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Abstract: Hydrogen peroxide (H2O2) is a compound involved in some mammalian reactions and
processes. It modulates and signals the redox metabolism of cells by acting as a messenger together
with hydrogen sulfide (H2S) and the nitric oxide radical (•NO), activating specific oxidations that
determine the metabolic response. The reaction triggered determines cell survival or apoptosis,
depending on which downstream metabolic pathways are activated. There are several ways to
produce H2O2 in cells, and cellular systems tightly control its concentration. At the cellular level,
the accumulation of hydrogen peroxide can trigger inflammation and even apoptosis, and when
its concentration in the blood reaches toxic levels, it can lead to bioenergetic failure. This review
summarizes existing research from a chemical perspective on the role of H2O2 in various enzymatic
pathways and how this biochemistry leads to physiological or pathological responses.
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1. Introduction

Hydrogen peroxide H2O2, also known as dioxygenane or dioxygen, is a strongly
oxidizing compound with a particularly unpleasant odour that decomposes into oxygen
and water, releasing large amounts of heat. Although non-flammable, it is a strong oxidizer
that can cause combustion when it comes into contact with organic material or metals such
as copper, silver or bronze [1].

Because of its chemical properties, hydrogen peroxide is used in many areas of human
activity, such as healthcare, as antiseptic, antimicrobial and antibacterial agent [2].

In mammals, in terms of redox signalling and regulation, H2O2 is an endogenous
oxidant [3]. It is the most stable of the reactive oxygen species ROS, clearly involved in the
regulation of protein function [4], and under certain circumstances is also a precursor of
hydroxyl radical •OH and hypochlorous acid HOCl [5].

At micromolar concentrations, H2O2 is reactive, and at high concentrations it can
damage energy-transforming cell systems, e.g., by inactivating the glycolytic enzyme
glyceraldehyde-3-phosphate dehydrogenase [6]. In the Fenton reaction, soluble Fe(II)
donates an electron to an H2O2 molecule, causing it to decompose into hydroxyl radicals
•OH + −OH, which react at diffusion rates and can randomly oxidise virtually any organic
molecule. Hydroxyl radicals kill by DNA damage [7].

Until a few decades ago, H2O2 was considered an undesirable and harmful product
for metabolism because it is a by-product of oxidative stress in cells [8]. Instead, it has
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come to the fore in recent years as a key redox signalling molecule in a variety of biological
processes, including cell differentiation and proliferation, inflammation, tissue repair,
circadian rhythm, and even ageing [9]. Because of its relative stability, with a cellular
half-life of around 10−3 s, its diffusivity and its selective reactivity, H2O2 is often presented
as the most important redox signal molecule [10].

H2O2 can act as a signalling molecule or, conversely, cause oxidative damage to
biomolecules (a condition known as oxidative stress). This ambivalence depends on the
cellular context, the local concentration of H2O2 and the kinetics of its production and
elimination [11]. Under healthy steady-state conditions, their production and elimination
are balanced, but under conditions of oxidative stress, superoxide anion •O2

− and thus
H2O2, are overproduced.

Hydrogen peroxide is formed as a product of the monovalent reduction of superoxide
or by the divalent reduction of oxygen [12]. The main source of hydrogen peroxide is
enzyme-catalysed superoxide dismutation, but it can also result from the two-electron
reduction of oxygen in reactions catalysed by oxidases such as xanthine oxidase, glucose
oxidase, amino acid oxidase, urate oxidase, and others. Since hydrogen peroxide is un-
charged with a pKa≈10.8 at neutral pH, it can easily penetrate biological membranes [13].
Hydrogen peroxide is a strong oxidant, but due to its slow reaction kinetics with the
biomolecules, it is relatively unreactive. Therefore, it can accumulate in cells and tissues
at relatively high concentrations [14]. H2O2 is capable of directly oxidize many molecules
and inactivating certain enzymes with thiol groups or methionine residues in their active
site [15]. Hydrogen peroxide is a weak reducing agent, with an E◦’ (•O2

−, 2H+/H2O2) of
+0.940 V, and an oxidizing agent with an E◦’(H2O2, H+/H2O, HO−) of +0.320 V.

In the following sections, we review the mechanisms of production and elimination of
H2O2, particularly in episodes of inflammation, cancer and several diseases. We also examine
recent trends and techniques for the detection of H2O2 in blood, urine or exhaled air.

2. Hydrogen Peroxide Formation

It has been known for more than 60 years that hydrogen peroxide forms naturally in
living organisms. H2O2 is not a free radical, but it is a reactive form of great importance
because it can form the hydroxyl radical •OH in the presence of metals such as iron, in
the known Fenton reaction. In mammalian cells, two forms of H2O2 production coexist,
defined as enzymatic and non-enzymatic generation. In essence, the non-enzymatic one
derives from the reduction by e− and H+ of the •O2

− anion, which in turn comes from the
reduction of O2 in the mitochondrial respiration pathway (complexes I to IV) and which
takes place in the cellular mitochondrial matrix.

The enzymatic pathway starts from the •O2
− anion, and involves the enzyme super-

oxide dismutase, SOD1, SOD2 and SOD3. These mechanisms are explained in detail in the
following subsections.

2.1. Non-Enzymatic Generation of H2O2

ROS are also formed in the mitochondrial matrix by partial reduction of O2 to •O2
−

and subsequent reduction of the superoxide radical by e− and H+ to H2O2 and H2O. Until a
few years ago, this “leakage” of electrons from the chain was considered an altered process,
however, it has now been proposed that mitochondrial •O2

− and H2O2 may be involved
in redox reaction-dependent signalling processes [16], as well as in the biological clock of
ageing [17], and even act as an indicator of the proper functioning of the electron transport
chain ETC. Inside mitochondrial matrix, the harmful effects of ROS include structural
changes on mitDNA and oxidation of lipids and proteins that perform numerous functions.
It is therefore important to keep ROS levels at physiological values, preventing them from
increasing and triggering oxidation of biological molecules.

In this route, the final product is H2O, so O2, •O2
− anion and hydrogen peroxide, in

the presence of e− and H+, will also be spontaneously reduced to the final H2O stage. The
Gibbs free energy of this reduction process is, at each step, negative.
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Electrons derived from mitochondrial metabolism flow through complexes I-IV of the
ETC in the mitochondrial inner membrane. The energy gradient of this process is used to
pump protons (H+) to the intermembrane space. Mitochondrial respiration is coupled to
ATP synthesis via ADP phosphorylation. Protons introduced by ATP synthase are used to
reduce molecular O2 to •O2

−, H2O2 and finally H2O, Figure 1:
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Figure 1. O2 reduction to •O2
− anion, H2O2 and finally H2O.

2.2. Enzymatic Generation of H2O2
•O2

− is also formed in other cell organelles such as the endoplasmic reticulum, perox-
isomes, and cytosol [18] and H2O2 production involves the enzyme superoxide dismutase,
SOD-1, -2 and -3, Figure 2. In fact, there are enzymatic reactions within the cell that result
in the generation of •O2

−.
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Figure 2. H2O2 production through different mechanisms.

In 1968, McCords and Fridovich discovered the enzyme superoxide dismutase SOD
isolated from erythrocytes. SOD is the only enzyme capable of detoxifying the superoxide
•O2

− and is present at the mitochondrial level as well as in the cytoplasm and extracellular
space [19]. There are three isoforms, SOD1 (Cu/Zn SOD) is the predominant •O2

− scav-
enger and is localized in the cytoplasm, mitochondrial intermembrane space, nucleus, and
lysosomes; SOD2 (Mn SOD) and SOD3 (Cu/Zn SOD) are localized in the mitochondrion
and extracellular matrix respectively [20]. This group of metalloenzymes catalyses the
dismutation of the superoxide radical to hydrogen peroxide and oxygen, Figure 3:

Stresses 2022, 2, FOR PEER REVIEW  3 
 

 

structural changes on mitDNA and oxidation of lipids and proteins that perform numer-

ous functions. It is therefore important to keep ROS levels at physiological values, pre-

venting them from increasing and triggering oxidation of biological molecules. 

In this route, the final product is H2O, so O2, •O2− anion and hydrogen peroxide, in 

the presence of e− and H+, will also be spontaneously reduced to the final H2O stage. The 

Gibbs free energy of this reduction process is, at each step, negative. 

Electrons derived from mitochondrial metabolism flow through complexes I-IV of 

the ETC in the mitochondrial inner membrane. The energy gradient of this process is used 

to pump protons (H+) to the intermembrane space. Mitochondrial respiration is coupled 

to ATP synthesis via ADP phosphorylation. Protons introduced by ATP synthase are used 

to reduce molecular O2 to •O2−, H2O2 and finally H2O, Figure 1: 

 

Figure 1. O2 reduction to •O2− anion, H2O2 and finally H2O. 

2.2. Enzymatic Generation of H2O2 

•O2− is also formed in other cell organelles such as the endoplasmic reticulum, perox-

isomes, and cytosol [18] and H2O2 production involves the enzyme superoxide dismutase, 

SOD-1, −2 and −3, Figure 2. In fact, there are enzymatic reactions within the cell that result 

in the generation of •O2−. 

 

Figure 2. H2O2 production through different mechanisms. 

In 1968, McCords and Fridovich discovered the enzyme superoxide dismutase SOD 

isolated from erythrocytes. SOD is the only enzyme capable of detoxifying the superoxide 
•O2− and is present at the mitochondrial level as well as in the cytoplasm and extracellular 

space [19]. There are three isoforms, SOD1 (Cu/Zn SOD) is the predominant •O2− scaven-

ger and is localized in the cytoplasm, mitochondrial intermembrane space, nucleus, and 

lysosomes; SOD2 (Mn SOD) and SOD3 (Cu/Zn SOD) are localized in the mitochondrion 

and extracellular matrix respectively [20]. This group of metalloenzymes catalyses the dis-

mutation of the superoxide radical to hydrogen peroxide and oxygen, Figure 3: 

 

Figure 3. H2O2 production through SOD enzyme. Figure 3. H2O2 production through SOD enzyme.

The SOD-catalysed dismutation of the superoxide radical can be represented as the
following half-reactions, Figure 4:
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where M = Cu (n = 1); Mn (n = 2); Fe (n = 2). In this reaction the oxidation state of the metal
cation ranges between n and n + 1.

In the catalytic cycle of cytosolic superoxide dismutase Cu/Zn SOD, which contains Cu
and Zn in the catalytic site, SOD transforms the •O2

− to O2 by reducing Cu(II) to Cu(I) in its
active site. Then, another •O2

− molecule causes the oxidation of Cu(I) to Cu(II), generating an
H2O2 molecule at the end of the cycle. Zinc does not act in the catalytic cycle, it only helps to
stabilize the enzyme, Figure 5, left. The catalytic cycle of mitochondrial superoxide dismutase
Mn-SOD is similar, except for the use of Mn in the oxidation-reduction reactions, transiting
between (Mn(III)) and (Mn(II)) [11], Figure 5, right.
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NADPH oxidase is an enzyme that catalyses the reduction reaction of O2 to •O2
−

and/or H2O2 using NADPH as an electron donor [21]. It was first identified in phagocytic
cells of the innate immune response and is involved in the “respiratory burst”, generating
large amounts of •O2

− to destroy invading pathogens.
In general, phase 1 enzymes can transform multiple substrates and catalyse different

reactions. They are catalytic proteins of a very diverse nature including enzymes with
monooxygenase activity, such as cytochrome P450s or flavin monooxygenase, various
oxidases (alcohol dehydrogenase, aldehyde dehydrogenase, amino oxidases, aromatases),
epoxide hydrolase, or hepatic and plasma esterases and amidases. Cytochrome P450s are
undoubtedly the most prominent member of this group of enzymes and the one that has
been most extensively studied [22].

Cytochrome P450s, responsible for detoxifying substances in the body, can carry out
oxidation reactions that result in the generation of superoxide [23]. On the other hand, the
enzyme xanthine oxidase catalyses the oxidation of hypoxanthine and xanthine to uric acid
with the formation of hydrogen peroxide. Thus, the presence of enzymes whose activity
leads to the formation of •O2

− and H2O2 indicates that the production of these species
is not a random event and that their production in the cell must therefore have a specific
purpose beyond causing damage [14].

In humans, xanthine oxidase is normally found in the liver and not free in the
blood [24]. The enzyme xanthine oxidase is a molybdoflavoenzyme, a flavo-protein one
(FAD, as a cofactor) containing one molybdenum atom and four ferro-sulphur centres in its
prosthetic group [25]. Mo is pentacoordinate. The main function of this metalloenzyme is to
hydroxylate a number of substrates, such as hypoxanthine, which is converted to xanthine,
which in turn is converted to uric acid. O2, which acts as an oxidant in both reactions, is
converted to H2O2. At each oxidation step, xanthine oxidase XOR generates superoxide
radical ion and hydrogen peroxide [26], Figure 6:
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Figure 6. Xanthine oxidase XOR generates superoxide radical ion and hydrogen peroxide.

In mammals, this enzyme catalyses the hydroxylation of hypoxanthine to xanthine
and xanthine to uric acid [27]. XOR uses hypoxanthine and oxygen (as an electron acceptor)
to give rise to xanthine (eventually uric acid) and superoxide radical. In the active form of
XOR, Mo forms two single bonds with the sulphur atom (thiol groups), two bonds with
the oxygen atom (one with the oxo group and one with the hydroxyl group) and the fifth
coordination position is occupied by a double bond with the sulphur atom. XOR converts
xanthine to uric acid, Figure 7, the end product of the catabolism of purine bases in humans.
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The mechanism by which XOR converts xanthine to uric acid is not fully understood,
but it has been suggested that a reduction and oxidation reaction occurs, as shown in the
figure, resulting in oxidative damage to tissues [28], Figure 8.
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Catalysis is initiated by base-assisted nucleophilic attack of the equatorial Mo-OH at
the C-8 carbon of xanthine with hydrogen transfer from C-8 to MoS and moves from Mo=S
to Mo-SH, which simultaneously results in the reduction of Mo(VI) to Mo(IV). Reoxidation
of the molybdenum centre occurs by electron transfer to the other redox active sites of the
enzyme, accompanied by deprotonation of the Mo- SH bond and cleavage of the bound
product by hydroxide from the solvent to regenerate the Mo-OH group.

The peroxisome contains different proteins that can generate H2O2, such as urate
oxidase, 1-α-hydroxyacid oxidase, and D-amino acid oxidase.

Peroxisomes are very common cytoplasmic organelles in the form of vesicles with a single
membrane found in most eukaryotic cells. They are an oxidative organelle in which molecular
oxygen serves as a co-substrate for the formation of hydrogen peroxide. Peroxisomes are
named for their ability to produce hydrogen peroxide [29]. In addition, some microorganisms
such as bacteria and mycoplasmas release hydrogen peroxide, which can cause damage to the
host at the cellular level due to its ability to penetrate biological membranes.

Although urate oxidase is present in almost all living organisms, bacteria, fungi, plants,
and animals, it is absent in many primates and in humans. In the human genome, there is a
gene for urate oxidase that has been rendered non-functional by two mutations. Since urate
oxidase is missing, uric acid is the end product of purine catabolism in humans [30,31].

Unlike other animals, humans do not have the enzyme urate oxidase [31] that converts
uric acid to allantoin, a very soluble biomolecule, so they cannot break down excess uric
acid, which is very poorly soluble. As a result, urate, which makes up most of the uric acid
in the blood, is transported by plasma proteins such as albumin and alpha-globulins [32],
Figure 9.

Stresses 2022, 2, FOR PEER REVIEW  6 
 

 

 

Figure 8. Possible mechanism by which XOR converts xanthine to uric acid. 

Catalysis is initiated by base-assisted nucleophilic attack of the equatorial Mo-OH at 

the C-8 carbon of xanthine with hydrogen transfer from C-8 to MoS and moves from Mo=S 

to Mo-SH, which simultaneously results in the reduction of Mo(VI) to Mo(IV). Reoxida-

tion of the molybdenum centre occurs by electron transfer to the other redox active sites 

of the enzyme, accompanied by deprotonation of the Mo- SH bond and cleavage of the 

bound product by hydroxide from the solvent to regenerate the Mo-OH group. 

The peroxisome contains different proteins that can generate H2O2, such as urate ox-

idase, 1-α-hydroxyacid oxidase, and D-amino acid oxidase. 

Peroxisomes are very common cytoplasmic organelles in the form of vesicles with a 

single membrane found in most eukaryotic cells. They are an oxidative organelle in which 

molecular oxygen serves as a co-substrate for the formation of hydrogen peroxide. Perox-

isomes are named for their ability to produce hydrogen peroxide [29]. In addition, some 

microorganisms such as bacteria and mycoplasmas release hydrogen peroxide, which can 

cause damage to the host at the cellular level due to its ability to penetrate biological mem-

branes. 

Although urate oxidase is present in almost all living organisms, bacteria, fungi, 

plants, and animals, it is absent in many primates and in humans. In the human genome, 

there is a gene for urate oxidase that has been rendered non-functional by two mutations. 

Since urate oxidase is missing, uric acid is the end product of purine catabolism in humans 

[30,31]. 

Unlike other animals, humans do not have the enzyme urate oxidase [31] that con-

verts uric acid to allantoin, a very soluble biomolecule, so they cannot break down excess 

uric acid, which is very poorly soluble. As a result, urate, which makes up most of the uric 

acid in the blood, is transported by plasma proteins such as albumin and alpha-globulins 

[32], Figure 9. 

 

Figure 9. The enzyme urate oxidase converts uric acid into allantoin. 

Previously, this metabolic pathway was thought to be carried out by a single enzyme, 

urate oxidase, but recent research has shown that two other enzymes are involved in this 

Figure 9. The enzyme urate oxidase converts uric acid into allantoin.

Previously, this metabolic pathway was thought to be carried out by a single enzyme,
urate oxidase, but recent research has shown that two other enzymes are involved in this
metabolic pathway, Figure 10. The metabolic pathway is initiated by urate oxidase, which
produces the unstable 5-hydroxyisourate HIU, followed by hydrolysis by HIU hydrolase to
form OHCU, which is also spontaneously degraded.
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The third enzyme, OHCU decarboxylase, catalyses the de-carboxylation of OHCU,
producing (S)-allantoin in a stereospecific manner [33], Figure 11.
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Figure 11. Proposed mechanism of OHCU decarboxylase.

The oxidoreductase enzyme oxidoreductin1 Ero1 catalyses the formation and isomeri-
sation of protein disulphide bonds in the endoplasmic reticulum ER of eukaryotic cells.
This luminal glycoprotein is tightly associated with the ER membrane and is essential for
the oxidation of protein dithiols. Disulphide bond formation is an oxidative process and
Ero1 is required for the introduction of oxidant equivalents into the ER and their direct
transfer to the protein disulphide isomerase PDI. Ero1 is a major producer of H2O2 in the
lumen of the ER endoplasmic reticulum [34]. Oxidative protein folding in the ER is an
essential function of eukaryotic cells and requires the transmission of electrons between
the different protein components. Ero1 reduces O2 to H2O2, its activity is allosterically and
transcriptionally regulated by the response to unfolded ER proteins. The oxidative activity
of Ero1 is linked to H2O2 production and consequently burdens cells with potentially toxic
reactive oxygen species, so deregulated Ero1 activity impairs cell metabolism under certain
conditions of oxidative ER stress [34].

3. Removal of Hydrogen Peroxide

In biological systems, H2O2 can be removed directly by the enzyme CAT, Figure 12,
which uses H2O2 to generate molecular oxygen and water, whereas GPx uses H2O2 and
reduced glutathione (GSH) to form water and oxidised glutathione GSSG. Fe(II) reacts with
H2O2 in a Fenton reaction, producing •OH and OH−. Iron can also react with H2O2 to
produce OOH− and H+ [35].
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While H2O2 is less reactive and more stable than •O2
− [36], Figure 13, it generates

hydroxyl radicals, one of the most reactive oxygen species known. Therefore, the removal
of peroxide is of utmost importance to avoid oxidative damage.
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Figure 13. Mechanism of the Fenton reaction.

Non-enzymatic removal of H2O2 occurs via the Fenton reaction and enzymatic re-
moval is carried out by catalases, glutathione peroxidases and peroxiredoxins.

3.1. Catalase

Catalase is an antioxidant enzyme found in most aerobic organisms. It catalyses the
dismutation of H2O2 into water and oxygen. Most of these enzymes are homotetramers
with a heme group on each subunit. In the catalase reaction, a two-electron transfer occurs
between two hydrogen peroxide molecules, one acting as an electron donor and the other
as an electron acceptor. The reaction mechanism proceeds in two steps. In the first step,
catalase is oxidised by a peroxide molecule to form an intermediate called compound I.
Compound I is characterised by a ferroxyl group containing FeIV and a porphyrin cation
radical. In this reaction, a water molecule is formed (reaction 1). In the second step of the
reaction, compound I is reduced by another peroxide molecule, returning the catalase to its
initial state and producing water and dioxygen (reaction 2), Figure 14.
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Catalase is mainly localized to peroxisomes by the Pex5-mediated import pathway [37],
as well as in the mitochondrial matrix of some metabolically highly active tissues, such as
the heart and liver [38].

3.2. Glutathione Peroxidases GPx

It is in the cytosol and mitochondria. Its importance lies in the fact that it is the main
antioxidant system at low levels of oxidative stress [39]. The term glutathione peroxidase
GPx is associated with a family of multiple isoenzymes GPx1–8 that catalyse the reduction
of H2O2 to water using glutathione as an electron donor [40,41]. The different isoforms can
be divided into Se-dependent and Se-independent isoforms. The Se-independent form, also
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known as glutathione S-transferase GST, catalyses the detoxification of various xenobiotics,
with the Se atom not involved in the catalytic reaction. The Se-dependent isoform, also
referred to as Se-dependent GPx, consists of four subunits, and each subunit contains a Se
atom in the active site bound to the amino acid cysteine. Except for mammalian GPx 5 and 6,
all glutathione peroxidases are selenoproteins and contain a SeCys residue instead of Cys as
part of their active site.

The highest GPx activity is detected in the liver, while medium activity is observed in
the heart and lungs [42]. GPx enzyme cooperates with reduced glutathione GSH and is
present in cells at high concentrations (millimoles). The GPx enzyme degrades peroxides to
water or alcohol, while GSH is oxidised, reducing glutathione Se from the catalytic centre
of the enzyme, Figure 15. Selenol (−SeH) in GPx, which contains selenocysteine Sec, reacts
as selenolate with H2O2 to form selenic acid −SeOH, which is reduced by two molecules
of GSH back to −SeH, forming GSSG and water [43]:
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Figure 15. Catalytic cycle of glutathione peroxidase for the reduction of H2O2.

In the peroxidative part of the cycle, the selenol in GPx is oxidised by hydrogen
peroxide to seleninic acid. The first GSH molecule forms a selenium disulphide with the
seleninic acid, with the oxygen leaving as a water molecule. The second GSH molecule
reduces the selenium disulphide by thiol-disulphide exchange, the GSSG is released, and
the enzyme is regenerated to its selenol form to begin a new cycle.

The GSSG produced by the GPx enzyme in this process, as well as in other metabolic
processes, must be constantly recycled in the cell for the peroxidative system to function
properly. This is done by glutathione reductase GR, which is responsible for reducing GSSG
to GSH. This disulphide bridge is reduced using NADPH as an electron source, Figure 16.
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Figure 16. Glutathione reductase catalytic cycle.

3.3. Peroxiredoxins (Prx) and Thioredoxins (Trx)

Prx are a large family of antioxidant enzymes capable of breaking down peroxides
that have cysteine in their active center [44]. These enzymes are responsible for controlling
peroxide levels and are found in the cytosol, nucleus, membranes, mitochondria, Golgi com-
plex, peroxisomes, and extracellular fluids. Prxs form a family of enzymes that, depending
on the isoform or species, can detoxify hydrogen peroxides, peroxides of long-chain organic
compounds, phospholipids and fatty acids, and peroxynitrite [45].
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In the case of peroxiredoxin containing a cysteine (1-Cys-Prx or Prx6 isoform), the SOH
formed during peroxide reduction is not attacked by the cysteine enzyme but is reduced using
glutathione GSH as an electron source and forming glutathione disulphide GSSG, a mechanism
like that of glutathione peroxidase. Reduction of SOH (1-Cys-Prx) or S-S (typical and atypical
2-Cys-Prx) allows regeneration of the active forms of Prx, Figure 17, left. Except for the Prx6
isoform, these enzymes contain two cysteines in the active site. One is a thiol that is oxidised to
sulphenic acid SOH during the catalytic cycle. The other is a resolving cysteine that attacks SOH
by forming an intermolecular S-S (typical 2-Cys-Prx or Prx1–Prx4 isoforms) or intramolecular
(atypical 2-Cys-Prx or Prx5 isoform) disulphide bridge. The disulphide bridge formed in the
catalytic cycle is reduced using reduced thioredoxin Trxred as an electron source to generate
oxidised thioredoxin Trxox, Figure 17, right.
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Figure 17. (Left): Catalytic cycle of Prx containing 1 catalytic cysteine (1-Cys-Prx). (Right): Catalytic 

cycle of typical Prx (2-Cys-Prx). 

Atypical peroxiredoxins (atypical 2-Cys-Prx) are monomers with two cysteines par-

ticipating in the catalytic cycle in a single subunit. In all cases, one cysteine SH is oxidised 

Figure 17. (Left): Catalytic cycle of Prx containing 1 catalytic cysteine (1-Cys-Prx). (Right): Catalytic
cycle of typical Prx (2-Cys-Prx).

Atypical peroxiredoxins (atypical 2-Cys-Prx) are monomers with two cysteines partici-
pating in the catalytic cycle in a single subunit. In all cases, one cysteine SH is oxidised to
sulfenic acid SOH by reducing peroxides ROOH. In the atypical 2-Cys-Prx, SOH is reduced
by a cysteine present in the same subunit, resulting in an intramolecular disulphide bond
that is also reduced by Trxred, Figure 18.
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Figure 18. Catalytic cycle of atypical peroxiredoxins (atypical 2-Cys-Prx).

Trx are proteins that act as antioxidants by facilitating the reduction of other proteins
through thiol-disulphide exchange on cysteine. Thioredoxin reductase TrxR is responsible for
the reduction of Trxox to Trxred and requires NADPH as an electron donor source [46], Figure 19.

When used as an electron source in the catalytic peroxiredoxin cycle, thioredoxin
Trx meets the thiol group SH of its two cysteines in disulphide form S-S. TrxR, which
has a selenocysteine in selenol form SeSH and a SH at its catalytic site, performs the S-S
reduction of Trx, forming an intermolecular sulphur-selenium bridge S-Se. This bridge
is then reduced, creating an intramolecular S-Se bridge in TrxR and releasing the Trx
in reduced form. TrxR regenerates into its reduced form using NAPDH as an electron
source [47].
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Figure 19. Thioredoxin reductase catalytic cycle (TrxR).

3.4. Hypochlorous Acid Formation (HOCl)

HOCl biologically falls into a group of small molecules known as reactive species RS
synthesised by cells of the immune system (neutrophils and macrophages). HOCl plays
a dual role, performing a bactericidal function against infections and, on the other hand,
it can cause damage to the molecular structures and cells of the host organism. HOCl
is a powerful antimicrobial oxidant, capable of modifying DNA, lipids and lipoproteins,
reacting rapidly with the sulphur atom present in thiols and thioethers (cysteine and
methionine) [48]. Excessive generation of HOCl can cause tissue damage and is thought to
be important in the progression of a number of diseases including atherosclerosis, chronic
inflammation and some cancers [49].

Myeloperoxidase is the most abundant protein in neutrophils and is the only perox-
idase that catalyses the conversion of hydrogen peroxide and chloride to hypochlorous
acid [50], Figure 20.
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When the human body is invaded by bacteria or viruses, our immune system responds
immediately by sending an increased number of white blood cells called neutrophils to the
site of invasion. Once activated, neutrophils produce through the enzyme myeloperoxidase
large quantities of an oxidising solution (HOCl), which is highly effective in killing all
pathogenic invading microbes.

4. H2O2 and Inflammation

Inflamed tissues are associated with high levels of H2O2, and this mechanism plays an
important role in host antimicrobial defence [51]. During inflammation, H2O2 by-products
interact with proteins, lipids, nucleic acids and other metabolites causing associated molec-
ular damage that can be significant and lead to cell apoptosis [52]. Inflammation, which is
predominantly caused by activated macrophages and microglia, is a contributing factor to
some chronic diseases, such as Alzheimer’s disease [53,54].

A likely mechanism describing the sequence of events is as follows: (a) hydrogen
peroxide is produced in reaction to a pro-inflammatory ligand, e.g., by NADPH oxidase
and (b) hydrogen peroxide diffuses across cell membranes into adjacent target cells [55].

Both H2O2 and TNF-α (tumour necrosis factor alpha is a cytokine produced by vari-
ous cells of the immune system, mainly macrophages and monocytes) are formed during
inflammation, but H2O2 has little ability to activate NF-κB (nuclear enhancer factor kappa
light chain enhancer of activated B cells is a protein complex that controls DNA transcrip-
tion), so H2O2 up-modulates TNF-α and this induces the NF-κB activation [56]. NF-κB is
involved in inflammation, innate and adaptive immune responses to viral infection, cell
proliferation and apoptosis [57].

To avoid excessive tissue damage and sustained granulocyte recruitment/retention,
the presence of the H2O2 gradient must be tightly regulated at the enzymatic level. Oxidase
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enzyme activity causes membrane depolarization to the point of inhibition of NADPH
oxidase. Sustained H2O2 production depletes NADPH stores, which may automatically
lead to cessation of H2O2 production [51,58].

5. H2O2 and Cancer

As a result of increased metabolic activity, high rates of H2O2 are generally detected in
neoplastic cells, where they act as signalling molecules in tumour development and even
progression. At the same time, these cells are able to express higher levels of antioxidant
proteins to attenuate their effect, creating a balance between the continued generation of
H2O2 and antioxidant molecules [14]. Certain doses of H2O2 and superoxide anions stimu-
late cell proliferation in a variety of cancer cell types [59]. This is the case in breast cancer
cells, where H2O2 is increased through translocation of oestrogen to the mitochondria [60].
An increase in mitochondrial oxidative stress causes the release of cytochrome C, which in
turn is an irreversible event, leading to caspase activation and cell death [61]. All human
cancer cell types, except human renal adenocarcinoma, have shown low levels of catalase
and glutathione peroxidase [62]. In general, catalase concentration is low in cancer cells,
but its activity seems to vary widely between different cancer cell lines [63].

For an in-depth review of this topic, we have chosen the oxidative mechanism in
leukaemia as an explanatory model, because it is a pathology that affects pluripotential
stem cells, generating systemic involvement. Severe or extended oxidative stress OS
inevitably destroys their homeostasis, affecting the self-renewal and differentiation of
hematopoietic stem cells HSCs and leading to hematopoietic abnormalities. Balanced OS
levels are crucial for maintaining the homeostasis and biological function of HSCs under
normal conditions [64].

In normal HSCs, overactivation of oxidative stress pathways promotes the production
and intracellular accumulation of •O2

− and H2O2, severely disturbs the normal biological
functions of HSCs and has an important role in leukaemia progression [65,66].

In summary, as active secondary signalling molecules, OS have important inductive
and regulatory roles at various stages of ALL development and progression. Defects in
antioxidant defence systems might promote the production of intracellular ac-cumulation of
OS, which may seriously disrupt the normal biological functions of hematopoietic cells. and
induce genetic lesions considered determinant and crucial for leukemic transformation of
normal HSCs and/or hematopoietic progenitors, leading to the development of leukaemia.
The mechanism of action of OS on proteins and lipids at the molecular level is basically clear.
An inadequate understanding of redox signalling in normal and malignant HSCs severely
limits the efficacy of all treatment. Drug resistance and side effects caused by pro-oxidant
drugs remain an urgent and difficult problem in the treatment of leukaemia [67].

6. H2O2 and Related Diseases

Among the diseases associated with ROS, ischemia-reperfusion I/R injury is one of
the best studied, along with myocardial infarction, stroke, and other thrombotic events.
Reperfusion occurs when blood circulation is restored to tissues after ischemia, as the
restoration of circulation after the absence of nutrients and oxygen triggers inflamma-
tion, and the subsequent oxidative stress damages affected tissues [68]. In an attempt to
determine the relationship between H2O2 and I/R injury, its accelerated production in
postischemic tissues was observed to be caused by enzymes capable of reducing molecular
oxygen to superoxide anions, thereby releasing H2O2 into the extracellular and intracellular
space [69]. After reperfusion of ischemic tissue, the production of superoxide anions, which
have higher levels than the nitric oxide radical NO, was favoured, so that endothelial cells
produce more superoxide anion molecules and the production of NO by endothelial NO
synthase eNOS decreases [70].

Ulcerative colitis is a type of inflammatory bowel disease that strikes between late
adolescence and early adulthood [71] and follows a chronic relapsing and remitting course
characterised by abdominal pain, bloody diarrhoea, tenesmus and urgency, all related to
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inflammation of the large intestine [72]. An immune abnormality is a possible mechanism
that may cause this disease, although it has not been established as a primary antecedent
in individuals with UC or their family members [73,74]. In contrast, significantly elevated
levels of H2O2 have been documented in the colonic epithelium immediately prior to the
onset of UC, suggesting a causal role in the development of UC [75].

Sepsis is a life-threatening condition triggered as an extreme response to infection
that can lead to multiorgan failure and fatal hemodynamic shock. During the course of
sepsis, cytotoxic hydrogen peroxide levels in the blood have been documented to be up
to 18 times higher than the accepted limit for normal blood levels in individuals with
sepsis and septic shock [76]. The normal blood value of H2O2 is between 1 and 5 µM,
and the value at which cytotoxicity appears is 30 µM [77]. Despite this, values of up to
558 µM have been documented in the blood of patients with sepsis and septic shock [76].
Hypermetabolism is a feature of sepsis, with increased metabolic activity supplied by ATP
generated by oxidative phosphorylation, producing H2O2 as a by-product of the electron
transport chain (ETC). Under normal conditions, this H2O2 is effectively neutralized, but
an increase in bioenergetic reactions in the ETC leads to an increase in the production
of hydrogen peroxide, which, if not removed, can induce cell death. Cytotoxic levels of
hydrogen peroxide are a metabolic poison that can lead to severe bioenergetic dysfunction
and cellular damage if a regulatory mechanism is not employed. Prolonged exposure can
lead to collapse of redox homeostasis, organ failure, microvascular dysfunction, and fatal
septic shock [78].

H2O2 inhibits the functioning of Krebs cycle enzymes, such as aconitase, alpha-
ketoglutarate dehydrogenase, and succinate dehydrogenase [79–81], decreasing production
of the reducing equivalents nicotine adenine dinucleotide NADH and flavin adenine dinu-
cleotide FADH2, both of which are involved in cellular redox reactions. This can collapse
the mitochondrial proton gradient and affect the proton motive force required for pyruvate
translocase in the inner mitochondrial membrane and transport pyruvate into the mito-
chondria [82]. The result is an increase in cytosolic pyruvate and subsequent conversion
to lactate with the onset of hyperlactatemia. The effect of a dysfunctional Krebs cycle on
the serum lactate level is seen in hereditary alpha-ketoglutarate dehydrogenase deficiency,
associated with severe congenital hyperlactatemia [83].

In the pancreas, β-cells are particularly vulnerable to oxidative stress due to a rela-
tively reduced expression of antioxidant enzymes, such as catalase, superoxide dismu-
tase and GSH peroxidase, compared to levels in the liver and kidney [84–86]. It has
been hypothesized that H2O2 are involved in the progression of cell dysfunction in both
type 1 and type 2 diabetes mellitus. Diabetes induces increased levels of hydrogen per-
oxide [87,88], a metabolic disorder characterised by hyperglycaemia and often associated
with the occurrence of complications. The detoxification pathway utilises the antioxidant
peroxiredoxin/thioredoxin system as it provides selective chemical inhibition. The rate
of mitochondrial oxidation in pancreatic β-cells is directly dependent on blood glucose
concentration. In type 2 diabetes, where blood glucose levels are chronically elevated,
increased oxidative phosphorylation leads to increased H2O2 production in the β-cells [89].
Overexpression of the SOD1 and SOD2, catalase, GSH peroxidase or thioredoxin in β-cells
offers protection against oxidative damage induced by alloxan, the combination of xanthine
oxidase and hypoxanthine, streptozotocin or H2O2 [90–92]. Recent studies have shown
that peroxiredoxins, an antioxidant enzyme capable of reducing hydrogen peroxide, lipid
peroxides, and peroxynitrite, are expressed in β-cells and, when overexpressed, protect
β-cells from oxidative stress [93,94].

The following Table 1 summarizes the relationship between H2O2 and disease (includ-
ing recent research findings).
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Table 1. Relationship between H2O2 and disease.

Pathology Levels of H2O2 Location Mechanism

Cancer Plasma increases 2–3 times
higher than normal

Mitochondrial membrane of
neoplastic cells

Stimulation of cell
proliferation by increased

metabolic activity [95]
Ischaemia-reperfusion injury

(I/R)
Plasma levels higher than NO

concentration Extra- and intracellular spaces Oxidative stress secondary to
tissue damage [96]

Sepsis and septic shock Plasma increases 18 times
higher than normal Endothelial cells

Increased oxidative
phosphorylation by metabolic

hyperdemand [97]

Ulcerative colitis Significantly increased urinary
excretion levels Colon epithelium

Mechanism under study (not
known at present, also

implicated in other
autoimmune diseases),

although a causative role is
suggested [98]

COVID-19 and respiratory
distress syndrome RDS

Very high plasma levels
especially in combination

with urinary sepsis

Endothelial cells mainly from
the lung

Expansion of ACE 2 protein
leading to increased cellular

oxidative status [99,100]
Intestinal parasitic

infection
Urinary excretion 4 times

higher Intestinal endothelial cells Oxidative stress secondary to
phagocytosis [101,102]

Diabetes mellitus type II

3-fold increase in superoxide
dismutase with associated

decrease in erythrocyte
catalase leading to increases in

peroxide excretion.

Pancreatic beta cells Increased oxidative
Phosphorylation [103,104]

7. Measurement of Hydrogen Peroxide in Human Body

Currently, there is considerable interest in developing “biomarkers” of oxidative stress
that can be applied to humans. These involve measuring the end products of oxidative
damage in different classes of biomolecules or directly determining the production of
oxygen radicals. H2O2, present in human body fluids, is a valuable biomarker of oxidative
stress in vivo and can be detected in exhaled air, urine and blood [105].

7.1. Presence in Blood

Blood H2O2 levels are of great importance, but rapid and reliable measurement re-
mains a challenge. Gaikwad et al. (2021) present an automated method using a microfluidic
device for direct and rapid measurement of H2O2 based on laser-induced fluorescence
measurement and explain the critical factors affecting measurement accuracy: Blood cells
and soluble proteins significantly alter the native H2O2 content in the time between sample
collection and detection. Separation of the blood cells and subsequent dilution of the
plasma with a buffer allow reliable measurements. The method allows rapid measurement
of H2O2 in plasma in the concentration range of 0–49 µM, with a detection limit of 0.05 µM,
sensitivity of 0.60 µM-1, and detection time of 15 min, achieving real-time control [106].

7.2. Presence in Urine

Hydrogen peroxide can be detected in sick and healthy individuals, as there is a
correlation between urinary H2O2 levels and other biomarkers of oxidative stress. Urinary
H2O2 is a useful biomarker for assessing oxidative status in humans and for predicting
disease pathogenesis and progression. Several methods for measuring urinary H2O2 are
described in the scientific and technical literature, and the FOX assay is a widely used
method for its determination. The FOX assay involves the oxidation of Fe2+ to Fe3+ by H2O2
and the subsequent formation of a chromophore (Fe3+-xylene orange complex) that can be
measured at 560 nm. Previous studies on the detection of H2O2 in urine have mainly used
the FOX −2 assay, which is usually used to measure the concentration of hydroperoxide
in plasma and seems to be unsuitable for urine samples, whereas a pH-adjusted FOX −1
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assay (pH 1.7–1.8) in the presence of catalase has been proposed as a method with high
sensitivity and specificity for the detection of H2O2 in urine [107].

Lipcsey et al. (2022) analysed urinary H2O2 concentrations in 82 patients with severe
infections (sepsis, septic shock, and infections that did not meet sepsis 3 criteria), patients
with severe burns and associated systemic inflammation, and healthy volunteers and
found higher concentrations in patients who died within 28 days of ICU admission than
in patients who survived. This finding was also consistent in subgroups of patients with
severe infections and burns, suggesting that H2O2 is associated with a poor prognosis in
these patients [97].

7.3. Presence in the Exhaled Air

Inflammatory lung processes may be associated with oxidative stress. The degree of
oxidative stress can be determined by measuring the concentration of hydrogen peroxide
in exhaled breath condensate, an easily collected, non-invasive, and affordable tool for
diagnosing the inflammatory process. Exhaled breath condensate (EBC) contains a wide
range of inflammatory mediators, oxidative stress, and nitrosative stress, the analysis of
which can aid in the diagnosis and treatment of patients with lung disease [108].

Different types of equipment are available on the market, including commercial ca-
pacitors and home-made systems. Among the different devices, the following can be
highlighted: EcoScreen1 (Cardinal Health, Hoechber, Germany, currently not manufac-
tured), EcoScreen2 (FILT Lungen-& Thorax Diagnostik GmbH, Berlin, Germany), RTube
(Respiratory Research, Austin, TX, USA), TurboDECCS (Medivac, Parma, Italy), ANACON
(Biostec, Valencia, Spain). Samples for the evaluation of non-volatile compounds should be
stored immediately after collection at −80 ◦C until analysis [109].

H2O2 concentrations in the EBC were increased in steroid-free asthma and were in-
fluenced by smoking and disease treatment [110]. H2O2 levels were elevated and pH was
lower in both asthma and chronic obstructive pulmonary disease COPD compared to con-
trol subjects. These findings suggest that oxidative stress is involved in the pathogenesis of
asthma and COPD and that H2O2 levels in the EBC may reflect health status in COPD [111].

8. Conclusions

In this review, the chemical role of H2O2 in mammalian cells and its enzymatic and
non-enzymatic generation and regulation were studied in detail. Cells have multiple
sources of H2O2, but also scavenger molecules that tightly control H2O2 concentration
in different subcellular compartments. To better understand the molecules and targets
involved in this delicate balance (physiological/pathological H2O2 concentration), it is
important to know in detail the molecular mechanisms operating at the cellular level. We
hope that our work will stimulate the scientific community to better understand these
important events and processes.
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