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Abstract 

Background:  As one of the largest publicly accessible databases for hosting chemical structures and biological 

activities, PubChem has been processing bioassay submissions from the community since 2004. With the increase 

in volume for the deposited data in PubChem, the diversity and wealth of information content also grows. Recently, 

the Tox21 program, has deposited a series of pairwise data in PubChem regarding to different mechanism of actions 

(MOA), such as androgen receptor (AR) agonist and antagonist datasets, to study cell toxicity. To the best of our 

knowledge, little work has been reported from cheminformatics study for these especially pairwise datasets, which 

may provide insight into the mechanism of actions of the compounds and relationship between chemical structures 

and functions, as well as guidance for lead compound selection and optimization. Thus, to fill the gap, we performed 

a comprehensive cheminformatics analysis, including scaffold analysis, matched molecular pair (MMP) analysis as well 

as activity cliff analysis to investigate the structural characteristics and discontinued structure–activity relationship of 

the individual dataset (i.e., AR agonist dataset or AR antagonist dataset) and the combined dataset (i.e., the common 

compounds between the AR agonist and antagonist datasets).

Results: Scaffolds associated only with potential agonists or antagonists were identified. MMP-based activity cliffs, as 

well as a small group of compounds with dual MOA reported were recognized and analyzed. Moreover, MOA-cliff, a 

novel concept, was proposed to indicate one pair of structurally similar molecules which exhibit opposite MOA.

Conclusions: Cheminformatics methods were successfully applied to the pairwise AR datasets and the identified 

molecular scaffold characteristics, MMPs as well as activity cliffs might provide useful information when designing 

new lead compounds for the androgen receptor.

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
As one of the largest publicly accessible databases for 

chemical structures and their bioactivities, PubChem [1], 

hosted by the National Center for Biotechnology Infor-

mation (NCBI), National Institutes of Health (NIH), has 

become an increasingly important platform to the scien-

tific community for data sharing. With three intercon-

nected databases: PubChem Substance (identifier SID), 

PubChem BioAssay (identifier AID) and PubChem Com-

pound (identifier CID), PubChem offers open access to 

over 50,000 users daily via the NCBI Entrez system, as 

well as web-based and programmatic tools. In addition, 

PubChem is closely integrated with literature and other 

biomedical databases such as PubMed, Protein, Gene, 

Structure, Biosystems and Taxonomy [2]. According to 

the recent review [2], PubChem has been successfully 

applied to various fields, such as developing secondary 

resources and tools, studying compound-target network 

and drug polypharmacology, generating and validat-

ing machine learning models, and identifying lead com-

pounds etc.

Despite of a number of previous data mining efforts 

[3–7], the demand only becomes higher for researchers 

to collectively analyze bioactivity data to solve or pro-

vide insights into scientific questions, especially in the 

medicinal chemistry filed, where one of the main tasks 

is to identify and optimize lead compounds towards 

desired biological activities. �us, many researchers 

have attempted different computational approaches to 
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accomplish such tasks including virtual screening based 

on PubChem bioactivity data [8] using the maximum 

unbiased validation datasets, predicting adverse drug 

reactions using PubChem bioassay data [9] and many oth-

ers [10–13]. However, most of the studies mainly focused 

on the datasets with the single endpoints. With the 

increase in volume for the deposited data in PubChem, 

the diversity and wealth of information content also 

grows. PubChem contains hundreds of large scale high-

throughput screening (HTS) projects, which often tested 

a common compound library providing great opportuni-

ties for bioactivity profiling research. Recently, the Tox21 

program compiled a library of 10,000 compounds, and 

systematically carried out HTS projects against a group 

of targets and pathways, such as androgen receptor (AR), 

estrogen receptor (ER), retinoic acid receptor (RAR) and 

other receptors, searching simultaneously for agonists 

and antagonists in a pairwise manner. Data generated 

by these projects were deposited in PubChem. Analysis 

of such pairwise bioactivity data regarding to different 

mechanism of actions (MOA) for the same target may 

result in interesting discoveries, in particularly when to 

combine with prior data in PubChem. However, to the 

best of our knowledge, little work has been reported from 

cheminformatics study for these datasets. �us, to fill the 

gap, we performed a comprehensive study focusing on 

this data collection using several cheminformatics meth-

ods, including scaffold analysis, matched molecular pair 

(MMP) analysis and activity cliff analysis.

In fact, previous studies have successfully applied such 

cheminformatics methods to the analysis of bioactivity 

data in public databases. For example, Hu and Bajorath 

[14] performed scaffold analysis for the DrugBank data-

base [15] and the ChEMBL database [16]. �ey con-

cluded that many drugs contain unique scaffolds with 

varying structural relationships to scaffolds of currently 

available bioactive compounds. �e same authors also 

explored the scaffold universe of kinase inhibitors with 

respect to different activities [17]. Kramer et  al. [18] 

performed matched molecular pair analysis by compar-

ing the ChEMBL data and Novartis data suggesting that 

MMP analysis is a very robust tool for lead optimiza-

tion and will have growing importance in daily medici-

nal chemistry practice. Using the ChEMBL database, 

Dimova et  al. [19] presented a systematic evaluation of 

activity cliff progression in evolving compound datasets. 

�ey found that activity cliffs currently are not a major 

focal point of practical medicinal chemistry efforts and 

anticipated that chemically unexplored activity cliffs 

should provide significant opportunities for further study 

in medicinal chemistry. All these findings indicate that 

cheminformatics studies are playing important roles in 

medicinal chemistry. However, it can be noted that most 

of such studies are mainly focusing on the ChEMBL 

database.

In this work, we performed a comprehensive chem-

informatics study for the Tox21 assay data deposited in 

the PubChem database to investigate the molecular scaf-

fold characteristics, matched molecular pairs as well as 

activity cliff in the individual target-based dataset (i.e., 

either AR agonist dataset or antagonist dataset). Moreo-

ver, we also performed a computational analysis for the 

combined dataset (i.e., commonly tested compounds) 

between the AR agonist and antagonist datasets in 

Tox21. Several interesting observations are reported and 

discussed.

Material and experimental methods
Bioassay data

Bioactivity data for the agonist and antagonist screens for 

the androgen receptor (AR, GenBank: AAI32976.1) were 

retrieved from the PubChem BioAssay database. For the 

agonist screen (AID 743053), there were 372 substances 

reported as active outcomes and 9070 substances as inac-

tive outcomes from a total of 10,486 substances, while for 

the antagonist screen (AID 743063), 670 substances were 

reported as active and 7770 substances as inactive from 

the same compound library. �ese original compounds 

were subject to further filtering as described below.

Preprocessing of the original data

To obtain the final dataset for analysis, the following 

steps were applied: (1) compounds with missing read-

outs were removed (original 8, 111 unique CIDs were 

reduced to 8110 for both the AR agonist and antagonist 

datasets); (2) redundant compounds (same CIDs and 

same readouts but different SIDs) were removed (CIDs 

remained the same for both the AR agonist and antago-

nist datasets); (3) compounds with discrepant bioactivity, 

meaning the same chemical structure (CID) with con-

tradictory bioactivity report (same CIDs but different 

readouts and different SIDs), were removed (CIDs were 

reduced to 7866 for the AR agonist dataset, and 7678 for 

the AR antagonist dataset, respectively); (4) compounds 

without outcome annotations of “Active” and “Inactive” 

were removed (CIDs were reduced to 7174 for the AR 

agonist dataset, and 6321 for the AR agonist dataset, 

respectively); (5) compounds of mixtures were removed 

(CIDs were reduced to 5649 for the AR agonist dataset, 

and 4956 for the AR antagonist dataset, respectively); 

and (6) compounds containing no ring-like structures 

were removed (CIDs were reduced to 4162 for the AR 

agonist dataset, and 3563 for the AR antagonist dataset, 

respectively). Finally, the PubChem CID (representing 

unique chemical) rather than SID (representing a sam-

ple) was used as the compound identifier for keeping data 
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consistency. �e final AR agonist dataset consisted of 172 

“Active” molecules and 3990 “Inactive” ones, and the AR 

antagonist dataset consisted of 322 and 3241 of “Active” 

and “Inactive” compounds, respectively. �e R software 

[20] was used to perform the analysis.

Sca�old construction

A molecular scaffold, according to the definition intro-

duced by Bemis and Murcko [21], is often called BM scaf-

fold, which is extracted from the molecule by removing 

all substituents while retaining aliphatic linkers between 

ring systems. In this work, the scaffolds of the AR ago-

nist and antagonist datasets were constructed by using 

the method proposed by Matlock et al. [22]. Specifically, 

the scaffold network generator (sng) tool [22], taking the 

input of SDF format of molecules, was used to generate 

the molecular scaffolds. In addition, each scaffold was 

also reduced to an even more brief molecular framework 

(also called cyclic skeleton (CSK) [23]) by converting all 

heteroatoms to carbon and turning all bonding orders 

(double bonds or triple bonds) to one. �erefore, each 

CSK represents a series of topologically equivalent scaf-

folds. �e RDKit software [24] was used to obtain the 

CSKs from the corresponding scaffolds.

Matched molecular pair

As described by Hussain and Rea [25], an MMP is a pair 

of molecules that only differ by a structural change at a 

single site, which has become a major tool for analyzing 

large chemistry dataset for promising chemical trans-

formations [18]. In this work, size-restricted MMPs 

were constructed to limit structural differences between 

compounds to small replacements as reported previ-

ously [26], which was done in the following procedures: 

(1) the invariant core fragment was required to have at 

least twice as the size of each exchanged fragment; (2) the 

maximal size of an exchanged fragment was limited to 13 

non-hydrogen atoms and (3) the size difference between 

two exchanged fragments was set to eight atoms as the 

maximum. �us, the generated MMPs provided a con-

servative measure of structural similarity [23]. All MMP 

calculations were calculated using the algorithm pro-

posed by Hussain and Rea [25]. Specifically, the mmpa 

module implemented in RDKit software [24] was used to 

generate the MMPs. �e module was ran with the default 

settings except the maximal size change in heavy atoms 

allowed in MMPs identified (13 in this work). �e other 

steps were performed using the R software [20], which 

took the SMILES format of molecules as input.

Activity cli�

A common definition for activity cliff is that a pair of 

structurally similar molecules exhibit a large difference 

in bioactivity potency [27]. For the similarity measures 

between molecules, different methods have been suc-

cessfully applied, whereas Tanimoto similarity based on 

various fingerprint descriptors (e.g., PubChem finger-

prints, MACCS fingerprints, ECFP4 fingerprints and 

many others [27]) and MMP-based similarity are among 

the most popular ones [28]. In this work, the latter was 

adopted. In addition, the PubChem bioactivity outcome 

annotations (i.e., active or inactive) provided by deposi-

tors were directly used to obtain the bioactivity potency 

differences. �us, the generated activity cliffs herein were 

MMP-based cliffs.

Results and discussion
As one of the nuclear hormone receptors, AR (GenBank: 

AAI32976.1) plays a critical role in AR-dependent pros-

tate cancer and other androgen related diseases. Several 

endocrine disrupting chemicals and their interactions 

with AR may cause disruption of normal endocrine func-

tion as well as interfere with metabolic homeostasis, 

reproduction, developmental and behavioral functions. 

�us, in order to identify the agonists and antagonists 

of AR signaling, GeneBLAzer AR-UAS-bla-GripTite cell 

line containing a beta-lactamase reporter gene under 

control of an upstream activator sequence stably inte-

grated into HEK293 cells was used to screen the Tox21 

10K compound library. In this work, we have investigated 

the screened compounds by applying several cheminfor-

matics methods in order to mine useful information for 

the design of lead compounds.

Sca�olds and CSKs of the AR agonist and antagonist 

datasets

After applying the filtering criteria described in the 

method section, the compounds used in the analysis 

including both the AR agonist and antagonist datasets are 

listed in Table 1, together with statistics for scaffolds and 

CSKs. As we can see that we finally obtained a total of 

4162 compounds from the PubChem Tox21 agonist data-

set (AID 743053) containing 172 active and 3990 inactive 

ones to perform further research. It should be noted that 

each compound possesses a unique CID indicating that 

it has a distinct chemical structure. On the contrary, the 

AR antagonist dataset (AID 743063) includes relative less 

unique compounds (3563) but with more active ones of 

322 and less inactive ones of 3241 compared to the AR 
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agonist dataset. In order to explore the building blocks or 

core structures of these compounds of different mecha-

nism of actions, which are of high interest to pharma-

ceutical research, we performed scaffold analysis. Here, 

the scaffold refers to the popular BM-scaffold. On the 

basis of these identified 4162 compounds in the agonist 

dataset, we extracted 1571 unique scaffolds. �us, each 

scaffold on average represents about 2.6 compounds. It 

is also noted that there are about 77  % scaffolds which 

are only found in a single compound. Among the scaf-

folds, benzene represents the most compounds. In this 

case, one benzene scaffold represents 1147 compounds, 

followed by the pyridine scaffold representing 67 com-

pounds. �ese findings indicate that the series of com-

pounds tested in the AR dataset are structurally diverse. 

Figure  1a shows the distribution of the compounds 

among the identified scaffolds for the AR agonist dataset. 

Furthermore, we also would like to examine the distribu-

tion of rings in these scaffolds. As shown in Fig. 1c, it is 

evident that most of the scaffolds consist of two or three 

rings (64  % of the whole scaffolds). For the AR antago-

nist dataset, 3563 compounds are covered by 1384 scaf-

folds. Among them, 1063 scaffolds (about 77  % of the 

whole scaffolds) show a one-scaffold-one-compound 

relationship again with benzene and pyridine as the most 

common ones. Figure  1c shows the distribution of the 

compounds among the scaffolds for the AR antagonist 

dataset. While exploring the number of rings related with 

scaffolds, it can be noted that most scaffolds (63 %) have 

two or three rings which is the same as the AR agonist 

dataset, but the maximum number of rings is 9 rather 

than 10 compared to the corresponding agonist dataset 

(Fig. 1d). Based on this analysis, it can be noticed that the 

studied compounds are ring-less and diverse.

It is well known that datasets from HTS have the 

imbalanced nature, which means that the majority of 

screened compounds exhibit inactive outcomes, while 

just a minority part of them show active outcomes. In 

our study, the inactive compounds of the AR agonist 

dataset are more than 23 folds larger than the active 

ones. By comparing the scaffolds of them, the former are 

more than 21 folds of the latter (Table 1). However, one 

can notice that the imbalanced ratio between the inac-

tive and active CID counts, and that between the scaffold 

counts for the compounds of the AR antagonist dataset 

are relatively low compared to those of the agonist data-

set, which are about 10 and 6 for the compounds and 

scaffolds, respectively, which indicates that the identified 

agonists are more structurally specific while the antago-

nists are rather structurally diverse in this studied data-

sets. By calculating the diversity index (DI) [29] of active 

and inactive molecules, using the PubChem fingerprints 

for the AR agonist dataset, it can be noticed that the DI of 

active compounds is 0.50, which is relatively less than the 

inactive DI of 0.66 though the number of former dataset 

is largely less than the latter. For the AR antagonist data-

set, the DIs are 0.61 and 0.67 for the active and inactive 

compounds, respectively. �e almost equal DIs indicate 

that the investigated datasets are diverse.

We further decomposed the scaffolds to CSKs which 

are used to elucidate more general skeletons of the scaf-

folds. According to the previously mentioned criteria, a 

total of 1571 scaffolds are reduced to 895 CSKs for the 

AR agonist dataset, where the active 72 scaffolds con-

sist of 53 CSKs and the inactive 1521 ones consist of 

865 CSKs (Table  1). Likely, the AR antagonist dataset 

consists of 814 unique CSKs, in which the active and 

inactive ones consist of 160 and 717 CSKs, respectively 

(Table  1). Figure  1e, f show the distribution of scaffolds 

among CSKs for the AR agonist and antagonist datasets, 

respectively. �ere are about 77 % of the whole CSKs in 

the AR agonist dataset exhibiting a one CSK to one scaf-

fold relationship, while this ratio is 78 % for the AR antag-

onist dataset, again indicating the screened compound 

library is structurally diverse enough. �e whole list can 

be found in the Additional file 1: Table S1.

More importantly, a comparison for the active and 

inactive scaffolds of the AR agonist dataset shows 22 

Table 1 Summary of the studied AR agonist and antagonist datasets

Agonist Antagonist

Total Active Inactive Total Active Inactive

Number of unique compounds 4162 172 3990 3563 322 3241

Number of unique scaffolds 1571 72 1521 1384 198 1248

Number of unique CSKs 895 53 865 814 160 717

Diversity index – 0.50 0.66 – 0.61 0.67



Page 5 of 13Hao et al. J Cheminform  (2016) 8:37 

overlapping scaffolds, and there are 50 scaffolds that 

exclusively represent only active compounds in the ago-

nist dataset. Figure 2a gives the representative structures 

of these distinct active scaffolds. Besides the binary out-

comes, we have also looked into the potency for these 

active compounds as the AR agonists. Herein, we con-

verted the IC50 (uM, micromolar) as pIC50 (M, molar). It 

should be pointed out that when we extracted the potency 

value for each unique active compound, we also applied 

some criteria: (1) if the same compound has multiple 

potency values with the same log order, we obtained the 

mean value of them as the final potency value; (2) if the 

same compound has multiple potency values with the 

difference of more than one log order, we removed such 

compounds. Finally, 49 exclusive scaffolds were derived 

representing 98 unique compounds. �ese compounds 

exhibit a scale of potency values from 4.26 to 9.19 molar. 

It can be noticed that two compounds (CID 10631 with 

Fig. 1 Frequency of scaffolds that cover a certain number of compounds for the agonist dataset (a) and antagonist dataset (b); frequency of scaf-

folds that have a certain number of rings for the agonist dataset (c) and antagonist dataset (d); frequency of CSK that cover a certain number of 

scaffolds for the agonist dataset (e) and antagonist dataset (f) of AR
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4-ring scaffold “O=C1CCC2C(=C1)CCC1C2CCC2C-

1CCC2” named sca_1 and CID 3033968 with 4-ring scaf-

fold “O=C1CCC2C(=C1)CCC1C2CCC2C1C=CC2” 

named sca_2) shows the most potency values of more 

than 9 molar. Both sca_1 and sca_2 represent a total of 35 

unique active compounds, where the former represents 

the majority of 34 compounds with the potency values 

from 5.67 to 9.10 molar (around 79  % of them present 

the potency values of more than 7 molar), and the latter 

consists of only one compound (CID 3033968). �e com-

pounds with high potency values may provide insight for 

lead design. Likely, 136 scaffolds exclusively cover only 

active compounds of the AR antagonist dataset with the 

representative ones shown in Fig. 2b. When analyzing the 

Fig. 2 Representative exclusive scaffolds for the AR active agonists (a) and AR active antagonists (b)
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potency values of the exclusive antagonists, we filtered out 

one scaffold and kept a total of 135 scaffolds represent-

ing 171 unique compounds with the potency values from 

4.23 to 7.95. Eleven compounds from 9 scaffolds show 

the most potency values of more than 7 molar. When we 

investigated the activity distribution for all compounds 

from these 9 scaffolds, it can be noticed that there are a 

total of 13 compounds with the potency values from 6.65 

to 7.95 molar, indicating these scaffolds represent the con-

sistent activity distribution, though the bioactivity (7.95 

molar) for the most potent antagonist is two orders lower 

compared to that of the strongest agonists (9.19 molar). 

Such exclusive scaffolds should be explored further for 

lead compound development with optimal potency and 

selectivity. More information about the exclusive active 

scaffolds for the AR agonists and antagonists can be found 

in the Additional file 2: Table S2.

MMPs and activity cli�s of the AR agonist and antagonist 

datasets

Matched molecular pair (MMP) analysis has become a 

standard tool for the extraction of medicinal chemistry 

knowledge from large databases [18]. In addition, MMP 

formalism is descriptor-independent, metric-free and 

chemically intuitive [26], which motivated us to perform 

MMP analysis based for the AR datasets. For the agonist 

dataset, we accomplished MMP calculations from the 

original 4162 molecules according to the rules described 

in the method section. Herein, it should be pointed out 

that a pair of compounds may generate multiple MMPs. 

In such case, we retained only one of the MMPs by apply-

ing the additional selection rules. First of all, we calcu-

lated the absolute deviation of the heavy atom count 

between the exchanged groups, and retained the pair 

with the smallest deviation value. Secondly, if there still 

exists multiple pairs with the same smallest deviation 

value, we randomly chose one of such pairs. As a result, 

9695 MMPs were generated to satisfy the specified cri-

teria. By classifying all MMPs, one can notice that the 

MMPs with the same bioactivity outcomes are 9603 

including the inactive MMPs of 9462 and the active 

MMPs of 141. Herein, an inactive MMPs refer that the 

‘left’ molecule and ‘right’ molecules in a pair show both 

inactive outcomes according to the bioactivity annota-

tion depositors provided, and this is the same for an 

active MMPs with both molecules in the pair being active 

compounds. Moreover, a total of 92 MMPs are observed 

with the molecule pairs associated with opposite bioac-

tivity outcomes (i.e. with one of the molecule reported as 

active, and the other one in the pair as inactive) for the 

AR agonist dataset, indicating potential activity cliffs 

which will be further discussed in the following section. 

For the AR antagonist dataset, we obtain a total of 8049 

MMPs from the original 3563 molecules. Among them, 

7717 MMPs with the same outcomes consist of 7623 

inactive MMPs and 94 active MMPs. Furthermore, 332 

MMPs consist of molecule pairs with opposite bioactiv-

ity outcomes. Table 2 shows the summary of the gener-

ated MMPs for the AR agonist and antagonist datasets, 

respectively. In this series of generated MMPs, one may 

be first interested in the active MMPs to give insight 

into property optimization for the compounds such as 

improving solubility, oral availability, protein binding, 

and so forth [30]. Figure  3 shows several representative 

active MMPs for the AR agonist and antagonist data-

sets, separately. �e whole networks for both datasets are 

shown in Fig. 4. From this figure, one can see that most 

active compounds are used as hubs to connect the inac-

tive ones in the generated pairs, indicating that more 

attention should be paid when designing new lead com-

pounds based on these hub compounds since analogs 

may be located at the bottom of the activity cliff.

In addition to MMP recognition, activity cliff analysis 

has been another critical approach for medicinal chem-

istry research, for which activity cliffs are often encoun-

tered in hit-to-lead projects. Activity cliffs represent 

centers of SAR discontinuity in activity landscapes of 

compound datasets and are focal points of SAR explora-

tion [31]. It is also worthy to point out that activity cliffs 

fall out of the similarity-property principle and are usu-

ally incorrectly predicted by quantitative structure–activ-

ity relationship models [27]. Given the importance of 

activity cliff analysis in medicinal chemistry, several stud-

ies have been reported mainly based on the ChEMBL 

database [19, 32–34]. To gain insight for lead identifica-

tion and optimization, we analyzed MMP-based activity 

cliffs for both Tox21 AR agonist and antagonist datasets. 

We used the binary bioactivity outcome annotations, 

Table 2 MMPs for the AR agonist and antagonist datasets

Category Number of MMPs Outcome pattern

Agonist Antagonist Left  
molecule

Right  
molecule

Inactive MMPs 9462 7623 Inactive Inactive

Active MMPs 141 94 Active Active

Activity cliff MMPs 92 332 Inactive Active
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e.g. active versus inactive, provided in the dataset sub-

missions as the corresponding activities. As shown in 

Table  2, we identified 92 MMP-based activity cliffs for 

the AR agonist dataset, while for the AR antagonist data-

set, 332 MMPs with potential activity cliffs are observed. 

Such activity cliffs are of high interest and can be valu-

able to medicinal chemists for lead compound design and 

development. Figure  5 shows the representative MMP-

based activity cliffs for the AR agonist and antagonist 

datasets, respectively. �e whole active MMPs list is pro-

vided in the Additional file 3: Table S3.

Mechanism of actions analysis

In addition to the activity cliff analysis within the respec-

tive AR agonist dataset and antagonist dataset, we also 

carried out MMP-based analysis by combing the agonist 

and antagonist datasets taking the advantage that both 

screens tested the same compound library. We compiled 

a total of 3293 such common compounds for both data-

sets. We first removed those compounds (3008) with 

inactive outcome in both of the AR agonist and antago-

nist datasets as we attempted to focus on the compounds 

with potential agonist and antagonist function as iden-

tified in the two screens. As a result, the remaining 285 

compounds with pairwise mechanism of actions (i.e. ago-

nist vs. antagonist) were applied to further study with two 

questions in mind: (1) to check structure-based bioactiv-

ity overlap; and (2) to explore MMP-based MOA cliffs.

To answer the first question, we organized the 285 

common compounds according to their annotated bio-

activity outcomes. It can be noticed that 240 molecules 

exhibited opposite outcomes (i.e., they are either ago-

nists or antagonists of AR). On the other hand, and sur-

prisingly, 45 compounds (Additional file  4: Table S4) 

were reported as active in both screens. �is finding is 

interesting since it means that these 45 molecules were 

recognized as both agonists and antagonists of AR simul-

taneously, which may be explained by two folds: (1) they 

indeed possess both MOA detected by different screens; 

(2) this observation may reflect underlying experimental 

errors. In any case, further experimental investigation is 

needed to confirm this finding. Figure 6 shows the rep-

resentative structures for these 45 compounds with dual 

MOA reported.

Fig. 3 Representative active MMPs for the AR agonists (a) and AR antagonists (b)
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Fig. 4 MMP network for the AR agonist dataset (a); MMP network for the antagonist dataset (b); MMP example surrounded by green circle for the 

AR agonist dataset (c); MMP example surrounded by green circle for the AR antagonist dataset (d)
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For the second question, MMP analysis was performed 

for the 285 common compounds. As a result, a total of 

78 MMPs were obtained after applying above-mentioned 

filters. We classify these 78 MMPs into 3 categories as 

shown in Table  3. �e largest category has 64 MMPs, 

where both molecules in a pair show the same MOA, 

and we call it same MOA. Interestingly, the remaining 14 

MMPs form MOA-cliffs, a novel concept we proposed, 

which refers to that a pair of structurally similar mole-

cules present different MOA. Among the 14 MOA-cliffs, 

there are 13 MMPs to be considered as weak MOA-cliffs 

because they just show partly different MOA. Compared 

to the weak MOA-cliffs, it is very interesting to observe 

a strong MOA-cliff, which presents a totally opposite 

MOA between the molecules (CID 443884, AR agonist, 

4.69 molar; CID 6321253, AR antagonist, 4.77 molar) 

(Table  3). It is true that both molecules show the rela-

tively less potency values, but the outcome annotations 

from the depositor indeed elucidate them as agonist and 

antagonist, respectively. It should also be pointed out 

that by comparing CID 443884 with CID 6321253, the 

exchanged fragments are slightly different where the tail 

of former molecule shows the more polar characteristic 

than the latter one. �at may be a possible reason why 

they show the opposite MOA. Figure 7 exhibits the rep-

resentative structural pairs of the identified MMPs and 

MOA-cliffs for the combined dataset (the whole list 

can be found in the Additional file 5: Table S5). Despite 

of the high interest for this observation, it should be 

pointed out the bioactivities of the compounds would 

need to be verified by further investigations. Regard-

less, the analysis indicates that the cheminformatics 

tools may be used to provide in-depth analysis of big 

chemical biology data, to understand the relation-

ship between chemical scaffolds, structures and their 

biological functions, and in particularly to recognize 

Fig. 5 Representative MMP-based activity cliffs for the AR agonist dataset (a) and AR antagonist dataset (b)
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interesting compound pairs that demonstrate completely 

different mechanism of actions, hence to provide guid-

ance for further medicinal chemistry study. Indeed, 

there are more datasets from the Tox21 program and 

other HTS projects with data available in PubChem 

screened for both agonists and antagonists, or activators 

and inhibitors against a target, which will be subject to  

future study. 

Fig. 6 Representative molecular structures for the dual action molecules

Table 3 Summary of MMPs and cli�s for the combined AR dataset

MOA pattern Number of MMPs Left molecule Right molecule

Agonist Antagonist Agonist Antagonist

Same MOA 64 17 Active Active Active Active

26 Inactive Active Inactive Inactive

21 Active Inactive Active Inactive

Weak MOA-cliffs 13 7 Inactive Active Active Active

6 Active Active Active Inactive

Strong MOA-cliffs 1 1 Active Inactive Inactive Active
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Conclusions
In this work, we analyzed the pairwise agonist and antag-

onist AR data including scaffold analysis, matched molec-

ular pair and activity cliff. Scaffolds with distinct agonist 

or antagonist bioactivity as well as those showing activ-

ity cliffs were identified. In addition to the activity cliffs 

regarding to a single MOA, we also carried out activity 

cliff analysis by combing the AR agonist and antagonist 

datasets. We proposed a novel MOA-based cliff concept 

to indicate a pair of structurally similar molecules which 

exhibit the opposite MOA. In a summary, by a thorough 

investigation of the Tox21 AR datasets, a series of scaf-

folds, MMPs, activity cliffs as well as MOA-cliffs have 

been identified or proposed. We hope this analysis might 

be helpful for optimizing or designing novel AR agonists 

and antagonists, and to find key structure elements for 

determining mechanism of actions for small molecule 

compounds.

Fig. 7 Representative MMP (a), weak MOA-cliff (b) and strong MOA-cliff (c) for the combined dataset
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