine fibrosarcoma cell line L929 following sensitization by the transcription

inhibitor actinomycin D. Functional potency of the compounds would translate in a signifi-

cant reduction of TNF-induced death. Using this approach, out of the nine shortlisted small

molecules, two compounds (T8 and T23) were selected as follows. After an initial screening at

a concentration of 20 μM, compounds displaying� 25% inhibition of TNF-induced cell death

were further examined in dose-response tests in order to estimate their IC50 values. In these

dose-response experiments, T8 and T23 inhibited TNF-driven toxicity in L929 cells with IC50

values of 40±2.3 and 17±1.2 μM, respectively (S1 Fig). Given that screening has been based on

protection from TNF-induced death, compounds that were highly toxic themselves would not

have passed this first level of testing. Indeed, both compounds were found to have low toxicity

against L929 cells (S2 Fig). Importantly, NMR and MS data for T8 and T23, as shown in S3–S6

Figs and S2 Text in Supporting Information, confirmed the purity for both compounds to be

above 95%.

Having established that the selected compounds obstruct TNF function, and since TNF

exerts its functions mainly through interacting with the TNFR1 receptor, a further test was

performed to evaluate the effect of inhibition on this protein-receptor interaction. The ELISA-

based test revealed that both compounds significantly block this interaction, with measured

IC50 values of 30±2.3 (T8) and 3±0.1 (T23) μM (S7 Fig).

Finally, direct binding of the compounds to TNF was demonstrated using a fluorescence-

based binding assay (S8 Fig). T23 was found to have the lowest Kd value (2.8±0.2 μM), while

T8 had a Kd of 8.8±0.8 μM, and SPD304 of 5.8±0.5 μM.

In previous work, we had shown that SPD304 is also a potent inhibitor of RANKL[42],

another member of the TNF superfamily, mainly involved in the regulation of osteoclast for-

mation and bone resorption.[92] We were hence prompted to explore the two compounds

with respect to RANKL also, firstly by in vitro testing. We evaluated the effect of T8 and T23

on RANKL-dependent osteoclast differentiation in a culture system of bone marrow cells stim-

ulated with RANKL and M-CSF for 5 days through evaluation of the tartrate-resistant acid

phosphatase (TRAP) activity, an osteoclast-specific enzyme. Using a quantitative assay that

measures TRAP activity, both compounds were found to inhibit significantly the formation of

osteoclasts in a dose-dependent manner, with an IC50 of 9.0±0.7 μM (T8) and 2.6±0.2 μM
(T23) (S9 Fig). In order to exclude the possibility that the inhibitory effect of the compounds is

correlated with high cell toxicity, a viability assay was employed in primary bone marrow cells.

Of the two compounds, T8 displayed a low toxicity with an LC50 of 42.6±4.3 μM, while T23

had a higher toxicity (LC50 = 5.9±0.3 μM, S10 Fig). It should be noted that the increased toxic-

ity of the two compounds in these cells in comparison to the toxicity in L929 cells could be due

to the increased sensitivity of primary cells and that in both cases, the toxicity was lower as

compared to SPD304. Direct binding of the compounds to RANKL was validated with Kd
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values of 6.3±0.6 μM (T8) and 7.3±0.4 μM (T23) (S11 Fig). Interestingly, these values were

lower than that of SPD304, which was measured to be 13.8±0.7 μM. All in vitro results for both

TNF and RANKL are shown in Table 4.

The two proposed molecular scaffolds were also explored in a structure-based scheme to

further investigate binding to TNF and RANKL. For this purpose, we used the jFATCAT pair-

wise structure alignment algorithm[64] to align the RANKL structure (PDB code: 1S55) to

the crystal structure of TNF dimer with SPD304 (PDB code: 2AZ5). We then performed

molecular dynamics (MD) simulations and binding free energy calculations (MM–PBSA) for

the SPD304, T8 and T23 complexes with TNF and RANKL to rationalize the docking calcula-

tions in a more rigorous fashion and to complement the experimental results with additional

information. The MD analysis indicated the high stability of the complexes, since it was shown

that the simulations eventually converged for all protein structures (S12 Fig). Indeed, Cα-
based RMSD values for TNF in its complexes with the compounds were particularly stable,

with slight fluctuations around an average deviation of approximately 2 Å from the crystal

structure, while RANKL deviated more from the conformation of the crystal structure (~3.5

Å); however, it stabilized its structure after 35 ns in all complexes. The flexibility of individual

TNF and RANKL residues in each complex is presented in S13 Fig. In general, RANKL resi-

dues appear more flexible than TNF residues and the highly flexible RANKL region around

terminal residues 155–160 of monomer A in the T8 complex may suggest a less stable structure

for the complex (S13 Fig). Additional information on radii of gyration and B-factors for the

complexes is shown in S3 Table (Supporting Information).

All-atom RMSD calculations for each compound in either TNF or RANKL revealed dif-

ferences in the binding modes of the complexes. As expected, SPD304 appears particularly

stable in the binding sites of both proteins throughout the simulations (Fig 5). Interestingly,

T23 also has very low RMSD values in its complexes (avg. ~1Å), thus indicating a high degree

of stability. This may be due to enhanced interactions between T23 and the proteins, which

suggest efficient T23 binding to TNF and RANKL. On the contrary, T8 displayed significant

Table 4. Inhibition, toxicity and binding evaluation of SPD304, T8 and T23 in TNF and RANKL complexes.

Compound TNF Complexes RANKL Complexes

L929 IC50 (μM) L929 LC50 (μM) ELISA IC50 (μM) Kd (μM) IC50 (μM) LC50 (μM) Kd (μM)

SPD304[62] 5±0.2 7.5±0.2 5±0.2 5.8±0.5 0.9±0.1 3.2±0.1 13.8±0.7
T8 40±2.3 >100 30±2.3 8.8±0.8 9.0±0.7 42.6±4.3 6.3±0.6
T23 17±1.2 >100 3±0.1 2.8±0.2 2.6± 0.2 5.9±0.3 7.3±0.4

https://doi.org/10.1371/journal.pcbi.1005372.t004

Fig 5. All-atomRMSD for compounds SPD304, T8 and T23 in complexes with TNF and RANKL.

https://doi.org/10.1371/journal.pcbi.1005372.g005
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conformational changes throughout the runs, and especially in complex with TNF. In agree-

ment with the experimental results, the increased flexibility of T8 in TNF may have reduced

its binding to the protein.

The hydrogen bond (HB) analysis supported the experimental observations regarding the

hydrophobic nature of the interactions that govern SPD304 binding to either protein target. It

was observed that SPD304 was not involved in any HBs with TNF, thus further supporting the

hypothesis of favorable hydrophobic interactions as the main driving force of SPD304–TNF

binding. Similarly, HB interactions were not observed between SDP304 and RANKL.

On the other hand, it was suggested that despite the hydrophobic nature of the TNF and

RANKL binding pockets, particular groups on T23 and T8 facilitate the formation of HBs with

cavity residues. Therefore, the high stability of T23 in TNF and RANKL may be also attributed

to HB networks between the ligand and particular TNF [Tyr119 (A chain), Ser60 (B chain),

Gly121 (B chain)] and RANKL [Tyr214 (A chain), Trp192 (B chain), Ala193 (B chain)] resi-

dues. Also, the HB analysis on the T8 complexes may justify the significant structural variation

of T8 in TNF compared to its relatively stable structure in RANKL, as depicted in Fig 5. Similar

to SPD304, T8 did not participate in any HB interactions with TNF, and this may have enabled

the molecule to frequently change conformations, whereas its structure is obviously restricted

when bound to RANKL (Fig 5), mainly because it forms stable HBs with binding site residues

[Asn275 (A chain), Gly277 (A chain), Gly278 (A chain), Asn275 (B chain)]. Representative

conformations with main HBs between T8/T23 and TNF/RANKL (as obtained from the

respective MD trajectories) are shown in S14 Fig.

In agreement with the docking results, the compounds are in close proximity to the

Leu120–Gly121–Gly122 β strand of TNF. This is particularly important, since it has been

reported that SPD304 blocks the TNF trimerization and thus diminishes the biological activity

of the protein by interacting with Gly122.[42] Additionally, the significance of Gly278 in

RANKL trimer association has been indicated in several studies;[42,93,94] Douni et al.[42]

have described an osteopetrotic mouse model that is based on a missense point mutation

introducing a G278R substitution at the interface between the RANKL monomers. The

mutated RANKL protein fails to form bioactive trimers, activate the RANK receptor, or induce

osteoclastogenesis.[42] Modeling studies on SPD304–RANKL suggested that SPD304 should

be located at an optimal position near Gly278 (~4 Å) to inhibit RANKL trimerization.[27]

This observation coincides with the SPD304–Gly278 distance as observed from the 50 ns MD

trajectory of the RANKL complex. Indeed, the average distance between the closest SPD304

atom and the Cα atom of Gly278 was calculated to be 4.25 ± 0.30 Å. Representative MD snap-

shots for the TNF and RANKL complexes with SPD304, T8 and T23 are presented in Fig 6.

Residues Gly122 (TNF complexes) and Gly278 (RANKL complexes) are shown in red, while

other residues (highlighted orange), such as Leu57, Gln61, Tyr59/119/151 (TNF complexes)

and Tyr214/216/306, Asn275, Phe310 (RANKL complexes) are also in close proximity to the

ligands and are considered crucial for either TNF or RANKL inhibition. For instance, TNF

residue Tyr119 was observed to form stable HBs with T23, while RANKL residues (Asn275,

Tyr214) show HB interactions with T8 and T23 as described above; other binding site amino

acids, such as Tyr59/151, Gln61 and Leu57 have been reported as “contact residues” to

SPD304 in the TNF crystal structure.[27]

MM–PBSA free energy calculations were carried out for each complex in order to validate

the predictions of our models. Indeed, this analysis verified the experimental results, since it

demonstrated that T8 and T23 have comparable binding energies to SPD304 (Table 5). Partic-

ularly, T8 and T23 binding energy values in TNF are close to the binding energy of SPD304,

and they differ from each other by ~ 5 kcal/mol. It is important to highlight that such energy

differences lie within the expected error of the method, and the corresponding binding
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energies are practically indistinguishable.[83,95] The high binding affinity of SPD304 to TNF

in the absence of any HB interactions further supports the above claims regarding the hydro-

phobic nature of TNF binding. It is however predicted that T8 binding to TNF is associated

with a high entropy penalty compared with the other compounds and also with its binding to

RANKL (Table 5). This difference denotes the reduced hydrophobic character of the T8–TNF

interaction and may also rationalize the above structural observation regarding the high con-

formational flexibility of T8 in TNF (Fig 5). On the other hand, the HB interaction between T8

Fig 6. Representative MD conformations of (a) SPD304, (b) T8 and (c) T23 in TNF and RANKL
complexes. Important residues for protein inhibition are displayed in orange; Gly122 and Gly278 are shown
in red. Protein chains A and B are colored gray and magenta, respectively. For simplicity, interacting residues
only on chains A are displayed and hydrogen atoms are not shown. Compounds are highlighted in green.

https://doi.org/10.1371/journal.pcbi.1005372.g006
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and Asn275 (S14 Fig) in the RANKL complex may have resulted in a stable structure that is

accompanied by a more favorable entropy term (Table 5). T23 appears to bind both protein

targets equally strongly, with combined binding energy values that suggest most effective dual

inhibition of TNF and RANKL than T8. Interestingly, in agreement with the potency experi-

ments, our predictions ranked the three compounds with decreasing binding affinity to TNF

as follows: SPD304> T23> T8. Finally, the MM–PBSA analysis revealed that the most favor-

able contributions to the binding enthalpy in all complexes are attributed to van der Waals

interactions, followed by the nonpolar contribution to solvation, while the total electrostatics

disfavor either TNF or RANKL complex formation.

As the modeled mechanism of action of T8 and T23 on both TNF and RANKL consists of

an obstruction to the trimerization interface, the effect of inhibition at the level of trimeriza-

tion was examined using chemical cross-linking experiments. As can be seen in Fig 7, both

Table 5. Energetic analysis for TNF and RANKL complexes with compounds SPD304, T8 and T23, as obtained by MM–PBSA calculations.

TNF RANKL

Energy (kcal mol-1) SPD304 T8 T23 SPD304 T8 T23

ΔEvdW –36.96±0.17a –36.84±0.08 –34.88±0.16 –25.92±0.15 –26.72±0.06 –35.20±0.08
ΔEelec –0.03±0.02 –7.74±0.06 –9.01±0.07 –1.80±0.02 –10.45±0.10 –9.62±0.08
ΔEMM, gas –36.99±0.18 –44.57±0.13 –43.89±0.20 –27.72±0.16 –37.17±0.12 –44.83±0.12
ΔGPB 13.60±0.07 22.39±0.09 25.57±0.13 10.51±0.08 24.14±0.11 24.20±0.11
ΔGelec(tot) 13.57±0.07 14.65±0.10 16.56±0.14 8.71±0.08 13.69±0.15 14.58±0.14
ΔGNP –2.70±0.01 –3.17±0.01 –2.67±0.01 –1.75±0.01 –1.91±0.01 –3.03±0.01
ΔGsolv 10.90±0.06 19.22±0.09 22.90±0.12 8.76±0.07 22.23±0.11 24.20±0.11
ΔH(MM+solv) –26.09±0.13 –25.35±0.06 –20.99±0.10 –18.96±0.10 –14.94±0.05 –20.63±0.08
ΔS 17.03±2.02 21.97±1.23 15.30±2.01 13.55±1.96 12.79±2.01 14.34±2.00
ΔG –9.06±2.02 –3.38±1.23 –5.69±2.02 –5.41±1.97 –2.15±2.01 –6.29±2.00

aStandard error of the mean.

https://doi.org/10.1371/journal.pcbi.1005372.t005

Fig 7. T8 and T23 obstruct the formation of active TNF and RANKL trimers.Human TNF or RANKL was
incubated with T8 or T23, chemically cross-linked, and subjected to SDS-PAGE. This was followed by
western blotting to detect the various TNF and RANKLmultimers. Both inhibitors were used at a molar ratio of
4:1 relative to TNF and 1:1 relative to RANKL. Numbers indicate molecular weights in kDa; NC = non cross-
linked control (no inhibitor, no cross-linking); CC = cross-linked control (no inhibitor).

https://doi.org/10.1371/journal.pcbi.1005372.g007
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inhibitors can prevent the formation of trimers both for TNF and RANKL, when used at spe-

cific molar ratios. These results confirm that not only T8 and T23 are direct inhibitors of TNF

and RANKL but also they do so by affecting the biologically-active configuration of these mol-

ecules, i.e. the trimeric form.

Finally, we addressed aggregation-induced and general non-specific effects in two ways.

Firstly, by plotting saturation curves using the binding assay raw data and performing Scatch-

ard analysis. For all protein/ligands tested (TNF/T8, TNF/T23, RANKL/T8 and RANKL/T23),

the linearity of the Scatchard plots resulted in an ‘n’ value of 1, suggesting that there is only

one ligand binding site per protein molecule. Representative binding and saturation curves

and Scatchard plots are illustrated in S15 and S16 Figs. Secondly, we did not find evidence for

non-specific effects due to aggregation as judged by the method proposed by Feng & Stoichet

[96] (Table 6). Briefly, we examined the inhibitory effect of T8 and T23, as well as SPD304, on

TNF and RANKL, using varying concentrations of the two tested proteins in the presence of

varying concentrations of solubility enhancing agent PEG3350. Inhibition remained practi-

cally unchanged by fluctuating these two concentration parameters, indicating that both small

molecules inhibit TNF and RANKL via specific mechanisms as proposed by our computa-

tional model.

Collectively, our computational approach succeeded to identify two compounds that were

experimentally evaluated as dual TNF and RANKL inhibitors, with T8 being the one with the

lowest toxicity. Within the proposed strategy, the Enalos Cloud Platform emerges as a key

component for the evaluation of novel small molecules that have not been experimentally eval-

uated or even synthesized and can also be expanded for several drug-related properties (e.g.,

inclusion of toxicity and solubility models). Our proposed methodology and tools can also be

expanded and applied to other biological targets that are now gaining attention. Specifically, in

Table 6. Physicochemical properties of SPD304, T8 and T23, and determination of their dissociation constant with TNF or RANKL under different
assay conditions. PEG3350 was used as co-solvent in order to enhance inhibitors solubility and thus eliminate the possibility of aggregates formation.

Compound clogPa Binding affinityc (Kd, μM)d

TNFe (μM) RANKLf (μM)

PEG3350 (% v/v) Solubility (μM) 0.75 1.5 2.5 0.5 1.5 2.5

SPD-304 8.00 0 10b N.T. N.T. N.T. N.T. N.T. N.T.

2.5 71 6.18 ± 0.54 N.T. N.T. 14.21 ± 0.68 N.T. N.T.

5 84b 5.76 ± 0.54 5.45 ± 0.43 5.61 ± 0.22 13.82 ± 0.73 14.08. ± 0.77 13.58. ± 0.63

T8 6.41 0 <1 N.T. N.T N.T N.T N.T. N.T.

2.5 32 9.55 ± 0.81 N.T. N.T. 6.15 ± 0.22 N.T. N.T.

5 48 8.78 ± 0.76 9.02 ± 0.88 9.17 ± 0.88 6.32 ± 0.62 6.55 ± 0.84 6.05 ± 0.37
T23 -0.07 0 36 2.53 ± 0.23 N.T. N.T. 7.02 ± 0.63 N.T. N.T.

2.5 88 3.02 ± 0.31 N.T. N.T 7.44 ± 0.52 N.T. N.T.

5 117 2.80 ± 0.19 2.63 ± 0.25 2.98 ± 0.47 7.25 ± 0.44 7.62 ± 0.84 7.02 ± 0.33

aCalculated using ChemDraw
bData obtained from [85]
cDetermination of binding affinity to TNF or RANKL by fluorescence assay
dMean ± SE (n = 3 independent experiments); p < 0.05
eExperiments were performed in the presence of different concentrations of TNF in 10 mM Citrate-phosphate buffer (pH 6.5) containing either 0 or 2.5 or 5%

PEG3350
fExperiments were performed in the presence of different concentrations of RANKL in 25 mM Tri-HCl buffer, 100 mM NaCl (pH 7.5) containing either 0 or

2.5 or 5% PEG3350

N.T.: not tested

https://doi.org/10.1371/journal.pcbi.1005372.t006
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the context of developing novel treatments for chronic inflammatory diseases, the proposed

molecular scaffolds, T8 and T23, could be investigated as lead compounds for future drug

design targeting TNF and RANKL inhibition.

Conclusions

In this work, we have identified computationally and validated experimentally two small-mol-

ecule compounds that function as direct inhibitors of TNF by blocking the protein–protein

interaction (PPI) between the cytokine and its receptor. Both compounds (T8 and T23) were

confirmed to be direct inhibitors of TNF function, with IC50 values comparable to those of the

potent inhibitor SPD304, and showed low toxicity even at concentrations above 100 μM. Our

computational approach combined structure–based modeling with ligand-based modeling.

The predictive ligand-based model was made publicly available[60] through the Enalos Cloud

Platform (http://enalos.insilicotox.com/TNFPubChem) and can be used for the predictions of

TNF inhibition (specific NF-κB induction) of novel small molecules.

Most importantly, our proposed small molecules, T8 and T23, were validated experimen-

tally to act as dual inhibitors, being able to hinder both TNF and RANKL function at the low

micromolar range; thus, they are proposed as the second and third examples of dual PPI inhib-

itors of TNF and RANKL. T8 and T23 were proven to directly bind to both TNF and RANKL

and affect the formation of biologically-active trimers as predicted by our computation model.

Furthermore, molecular dynamics calculations provided complementary information regard-

ing the interactions at the molecular level of the two compounds in the TNF/RANKL com-

plexes. The proposed molecular scaffolds could be further optimized in drug design targeting

TNF and RANKL, ultimately aiming at the development of novel treatments for a range of

inflammatory and autoimmune diseases.
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