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Abstract
Poor performance of scoring functions is a well-known bottleneck in structure-based virtual
screening, which is most frequently manifested in the scoring functions’ inability to discriminate
between true ligands versus known non-binders (therefore designated as binding decoys). This
deficiency leads to a large number of false positive hits resulting from virtual screening. We have
hypothesized that filtering out or penalizing docking poses recognized as non-native (i.e., pose
decoys) should improve the performance of virtual screening in terms of improved identification
of true binders. Using several concepts from the field of cheminformatics, we have developed a
novel approach to identifying pose decoys from an ensemble of poses generated by computational
docking procedures. We demonstrate that the use of target-specific pose (-scoring) filter in
combination with a physical force field-based scoring function (MedusaScore) leads to significant
improvement of hit rates in virtual screening studies for 12 of the 13 benchmark sets from the
clustered version of the Database of Useful Decoys (DUD). This new hybrid scoring function
outperforms several conventional structure-based scoring functions, including
XSCORE∷HMSCORE, ChemScore, PLP, and Chemgauss3, in six out of 13 data sets at early
stage of VS (up 1% decoys of the screening database). We compare our hybrid method with
several novel VS methods that were recently reported to have good performances on the same
DUD data sets. We find that the retrieved ligands using our method are chemically more diverse in
comparison with two ligand-based methods (FieldScreen and FLAP∷LBX). We also compare our
method with FLAP∷RBLB, a high-performance VS method that also utilizes both the receptor and
the cognate ligand structures. Interestingly, we find that the top ligands retrieved using our method
are highly complementary to those retrieved using FLAP∷RBLB, hinting effective directions for
best VS applications. We suggest that this integrative virtual screening approach combining
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cheminformatics and molecular mechanics methodologies may be applied to a broad variety of
protein targets to improve the outcome of structure-based drug discovery studies.

Introduction
In recent years, structure-based virtual screening (VS) has become an increasingly more
popular strategy for computer-aided drug design.1, 2 Structure-based VS approaches explore
available or synthetically feasible chemical databases to identify a relatively small number
of high-scoring hits that can be validated experimentally. A successful structure-based VS
method can be applied to large data sets of compounds, resulting in significant enrichment
of true binders among the top ranking hits.

Employing rigorous scoring functions is essential to the success of structure-based VS
campaigns since scoring functions play a critical role in both initial pose generation of
compounds (docking) and further ranking of compounds (scoring). Scoring functions can be
divided into several types.3 Force field-based scoring functions predict binding affinity by
explicitly accounting for intermolecular interactions such as electrostatic, van der Waals,
hydrogen bonding, and hydrophobic interactions. However, due to the static nature of the
underlying molecular models many important effects influencing the binding free energy
such as entropy, micro-environment dependent polarization, π-stacking, and solvent effects,
are often not taken into account. On the other hand, knowledge-based scoring functions
employ various statistical parameters derived from experimentally determined protein-
ligand structures that reflect their total physical interactions taking the molecular
environment into account.4, 5 Ideally, knowledge-based scoring functions may implicitly
capture binding interactions that are difficult to model in force field-based scoring functions.

Despite the increasing popularity of structure-based VS, recent studies have shown that
inaccuracy of scoring functions is the major bottleneck of structure-based VS.6 It has been
demonstrated that scoring functions often fail to recognize pose decoys, i.e., ligand poses
that are geometrically different from the native binding orientation of the ligand in an
experimentally determined crystallographic structure of the protein-ligand complex, yet
score better than the native pose. In addition, known non-binders may also score better than
true binders; such non-binders are designated as binding decoys.6, 7 Obviously, the presence
of both binding and geometrical pose decoys in an ensemble of compound poses resulting
from computational docking studies will decrease the accuracy of structure based VS.
Perhaps, in part for this reason, structure-based scoring functions are well-known for having
target-dependent VS performances.6

Many studies have focused on the development of target-specific customized scoring
functions8 by adding expert-knowledge constraints (e.g., the hinge constraint in kinase
targets9), or using native pose(s) as references to perform cheminformatics-based similarity
ranking (e.g., SIFt10, 11 and SIFt-variant methods12, 13) and to construct pose filters (e.g.
pharmacophore filter14) to filter out undesired poses. These post-docking pose treatments
can effectively improve the discrimination between true ligands and binding decoys in
structure-based VS for the aimed target. Furthermore, several studies included pose decoys
or poses of inactives in combination with native structures in order to help tuning the scoring
functions against binding decoys, which consequently enhanced the accuracy of virtual
screening.15-20

Herein, by combing the merits of concepts mentioned above, i.e., statistical and force-field
based scoring functions we devise a target-specific knowledge based pose (-scoring) filter
that is trained to distinguish native-like poses from pose decoys. The approach of our
knowledge-based pose (-scoring) filter employs protocols that are routinely used in
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cheminformatics research, e.g., binary quantitative structure activity relationship (QSAR)
modeling, with the caveat that we use unconventional descriptors of the protein/ligand
interface for pose scoring as opposed to using standard chemical descriptors of compounds.
Unique to our approach is that this classifier is developed using both native-like and pose
decoys generated from only one unique protein-ligand x-ray complex. The poses used in
training are generated by multiple rounds of docking of this single cognate ligand to its
binding target leading to an ensemble of different and diverse poses, where each pose can be
defined either as native-like or a decoy based on the value of the pose’s Root Mean Square
Deviation (RMSD) from the known native pose. In addition, novel protein/ligand interfacial
descriptors based on Delaunay tessellation approach and atomic properties derived from
conceptual density functional theory (DFT) are applied to represent the poses in training the
binary classifier. Unlike the majority of interaction fingerprints used in previous virtual
screening studies, our protein/ligand interfacial descriptors represent not only isolated
interactions between pairs of atoms, but also atom contact networks at the protein-ligand
interface based on tessellation patterns.

Using this filter, we have developed a target-specific hybrid scoring function for structure-
based virtual screening in an effort to combine the advantages of both knowledge-based
pose scoring and force field-based hit scoring functions. For a VS campaign, multiple poses
are generated initially for each compound using one of the standard docking approaches.
Then, our filter is used to eliminate poses predicted as decoys; the remaining poses are
predicted as native-like with a certain level of confidence assigned by the model. These
remaining putative native-like poses are ranked with a hybrid score based on the
combination of the pose confidence and the binding score assesses by the physical force
field-based MedusaScore developed previously in our group.21

We test the performance of this novel, hybrid scoring function on several benchmark sets
available from the Directory of Useful Decoys (DUD).22 DUD is a specially designed data
set including multiple targets, their known ligands, and decoys, which are compounds that
are physically similar to yet topologically distinct from the known ligands. The recently
refined DUD data sets include only lead-like compounds and have the true ligands clustered,
making it an ideal benchmark set for testing scaffold hopping capability of VS methods.

We use Fred (OpenEye Scientific Software)23 to dock all compounds to target structures and
generate multiple poses for each compounds. We find that for most targets the combination
of pose filter and MedusaScore leads to significant improvement in the enrichment of virtual
screening hits, as compared with using the MedusaScore scoring function alone. Then we
compare the VS performance of several established structure-based scoring functions
(XSCORE∷HMSCORE24, Fred∷ChemScore25, Fred∷PLP26, and Fred∷Chemgauss327) and
several novel VS methods without docking (FieldScreen28, FLAP∷LBX29, and
FLAP∷RBLB29) that were recently reported to achieve good performances on the same
DUD data sets. We find that our structure-based hybrid scoring function outperforms other
structure-based scoring functions for majority of the targets. Furthermore, the retrieved
ligands are less similar to the cognate ligand in comparison with ligand-based approaches
(FieldScreen and FLAP∷LBX), and are complementary to the ligands retrieved by another
hybrid method (FLAP∷RBLB).

Methods
Selection of Targets and Data Sets

The data sets of true ligands and presumed binding decoys for each target in this study are
collected from the publicly available Directory of Useful Decoys (DUD)22. The DUD data
sets were designed to minimize the physical biases inherent in the benchmarking of virtual
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screening schemes against different biological targets. Each ligand was matched with 36
decoy molecules that resemble the true ligands in physical properties, such as molecular
weight, LogP, number of hydrogen bonding groups, and number of rotatable bonds but are
distinct from the ligand topologically. In total, the DUD database consists of 40 data sets and
for each true ligand there are typically 36 decoy molecules. Further refinement of the DUD
data sets is done recently by applying a lead-like filter (MW < 450, AlogP < 4.5) to both
ligands and presumed binding decoys35 as well as the reduced graph cluster filter to
ligands30. These two filters are intended to mimic the real-life virtual screening campaign
and to reduce the analogue bias inflating enrichment in virtual screening. We employ all 13
data sets from the refined FUD set, each of which includes at least 15 ligand clusters, for our
method validation. The detailed information about the data sets is shown in Table 1. Six of
the 13 targets belong to the kinase family (CDK2, EGFR, p38, PDGFrb, Src, and VEGFr2),
where the majority of known ligands occupy ATP binding region. The remaining targets
include the class of metalloenzymes (ACE, PDE5), serine protease (FXa), and several other
enzymes (AChE, COX-2, HIVRT, and InhA). In order to compare directly with other VS
methods, we use the protein-ligand complexes provided in the original DUD for pose filter
training. For VEGFr2 and PDGFrb targets, the complex structures provided in the DUD data
sets are generated by docking ligands to apo protein structures.

Docking Methods for Pose Generation
For each target, we prepare the x-ray structure using utilities available within the
Molprobity31 server to add and optimize hydrogen atoms while correcting potential
misinterpretations of amino acid (asparagine, glutamine, or histidine) terminal flips. The
crystallographic water molecules located inside the binding pocket are removed in order to
avoid biases when generating poses of molecules but cofactors (e.g., NAD in 1p44 protein
model) or metal atoms (e.g., Zinc in the 1o86 protein model) are preserved if they are
important for enzyme to function or are involved in interactions with the cognate ligand. We
add hydrogen atoms of each small molecules using MOE software (version 2007.09)52

under standard protocols.

We employ the Fred docking software (version 2.2.5) from OpenEye Scientific23 to generate
an ensemble of poses for each compound. The ensemble is generated by enumerating rigid
rotations and translations of each conformer within the binding site. The conformers of each
compound are generated by Omega (version 2.2.1)23 based on default parameters and the
binding site is defined by a 5 Å grid box centered on the cognate ligand. For kinase targets,
it is well-known that hydrogen bond interactions with the protein hinge residues is necessary
for both Type I and Type II kinase inhibitors.32 Thus, this constraint is applied during pose
generation to improve docking accuracy.

We apply default parameters provided by Fred during docking except for the number of
output poses. For pose filter construction, we retain up to 1000 top-scoring poses generated
by docking a single cognate ligand in order to ascertain the conformational diversity of
poses. For virtual screening, the top 30 poses (ranked by the Fred’s default scoring function,
Chemgauss3) of each molecule are preserved for re-scoring by other scoring functions (e.g.,
MedusaScore).

Ligands vs. Binding Decoys and Native-like Poses vs. Pose Decoys
“Binding decoys” are defined as ligands that do not bind to a specific target experimentally
(non-binders) but score as high as (or better than) true ligands. Similarly, we use the terms
“pose decoys” to describe the poses generated by docking the cognate ligand against the
protein target but score better than native-like poses. In our study, native-like poses are
defined as those generated by docking with binding mode(-s) similar to the native pose. The
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similarity between docking poses and the native pose is often measured using Root Mean
Square Deviation (RMSD). For the purpose of pose-filter training, we define a RMSD
threshold of 4Å to classify poses into native-like poses and pose decoys. The 4Å threshold is
consistent with the observation that there is a gap on the distribution plot (MedusaScore vs.
RMSD) of poses generated by re-docking the cognate ligand for most targets (Figure 1,
Figure S1).

Novel Descriptors of the Protein-Ligand Interface Based on Conceptual DFT
Earlier, we developed the so called ENTess chemical geometrical descriptors33 of the
protein-ligand interface. These descriptors are obtained by using Pauling electronegativity
(EN) as an atomic property and Delaunay Tessellation (Tess) to characterize the protein
ligand interface as follows. When applied to protein-ligand complexes represented at the
atomic resolution level, Delaunay tessellation partitions the protein ligand interface into an
aggregate of space-filling, irregular tetrahedra, with both protein and ligand atoms as
vertices. Each Delaunay quadruplet is characterized by its unique four-atom composition,
which defines the descriptor type (certainly, the same four-body compositions may occur in
different, or even the same, protein/ligand interfaces). Furthermore, for each quadruplet we
calculate the sum of En values of the composing atom-vertices, which produces the
descriptor value. In the previous study,33 we used the ENTess descriptors to build successful
quantitative structure-binding affinity relationship (QSBR) models for 264 x-ray
characterized protein-ligand complexes with known binding affinity; the modeling approach
followed our standard model development and validation workflow.34

In this study, we have developed and employed novel descriptors that are methodologically
similar to ENTess descriptors but are theoretically more rigorous.35 These new descriptors
employ pairwise atomic potentials for the protein-ligand complexes (PL) based on maximal
charge transfer (MCT)36 in place of Pauling electronegativities, called here PL/MCT-tess.
The values of PL/MCT-tess descriptors are calculated from the following equation (see also
Figure 2):

(1)

where PL/MCT-tessm is the potential of the m-th tetrahedron type (i.e., individual descriptor
type); n is the number of occurrences of this tetrahedron type in a given pose; p is the vertex
index of a protein atom, l is the vertex index of a ligand atom, and dpl is the distance
between a pair of protein and ligand atoms found in the same Delaunay tetrahedron. Note
that Delaunay tetrahedra at the protein-ligand interface can be classified based on the
relative content of protein and ligand atoms, i.e., three protein and one ligand atoms, two
from each, or one protein and three ligand atoms; this explains the tetrahedral type counts in
the second and third sum in Equation 1.

The MCT characterizes the maximal electron flow between the donor and acceptor atoms at
the protein-ligand interface. It is derived from the conceptual DFT37, 38, which provides a
theoretical basis for calculating the PL/MCT-tess descriptors. The MCT is calculated as
follows, assuming that the total energy of the system is perturbed by the charge transfer up
to the second order:

(2)
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where ΔE and ΔN represent energy change and charge transfer, respectively. When the total
energy is minimized with respect to the charge transfer, dΔE/dΔN = 0, we have

(3)

where μ and η are the chemical potential (negative of electronegativity) and the chemical
hardness respectively, defined by μ = (∂E/∂N)ν and η = (∂2E/∂2N)ν with ν representing the
external potential formed by the framework of atomic nuclei.

Knowledge-based Pose Scoring Filter
As described above, we classify poses generated by docking the cognate ligand against the
protein target into native-like and decoy poses based on a certain RMSD threshold. The
problem of separating native-like poses vs. pose decoys for a molecule can be treated as a
binary classification problem where each pose is characterized by the descriptors of the
protein-ligand interface (i.e., PL/MCT-tess descriptors in this study). This representation
treats the problem of discriminating native-like from decoy poses as a conventional binary
classification problem faced in many conventional cheminformatics investigations that
employ binary QSAR modeling.

To train this knowledge-based pose scoring function for each target, we retain up to 1000
poses generated by docking a single cognate ligand against the target (Figure 3). For the
VEGFr2 and PDGFrb targets, where the native pose is unavailable (only apo structure and a
model structure are available, respectively), the pose with the lowest MedusaScore is
considered as a native pose. This is a reasonable assumption since MedusaScore performed
well in an earlier benchmarking exercise for the native pose prediction.21 We classify the
poses based on the 4 Å threshold as either native-like (RMSD ≤ 4Å) or decoys (RMSD >
4Å) except for the PDE5 pose set where the gap is observed at 3 Å and therefore the 3 Å
threshold is used. For the poses from docking the cognate ligand of 1ckp (CDK2), we do not
observe a characteristic distribution (as, for example, in Figure 1). Therefore, we regenerate
the poses using MedusaDock39 instead of Fred.

For each pose, we generate PL/MCT-tess descriptors to characterize its interactions with the
target protein. The degree of similarity of each pose to the native pose is quantified by the
Euclidean distance in the PL/MCT-tess descriptor space. Therefore, the pose distribution of
each target’s modeling set can be characterized by three parameters: the Euclidean distance
to the native pose in the PL/MCT-tess descriptor space (x-axis), the RMSD value (y-axis),
and the MedusaScore (color bar). It is desirable that poses with lower RMSD value
correspond to smaller distances to the native pose in the PL/MCT-tess descriptor space (e.g.,
Figure 1).

If a binary data set including native-like (class 1) and decoy (class 2) poses is balanced (the
ratio between the two classes is less than two), we randomly exclude 20% poses as the
external test set and construct models based on the remaining 80% poses (training set). In
the case of imbalanced distribution, we downsize the major class by retaining only those
poses that are similar to poses in the minor class, where the degree of similarity is assessed
by Euclidean distance in the PL/MCT-tess descriptor space and then use the same model
validation procedure. For example, the ACE target has 48 native-like poses and 952 decoy
poses; after down-sampling, only 49 decoy poses most similar (in terms of Euclidean
distance) to the native-like poses are retained for model building and validation (Table 2 and
Figure S1). We note that this approach to down-sampling where the most similar instances
of the opposite class are retained naturally makes the classification problem more difficult
and therefore it increases the statistical significance of the resulting classification models.
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We employ the Support Vector Machines (SVM) software implemented in the open-source
LibSVM40 package to build binary classification models (i.e., pose filters). We use all
models with eligible CV accuracy for predicting poses in the external test set and evaluate
model external predictive accuracy by its ability to classify native-like versus decoy poses in
the external set. The validated models (i.e., pose filter) are used further to score any pose
generated in virtual screening as either native like or decoy, expecting that binding decoys
will be classified as non-native poses. For each pose, we calculate a FilterScore, which is the
fraction of models that predict it as native-like. This process of deriving pose filter is
followed for each target in the refined DUD dataset.

It should be emphasized again that only one cognate ligand is used for each target to develop
a pose scoring function. However, due to the generic nature of PL/MCT-tess chemical
descriptors the respective pose filters can be applied to score all poses of all diverse ligands
used in target specific docking and VS studies.

MedusaScore Scoring Function
MedusaScore21 is a physical force field-based scoring function that describes the major
physical interactions between proteins and ligands, including van der Waals interaction, salt
bridge, hydrogen bonding and solvation. MedusaScore is an extension of the Medusa force
field,41 which was developed originally to describe physical interactions within proteins.
The original parameters of the Medusa force field were trained on 34 high-resolution protein
crystal structures with diverse sequences. Thus, by default MedusaScore is expected to be
transferable and applicable to virtual screening of a variety of chemical compounds. Notably
there were no protein-ligand data used in the development of MedusaScore, but it still
exhibits remarkable accuracy in both docking pose discrimination and binding affinity
prediction.21 During the pose rescoring by MedusaScore, we turn off van der Waals
repulsion because this term has been shown to be sensitive to small deviation in ligand
poses.21 It is safe to remove the term in this case because all steric clashes have already been
considered during the generation of docking poses in eth refined DUD dataset.

Fusion of MedusaScore and FilterScore
In order to combine the FilterScore and the MedusaScore, which are of different nature and
scales, we utilize normalized Z-scores based on statistical distributions of respective scores
for the ensemble of poses for each ligand. We start by applying the pose filter to all poses
generated by docking, and discard poses that are predicted as decoys by all eligible models
(i.e., FilterScore = 0). Based on the mean (μ) and standard deviation (σ) of each respective
scoring function, the Z-score for each pose is calculated from the respective raw scores (X)
using Equation 4.

(4)

If the filter is constructed based on the entire sampling space of poses from docking the
cognate ligand (for balanced datasets), we apply the same weight for both FilterScore and
MedusaScore, and the Z-score for each pose is derived as:

(5)

We add a minus sign for ZFilterScore so that lower Z-score will correspond to better ranked
pose, consistent with the MedusaScore convention.
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If the filter is constructed based on the poses after the down-sampling procedure, we employ
a modified scoring strategy based on the concept of the applicability domain.42 We predict
poses within the applicability domain using Equation 5 and predict poses out of the
applicability domain by adjusting the weight of FilterScore by DistScore (Equation 6).

(6)

The ZDistScore is the Z-score of each pose based on the its Euclidean distance to the native
pose in the PL/MCT-tess descriptor space; the mean and the standard deviation are derived
from the distribution of PL/MCT-tess Euclidean distances to the native pose of all docking
poses. Assuming a normal distribution of inter-pose distances similar to that for poses from
docking of the cognate ligand, we regard docking poses to be within the applicability
domain of the modeling set when ZDistScore < -1. This threshold is defined by inspecting the
distribution of distances between poses in the PL/MCT-tess descriptor space of the modeling
sets for five targets (ACE, CDK2, COX-2, HIVRT, and VEGFr2 in Figure S1). The final
score for each compound is based on the pose with the lowest sum of Z-scores among all
poses retained for that compound.

Evaluation of Virtual Screening Performance
To examine the overall performance of our method for a target data set in virtual screening,
we plot the Receiver Operator Characteristic (ROC) curve. We calculate the Area Under the
Curve (AUC) value for each ROC curve to estimate the average performance of our method
throughout the ranked list. On the other hand, to quantify the performance of each method at
the early stage of virtual screening for a target data set, we employ the ROC Enrichment
(ROCE) value. Unlike the conventional enrichment factor (EF) metric, ROCE values are
independent of the ratio of binding decoys to ligands in a target data set, making them ideal
metrics for comparing different methods.43 The ROCE value is defined as the ratio of true
positive rates to the false positive rates, for a given percentage of binding decoys (i.e., the
slope at each point on the ROC plot). We report ROCE values at 0.5%, 1%, 2%, 5% as
suggested43-45 and employed in previous publications28, 29, 46. The meaning of ROCE value
at 1% represents the fold enrichment over random performance. In order to emphasize the
retrieval of diverse scaffolds, the above metrics (ROCE and AUC) are modified by applying
an arithmetic weight to each ligand (awROCE and awAUC)47, which is inversely
proportional to the size of the cluster it belongs to.

We estimate the uncertainty of awROCE/awAUC values using the statistical bootstrapping
procedure.28 For each ranked list, we randomly exclude 20% of data points and recalculate
the awROCE values. This is repeated 10,000 times and the standard deviation of awROCE
values is used to estimate the error of awROCE. Due to the nature of pose filter, many true
negatives (presumed binding decoys) and some false negatives (true ligands) are eliminated
in several data sets (e.g., ACE, p38, and etc). For these data sets, we calculate the awROCE
values based on the reduced list, resulting in a larger estimated error at the low percentages.

Comparison against structure-based scoring functions, FieldScreen, and FLAP
Several popular structure-based scoring functions, which are reported to have good docking
pose discrimination and binding affinity prediction21, 48, 49, are selected to compare against
our hybrid scoring function. It is intriguing to test the performance of these scoring functions
since it has been suggested that scoring functions should be tailored for virtual
screening.19, 50 In total, we have tested five scoring functions including MedusaScore,
HMSCORE, Chemgauss3, ChemScore25, and PLP26. HMSCORE is part of the XSCORE51

scoring utility. Chemgauss3, ChemScore, and PLP are scoring functions implemented in
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Fred. Moreover, we also compare our approach with some methods that have been applied
to the same data set including FieldScreen28 and FLAP (both LBX and RBLB protocols)29.
FieldScreen28 and FLAP∷LBX29 are two novel ligand-based virtual screening approaches
using grid points derived from the cognate ligand as query; FLAP∷RBLB approach29 utilize
grid points generated from protein target bound to the cognate ligand. It should be noted that
the binding decoys in DUD are designed to be physically similar to, yet topologically
distinct from the true ligands. Any ligand-based approaches applied to this data set might
generate overly optimistic results.

2D Chemical Similarity to the Cognate Ligand
We generate the MACCS structural keys for each compound using MOE software (version
2007.09)52 under standard protocols. We calculate the Tanimoto coefficient (Tc) as the
similarity metric between the cognate ligand and compounds in the screening library.

Results
Native-like vs. Pose Decoys Classifier

The number of poses used in the construction of the pose filter and the number of models
used in predicting external test set or in further virtual screening are shown in Table 2 along
with the model statistics for each target. We also present the distribution of poses of
modeling set for each target in Figure S1. Depending on the target, the distributions of the
native-like poses and pose decoys are either balanced (AChE, EGFR, FXa, InhA, p38,
PDE5, PDGFrb, and Src), or shifted towards pose decoys (ACE, CDK2, COX-2, HIVRT,
and VEGFr2). The details of modeling techniques to address the imbalanced classes have
been described in the Methods. The results show that the overall accuracy for both the
training set and the external test set exceeds 90% for all data sets except ACE, HIVRT, and
p38. We predict the docking poses generated from each data set using the models which
have CV accuracy greater than 90% except for the HIVRT data set which has no models
with CV accuracy above 90%. In the latter case, a threshold of 80% is applied.

Initially, we used our standard modeling workflow53, employing five-fold external cross-
validation, to build the pose-filter. We found that models of each fold can achieve high and
similar CV accuracy (0.92-0.98), and the VS performance using the models from each
individual fold is the same (data not shown). This indicates that such data (poses from one
protein-ligand complex) are easy to classify, and the 5-fold external CV modeling procedure
does not bring extra reliability to resulting models. Therefore, in this study we adopt a
simplified workflow to construct pose-filter models using one random external split (see
Methods), and the validated models from this split are used in virtual screening.

It should be emphasized again that for each target-specific filter, we use only one cognate
ligand to generate multiple docking poses for further model building. Nevertheless, the filter
is applicable to diverse compounds during VS due to the generality of the chemical
descriptors we use to characterize the protein-ligand interface. As demonstrated below, these
single-ligand based pose filters can significantly improve the accuracy of virtual screening
and true hit selection in combination with the MedusaScore force field.

MedusaScore after pose filtering generates better results than MedusaScore alone
We compare the VS performance of MedusaScore and MedusaScore plus pose filter. We
apply the protocols to all the 13 targets in the DUD clustered data set. We measure the VS
performance of the two scoring protocols using the awROC curves (Figure S2). More
specifically, we use awAUC values to measure the overall ligand retrieval of the protocols,

Hsieh et al. Page 9

J Chem Inf Model. Author manuscript; available in PMC 2013 January 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and use awROCE values at 1% to measure the ligand retrieval at the early stage of VS
(Figure 4a).

We find that VS performance is remarkably improved over the benchmark set by applying
the MedusaScore plus pose filter (i.e., the hybrid scoring function). For all the 13 targets
from the refined DUD set, the awAUC values using the hybrid scoring function are
consistently higher than using MedusaScore alone. The improvements are least significant
for EGFR and VEGFr2 targets, where the awAUC value is improved only by about 0.02 in
both cases. This is probably due to the fact that using MedusaScore alone already results in
high awAUC values for these two targets (0.83 and 0.65, respectively). For the other targets,
the average degree of awAUC improvement is 0.15, and we find the highest improvements
are for AChE and FXa.

When comparing the awROCE values at 1%, we find the hybrid scoring function is better
than using MedusaScore alone for all targets except Src (Figure 4b). The improvement of
awROCE at 1% is most significant for target PDE5 and PDGFrb. For PDE5, we are not able
to retrieve any active ligand using MedusaScore alone (awROCE@1% = 0), but the value is
improved to approximately 26.5 fold over the random at 1% after combining MedusaScore
with the pose filter. The pose filter also improves the ligand retrieval for PDGFrb
(awROCE@1% = 43.18), even though the original awROCE value is already high (23.49)
using MedusaScore alone. In addition, for the two targets (EGFR and VEGFr2) where the
least improvement of awAUC is observed, the awROCE values at 1% are also improved
significantly.

Therefore, by combining MedusaScore with pose filter, we not only improve the overall VS
performance (as measured by awAUC), but also improve the early enrichment (as measured
by awROCE values at 1%). The improvement seems to be more pronounced at the early
stage, which is a desirable feature because in practice, only a small fraction of VS hits will
be experimentally tested.

MedusaScore plus pose filter approach vs. other structure-based scoring functions
We also compare the VS performance of our hybrid scoring function with four popular pose
scoring functions, including XSCORE∷HMSCORE, Fred∷ChemScore, Fred∷PLP, and
Fred∷Chemgauss3. We apply those scoring function to the same docking poses and compare
their VS performance at the early screening stage (Figure 5).

We find that our hybrid scoring function outperforms others for most of the targets. At a
false positive rate of 0.5%, the hybrid scoring function has the highest enrichment for seven
out of the 13 targets. In addition, the awROCE values for those targets vary from 21.66 to
86.46. In contrast, other scoring functions have the best performance at no more than 3
targets, with awROCE values varying from 12.07 to 43. We find a similar trend at the 1%
level. In this case, our hybrid scoring function has the highest enrichment for six targets,
with awROCE values varying from 22.88 to 43.18, while other scoring functions perform
best for at most three targets, with awROCE values in the range of 9.67 to 26.56. This
comparison demonstrates that our hybrid scoring function has better and more consistent VS
performance than conventional scoring functions.

The hybrid scoring function has the worst performance for Src. We will analyze the possible
reasons of Src failure in the Discussion part. For this target, using MedusaScore alone gives
reasonably good enrichment factor of 24.77, close to that from using ChemScore (25.97).
With the aexception of Src, the hybrid scoring function tends to have the best performance
on targets where using MedusaScore alone also gives fairly good enrichment.
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MedusaScore plus pose filter approach vs. other novel VS methods
We select a few recently developed VS methods, for which the benchmark results have been
reported on the same DUD Cluster data set. One of the methods available for comparison is
FieldScreen28, which is a ligand-based scoring VS method that utilizes molecular fields
derived from the cognate ligand as query. Excellent VS performance has also been reported
using FLAP29 molecular field-derived pharmacophores. For FLAP, we compare with two
different VS protocols: FLAP∷LBX, similar to FieldScreen, which uses ligand-based
molecular field, and FLAP∷RBLB, which uses both receptor and co-crystallized ligand
structure to derive the pharmacophore query. These methods represent the state-of-art VS
methods that have been fully tested using the entire DUD clustered set.

The awROC curves of scoring methods for each target are shown in Figure 6 and the
awROCE values at each stage are tabulated in Table S6-S10. We find that the VS
performance of each scoring method is target-dependent. Our method has the best retrieval
for HIVRT, p38, and PDGFrb. RBLB has clearly the best performance for PDE5, Src, and
VEGFr2. On the other hand, ligand-based VS methods unquestionably outperform other
structure-based methods for COX-2. A close examination of the COX-2 data set reveals that
around 47% of true ligands belong to the same cluster as the cognate ligand used as query.
To further investigate the chemical similarity of retrieved ligands to the cognate ligand from
different scoring approaches, we compare the average Tanimoto coefficient (Tc) values of
true ligands from top 20 ranking lists (Table 3). Not surprisingly, we find that ligands
retrieved by ligand-based VS methods are chemically more similar to the cognate ligands, as
measured by the average Tc values. And the average Tc value of the retrieved COX-2
ligands is 0.88 (e.g., FieldScreen), much higher than the average of those for other 12 targets
(0.66). The high degree similarity of COX-2 ligands to the query should result in better
performance of any ligand-based VS methods such as FieldScreen and FLAP∷LBX methods
in this case.

We further compare the early enrichment for our hybrid scoring function and FLAP∷RBLB
approach because these two methods seem to have the best VS performance at the early
stage (in the 0.5% to 5% range). In addition, both methods take advantage of the 3D
structures of the receptor and co-crystallized ligands, albeit using different approaches for
VS. We want to identify if the different approaches might retrieve different ligands. In fact,
we find the two methods seem to be complementary to each other. Among the top 20 hits
retrieved by the two methods, we find little overlap of the ligand types (Figure 7). For
example, FLAP∷RBLB approach is able to retrieve only one cluster for target p38 and
PDGFrb, and two clusters for target ACE. In contrast, the MedusaScore with filter approach
can retrieve 4, 5, and 7 clusters, for these three targets ACE, p38 and PDGFrb, respectively.
Interestingly, the additionally retrieved ligand clusters do not overlap with those obtained
using FLAP∷RBLB approach. This is also the case for target VEGFr2, where MedusaScore
with filter approach retrieved additional five clusters with no overlap with ligands retrieved
by FLAP∷RBLB method. For other targets such as AChE, CDK2, EGFR, HIVRT, and
InhA, only a small fraction of the newly retrieved clusters overlaps with those from
FLAP∷RBLB approach. Hence, although both methods used receptor and cognate ligand
structures for VS, the resulting performance of FLAP∷RBLB approach and our approach
seem quite complementary for different targets. Combining the two methods shall result in
most diverse ligands among the top hits for VS application.
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Discussion
Ligand dependency

The atom types in PL/MCT-tess descriptors are defined based on their unique chemical
names. This implementation makes PL/MCT-tess descriptors fairly sensitive to special cases
(e.g., when tri-fluoro functional group is present in the ligand). However, using poses with
such unique types of interactions to construct pose filter makes it too specific. For example,
in the Src data set, the cognate ligand used to construct pose filter is ANP, which has a long
phospho-aminophosphoric chain uncommon to any lead-like ligands. Unsurprisingly, the
pose filter predicts almost everything as pose decoys and the hybrid scoring function
deteriorates the VS performance of MedusaScore against the Src data set. When we employ
another cognate ligand obtained from 1yol protein-ligand complex to construct pose filter,
the hybrid scoring function has slightly improved VS performance of MedusaScore against
the Src data set (awROCE@1% = 27.6 vs. 25.5; awAUC = 0.66 vs.0.62).

Similarly, the hybrid scoring approach only marginally improves the VS performance of
MedusaScore against the COX-2 data set, where the pose filter is constructed based on the
cognate ligand with a tri-fluoro functional group. For this case, combining MedusaScore
with pure DistScore can easier filter out ligands having the distinctive features of the query
compound than using MedusaScore plus pose filter approach (awROCE@1% = 8.7 vs. 4.1;
awAUC = 0.67 vs. 0.39).

Parent scoring function dependency
Theoretically, the target-specific pose scoring filter can be used in combination with any
other structure-based scoring function since the definition of pose decoys is based on the
RMSD threshold, independent from the scoring function’s output. This hybrid scoring
approach can improve the VS performance by eliminating binding decoys recognized by
pose filter or by increasing weight for the ligands favored by the pose filter. If the ligands
favored by the pose filter have relatively poorer scores predicted by the parent scoring
function and the high-scoring binding decoys are not completely eliminated, then combining
the pose filter and the parent scoring function gives limited improvement. For example, in
the CDK2 data set, the Cluster #1, #2, #3, #7, and #8 are favored by both the pose filter and
Chemgauss3 but are relatively disfavored by MedusaScore, resulting in better performance
when combining pose filter with Chemgauss3 (awROCE@1% = 26.0 vs. 14.4; awAUC =
0.84 vs. 0.71). Another example is the FXa data set, where combining pose filter with
Chemgauss3 has better VS performance (awROCE@1% = 15.4 vs. 4.8; awAUC = 0.80 vs.
0.72). However, docking programs/scoring functions are well-known for having inconsistent
VS performances across diverse targets.6 Therefore, from the practical point of view, it is
more important to improve scoring function performance consistently rather than to achieve
ideal results for a few targets. The proposed pose filter is designed with this view in mind.

The evaluation of the threshold to classify native-like versus decoy poses
We find that the 4 Å-threshold seems optimal considering the distribution of RMSD values
of poses and the pose filter performance in virtual screening. Lowering the threshold results
in fewer native-like poses included, which occupy a smaller portion of the descriptor space;
this ultimately leads to a smaller applicability domain of the pose filter. As a result, using
this pose filter in VS leads to poorer performance compared with using the pose filter built
based on the 4 Å-threshold. The PDE5 data set is an exception, where a clear gap around 3
Å RMSD can be observed on the pose distribution plot. In virtual screening against the
PDE5 data set, the performance of the hybrid scoring approach with 3 Å-threshold filter is
better than with the filter based on the 4 Å-threshold (awROCE@1% = 26.5 vs 17.2;
awAUC = 0.75 vs. 0.72). Moreover, it should be interesting to include the output of a
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scoring function into the definition of native-like poses and pose decoys (e.g., to train filter
only on those native-like poses and pose decoys that are ranked high by the given scoring
function), thus, building filters specifically adjusted for each scoring function.

Virtual screening using MedusaScore in combination with DistScore
As shown in Figure 1, poses with lower RMSD value typically have smaller distances to the
native pose in the PL/MCT-tess descriptor space. It can be assumed that, for a given
molecule, its likelihood to be a true ligand is directly related to how close its pose is to the
native pose, which can be reflected by the DistScore. We have applied DistScore in
combination with FilterScore to virtual screening for the data sets, where down-sampling
during filter construction is necessary. Therefore, for the proper comparison, we also
perform virtual screening against all data sets using MedusaScore in combination with
DistScore alone (Figure S2). We find that using pose filter to eliminate/penalize pose decoys
in virtual screening can consistently improve MedusaScore VS performance and the
MedusaScore plus pose filter approach has the best performance for all data sets except for
the outliers mentioned above.

Conclusions
We have developed a novel knowledge-based pose (-scoring) filter using concepts
frequently employed in cheminformatics research such as chemical descriptors of the
protein-ligand interface and machine learning techniques for deriving binary pose
classification (native-like vs. pose decoys) models. We have combined this novel pose
filtering procedure with a recently developed physical force field-based scoring function
(MedusaScore) to score the docking poses in virtual screening applications. We have
validated this hybrid scoring function using the refined subsets (13 targets) from the DUD
database. The refined DUD sets consist of only lead-like compounds and ligands are
clustered based on the reduced graph algorithm, making them suitable for testing scaffold
hopping capability of VS methods. The validation results demonstrated that our method can
consistently improve the VS performance of MedusaScore provided that the protein-ligand
complex is suitable for filter training. Comparing with other established structure-based
scoring functions, including XSCORE∷HMSCORE, Fred∷ChemScore, Fred∷PLP, and
Fred∷Chemgauss3, the hybrid scoring function outperforms other methods in six out of 13
data sets at early stage of VS (1% decoys been screened). Moreover, we find that ligands
retrieved by the hybrid scoring function are chemically more diverse than those by other two
ligand-based VS methods (FieldScreen and FLAP∷LBX) using the same DUD data sets.
Interestingly, we have observed that our method is complementary to FLAP∷RBLB, which
is a high-performance VS method that also utilizes both the receptor and the cognate ligand
structures.

In summary, we have demonstrated that the hybrid cheminformatics/molecular mechanics
based scoring function affords good enrichments in VS experiments and allows for effective
scaffold hopping, suggesting that it could be applied to virtual screening against novel
pharmaceutically relevant protein targets to identify promising leads. An interesting and
unique feature of our approach is that the pose classifier is formally trained to recognize
geometrical decoys of a single ligand; yet, it correctly recognizes (and eliminates) most of
the binding decoys of multiple test ligands because they are predicted as geometrical decoys.
In particular, this method is suitable for protein targets when only limited ligand binding
data is available. A single x-ray protein-ligand complex or, as we have demonstrated for
PDGFrb target, a homology based protein model with a known binder is sufficient for
constructing a successful target-specific pose filter. Additional improvements can be sought
for both the pose (-scoring) filter (e.g., using more than one ligand for training, employing
alternative atomic properties or potentials for ENTess-like scoring functions, or
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incorporating other features, e.g., shape parameters, characterizing Delaunay tetrahedron
generated at the protein-ligand interface), as well as approaches for the integration of
knowledge-based and physical force field-based scoring functions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The distribution of poses generated by re-docking the ligand structure obtained from the
DUD website against the PDGFrb homology protein model. The pose with the lowest
MedusaScore is served as the reference to calculate the RMSD value of poses (the lower
MedusaScore values correspond to higher ranks). The left plot shows the pose distribution
based on Z-score values of MedusaScore (x-axis) vs. RMSD values (y-axis). The right plot
shows the pose distribution based on Z-score values of distance to the native pose in PL/
MCT-tess descriptor space (x-axis) vs. RMSD values (y-axis). The data points are colored
corresponding to their Z-score values of MedusaScore.
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Figure 2.
Illustration of the method to derive PL/MCT-tess descriptors using the tesselated protein-
ligand interface (e.g., 3ERT). The atom types for protein and ligand are treated differently.
For instance, for the tetrahedron at the left corner, Cp and Op are carbon and oxygen atoms
from the protein while Ol and Nl are oxygen and nitrogen atoms from the ligand.
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Figure 3.
Flowchart of the approach described in this paper for developing target-specific pose filters,
and their use in combination with MedusaScore for VS.
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Figure 4.
The awROCE values at 1% (a) and awAUC values (b) of MedusaScore (black) and
MedusaScore + filter approach (dark green) for each target.
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Figure 5.
The heat map of awROCE values at 0.5% (a) and 1% (b) of several popular structure-based
scoring functions (XSCORE∷HMSCORE, ChemScore, PLP, Chemgauss3, and
MedusaScore) as well as MedusaScore plus Filter approach for each target. We highlight the
highest awROCE values of a scoring method against a particular target (purple box)
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Figure 6.
The awROC curves of VS experiments for 13 DUD data sets. For each target, the true
positive (FP) rate is plotted against the logarithmic false positive (FP) rate. Gray dot dash
lines correspond to the random VS performance, magenta lines are from FieldScreen, purple
lines are from FLAP (LBX), blue lines are from FLAP (RBLB), and green lines are from the
MedusaScore + pose filter approach
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Figure 7.
The analysis of ligand cluster type retrieval of MedusaScore + filter approach and
FLAP∷RBLB approach from top 20 ranking list of each data set. We rearrange the retrieve
clusters of each target based on a) the clusters only retrieved by MedusaScore + filter
approach (green); b) the clusters only retrieved by FLAP∷RBLB approach; c) the
overlapping clusters of two approaches (cyan).
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Table 3

Average 2D Tc of the active ligands retrieved from the top 20 ranking list of scoring approaches (FieldScreen,
FLAP∷LBX, FLAP∷RBLB, and MedusaScore + filter).

Target 2D similarity

FieldScreen FLAP∷LBX FLAP∷RBLB MedusaScore + Filter

ace 0.75 0.76 0.59 0.74

ache 0.75 0.81 0.52 0.48

cdk2 0.72 0.50 0.49 0.70

cox2 0.88 0.88 0.68 NA

egfr 0.58 0.50 0.45 0.64

fxa 0.49 0.95 0.45 0.45

hivrt 0.78 0.79 0.60 0.59

inha 0.82 0.82 0.69 0.81

p38 0.66 NA 0.45 0.57

pde5 0.74 0.67 0.57 0.69

pdgfrb 0.64 0.64 0.47 0.66

src 0.44 NA 0.47 0.45

vegfr2 0.59 0.67 0.48 0.47

Aver. Similarity 0.68 0.73 0.53 0.60
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