Chemistry and Analysis of Radionuclides

Laboratory Techniques and Methodology

Jukka Lehto and Xiaolin Hou

Chemistry and Analysis of Radionuclides

Related Titles

Lambert, J. D. B. (ed.)

Nuclear Materials

2011 ISBN: 978-3-527-32352-4

Atwood, D. (ed.)

Radionuclides in the Environment

2010 ISBN: 978-0-470-71434-8

Prussin, S. G.

Nuclear Physics for Applications

2007 ISBN: 978-3-527-40700-2

Lieser, K. H.

Nuclear and Radiochemistry

Fundamentals and Applications

2001 ISBN: 978-3-527-30317-5 Jukka Lehto and Xiaolin Hou

Chemistry and Analysis of Radionuclides

Laboratory Techniques and Methodology

WILEY-VCH Verlag GmbH & Co. KGaA

The Authors

Prof. Jukka Lehto

University of Helsinki Laboratory of Radiochemistry A.I.Virtasen aukio 1 00014 Helsinki Finland

Dr. Xiaolin Hou

Technical University of Denmark Risö National Laboratory for Sustainable Energy Radiation Research Division Frediksborgvej 399 4000 Roskilde Danmark All books published by **Wiley-VCH** are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No.: applied for

British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library.

Bibliographic information published by

the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de.

© 2011 WILEY-VCH Verlag & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

 Composition
 Thomson Digital, Noida

 Printing and Binding
 Strauss GmbH, Mörlenbach

 Cover Design
 Adam Design, Weinheim

Printed in the Federal Republic of Germany Printed on acid-free paper

ISBN: 978-3-527-32658-7

Contents

Preface XVII Acknowledgments XIX

v

- 1.1 Radionuclides 1
- 1.1.1 Natural Radionuclides 1
- 1.1.2 Artificial Radionuclides 4
- 1.2 Modes of Radioactive Decay 6
- 1.2.1 Fission 6
- 1.2.2 Alpha Decay 8
- 1.2.3 Beta Decay 10
- 1.2.4 Internal Transition 12
- 1.3 Detection and Measurement of Radiation 14
- 1.3.1 Gas Ionization Detectors 14
- 1.3.2 Liquid Scintillation Counting 16
- 1.3.3 Solid Scintillation Detectors 20
- 1.3.4 Semiconductor Detectors 20
- 1.3.5 Summary of Radiometric Methods 22
- 2 Special Features of the Chemistry of Radionuclides and their Separation 25
- 2.1 Small Quantities 25
- 2.2 Adsorption 26
- 2.3 Use of Carriers 28
- 2.4 Utilization of Radiation in the Determination of Radionuclides 31
- 2.5 Consideration of Elapsed Time 31
- 2.6 Changes in the System Caused by Radiation and Decay 31
- 2.7 The Need for Radiochemical Separations 32

VI Contents

3	Factors Affecting Chemical Forms of Radionuclides				
	in Aqueous Solutions 35				
3.1	Solution pH 35				
3.2	Redox Potential 38				
3.3	Dissolved Gases 42				
3.3.1	Oxygen 42				
3.3.2	Carbon Dioxide 43				
3.4	Ligands Forming Complexes with Metals 46				
3.5	Humic Substances 48				
3.6	Colloidal Particles 51				
3.7	Source and Generation of Radionuclides 52				
3.8	Appendix: Reagents Used to Adjust Oxidation				
	States of Radionuclides 54				
3.8.1	Oxidants 54				
3.8.2	Reductants 55				
4	Separation Methods 57				
4.1	Precipitation 57				
4.2	Solubility Product 58				
4.2.1	Coprecipitation 59				
4.2.2	Objectives of Precipitation 60				
4.2.2.1	Precipitations Specific for the Investigated				
	Radionuclide 60				
4.2.2.2	Group Precipitations for the Preconcentration				
	of the Target Radionuclide 61				
4.2.2.3	Group Precipitations for the Removal of Interfering				
	Radionuclides and Stable Elements 61				
4.3	Ion Exchange 64				
4.3.1	Ion Exchange Resins 64				
4.3.2	Distribution Coefficient and Selectivity 65				
4.3.3	Cation Exchange or Anion Exchange? 66				
4.3.4	Ion Exchange Chromatography 67				
4.3.5	Ion Exchange in Actinide Separations 68				
4.4	Solvent Extraction 70				
4.4.1	Extractable Complexes 71				
4.4.2	Distribution Constant and Distribution Ratio 72				
4.4.3	Examples of the Use of Solvent Extraction in				
	Radiochemical Separations 73				
4.5	Extraction Chromatography 74				
4.5.1	Principles of Extraction Chromatography 74				
4.5.2	Extraction Chromatography Resins 74				
4.5.3	Pb and Sr Resins 75				
4.5.4	Use of Extraction Chromatography in Actinide				
	Separations 76				

Contents VII

5 Yield Determinations and Counting Source Preparation 81

- 5.1 The Determination of Chemical Yield in Radiochemical Analyses 81
- 5.1.1 Use of Stable Isotopic Carriers in Yield Determinations 81
- 5.1.2 Use of Radioactive Tracers in Yield Determinations 82
- 5.2 Preparation of Sources for Activity Counting 85
- Preparation of Source for Gamma Emitters 85 5.2.1
- 5.2.2 Sample Preparation for LSC 86
- 5.2.3 Source Preparation for Alpha Spectrometry with Semiconductor Detectors and for Beta Counting with Proportional Counters 87
- Electrodeposition 88 5.2.3.1
- 5.2.3.2 Micro-coprecipitation 88
- Spontaneous Deposition 89 5.2.3.3
- 5.3 Essentials in Chemical Yield Determination and in Counting Source Preparation 89
- 5.3.1 Yield Determination 89
- 5.3.2 Counting Source Preparation 90

6 Radiochemistry of the Alkali Metals 91

- 6.1 Most Important Radionuclides of the Alkali Metals 91
- 6.2 Chemical Properties of the Alkali Metals 91
- 6.3 Separation Needs of Alkali Metal Radionuclides 92
- Potassium ⁴⁰K 93 6.4
- Cesium ¹³⁴Cs, ¹³⁵Cs, and ¹³⁷Cs 94 6.5
- 6.5.1 Sources and Nuclear Characteristics 94
- 6.5.2 Preconcentration of Cesium Nuclides from Natural Waters 95
- 6.5.3 Determination of ¹³⁵Cs 96
- Determination of ¹³⁵Cs by Neutron Activation Analysis 96 6.5.3.1
- Determination of ¹³⁵Cs by Mass Spectrometry 6.5.3.2 97
- Essentials in the Radiochemistry of the Alkali Metals 6.6 98

7 Radiochemistry of the Alkaline Earth Metals 99

- 7.1 Most Important Radionuclides of the Alkaline Earth Metals 99
- 7.2 Chemical Properties of the Alkaline Earth Metals 99
- Beryllium ⁷Be and ¹⁰Be 7.3 102
- Calcium 41 Ca and 45 Ca 102 7.4
- 7.4.1 Nuclear Characteristics and Measurement 102
- Determination of ⁴⁵Ca and ⁴¹Ca in Concrete 103 7.4.2
- Strontium ⁸⁹Sr and ⁹⁰Sr 106 7.5
- 7.5.1 Nuclear Characteristics and Sources 106
- Measurement of Strontium Isotopes 7.5.2 107
- 7.5.2.1 Measurement of 90 Sr Activity 107
- Simultaneous Determination of ⁸⁹Sr and ⁹⁰Sr 109 7.5.2.2
- Radiochemical Separations of ⁹⁰Sr and ⁸⁹Sr 7.5.3 109
- Determination of Chemical Yield in Radiostrontium 7.5.3.1 Separations 110

VIII Contents

7.5.3.2	Separation of Radiostrontium by the Nitrate Precipitation Method 110
7.5.3.3	Separation of Radiostrontium by a Ca(OH) ₂ Precipitation Method 113
7.5.3.4	Separation of Radiostrontium by Extraction Chromatography 114
7.6	Radium – 226 Ra and 228 Ra 117
7.6.1	Nuclear Characteristics of Radium Isotopes 117
7.6.2	Measurement of the Activity of Radium Isotopes 117
7.6.3	Need for Determining the Activity of Radium Isotopes 119
7.6.4	Radiochemical Separations of Radium 119
7.6.4.1	Separation of ²²⁶ Ra in Rock Samples with Use of Ion
7(1)	Exchange 120
/.6.4.2	Chromotography 121
77	Chromatography 121
/./	Essentials in the Radiochemistry of the Alkaline Earth Metals 122
8	Radiochemistry of the 3d-Transition Metals 123
8.1	The Most Important Radionuclides of the 3d-Transition Metals 123
8.2	Chemical Properties of the 3d-Transition Metals 124
8.3	$Iron - {}^{55}Fe = 125$
8.3.1	Nuclear Characteristics and Measurement of ⁵⁵ Fe 125
8.3.2	Chemistry of Iron 125
8.3.3	Separation of ⁵⁵ Fe 128
8.3.3.1	Separation of ⁵⁵ Fe by Solvent Extraction 128
8.3.3.2	Separation of ⁵⁵ Fe by Extraction Chromatography 129
8.4	Nickel – ⁵⁹ Ni and ⁶³ Ni 130
8.4.1	Nuclear Characteristics and Measurement of ⁵⁹ Ni and ⁶³ Ni 130
8.4.2	Chemistry of Nickel 131
8.4.3	Separation of ⁵⁹ Ni and ⁶³ Ni 132
8.4.3.1	Separation of Nickel by the DMG Precipitation Method 132
8.4.3.2	Separation of ⁶³ Ni by Ni Resin 134
8.4.3.3	Separation of Nickel for the Measurement of Nickel Isotopes with AMS 135
8.4.3.4	Simultaneous Determination of ⁵⁵ Fe and ⁶³ Ni 135
8.5	Essentials in 3-d Transition Metals Radiochemistry 137
9	Radiochemistry of the 4d-Transition Metals 139
9.1	Important Radionuclides of the 4d-Transition Metals 139
9.2	Chemistry of the 4d-Transition Metals 140
9.3	Technetium – ⁹⁹ Tc 140
9.3.1	Chemistry of Technetium 141
9.3.2	Nuclear Characteristics and Measurement of ⁹⁹ Tc 141
9.3.3	Separation of ⁹⁹ Tc 143
9.3.3.1	Yield Determination in ⁹⁹ Tc Analyses 143
9.3.3.2	Enrichment of ⁹⁹ Tc for Water Analyzes 144

Contents IX

9.3.3.3	Separation of ⁹⁹ Tc from Water by Precipitation and Solvent				
9334	Separation of ⁹⁹ Tc by Extraction Chromatography 145				
9335	Separation of 9^{99} Tc by Distillation 146				
9.5.5.5	$\frac{3}{2}$				
9. 4 9.4.1	Chemistry of Zirconium 147				
0 4 2	Nuclear Characteristics and Macauroment of ⁹³ 7r 149				
9.4.2	Nuclear Characteristics and Measurement of 22 Lr 148				
9.4.5	Separation of Zr 148				
9.4.3.1	Determination of ² Zr by 11A Extraction and Measurement				
0 4 2 2	by LSC 149				
9.4.3.2	Separation of ³ Zr by Coprecipitation and Solvent Extraction				
	for the Zr Measurement by ICP-MS 149				
9.5	Molybdenum – ³³ Mo 151				
9.5.1	Chemistry of Molybdenum 151				
9.5.2	Nuclear Characteristics and Measurement of ⁹³ Mo 153				
9.5.3	Separation of ⁹³ Mo 154				
9.5.3.1	Separation of Radioactive Molybdenum by Aluminum Oxide 154				
9.5.3.2	Separation of ⁹³ Mo by Solvent Extraction 154				
9.6	Niobium – ⁹⁴ Nb 156				
9.6.1	Chemistry of Niobium 156				
9.6.2	Nuclear Characteristics and Measurement of Niobium				
	Radionuclides 157				
9.6.3	Separation of ⁹⁴ Nb 157				
9.6.3.1	Separation of 94 Nb by Precipitation as Nb ₂ O ₅ 158				
9.6.3.2	Separation of 94 Nb by Precipitation as Nb ₂ O ₅ and by				
	Anion Exchange 158				
9.6.3.3	Separation of ⁹⁴ Nb by Solvent Extraction 159				
97	Essentials in the Radiochemistry of 4-d Transition Metals 150				
2.7	Estentials in the factorientistic of the factorient frequest 155				
10	Radiochemistry of the Lanthanides 163				
10.1	Important Lanthanide Radionuclides 163				
10.2	Chemical Properties of the Lanthanides 163				
10.3	Separation of Lanthanides from Actinides 165				
10.4	Lanthanides as Actinide Analogs 165				
10.5	¹⁴⁷ Pm and ¹⁵¹ Sm 167				
10.5.1	Nuclear Characteristics and Measurement of ¹⁴⁷ Pm				
	and ¹⁵¹ Sm 167				
10.5.2	Separation of ¹⁴⁷ Pm and ¹⁵¹ Sm 168				
10.5.2.1	Separation with Ln Resin 168				
10.5.2.2	Determination of ¹⁴⁷ Pm from Urine Using Ion Exchange				
	Chromatography 170				
10.5.2.3	Separation of ¹⁴⁷ Pm from Irradiated Fuel by Ion Exchange				
	Chromatography 170				
10.5.2.4	Determination of ¹⁴⁷ Pm and ¹⁵¹ Sm in Rocks 171				
10.6	Essentials of Lanthanide Radiochemistry 173				

X Contents

11	Radiochemistry of the Halogens 175				
11.1	Important Halogen Radionuclides 175				
11.2	Physical and Chemical Properties of the Halogens 176				
11.3	Chlorine – ³⁶ Cl 178				
11.3.1	Sources and Nuclear Characteristics of ³⁶ Cl 178				
11.3.2	Determination of ³⁶ Cl 178				
11.3.2.1	Determination of ³⁶ Cl from Steel, Graphite, and Concrete				
	by Solvent Extraction and Ion Exchange 179				
11.4	Iodine – ¹²⁹ I 181				
11.4.1	Sources and Nuclear Characteristics of ¹²⁹ I 181				
11.4.2	Measurement of ¹²⁹ I 182				
11.4.2.1	Determination of ¹²⁹ I by Neutron Activation Analysis 182				
11.4.2.2	Determination of ¹²⁹ I by Accelerator Mass Spectrometry 184				
11.4.3	Radiochemical Separations of ¹²⁹ I 185				
11.4.3.1	Separation of ¹²⁹ I by Solvent Extraction 185				
11.4.3.2	Pretreatment of Samples for ¹²⁹ I Analyses 188				
11.4.3.3	Speciation of Iodine Species in Water 188				
11.5	Essentials of Halogen Radiochemistry 190				
12	Radiochemistry of the Noble Gases 193				
12.1	Important Radionuclides of the Noble Gases 193				
12.2	Physical and Chemical Characteristics of the Noble Gases 193				
12.3	Measurement of Xe Isotopes in Air 194				
12.4	Determination of ⁸⁵ Kr in Air 194				
12.5	Radon and its Determination 196				
12.5.1	Determination of Radon in Outdoor Air and Soil Pore Spaces 197				
12.5.2	Determination of Radon in Indoor Air 197				
12.5.3	Determination of Radon in Water 197				
12.6	Essentials of Noble Gas Radiochemistry 198				
13	Radiochemistry of Tritium and Radiocarbon 201				
13 1	Tritium $= {}^{3}\text{H} = 201$				
13.11	Nuclear Properties of Tritium 201				
1312	Environmental Sources of Tritium 202				
13.1.2	Determination of Tritium in Water 202				
1314	Electrolytic Enrichment of Tritium 203				
13.1.5	Determination of Tritium in Organic Material 204				
13.1.6	Determination of Tritium from Urine 204				
13.1.7	Determination of Tritium after Conversion into Benzene 205				
13.1.8	Determination of Tritium using Mass Spectrometry 205				
13.1.9	Determination of Tritium in Nuclear Waste Samples 206				
12.2	Determination of Tritium in Nuclear Waste Samples 206				
13.2	Determination of Tritium in Nuclear Waste Samples 206 Radiocarbon $-$ ¹⁴ C 207				
13.2 13.2.1	Determination of Tritium in Nuclear Waste Samples 206 Radiocarbon – ¹⁴ C 207 Nuclear Properties of Radiocarbon 207				
13.2 13.2.1 13.2.2	Determination of Tritium in Nuclear Waste Samples 206 Radiocarbon – ¹⁴ C 207 Nuclear Properties of Radiocarbon 207 Sources of Radiocarbon 207				
13.2 13.2.1 13.2.2 13.2.3	Determination of Tritium in Nuclear Waste Samples 206 Radiocarbon – ¹⁴ C 207 Nuclear Properties of Radiocarbon 207 Sources of Radiocarbon 207 Chemistry of Inorganic Carbon 209				

- Carbon Dating of Carbonaceous Samples 209 13.2.4 13.2.5 Separation and Determination of ¹⁴C 210 Removal of Carbon from Samples by Combustion for 13.2.5.1 the Determination of ¹⁴C 211 13.2.5.2 Determination of ¹⁴C as Calcium Carbonate by Liquid Scintillation Counting 211 Determination of ¹⁴C by Liquid Scintillation Counting 13.2.5.3 with Carbon Bound to Amine 213 13.2.5.4 ¹⁴C Determination by LSC in Benzene 213 13.2.5.5 ¹⁴C Determination in Graphite form by AMS 213 Determination of ¹⁴C in Nuclear Waste 214 13.2.5.6 Essentials of Tritium and Radiocarbon Radiochemistry 215 13.3 Radiochemistry of Lead, Polonium, Tin, and Selenium 217 14 Polonium – 210 Po 218 14.1 Nuclear Characteristics of ²¹⁰Po 218 14.1.1 Chemistry of Polonium 219 14.1.2 Determination of ²¹⁰Po 220 14.1.3 Lead - ²¹⁰Pb 221 14.2 Nuclear Characteristics and Measurement of ²¹⁰Pb 14.2.1 221 Chemistry of Lead 223 14.2.2 Determination of ²¹⁰Pb 224 14.2.3 Determination of ²¹⁰Pb from the Ingrowth of ²¹⁰Po 14.2.3.1 225 Separation of ²¹⁰Pb by Precipitation 226 14.2.3.2 Separation of ²¹⁰Pb by Extraction Chromatography 14.2.3.3 226 14.3 Tin – ¹²⁶Sn 228 Nuclear Characteristics and Measurement of ¹²⁶Sn 14.3.1 228 Chemistry of Tin 229 14.3.2 Determination of ¹²⁶Sn 230 14.3.3 Selenium – ⁷⁹Se 233 14.4 Nuclear Characteristics and Measurement of ⁷⁹Se 233 14.4.1 Chemistry of Selenium 233 14.4.2 Determination of ⁷⁹Se 235 14.4.3 Essentials of Polonium, Lead, Tin, and Selenium 14.5 Radiochemistry 236 Radiochemistry of the Actinides 239 15 15.1 Important Actinide Isotopes 239 15.2 Generation and Origin of the Actinides 239 15.3 Electronic Structures of the Actinides 244 15.4 Oxidation States of the Actinides 245 15.5 Ionic Radii of the Actinides 246 Major Chemical Forms of the Actinides 247 15.6
- 15.7 Disproportionation 247
- 15.8 Hydrolysis and Polymerization of the Actinides 249

XII Contents

15.9	Complex Formation of the Actinides 250					
15.10	Oxides of the Actinides 250					
15.11	Actinium 251					
15.11.1	Isotopes of Actinium 251					
15.11.2	Chemistry of Actinium 252					
15.11.3	Separation of Actinium 253					
15.11.4	Essentials of Actinium Radiochemistry 254					
15.12	Thorium 255					
15.12.1	Occurrence of Thorium 255					
15.12.2	Thorium Isotopes and their Measurement 255					
15.12.3	Chemistry of Thorium 256					
15.12.4	Separation of Thorium 258					
15.12.4.1	Separation of Thorium by Precipitation 258					
15.12.4.2	Separation of Thorium by Anion Exchange 258					
15.12.4.3	Separation of Thorium by Solvent Extraction 259					
15.12.4.4	Separation of Thorium by Extraction Chromatography 259					
15.12.5	Essentials of Thorium Radiochemistry 259					
15.13	Protactinium 260					
15.13.1	Isotopes of Protactinium 260					
15.13.2	Chemistry of Protactinium 261					
15.13.3	Separation of Protactinium 262					
15.13.4	Essentials of Protactinium Radiochemistry 263					
15.14	Uranium 264					
15.14.1	The Most Important Uranium Isotopes 264					
15.14.2	Occurrence of Uranium 266					
15.14.3	Chemistry of Uranium 267					
15.14.4	Hydrolysis of Uranium 269					
15.14.5	Formation of Uranium Complexes 269					
15.14.6	Uranium Oxides 271					
15.14.7	From Ore to Uranium Fuel 271					
15.14.8	Measurement of Uranium 272					
15.14.9	Reasons for Determining Uranium Isotopes 273					
15.14.10	Separation of Uranium 274					
15.14.10.1	Separation of Uranium from Other Naturally Occurring					
	Alpha-Emitting Radionuclides 274					
15.14.10.2	Determination of Chemical forms of Uranium in Groundwater					
15.14.10.3	Separation of Uranium from Transuranium Elements by Anion					
	Exchange or by Extraction Chromatography 275					
15.14.10.4	Separation of Uranium by Solvent Extraction with					
	Tributylphosphate (TBP) 275					
15.14.11	Essentials of Uranium Radiochemistry 275					
15.15	Neptunium 277					
15.15.1	Sources of Neptunium 277					
15.15.2	Nuclear Characteristics and Measurement of ^{23/} Np 278					
15.15.3	Chemistry of Neptunium 278					

274

- 15.15.4 Separation of ²³⁷Np 280
- 15.15.4.1 Neptunium Tracers for Yield Determinations 280
- 15.15.4.2 Preconcentration of Neptunium from Large Water Volumes 282
- 15.15.4.3 Separation of ²³⁷Np by Extraction Chromatography 282
- 15.15.4.4 Separation of ²³⁷Np by Anion Exchange Chromatography 283
- 15.15.4.5 Separation of ²³⁷Np by Solvent Extraction 283
- 15.15.5 Essentials of Neptunium Radiochemistry 283
- 15.16 Plutonium 284
- 15.16.1 Isotopes of Plutonium 284
- 15.16.2 Sources of Plutonium 286
- 15.16.3 Measurement of Plutonium Isotopes 287
- 15.16.4 The Chemistry of Plutonium 289
- 15.16.4.1 Oxidation States and Plutonium 289
- 15.16.4.2 Disproportionation 290
- 15.16.4.3 Hydrolysis 291
- 15.16.4.4 Redox Behavior 291
- 15.16.4.5 Complex Formation 293
- 15.16.5 Separation of Plutonium 293
- 15.16.6 Tracers Used in the Determination of Pu Isotopes 294
- 15.16.7 Separation by Solvent Extraction 295
- 15.16.8 Separation of Pu by Anion Exchange Chromatography 296
- 15.16.9 Separation of Pu by Extraction Chromatography 297
- 15.16.10 Separation of Pu from Large Volumes of Water 298
- 15.16.11 Automated and Rapid Separation Methods for Pu Determination 300
- 15.16.12 Essentials of Plutonium Radiochemistry 301
- 15.17 Americium and Curium 302
- 15.17.1 Sources of Americium and Curium 302
- 15.17.2 Nuclear Characteristics and Measurement of ²⁴¹Am, ²⁴²Cm, ²⁴³Cm, and ²⁴⁴Cm 303
- 15.17.3 Chemistry of Americium and Curium 304
- 15.17.4 Separation of Americium and Curium 306
- 15.17.4.1 Separation of Am and Cm by Ion Exchange 307
- 15.17.4.2 Separation of Am and Cm by Extraction Chromatography 307
- 15.17.4.3 Separation of Am and Cm by Solvent Extraction 307
- 15.17.4.4 Separation of Lanthanides from Am and Cm 308
- 15.17.5 Essentials of Americium and Curium Radiochemistry 309

16 Speciation Analysis 311

- 16.1 Considerations Relevant to Speciation 311
- 16.2 Significance of Speciation 312
- 16.3 Categorization of Speciation Analyzes 313
- 16.4 Fractionation Techniques for Environmental Samples 314
- 16.4.1 Particle Fractionation in Water 314
- 16.4.2 Fractionation of Aerosol Particles 316
- 16.4.3 Fractionation of Soil and Sediments 317

XIV Contents

16.5	Analysis of Radionuclide and Isotope Compositions 317				
16.6	Spectroscopic Speciation Methods 318				
16.7	Wet Chemical Methods 321				
16.7.1	Coprecipitation 321				
16.7.2	Solvent Extraction 322				
16.7.3	Ion Exchange Chromatography 323				
16.8	Sequential Extractions 324				
16.9	Computational Speciation Methods 326				
16.10	Characterization of Radioactive Particles 329				
16.10.1	Identification and Isolation of the Particles 330				
16.10.2	Scanning Electron Microscopic Analysis of the Particles 330				
16.10.3	Gamma and X-ray Analysis of the Particles 331				
16.10.4	Secondary Ion Mass Spectrometry Analysis of Radioactive				
16 10 5	Synchrotron-Based X-ray Microanalyses 332				
16.10.5	Post-Dissolution Analysis of Particles 334				
10.10.0	Further Reading 335				
	Further Reading 555				
17	Measurement of Radionuclides by Mass Spectrometry 337				
171	Introduction 337				
17.1	Inductively Coupled Plasma Mass Spectrometry (ICP-MS) 338				
17.2	Components and Operation Principles of ICP-MS Systems 339				
17.2.1	Resolution and Abundance Sensitivity 342				
17.2.2	Dynamic Collision/Reaction Cells 343				
1724	Dynamic Collision/ Reaction Cells 343				
17.2.5	Detection Limits 345				
1726					
	^{2°} Sr Measurement by ICP-MS 346				
17.2.7	⁹⁹ Tc Measurement by ICP-MS 346				
17.2.7	 ²⁰Sr Measurement by ICP-MS 346 ⁹⁹Tc Measurement by ICP-MS 348 Measurement of Uranium and Thorium Isotopes by ICP-MS 348 				
17.2.7 17.2.8 17.2.9	 ²⁰Sr Measurement by ICP-MS 346 ⁹⁹Tc Measurement by ICP-MS 348 Measurement of Uranium and Thorium Isotopes by ICP-MS 348 ²³⁷Np Measurement by ICP-MS 349 				
17.2.7 17.2.8 17.2.9 17.2.10	 ²⁷Sr Measurement by ICP-MS 346 ⁹⁹Tc Measurement by ICP-MS 348 Measurement of Uranium and Thorium Isotopes by ICP-MS 348 ²³⁷Np Measurement by ICP-MS 349 Measurement of Plutonium Isotopes by ICP-MS 349 				
17.2.7 17.2.8 17.2.9 17.2.10 17.3	 ²⁰Sr Measurement by ICP-MS 346 ⁹⁹Tc Measurement by ICP-MS 348 ²³⁷Np Measurement of Uranium and Thorium Isotopes by ICP-MS 348 ²³⁷Np Measurement of Plutonium Isotopes by ICP-MS 349 Measurement of Plutonium Isotopes by ICP-MS 349 Accelerator Mass Spectrometry (AMS) 350 				
17.2.7 17.2.8 17.2.9 17.2.10 17.3 17.3.1	 ³⁰Sr Measurement by ICP-MS 346 ⁹⁹Tc Measurement by ICP-MS 348 ⁹⁹Measurement of Uranium and Thorium Isotopes by ICP-MS 348 ²³⁷Np Measurement by ICP-MS 349 Measurement of Plutonium Isotopes by ICP-MS 349 Accelerator Mass Spectrometry (AMS) 350 Components and Operation of AMS 350 				
17.2.7 17.2.8 17.2.9 17.2.10 17.3 17.3.1 17.3.2	 ³⁰Sr Measurement by ICP-MS 346 ⁹⁹Tc Measurement by ICP-MS 348 ⁹⁹Measurement of Uranium and Thorium Isotopes by ICP-MS 348 ²³⁷Np Measurement by ICP-MS 349 Measurement of Plutonium Isotopes by ICP-MS 349 Accelerator Mass Spectrometry (AMS) 350 Components and Operation of AMS 350 ¹⁴C Measurement by AMS 352 				
17.2.7 17.2.8 17.2.9 17.2.10 17.3 17.3.1 17.3.2 17.3.3	 ³⁰Sr Measurement by ICP-MS 346 ⁹⁹Tc Measurement by ICP-MS 348 ⁹⁹Measurement of Uranium and Thorium Isotopes by ICP-MS 348 ²³⁷Np Measurement by ICP-MS 349 Measurement of Plutonium Isotopes by ICP-MS 349 Accelerator Mass Spectrometry (AMS) 350 Components and Operation of AMS 350 ¹⁴C Measurement by AMS 352 ³⁶Cl Measurement by AMS 353 				
17.2.7 17.2.8 17.2.9 17.2.10 17.3 17.3.1 17.3.2 17.3.3 17.3.4	 ³⁰Sr Measurement by ICP-MS 346 ⁹⁹Tc Measurement by ICP-MS 348 ³²⁷Np Measurement of Uranium and Thorium Isotopes by ICP-MS 348 ²³⁷Np Measurement by ICP-MS 349 Measurement of Plutonium Isotopes by ICP-MS 349 Accelerator Mass Spectrometry (AMS) 350 Components and Operation of AMS 350 ¹⁴C Measurement by AMS 352 ³⁶Cl Measurement by AMS 353 ⁴¹Ca Measurement by AMS 353 				
17.2.7 17.2.8 17.2.9 17.2.10 17.3 17.3.1 17.3.2 17.3.3 17.3.4 17.3.5	 ²⁷Sr Measurement by ICP-MS 346 ⁹⁹Tc Measurement by ICP-MS 348 ³²⁷Np Measurement of Uranium and Thorium Isotopes by ICP-MS 348 ²³⁷Np Measurement by ICP-MS 349 Measurement of Plutonium Isotopes by ICP-MS 349 Accelerator Mass Spectrometry (AMS) 350 Components and Operation of AMS 350 ¹⁴C Measurement by AMS 352 ³⁶Cl Measurement by AMS 353 ⁴¹Ca Measurement by AMS 353 ⁶³Ni and ⁵⁹Ni Measurement by AMS 353 				
17.2.7 17.2.8 17.2.9 17.2.10 17.3 17.3.1 17.3.2 17.3.3 17.3.4 17.3.5 17.3.6	 ²⁰Sr Measurement by ICP-MS 346 ⁹⁹Tc Measurement by ICP-MS 348 ⁹⁹Measurement of Uranium and Thorium Isotopes by ICP-MS 348 ²³⁷Np Measurement by ICP-MS 349 Measurement of Plutonium Isotopes by ICP-MS 349 Accelerator Mass Spectrometry (AMS) 350 Components and Operation of AMS 350 ¹⁴C Measurement by AMS 353 ⁴¹Ca Measurement by AMS 353 ⁶³Ni and ⁵⁹Ni Measurement by AMS 354 				
17.2.7 17.2.8 17.2.9 17.2.10 17.3 17.3.1 17.3.2 17.3.3 17.3.4 17.3.5 17.3.6 17.3.7	 ²⁰Sr Measurement by ICP-MS 346 ⁹⁹Tc Measurement by ICP-MS 348 ⁹⁹Measurement of Uranium and Thorium Isotopes by ICP-MS 348 ²³⁷Np Measurement by ICP-MS 349 Measurement of Plutonium Isotopes by ICP-MS 349 Accelerator Mass Spectrometry (AMS) 350 Components and Operation of AMS 350 ¹⁴C Measurement by AMS 352 ³⁶Cl Measurement by AMS 353 ⁶³Ni and ⁵⁹Ni Measurement by AMS 354 ¹²⁹I Measurement by AMS 355 				
17.2.7 17.2.8 17.2.9 17.2.10 17.3 17.3.1 17.3.2 17.3.3 17.3.4 17.3.5 17.3.6 17.3.7 17.3.8	 ³⁰Sr Measurement by ICP-MS 346 ⁹⁹Tc Measurement by ICP-MS 348 ⁹⁹Tc Measurement of Uranium and Thorium Isotopes by ICP-MS 348 ²³⁷Np Measurement by ICP-MS 349 Measurement of Plutonium Isotopes by ICP-MS 349 Accelerator Mass Spectrometry (AMS) 350 Components and Operation of AMS 350 ¹⁴C Measurement by AMS 352 ³⁶Cl Measurement by AMS 353 ⁴¹Ca Measurement by AMS 353 ⁶³Ni and ⁵⁹Ni Measurement by AMS 353 ⁹⁹Tc Measurement by AMS 354 ¹²⁹I Measurement by AMS 355 Measurement of Plutonium Isotopes by AMS 355 				
17.2.7 17.2.8 17.2.9 17.2.10 17.3 17.3.1 17.3.2 17.3.3 17.3.4 17.3.5 17.3.6 17.3.7 17.3.8 17.4	 ²⁰Sr Measurement by ICP-MS 346 ⁹⁹Tc Measurement by ICP-MS 348 ²³⁷Np Measurement of Uranium and Thorium Isotopes by ICP-MS 348 ²³⁷Np Measurement by ICP-MS 349 Measurement of Plutonium Isotopes by ICP-MS 349 Accelerator Mass Spectrometry (AMS) 350 Components and Operation of AMS 350 ¹⁴C Measurement by AMS 352 ³⁶Cl Measurement by AMS 353 ⁴¹Ca Measurement by AMS 353 ⁶³Ni and ⁵⁹Ni Measurement by AMS 353 ⁹⁹Tc Measurement by AMS 355 Measurement of Plutonium Isotopes by AMS 355 Thermal Ionization Mass Spectrometry (TIMS) 356 				
17.2.7 17.2.8 17.2.9 17.2.10 17.3 17.3.1 17.3.2 17.3.3 17.3.4 17.3.5 17.3.6 17.3.7 17.3.8 17.4 17.5	 ²⁰Sr Measurement by ICP-MS 346 ⁹⁹Tc Measurement by ICP-MS 348 ²³⁷Np Measurement of Uranium and Thorium Isotopes by ICP-MS 348 ²³⁷Np Measurement by ICP-MS 349 Measurement of Plutonium Isotopes by ICP-MS 349 Accelerator Mass Spectrometry (AMS) 350 ²³⁶Components and Operation of AMS 350 ¹⁴C Measurement by AMS 352 ³⁶Cl Measurement by AMS 353 ⁴¹Ca Measurement by AMS 353 ⁶³Ni and ⁵⁹Ni Measurement by AMS 353 ⁹⁹Tc Measurement by AMS 355 Measurement of Plutonium Isotopes by AMS 355 Thermal Ionization Mass Spectrometry (TIMS) 356 Resonance Ionization Mass Spectrometry (RIMS) 358 				
17.2.7 17.2.8 17.2.9 17.2.10 17.3 17.3.1 17.3.2 17.3.3 17.3.4 17.3.5 17.3.6 17.3.7 17.3.8 17.4 17.5 17.6	 ³⁷⁵ Sr Measurement by ICP-MS 346 ⁹⁹Tc Measurement by ICP-MS 348 ³²⁷Np Measurement by ICP-MS 349 ³²⁸ Measurement of Plutonium Isotopes by ICP-MS 349 ³²⁹ Accelerator Mass Spectrometry (AMS) 350 ³⁴⁰ Components and Operation of AMS 350 ¹⁴C Measurement by AMS 352 ³⁶Cl Measurement by AMS 353 ⁴¹Ca Measurement by AMS 353 ⁶³Ni and ⁵⁹Ni Measurement by AMS 354 ¹²⁹I Measurement by AMS 355 ¹²⁹I Measurement of Plutonium Isotopes by AMS 355 ¹²⁹I Measurement of Plutonium Isotopes by AMS 355 ³⁵⁵ Spectrometry (TIMS) 356 ³⁵⁸ Essentials of the Measurement of Radionuclides by Mass 				
17.2.7 17.2.8 17.2.9 17.2.10 17.3 17.3.1 17.3.2 17.3.3 17.3.4 17.3.5 17.3.6 17.3.7 17.3.8 17.4 17.5 17.6	 ²⁷⁵Sr Measurement by ICP-MS 346 ⁹⁹Tc Measurement by ICP-MS 348 ⁹⁹Measurement of Uranium and Thorium Isotopes by ICP-MS 348 ²³⁷Np Measurement by ICP-MS 349 Measurement of Plutonium Isotopes by ICP-MS 349 Accelerator Mass Spectrometry (AMS) 350 Components and Operation of AMS 350 ¹⁴C Measurement by AMS 352 ³⁶Cl Measurement by AMS 353 ⁶³Ni and ⁵⁹Ni Measurement by AMS 353 ⁹⁹Tc Measurement by AMS 354 ¹²⁹I Measurement by AMS 355 Measurement of Plutonium Isotopes by AMS 355 Thermal Ionization Mass Spectrometry (TIMS) 356 Resonance Ionization Mass Spectrometry (RIMS) 358 Essentials of the Measurement of Radionuclides by Mass Spectrometry 359 				
17.2.7 17.2.8 17.2.9 17.2.10 17.3 17.3.1 17.3.2 17.3.3 17.3.4 17.3.5 17.3.6 17.3.7 17.3.8 17.4 17.5 17.6	 ²⁷⁵Sr Measurement by ICP-MS 346 ⁹⁹Tc Measurement by ICP-MS 348 ⁹⁹Measurement of Uranium and Thorium Isotopes by ICP-MS 348 ²³⁷Np Measurement by ICP-MS 349 Measurement of Plutonium Isotopes by ICP-MS 349 Accelerator Mass Spectrometry (AMS) 350 Components and Operation of AMS 350 ¹⁴C Measurement by AMS 352 ³⁶Cl Measurement by AMS 353 ⁴¹Ca Measurement by AMS 353 ⁶³Ni and ⁵⁹Ni Measurement by AMS 353 ⁹⁹Tc Measurement by AMS 354 ¹²⁹I Measurement by AMS 355 Measurement of Plutonium Isotopes by AMS 355 Thermal Ionization Mass Spectrometry (RIMS) 358 Essentials of the Measurement of Radionuclides by Mass Spectrometry 359 Further Reading 360 				

Contents XV

10					
18	Sampling and Sample Pretreatment for the Determination				
10 1	of Radionucides 301				
18.1	Air Courries and Destructure and 202				
18.2	Air Sampling and Pretreatment 362				
18.2.1	Sampling Aerosol Particles 362				
10.2.1.1	Radioactive Aerosol Particles 303				
10.2.1.2	Size Selective Acrossel Derticle Sampling 305				
10.2.1.3	Size-Selective Aerosol Particle Sampling 303				
10.2.1.4	Passive Aerosol Particle Sampling 500				
10.3	Atmographenia Deposition Sempling 260				
18.4	Aunospheric Deposition Sampling 369				
18.4.1	Lev Euclaster 270				
18.4.2 19 E	Viotor Someling 271				
10.3	Water Sampling 3/1				
10.3.1	Surface water Sampling 5/1				
10.3.2	Water Core (Depth Profile) 5/2				
10.3.3	Preconcentration of Radionuclides from Natural waters $5/5$				
10.3.3.1	Preconcentration of Ru Are Nr and 99 Te 276				
10.3.3.2	Sediment Sempling and Dretrostment 277				
10.0	Surface Sediment Sempling 277				
10.0.1	Surface Sediment Sampling 377				
10.0.2	Sediment Core Sampling 579				
18.0.5	Distribution of Solimonta Storage Drying Homogenizing 282				
10.0.4	Soil Sampling and Brotroatmont 284				
10./	Dianning the Compline 204				
10.7.1	Soil Coro Sompling 205				
1873	Template Method 387				
10.7.5	Tranch Method 287				
10./.4	Distroctment of Soil Complex 200				
10./.J	Econtials in Sampling and Sample Distractment				
10.0	for Padionuclidag 289				
	ior Radionuclides 588				
19	Chemical Changes Induced by Radioactive Decay 391				
19.1	Autoradiolysis 391				
19.1.1	Dissolved Gases 392				
19.1.2	Water Solutions 392				
19.1 3	Organic Compounds Labeled with Radionuclides 392				
17.1.5					

- 19.1.4 Solid Compounds 393
- 19.2 Transmutation and Subsequent Chemical Changes 393
- 19.3 Recoil Hot Atom Chemistry 394

Index 397

Preface

I started to give a lecture course on radionuclide analysis to students of radiochemistry in 2001. Two problems quickly became apparent. The first was that I could not properly lecture on this subject if the basic chemistry underlying the behavior of radionuclides in separation procedures was not understood. There seemed to be no sense in talking about precipitation of hydrolyzable metals with ferric hydroxide, for example, if the hydrolysis of metals was not understood. I had to go back to basics and teach the chemistry of the elements. This was a good choice not least for myself - since I had to refresh my understanding of basic chemical phenomena. The second problem was that there was no adequate textbook on the chemistry of radionuclides. I had a handout from my predecessor to give to the students, but it had been written in the 1970s: it was good but outdated and short. Most books on radiochemistry available at that time, though comprehensive enough, contained little actual chemistry of the radionuclides and concentrated on their radioactive decay processes and the detection and measurement of radiation. In 2005 I began to write a text of my own, in Finnish. Then, seeing a broader need for such a text, I decided to write in English.

After working on the book for three years, I realized that analytical methods cannot be properly described if one has not done the analysis oneself, as was true in my case. I therefore asked Dr. Xiaolin Hou, of Risö National Laboratory, Denmark, to join me in the project. I knew him as a most experienced analytical radiochemist who had personally analyzed a great number of radionuclides in environmental and nuclear waste samples and developed new separation methods. During the past two years we have collaborated in writing this book, and I have learned a host of new things, not just from reading papers but also from extensive discussions with Dr. Hou.

Our book describes the basic chemistry needed to understand the behavior and analysis of radionuclides of most groups of elements, and the analytical methods required to separate the most important alpha- and beta- decaying radionuclides from environmental and nuclear waste samples (e.g., ⁹⁰Sr and plutonium isotopes). Many new radionuclides have become important in radiochemistry in the past ten to fifteen years. Most of these are very long-lived, appearing in spent nuclear fuel and

XVII

XVIII Preface

nuclear reactor structures and are relevant to safety analysis of the final disposal of the nuclear fuel and decommissioning waste. Mass spectrometric techniques are well suited for the measurement of these radionuclides (¹³⁵Cs, ¹²⁹I, etc.) because of their low specific activities. Traditionally, radiometric methods have been used to measure radionuclides, but the development of mass spectrometric techniques has opened up new avenues for the analysis of radionuclides, in particular for their analysis in much lower concentrations. Mass spectrometric measurements also create new requirements for radionuclide analyses, because the interfering radionuclides and other elements which need to be separated before measurement are mostly not the same ones that affect radiometric measurements.

My first intention was to write a book for undergraduate and post-graduate students, but now that the book is finished I see that it could also serve as a handbook for more experienced radiochemists – at least I hope so.

November 1, 2010

Jukka Lehto Professor in Radiochemistry University of Helsinki Department of Chemistry Finland

Acknowledgments

The authors thank Dr. Kathleen Ahonen for translating part of the book from Finnish and Dr. Shannon Kuismanen, Mr. Howard McKee, and Mr. Stewart Makkonen-Craig for language revision. The comments of Professor Markku Leskelä and Mr. Martti Hakanen from the University of Helsinki, Dr. Sven P. Nielsen and Dr. Jussi Jernstöm from Risø-DTU, Denmark, and Dr. Iisa Outola from STUK, Finland, have led to many improvements in the text, and we warmly thank them for their help. We are grateful to Mr. Lalli Jokelainen for careful preparation of figures and also to Dr. Steffen Happel from Triskem International, France, for providing some of the figures. Finally, we thank Wiley-VCH and Dr. Eva-Stina Riihimäki for publishing the book.

Radionuclides and their Radiometric Measurement

1.1 Radionuclides

1

The first radioactive elements – radium and polonium – were discovered by Marie Curie at the end of the nineteenth century. During the first decades of the twentieth century, tens of natural radioactive elements and their various isotopes in the uranium and thorium decay chains were identified. The first artificial radionuclide, ³⁰P, was produced by Frédéric and Irène Joliot-Curie in an accelerator by bombarding aluminum with protons. Today, more than two thousand artificial radionuclides have been produced and identified, especially after the discovery and use of nuclear fission of uranium and plutonium. This book focuses on radionuclides found in the environment and in nuclear waste. This chapter presents an overview of radionuclides, which are categorized according to their sources and ways of formation; in later chapters they are classified based on their chemical nature and are discussed in more detail. Radionuclides can be primarily categorized into natural and artificial radionuclides.

1

1.1.1 Natural Radionuclides

In nature there are three types of radionuclides: those belonging to the decay chains of uranium and thorium, single very long-lived radionuclides, and cosmogenic radionuclides.

The decay chains of uranium and thorium start with two isotopes of uranium and one of thorium, ²³⁵U, ²³⁸U, and ²³²Th, which were formed at the birth of the Universe some 13.7 billion years ago, and, since they are so long-lived, they have survived in the earth since its birth 4.5 billion years ago. These three primordial radionuclides each initiate a decay chain leading to the stable lead isotopes ²⁰⁷Pb, ²⁰⁶Pb, and ²⁰⁸Pb, respectively. In between, there are altogether 42 radionuclides of 13 elements, of which nine elements, those heavier than bismuth, have no stable isotopes at all. The three decay chains are depicted in Tables 1.1–1.3. The determination of radionuclides

2 1 Radionuclides and their Radiometric Measurement

Nuclide	Decay mode	Half-life	Decay energy (MeV)	Decay product
²³⁸ U	α	$4.4 \times 10^9 \mathrm{v}$	4.270	²³⁴ Th
²³⁴ Th	β^{-}	24 d	0.273	²³⁴ Pa
²³⁴ Pa	β^{-}	6.7 h	2.197	²³⁴ U
²³⁴ U	ά	245 500 y	4.859	²³⁰ Th
²³⁰ Th	α	75 380 y	4.770	²²⁶ Ra
²²⁶ Ra	α	1602 y	4.871	²²² Rn
²²² Rn	α	3.8 d	5.590	²¹⁸ Po
²¹⁸ Po	α 99.98%	3.1 min	6.874	²¹⁴ Pb
	β^- 0.02%		2.883	²¹⁸ At
²¹⁸ At	α 99.90%	1.5 s	6.874	²¹⁴ Bi
	β^- 0.10%		2.883	²¹⁸ Rn
²¹⁸ Rn	α	35 ms	7.263	²¹⁴ Po
²¹⁴ Pb	β^{-}	27 min	1.024	²¹⁴ Bi
²¹⁴ Bi	β ⁻ 99.98%	20 min	3.272	²¹⁴ Po
	α 0.02%		5.617	²¹⁰ Tl
²¹⁴ Po	α	0.16 ms	7.883	²¹⁰ Pb
²¹⁰ Tl	β^{-}	1.3 min	5.484	²¹⁰ Pb
²¹⁰ Pb	β^{-}	22.3 y	0.064	²¹⁰ Bi
²¹⁰ Bi	β^{-} 99.99987%	5.0 d	1.426	²¹⁰ Po
	α 0.00013%		5.982	²⁰⁶ Tl
²¹⁰ Po	α	138 d	5.407	²⁰⁶ Pb
²⁰⁶ Tl	β^{-}	4.2 min	1.533	²⁰⁶ Pb
²⁰⁶ Pb	·	stable		

Table 1.1 Uranium decay chai	n.
------------------------------	----

Table 1.2 Actinium decay chair	۱.
--	----

Nuclide	Decay mode	Half-life	Decay energy (MeV)	Decay product
235 U	α	$7.1 \times 10^{8} \text{ y}$	4.678	²³¹ Th
²³¹ Th	β-	26 h	0.391	²³¹ Pa
²³¹ Pa	α	32,760 y	5.150	²²⁷ Ac
²²⁷ Ac	β^{-} 98.62%	22 y	0.045	²²⁷ Th
	α 1.38%	,	5.042	²²³ Fr
²²⁷ Th	α	19 d	6.147	²²³ Ra
²²³ Fr	β^{-}	22 min	1.149	²²³ Ra
²²³ Ra	α	11 d	5.979	²¹⁹ Rn
²¹⁹ Rn	α	4.0 s	6.946	²¹⁵ Po
²¹⁵ Po	α 99.99977%	1.8 ms	7.527	²¹¹ Pb
	β^- 0.00023%		0.715	²¹⁵ At
²¹⁵ At	α	0.1 ms	8.178	²¹¹ Bi
²¹¹ Pb	β^{-}	36 min	1.367	²¹¹ Bi
²¹¹ Bi	α 99.724%	2.1 min	6.751	²⁰⁷ Tl
	β^- 0.276%		0.575	²¹¹ Po
²¹¹ Po	α	516 ms	7.595	²⁰⁷ Pb
²⁰⁷ Tl	β^{-}	4.8 min	1.418	²⁰⁷ Pb
²⁰⁷ Pb	-	stable		

Nuclide	ide Decay mode Half-life		Decay energy (MeV)	Decay product	
²³² Th	α	1.41×10^{10} y	4.081	²²⁸ Ra	
²²⁸ Ra	β^{-}	5.8 y	0.046	²²⁸ Ac	
²²⁸ Ac	β^{-}	6.3 h	2.124	²²⁸ Th	
²²⁸ Th	α	1.9 y	5.520	²²⁴ Ra	
²²⁴ Ra	α	3.6 d	5.789	²²⁰ Rn	
²²⁰ Rn	α	56 s	6.404	²¹⁶ Po	
²¹⁶ Po	α	0.15 s	6.906	²¹² Pb	
²¹² Pb	β^{-}	10.6 h	0.570	²¹² Bi	
²¹² Bi	β^{-} 64.06%	61 min	2.252	²¹² Po	
	α 35.94%		6.208	²⁰⁸ Tl	
²¹² Po	α	299 ns	8.955	²⁰⁸ Pb	
²⁰⁸ Tl	β^{-}	3.1 min	4.999	²⁰⁸ Pb	
²⁰⁸ Pb	-	stable			

 Table 1.3
 Thorium decay chain.

in the decay chains has been, and still is, a major topic in analytical radiochemistry. They are alpha and beta emitters, most of which do not emit detectable gamma rays, and thus their determination requires radiochemical separations. This book examines the separations of the following radionuclides: U isotopes, ²³¹Pa, Th isotopes, ²²⁷Ac, ^{226,228}Ra, ²²²Rn, ²¹⁰Po, and ²¹⁰Pb.

In addition to ²³⁵U, ²³⁸U, and ²³²Th, there are several single very long-lived primordial radionuclides (Table 1.4) which were formed in the same cosmic processes as those that formed uranium and thorium. The most important of these, with respect to the radiation dose to humans, is ⁴⁰K. However, as this emits readily detectable gamma rays and does not require radiochemical separations, neither this nor the others are discussed further in this book.

The third class of natural radionuclides comprises cosmogenic radionuclides, which are formed in the atmosphere in nuclear reactions due to cosmic radiation (Table 1.5). These radionuclides are isotopes of lighter elements, and their half-lives vary greatly. The primary components of cosmic radiation are high-energy alpha particles and protons, which induce nuclear reactions when they impact on the nuclei of the atmospheric atoms. Most of the cosmogenic radionuclides are attached to aerosol particles and are deposited on the ground. Some, however, are gaseous, such as ¹⁴C (as carbon dioxide) and ³⁹Ar (a noble gas), and thus stay in the atmosphere. In

Nuclide	Isotopic abundance (%)	Decay mode	Half-life (y)
⁴⁰ K	0.0117	β^-	1.26×10^{9}
⁸⁷ Rb	27.83	β^{-}	$4.88 imes10^{10}$
¹²³ Te	0.905	EC	$1.3 imes10^{13}$
¹⁴⁴ Nd	23.80	α	$2.1 imes10^{15}$
¹⁷⁴ Hf	0.162	α	2×10^{15}

 Table 1.4
 Some single primordial radionuclides.

1 Radionuclides and their Radiometric Measurement

Nuclide	Half-life (y)	Decay mode	Nuclide	Half-life (y)	Decay mode
³ H	12.3	beta	⁷ Be	0.15	EC
¹⁰ Be	$2.5 imes10^6$	beta	¹⁴ C	5730	beta
²² Na	2.62	EC	²⁶ Al	$7.4 imes 10^5$	EC
³² Si	710	beta	³² P	0.038	beta
³³ P	0.067	beta	³⁵ S	0.24	beta
³⁶ Cl	$3.1 imes10^5$	beta/EC	³⁹ Ar	269	beta
⁴¹ Ca	3.8×10^6	EC	¹²⁹ I	1.57×10^7	beta

Table 1.5 Some important cosmogenic radionuclides.

primary nuclear reactions, neutrons are also produced, and these induce further nuclear reactions. Two important radionuclides are produced in these neutroninduced reactions: ³H and ¹⁴C (reactions 1.1 and 1.2), whose chemistry and radiochemical separations are described in Chapter 13. These radionuclides – tritium and radiocarbon – are generated not only by cosmic radiation but also in other neutron activation processes in nuclear explosions and in matter surrounding nuclear reactors.

$${}^{14}\mathrm{N} + \mathrm{n} \rightarrow {}^{14}\mathrm{C} + \mathrm{p} \tag{1.1}$$

$$^{14}N + n \rightarrow {}^{12}C + {}^{3}H$$
 (1.2)

1.1.2 Artificial Radionuclides

Artificial radionuclides form the largest group of radionuclides, comprising more than two thousand nuclides produced since the 1930s. The sources of artificial radionuclides are:

- nuclear weapons production and explosions;
- nuclear energy production;
- radionuclide production by reactors and accelerators.

A wide range of radionuclides are produced in nuclear weapons production, where plutonium is produced by the irradiation of uranium in reactors and in nuclear power reactors. Most are *fission products*, and are generated by the neutron-induced fission of ²³⁵U and ²³⁹Pu. In nuclear power reactors, they are practically all retained in the nuclear fuel; however, in nuclear explosions they end up in the environment – on the ground in atmospheric explosions or in the geosphere in underground explosions. The spent nuclear fuel from power reactors is stored in disposal repositories deep underground. The radionuclide composition of nuclear explosions and the spent fuel from nuclear power reactors differ somewhat for several reasons. Firstly, the fissions in a reactor are mostly caused by thermal neutrons, while in a bomb fast neutrons are

mostly responsible for the fission events, and this results in differences in the radionuclide composition. Secondly, fission is instantaneous in a bomb, while in a reactor the fuel is irradiated for some years. This allows the ingrowth of some activation products, such as ¹³⁴Cs, that do not exist in weapons fallout. ⁹⁰Sr and ¹³⁷Cs are the most important fission products because of their relatively long half-lives and high fission yields. In addition to these, there is range of long-lived fission products, such as ⁷⁹Se, ⁹⁹Tc, ¹²⁶Sn, ¹²⁹I, ¹³⁵Cs, and ¹⁵¹Sm, the radiochemistry of which is discussed in this book.

Along with fission products, activation products are also formed in side reactions accompanying the neutron irradiation. The intensive neutron flux generated in the fission induces activation reactions both in the fuel or weapons material and in the surrounding material. These can be divided into two categories, the first comprising the transuranium elements – a very important class of radionuclides in radiochemistry. These are created by successive neutron activation and beta decay processes starting from ²³⁸U or ²³⁹Pu (Figure 1.1). Of these, the most important and the most radiotoxic nuclides are ²³⁷Np, ^{238,239,240,241}Pu, ^{241,243}Am, and ^{243,244,245}Cm, which are discussed further in this book. In addition to transuranium elements, a new uranium isotope ²³⁶U is also formed in neutron activation reactions.

Another activation product group comprises radioisotopes of various lighter elements. In addition to tritium and radiocarbon, a wide range of these activation products are formed in nuclear explosions and especially in nuclear reactors. Elements of the reactor's construction materials, especially the cladding and other metal parts surrounding the nuclear fuel, the steel of the pressure vessel and the shielding concrete structures are activated in the neutron flux from the fuel. Part of these activation products, such as elements released from the steel by corrosion, end up in the nuclear waste disposed of during the use of the reactor. A larger part,

$$\begin{array}{c} Am-244m \underline{\beta} & Am-244 \underline{\beta} & Cm-244\\ Pu-243 & \underline{\beta} & Am-243 & \underline{\alpha} & \uparrow n\\ Pu-243 & \underline{\beta} & Am-243 & \underline{\alpha} & \uparrow n\\ Pu-242 & Am-242m & \underline{11} & Am-242 & \underline{\beta} & Cm-243\\ \hline \uparrow n & \mu & \mu & \mu & \mu & \mu\\ \hline 1 & \mu & \mu & \mu & \mu & \mu\\ \hline 1 & \mu & \mu & \mu & \mu & \mu\\ \hline 1 & \mu & \mu & \mu & \mu\\ \hline 1 & \mu & \mu & \mu & \mu\\ \hline 1 & \mu & \mu & \mu & \mu\\ \hline 1 & \mu & \mu & \mu & \mu\\ \hline 1 & \mu & \mu & \mu & \mu\\ \hline 1 & \mu & \mu & \mu & \mu\\ \hline 1 & \mu & \mu & \mu & \mu\\ \hline 1 & \mu & \mu & \mu & \mu\\ \hline 1 & \mu & \mu\\ 1 & \mu\\ 1 & \mu & \mu\\ 1$$

Figure 1.1 Formation of transuranium elements in nuclear fuel and nuclear weapons material (Holm, E., Rioseco, J., and Petterson, H. (1992) Fallout of transuranium elements following the Chernobyl accident. *J. Radioanal. Nucl. Chem. Articles*, **156**, 183).

6 1 Radionuclides and their Radiometric Measurement

however, remains in the steel and concrete and ends up in the waste when the reactor is decommissioned. This category has many important radionuclides, such as ¹⁴C, ³⁶Cl, ⁴¹Ca, ⁵⁵Fe, ⁵⁹Ni, and ⁶³Ni, which are discussed later in the book. These are all purely beta-decaying radionuclides that require radiochemical separations. In addition to these, there is a range of activation products, such as ⁶⁰Co, ⁵⁴Mn, ⁶⁵Zn, which emit gamma rays and are thus readily detectable and measurable. In addition to the reactor steel and shielding concrete, the spent fuel, its metal cladding, and other metal parts surrounding the fuel and ending up in the final disposal, contain large amounts of the long-lived beta decaying activation products ⁹³Zr, ⁹⁴Nb, and ⁹³Mo (together with ¹⁴C, ³⁶Cl, ⁵⁹Ni, ⁶³Ni), which are also discussed in this book.

There are also a number of *radionuclides produced by neutron and proton irradiations in reactors and in cyclotrons.* Their properties are later described only if they are used as tracers in radionuclide analysis. An example is a fairly short-lived gamma-emitting strontium isotope, ⁸⁵Sr, which is used as a tracer in model experiments for studying the behavior of the beta-emitting fission product ⁹⁰Sr or as a yield-determinant in ⁹⁰Sr determinations.

1.2

Modes of Radioactive Decay

This book describes the chemistry and analysis of radionuclides – nuclei which are unstable, that is, radioactive. The instability comes from the fact that the mass of the nucleus is either too high or its neutron to proton ratio is inappropriate for stability. By radioactive decay, the nucleus disposes of the mass excess or adjusts the neutron to proton ratio more closely to what is required for stability. The four main radioactive decay modes – fission, alpha decay, beta decay and internal transition – are briefly described below.

1.2.1 Fission

Spontaneous fission is a characteristic radioactive decay mode only for the heaviest elements. In fission, the heavy nucleus divides into two nuclei of lighter elements which are called fission products. Of the naturally occurring isotopes, only ²³⁸U decays by spontaneous fission. Only a very minor fraction, 0.005%, of ²³⁸U decays by this mode, the rest decaying by alpha mode. Spontaneous fission becomes more prevailing with the heaviest elements, and for some, such as ²⁶⁰No, it is the only way of decay. Considering the production and amounts of fission products, a more important process than spontaneous fission is induced fission: a heavy nucleus absorbs a particle, most usually a neutron, which results in the excitation and further fission of the nucleus (Figure 1.2). There are several fissionable isotopes, of which ²³⁵U and ²³⁹Pu are the most important from the point of view of the amounts of fission products generated. These two nuclides are not only fissionable but also fissile, that is, they undergo fission in the presence of thermal neutrons, which enables their use as

Figure 1.2 An example of a neutron-induced fission of ^{235}U . The reaction is $^{235}U + n \rightarrow ^{236}U \rightarrow ^{141}Ba + ^{92}Kr + 3n$ (http://en.wikipedia.org/wiki/Nuclear_fission).

nuclear fuel in nuclear reactors. ²³⁵U is obtained by isotopic enrichment from natural uranium and ²³⁹Pu by the irradiation of ²³⁸U in a nuclear reactor and subsequent chemical separation of plutonium from the irradiated uranium.

A large number of fission products are generated in fission processes. Figure 1.3 gives, as an example, the distribution of fission products for 235 U from thermal

Figure 1.3 Fission yield distribution of ²³⁵U as a function of the mass number of the fission product.

8 1 Radionuclides and their Radiometric Measurement

neutron-induced fission. As can be seen, the fission is extremely seldom symmetric, that is, the two fission products of one fission event are not of the same mass. Instead, the maxima of fission products are found at the mass numbers 90–100 and at 135–145. At these ranges, the fission yields are between 5% and 7%. This applies to thermal neutron-induced fission; fissions induced by high energy particles become more symmetric with the energy of the bombarding particle.

Most fission products are radioactive since they have an excess of neutrons. In both ²³⁵U and ²³⁹Pu, the neutron to proton ratio is around 1.6, which is too high for the lighter elements to be stable. For example, for the stable elements in the upper maximum of the fission yield at the mass numbers 135–145, the highest neutron-toproton ratio is around 1.4, and, through the radioactive decay, by beta minus decay in this case, the nucleus transforms the ratio into an appropriate one. An example of such a decay chain of neutron-rich fission products leading to stable ¹³⁷Ba is as follows:

$$^{137} \text{Te}(t_{1/2} = 3.5 \text{ s}; \text{n/p ratio } 1.63) \rightarrow ^{137} \text{I}(t_{1/2} = 24.5 \text{ s}; \text{n/p ratio } 1.58) + \beta^{-} \rightarrow$$
$$^{137} \text{Xe}(t_{1/2} = 3.82 \text{ min}; \text{n/p ratio } 1.54) + \beta^{-} \rightarrow$$
$$^{137} \text{Cs}(t_{1/2} = 30 \text{ y}; \text{n/p ratio } 1.49) + \beta^{-} \rightarrow ^{137} \text{Ba}(\text{stable}; \text{n/p ratio } 1.45) + \beta^{-}$$

1.2.2 Alpha Decay

Alpha decay is also a typical decay mode for the heavier radionuclides. Most actinide isotopes and radionuclides in the uranium and thorium decay chains decay by this mode. A few exceptions among the radionuclides discussed in this book are ²¹⁰Pb, ²²⁸Ra, and ²⁴¹Pu, which decay solely by beta emission. ²²⁷Ac also decays mostly (98.8%) by beta decay. As can be seen from Tables 1.1–1.3, beta decay is a decay mode competing with alpha decay for many radionuclides in the decay chains. In an alpha decay, the heavy nucleus gets rid of excess mass by emitting a helium nucleus, which is called an alpha particle (α). An example is

$$^{226}\text{Ra} \rightarrow ^{222}\text{Rn} + {}^{4}\text{He}(\alpha) \tag{1.3}$$

where ²²⁶Ra turns into ²²²Rn by emitting an alpha particle. Thus, in an alpha decay, the atomic number decreases by two units and the mass number by four. The energies of the emitted alpha particles are always high, typically between 4 and 7 MeV. Since the mass of the alpha particle is relatively high, the daughter nuclide receives considerable kinetic energy due to recoil. For example, when ²³⁸U decays to ²³⁴Th by alpha emission, the daughter nuclide ²³⁴Th gets 0.074 MeV of the 4.274 MeV decay energy and the alpha particle the rest, 4.202 MeV. Even though the fraction of the recoil energy is only 1.7%, this energy is some ten thousand times higher than that of a chemical bond, and thus recoil results in the breaking of the chemical bond by which the daughter nuclide is bound to the matrix. The transformations from parent nuclides to daughter nuclides take place between defined energy levels corresponding to defined