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Preface

I started to give a lecture course on radionuclide analysis to students of radio-
chemistry in 2001. Two problems quickly became apparent. The first was that I
could not properly lecture on this subject if the basic chemistry underlying the
behavior of radionuclides in separation procedures was not understood. There
seemed to be no sense in talking about precipitation of hydrolyzable metals with
ferric hydroxide, for example, if the hydrolysis of metals was not understood. I had to
go back to basics and teach the chemistry of the elements. This was a good choice –
not least for myself – since I had to refresh my understanding of basic chemical
phenomena. The second problem was that there was no adequate textbook on the
chemistry of radionuclides. I had a handout from my predecessor to give to the
students, but it had been written in the 1970s: it was good but outdated and short.
Most books on radiochemistry available at that time, though comprehensive
enough, contained little actual chemistry of the radionuclides and concentrated on
their radioactive decay processes and the detection and measurement of radiation.
In 2005 I began to write a text ofmy own, in Finnish. Then, seeing a broader need for
such a text, I decided to write in English.

After working on the book for three years, I realized that analytical methods
cannot be properly described if one has not done the analysis oneself, as was true in
my case. I therefore askedDr. XiaolinHou, of Risö National Laboratory, Denmark, to
join me in the project. I knew him as a most experienced analytical radiochemist
who had personally analyzed a great number of radionuclides in environmental and
nuclear waste samples and developed new separation methods. During the past two
years we have collaborated in writing this book, and I have learned a host of new
things, not just from reading papers but also from extensive discussions with
Dr. Hou.

Our book describes the basic chemistry needed to understand the behavior and
analysis of radionuclides of most groups of elements, and the analytical methods
required to separate the most important alpha- and beta- decaying radionuclides
from environmental and nuclear waste samples (e.g., 90Sr and plutonium isotopes).
Many new radionuclides have become important in radiochemistry in the past ten to
fifteen years. Most of these are very long-lived, appearing in spent nuclear fuel and

XVII



nuclear reactor structures and are relevant to safety analysis of the final disposal of
the nuclear fuel and decommissioning waste. Mass spectrometric techniques are
well suited for the measurement of these radionuclides (135Cs, 129I, etc.) because of
their low specific activities. Traditionally, radiometric methods have been used to
measure radionuclides, but the development of mass spectrometric techniques has
opened up new avenues for the analysis of radionuclides, in particular for their
analysis in much lower concentrations. Mass spectrometric measurements also
create new requirements for radionuclide analyses, because the interfering radio-
nuclides and other elements which need to be separated before measurement are
mostly not the same ones that affect radiometric measurements.
My first intention was to write a book for undergraduate and post-graduate

students, but now that the book is finished I see that it could also serve as a handbook
for more experienced radiochemists – at least I hope so.

November 1, 2010 Jukka Lehto
Professor in Radiochemistry
University of Helsinki
Department of Chemistry
Finland
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Radionuclides and their Radiometric Measurement

1.1
Radionuclides

The first radioactive elements – radium and polonium – were discovered by Marie
Curie at the end of the nineteenth century. During the first decades of the twentieth
century, tens of natural radioactive elements and their various isotopes in the
uranium and thorium decay chains were identified. The first artificial radionuclide,
30P, was produced by Fr�ed�eric and Ir�ene Joliot-Curie in an accelerator by bombarding
aluminumwith protons. Today,more than two thousand artificial radionuclides have
been produced and identified, especially after the discovery and use of nuclear fission
of uranium and plutonium. This book focuses on radionuclides found in the
environment and in nuclear waste. This chapter presents an overview of radio-
nuclides, radioactive decay processes, and the radiometric measurement of radio-
nuclides, which are categorized according to their sources and ways of formation; in
later chapters they are classified based on their chemical nature and are discussed in
more detail. Radionuclides can be primarily categorized into natural and artificial
radionuclides.

1.1.1
Natural Radionuclides

In nature there are three types of radionuclides: those belonging to the decay chains
of uranium and thorium, single very long-lived radionuclides, and cosmogenic
radionuclides.

The decay chains of uranium and thorium start with two isotopes of uranium and
one of thorium, 235U, 238U, and 232Th,whichwere formed at the birth of theUniverse
some 13.7 billion years ago, and, since they are so long-lived, they have survived in the
earth since its birth 4.5 billion years ago. These three primordial radionuclides each
initiate a decay chain leading to the stable lead isotopes 207Pb, 206Pb, and 208Pb,
respectively. In between, there are altogether 42 radionuclides of 13 elements, of
which nine elements, those heavier than bismuth, have no stable isotopes at all. The
three decay chains are depicted in Tables 1.1–1.3. The determination of radionuclides
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Table 1.1 Uranium decay chain.

Nuclide Decay mode Half-life Decay energy (MeV) Decay product

238U a 4.4� 109 y 4.270 234Th
234Th b� 24 d 0.273 234Pa
234Pa b� 6.7 h 2.197 234U
234U a 245 500 y 4.859 230Th
230Th a 75 380 y 4.770 226Ra
226Ra a 1602 y 4.871 222Rn
222Rn a 3.8 d 5.590 218Po
218Po a 99.98% 3.1min 6.874 214Pb

b� 0.02% 2.883 218At
218At a 99.90% 1.5 s 6.874 214Bi

b� 0.10% 2.883 218Rn
218Rn a 35ms 7.263 214Po
214Pb b� 27min 1.024 214Bi
214Bi b� 99.98% 20min 3.272 214Po

a 0.02% 5.617 210Tl
214Po a 0.16ms 7.883 210Pb
210Tl b� 1.3min 5.484 210Pb
210Pb b� 22.3 y 0.064 210Bi
210Bi b� 99.99987% 5.0 d 1.426 210Po

a 0.00013% 5.982 206Tl
210Po a 138 d 5.407 206Pb
206Tl b� 4.2min 1.533 206Pb
206Pb stable

Table 1.2 Actinium decay chain.

Nuclide Decay mode Half-life Decay energy (MeV) Decay product

235U a 7.1� 108 y 4.678 231Th
231Th b� 26 h 0.391 231Pa
231Pa a 32,760 y 5.150 227Ac
227Ac b� 98.62% 22 y 0.045 227Th

a 1.38% 5.042 223Fr
227Th a 19 d 6.147 223Ra
223Fr b� 22min 1.149 223Ra
223Ra a 11 d 5.979 219Rn
219Rn a 4.0 s 6.946 215Po
215Po a 99.99977% 1.8ms 7.527 211Pb

b� 0.00023% 0.715 215At
215At a 0.1ms 8.178 211Bi
211Pb b� 36min 1.367 211Bi
211Bi a 99.724% 2.1min 6.751 207Tl

b� 0.276% 0.575 211Po
211Po a 516ms 7.595 207Pb
207Tl b� 4.8min 1.418 207Pb
207Pb stable
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in the decay chains has been, and still is, a major topic in analytical radiochemistry.
They are alpha and beta emitters, most of which do not emit detectable gamma rays,
and thus their determination requires radiochemical separations. This book exam-
ines the separations of the following radionuclides: U isotopes, 231Pa, Th isotopes,
227Ac, 226;228Ra, 222Rn, 210Po, and 210Pb.

In addition to 235U, 238U, and 232Th, there are several single very long-lived
primordial radionuclides (Table 1.4) which were formed in the same cosmic
processes as those that formed uranium and thorium. The most important of these,
with respect to the radiation dose to humans, is 40K. However, as this emits readily
detectable gamma rays and does not require radiochemical separations, neither this
nor the others are discussed further in this book.

The third class of natural radionuclides comprises cosmogenic radionuclides,
which are formed in the atmosphere in nuclear reactions due to cosmic radiation
(Table 1.5). These radionuclides are isotopes of lighter elements, and their half-lives
vary greatly. The primary components of cosmic radiation are high-energy alpha
particles and protons,which induce nuclear reactionswhen they impact on the nuclei
of the atmospheric atoms. Most of the cosmogenic radionuclides are attached to
aerosol particles and are deposited on the ground. Some, however, are gaseous, such
as 14C (as carbon dioxide) and 39Ar (a noble gas), and thus stay in the atmosphere. In

Table 1.3 Thorium decay chain.

Nuclide Decay mode Half-life Decay energy (MeV) Decay product

232Th a 1.41� 1010 y 4.081 228Ra
228Ra b� 5.8 y 0.046 228Ac
228Ac b� 6.3 h 2.124 228Th
228Th a 1.9 y 5.520 224Ra
224Ra a 3.6 d 5.789 220Rn
220Rn a 56 s 6.404 216Po
216Po a 0.15 s 6.906 212Pb
212Pb b� 10.6 h 0.570 212Bi
212Bi b� 64.06% 61min 2.252 212Po

a 35.94% 6.208 208Tl
212Po a 299 ns 8.955 208Pb
208Tl b� 3.1min 4.999 208Pb
208Pb stable

Table 1.4 Some single primordial radionuclides.

Nuclide Isotopic abundance (%) Decay mode Half-life (y)

40K 0.0117 b� 1.26� 109
87Rb 27.83 b� 4.88� 1010
123Te 0.905 EC 1.3� 1013
144Nd 23.80 a 2.1� 1015
174Hf 0.162 a 2� 1015
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primary nuclear reactions, neutrons are also produced, and these induce further
nuclear reactions. Two important radionuclides are produced in these neutron-
induced reactions: 3H and 14C (reactions 1.1 and 1.2), whose chemistry and
radiochemical separations are described inChapter 13. These radionuclides – tritium
and radiocarbon – are generated not only by cosmic radiation but also in other
neutron activation processes in nuclear explosions and in matter surrounding
nuclear reactors.

14Nþn! 14Cþ p ð1:1Þ

14Nþn! 12Cþ 3H ð1:2Þ

1.1.2
Artificial Radionuclides

Artificial radionuclides form the largest group of radionuclides, comprising more
than two thousand nuclides produced since the 1930s. The sources of artificial
radionuclides are:

. nuclear weapons production and explosions;

. nuclear energy production;

. radionuclide production by reactors and accelerators.

Awide range of radionuclides are produced in nuclear weapons production, where
plutonium is produced by the irradiation of uranium in reactors and innuclear power
reactors.Most arefission products, and are generated by theneutron-inducedfission of
235U and 239Pu. In nuclear power reactors, they are practically all retained in the
nuclear fuel; however, in nuclear explosions they end up in the environment – on the
ground in atmospheric explosions or in the geosphere in underground explosions.
The spent nuclear fuel from power reactors is stored in disposal repositories deep
underground. The radionuclide composition of nuclear explosions and the spent fuel
from nuclear power reactors differ somewhat for several reasons. Firstly, the fissions
in a reactor aremostly caused by thermal neutrons, while in a bomb fast neutrons are

Table 1.5 Some important cosmogenic radionuclides.

Nuclide Half-life (y) Decay mode Nuclide Half-life (y) Decay mode

3H 12.3 beta 7Be 0.15 EC
10Be 2.5� 106 beta 14C 5730 beta
22Na 2.62 EC 26Al 7.4� 105 EC
32Si 710 beta 32P 0.038 beta
33P 0.067 beta 35S 0.24 beta
36Cl 3.1� 105 beta/EC 39Ar 269 beta
41Ca 3.8� 106 EC 129I 1.57� 107 beta
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mostly responsible for the fission events, and this results in differences in the
radionuclide composition. Secondly, fission is instantaneous in a bomb, while in a
reactor the fuel is irradiated for some years. This allows the ingrowth of some
activation products, such as 134Cs, that do not exist in weapons fallout. 90Sr and 137Cs
are themost important fission products because of their relatively long half-lives and
high fission yields. In addition to these, there is range of long-lived fission products,
such as 79Se, 99Tc, 126Sn, 129I, 135Cs, and 151Sm, the radiochemistry of which is
discussed in this book.

Along with fission products, activation products are also formed in side reactions
accompanying the neutron irradiation. The intensive neutron flux generated in the
fission induces activation reactions both in the fuel or weapons material and in the
surrounding material. These can be divided into two categories, the first comprising
the transuranium elements – a very important class of radionuclides in radiochem-
istry. These are created by successive neutron activation and beta decay processes
starting from 238U or 239Pu (Figure 1.1). Of these, the most important and the most
radiotoxic nuclides are 237Np, 238;239;240;241Pu, 241;243Am, and 243;244;245Cm, which are
discussed further in this book. In addition to transuraniumelements, a newuranium
isotope 236U is also formed in neutron activation reactions.

Another activation product group comprises radioisotopes of various lighter
elements. In addition to tritium and radiocarbon, a wide range of these activation
products are formed in nuclear explosions and especially in nuclear reactors.
Elements of the reactor�s construction materials, especially the cladding and other
metal parts surrounding the nuclear fuel, the steel of the pressure vessel and the
shielding concrete structures are activated in the neutron flux from the fuel. Part of
these activation products, such as elements released from the steel by corrosion, end
up in the nuclear waste disposed of during the use of the reactor. A larger part,

Figure 1.1 Formation of transuranium elements in nuclear fuel and nuclear weapons material
(Holm, E., Rioseco, J., and Petterson, H. (1992) Fallout of transuranium elements following the
Chernobyl accident. J. Radioanal. Nucl. Chem. Articles, 156, 183).
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however, remains in the steel and concrete and ends up in the waste when the reactor
is decommissioned. This category has many important radionuclides, such as 14C,
36Cl, 41Ca, 55Fe, 59Ni, and 63Ni, which are discussed later in the book. These are
all purely beta-decaying radionuclides that require radiochemical separations. In
addition to these, there is a range of activation products, such as 60Co, 54Mn, 65Zn,
which emit gamma rays and are thus readily detectable and measurable. In addition
to the reactor steel and shielding concrete, the spent fuel, itsmetal cladding, and other
metal parts surrounding the fuel and ending up in the final disposal, contain large
amounts of the long-lived beta decaying activation products 93Zr, 94Nb, and 93Mo
(together with 14C, 36Cl, 59Ni, 63Ni), which are also discussed in this book.

There are also a number of radionuclides produced by neutron and proton irradiations
in reactors and in cyclotrons. Their properties are later described only if they are used as
tracers in radionuclide analysis. An example is a fairly short-lived gamma-emitting
strontium isotope, 85Sr, which is used as a tracer in model experiments for studying
the behavior of the beta-emittingfission product 90Sr or as a yield-determinant in 90Sr
determinations.

1.2
Modes of Radioactive Decay

This book describes the chemistry and analysis of radionuclides – nuclei which are
unstable, that is, radioactive. The instability comes from the fact that the mass of the
nucleus is either too high or its neutron to proton ratio is inappropriate for stability.
By radioactive decay, the nucleus disposes of themass excess or adjusts the neutron to
proton ratio more closely to what is required for stability. The four main radioactive
decay modes – fission, alpha decay, beta decay and internal transition – are briefly
described below.

1.2.1
Fission

Spontaneous fission is a characteristic radioactive decay mode only for the heaviest
elements. In fission, the heavy nucleus divides into two nuclei of lighter elements
whicharecalledfissionproducts.Of thenaturally occurring isotopes,only 238U decays
by spontaneous fission. Only a very minor fraction, 0.005%, of 238U decays by this
mode, therestdecayingbyalphamode.Spontaneousfissionbecomesmoreprevailing
with the heaviest elements, and for some, such as 260No, it is the only way of decay.
Considering the production and amounts of fission products, a more important
process thanspontaneousfissionis inducedfission:aheavynucleusabsorbsaparticle,
most usually a neutron, which results in the excitation and further fission of the
nucleus (Figure 1.2). There are several fissionable isotopes, of which 235U and 239Pu
are the most important from the point of view of the amounts of fission products
generated. These two nuclides are not only fissionable but also fissile, that is, they
undergo fission in the presence of thermal neutrons, which enables their use as
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nuclear fuel in nuclear reactors. 235U is obtained by isotopic enrichment fromnatural
uranium and 239Pu by the irradiation of 238U in a nuclear reactor and subsequent
chemical separation of plutonium from the irradiated uranium.

A large number of fission products are generated in fission processes. Figure 1.3
gives, as an example, the distribution of fission products for 235U from thermal

Figure 1.2 An example of a neutron-induced fission of 235U. The reaction is
235U þ n ! 236U ! 141Ba þ 92Kr þ 3n (http://en.wikipedia.org/wiki/Nuclear_fission).

Figure 1.3 Fission yield distribution of 235U as a function of the mass number of the fission
product.
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neutron-induced fission. As can be seen, the fission is extremely seldom symmetric,
that is, the twofission products of onefission event are not of the samemass. Instead,
the maxima of fission products are found at the mass numbers 90–100 and at
135–145. At these ranges, the fission yields are between 5% and 7%. This applies to
thermal neutron-induced fission; fissions induced by high energy particles become
more symmetric with the energy of the bombarding particle.

Mostfission products are radioactive since they have an excess of neutrons. In both
235U and 239Pu, the neutron to proton ratio is around 1.6, which is too high for the
lighter elements to be stable. For example, for the stable elements in the upper
maximum of the fission yield at the mass numbers 135–145, the highest neutron-to-
proton ratio is around 1.4, and, through the radioactive decay, by betaminus decay in
this case, thenucleus transforms the ratio intoanappropriate one.Anexampleof such
a decay chain of neutron-rich fission products leading to stable 137Ba is as follows:

137 Teðt1=2 ¼ 3:5 s;n=p ratio 1:63Þ! 137Iðt1=2 ¼ 24:5 s;n=p ratio 1:58Þþ b� !
137Xeðt1=2 ¼ 3:82min; n=p ratio 1:54Þþ b� !

137Csðt1=2 ¼ 30 y;n=p ratio 1:49Þþ b� ! 137Baðstable; n=p ratio 1:45Þþ b�

1.2.2
Alpha Decay

Alpha decay is also a typical decay mode for the heavier radionuclides. Most actinide
isotopes and radionuclides in the uranium and thorium decay chains decay by this
mode. A few exceptions among the radionuclides discussed in this book are 210Pb,
228Ra, and 241Pu, which decay solely by beta emission. 227Ac also decays mostly
(98.8%) by beta decay. As can be seen fromTables 1.1–1.3, beta decay is a decaymode
competing with alpha decay for many radionuclides in the decay chains. In an alpha
decay, the heavy nucleus gets rid of excessmass by emitting a helium nucleus, which
is called an alpha particle (a). An example is

226Ra! 222Rnþ 4HeðaÞ ð1:3Þ

where 226Ra turns into 222Rn by emitting an alphaparticle. Thus, in an alphadecay, the
atomic number decreases by two units and themass number by four. The energies of
the emitted alpha particles are always high, typically between 4 and 7MeV. Since the
mass of the alpha particle is relatively high, the daughter nuclide receives considerable
kinetic energy due to recoil. For example, when 238U decays to 234Th by alpha
emission, the daughter nuclide 234Th gets 0.074MeV of the 4.274MeV decay energy
and the alphaparticle the rest, 4.202MeV. Even though the fraction of the recoil energy
is only 1.7%, this energy is some ten thousand times higher than that of a chemical
bond, and thus recoil results in the breaking of the chemical bond by which the
daughter nuclide is bound to thematrix. The transformations from parent nuclides to
daughter nuclides take place between defined energy levels corresponding to defined
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