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Abstract

Quantitative Structure-Activity Relationships (QSAR) models are often seen as a “black box” 

because they are considered difficult to interpret. Meanwhile, qualitative approaches, e.g., 

structural alerts (SA) or read-across, provide mechanistic insight, which is preferred for regulatory 

purposes, but predictive accuracy of such approaches is often low. Herein, we introduce the 

Chemistry-Wide Association Study (CWAS) approach, a novel framework that both addresses 

such deficiencies and combines advantages of statistical QSAR and alert-based approaches. The 

CWAS framework consists of the following steps: (i) QSAR model building for an endpoint of 

interest; (ii) identification of key chemical features; (iii) determination of communities of such 

features disproportionately co-occurring more frequently in the active than in the inactive class; 

and (iv) assembling these communities to form larger (and not necessarily chemically connected) 

novel structural alerts with high specificity. As a proof-of-concept, we have applied CWAS to 

model Ames mutagenicity and Stevens-Johnson Syndrome (SJS). For the well-studied Ames 

mutagenicity dataset, we have identified 76 important individual fragments and assembled co-

occurring fragments into SA both replicative of known as well as representing novel mutagenicity 
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alerts. For the SJS dataset, we identified 29 important fragments and assembled co-occurring 

communities into SA including both known and novel alerts. In summary, we demonstrate that 

CWAS provides a new framework to interpret predictive QSAR models and derive refined 

structural alerts for more effective design and safety assessment of drugs and drug candidates.

Graphical Abstract

Introduction

Quantitative structure-activity relationship (QSAR) modeling is a major computational 

approach used in drug discovery and chemical risk assessment.1 Despite the broad 

application of QSAR models with well-defined metrics such as accuracy and external 

predictive power, they bear the stigma of being non-interpretable and therefore, for the most 

part, unsuitable for regulatory applications.2 Alternatively, approaches such as structural 

alerts (SA),3 chemical grouping,4 and read-across (RA)5 have earned regulatory acceptance 

due to their simplicity, transparency, and ease of interpretation6 in spite of being often 

criticized for the lack of predictive accuracy.7 For instance, we recently showed that the 

mere presence of structural alerts in a chemical is unreliable for predicting toxicants or 

PAINS and such exclusive use should be avoided.8,9 However, we also suggested that when 

validated by predictive QSAR models, structural alerts may play a key role in the 

mechanistic understanding of the chemical activity and may help in designing novel 

compounds with the desired activity or those with lower toxicity.8

It has been shown that QSAR models can indeed offer mechanistic interpretation.10 This 

realization led to the suggestions that QSAR and read-across approaches can be integrated to 

afford both statistical accuracy and interpretability of chemical toxicity prediction models.
11–14 For instance, we proposed a new framework that synergistically integrates structural 

alerts and rigorously validated QSAR models for a more transparent and accurate prediction 

of new chemicals.8

Herein, we introduce the Chemistry-Wide Association Study (CWAS), a novel framework to 

systematically assess and characterize the contribution of both individual chemical moieties 

and their combinations. Obviously, CWAS was inspired by GWAS (Genome-Wide 

Association Study), a well-established approach for simultaneously identifying and studying 

large numbers of genetic features potentially associated with a given phenotype (e.g., 

disease).15 Indeed, there is a striking similarity between approaches to describing 

correlations between genetic features and a phenotype (such as disease) and those between 

chemical features of compounds and their biological activity (Table 1).
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By comparing the genotypes of patients with those of healthy individuals (control group), 

GWAS identifies the genetic determinants (single nucleotide polymorphisms, SNPs, or loci) 

associated with a phenotype on a genome-wide scale, while controlling for multiple 

hypotheses. The GWAS-like methodology has been implemented in several fields, leading to 

the dissemination of other subject-specific wide association studies (WAS), such as 

Environment-WAS (EWAS),16,17 Phenome-WAS (PheWAS),18 and Metabolome-WAS.19 

The same framework naturally lends itself to an implementation for QSAR analysis and 

interpretation. Two key steps in GWAS – to identify (i) SNPs statistically associated with the 

phenotype to serve as biomarkers and (ii) alleles that disproportionately co-occur in a 

phenotype using linkage disequilibrium – perfectly match the standard goals of QSAR, i.e., 

to (i) build a predictive model of specific bioactivity; (ii) identify chemical features 

associated with such activity; and (iii) derive structurally meaningful alerts composed of 

disproportionately frequently co-occurring chemical features.

To the best of our knowledge, this popular GWAS-like concept has not been applied to 

problems in cheminformatics thus far. The goal of our study was to develop the CWAS 

approach as a novel framework for identifying structural moieties associated with a target 

property based on statistically validated QSAR models. Correct identification of such key 

structural fragments leads to improved interpretation of QSAR models. To demonstrate the 

utility of the proposed CWAS approach, we have applied it to both Ames mutagenicity and 

Stevens-Johnson Syndrome (SJS) datasets. Our objectives were to identify statistically 

significant SA (both known and new) and demonstrate how the combined effect of co-

occurring substructures could be used to form novel SA with high specificity. Identification 

of such statistically significant SA could improve mechanistic understanding of structure-

activity relationships and enable more effective design and safety assessment of industrial 

chemicals and drugs.

Methods

Datasets

Ames mutagenicity—The Ames mutagenicity dataset containing 5,864 compounds was 

retrieved from the CASE Ultra software (http://www.multicase.com/case-ultra). These data 

have been originally compiled from multiple sources.20–22 After curation (see Data Curation 

Section), 5,439 compounds (2,121 actives and 3,318 inactives) were retained for this study.

Stevens-Johnson Syndrome (SJS)—For the purposes of this study, we employed a 

dataset studied in our recent work.23 Briefly, the original SJS dataset originally consisted of 

436 drugs extracted from VigiBase, the largest database of adverse drug reactions reports 

maintained by the World Health Organization Uppsala Monitoring Centre.24 After curation 

(see Data Curation Section), 365 compounds (194 active and 170 inactive) remained.

Data curation

We have curated both datasets following the protocols we have developed earlier.25–27 These 

protocols include structural normalization of specific chemotypes, such as aromatic and nitro 

groups; removal of inorganic salts, organometallic compounds, mixtures and large molecules 
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(MW > 2,000 DA); etc. Duplicates were identified, analyzed, and, if necessary, removed 

using ISIDA Duplicates28 and HiT QSAR29.

Generation of Substructural Molecular Fragments

The ISIDA Fragmentor software (freely available at http://infochim.u-strasbg.fr) was used to 

calculate 2D fragment descriptors.30 Briefly, each molecular structure is split into subgraphs 

of two types: sequences and augmented atoms. Sequences represent linear sequences of 

atoms only (A), bonds only (B) and/or both atoms and bonds (AB). Only shortest paths from 

one atom to the other are used. We computed sequences between 2 to 8 atoms long. The 

second type (augmented atom) represents a selected atom with its immediate environment 

including atoms only (A), bonds only (B), and/or both atoms and bonds (AB). Atomic 

hybridization (Hy) is considered for augmented atoms with the atom (A) subtype. Fragments 

with low-variance (standard deviation < 10−6) or highly correlated with each other (r2 > 

0.99) were removed. Thereafter, 967 and 1,091 fragments remained for modeling in Ames 

mutagenicity and SJS datasets respectively.

Chemistry-Wide Association Studies

The general methodological framework of CWAS (Table 2) consists of the following four 

steps: (i) QSAR modeling, (ii) fragment selection, (iii) co-occurrence analysis, and (iv) 

interaction analysis. In the first step, we build QSAR models according to the best practices 

for model development and validation.31 Next, fragment selection (or feature selection) 

identifies the minimum subset of chemical fragments associated with chemical bioactivity 

(i.e., chemical phenotype); this step also dramatically reduces the number of fragments for 

subsequent analysis. Then, co-occurrence analysis, which is one of the unique benefits of 

CWAS as compared to the conventional QSAR analysis, evaluates which combination of 

fragments co-occur in the active compounds more frequently than in the inactive ones. At 

last, such co-occurring fragments can be assembled into a larger connected or disconnected 

substructure, which, as a whole, may be more indicative of chemical activity than the sum of 

its parts.

Step 1. QSAR modeling—The QSAR modeling workflow used in this study includes 

three following major steps31,32: (i) data curation/preparation/analysis (selection of 

compounds and descriptors); (ii) model building; and (iii) model validation/selection. Here, 

we followed a 5-fold external cross-validation procedure. The full set of compounds is 

randomly divided into five subsets of equal size of which one (20%) is set aside as a test set 

while the rest (80%) form the modeling set. This procedure is repeated five times allowing 

each of the five subsets to be used as a test set once. Each modeling set is divided into many 

internal training and validation sets; then models are built using compounds of each training 

set and applied to test set compounds to assess their properties.1,31,33,34 It is important to 

emphasize that the test set compounds are never employed either to build or optimize the 

models.

In this study, we used the random forest (RF) algorithm35. We chose RF as a statistical 

modeling approach for its computational efficiency as well as because it enables 

straightforward mechanistic interpretation of the models in terms of relative variable 

Low et al. Page 4

J Chem Inf Model. Author manuscript; available in PMC 2019 November 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://infochim.u-strasbg.fr/


importance, which can be easily derived from randomized tree ensembles (cf. Step 2). Each 

forest was obtained as an ensemble of 500 trees (models), built from 500 bagged, i.e., taken 

with replacement, subsamples with balanced stratified sampling such that the activity classes 

are balanced in each subsample used to construct a tree. All other settings were as default in 

the randomforest package for R. RF also reports an error estimated for out-of-bag set 

compounds, which is somewhat similar to the error of prediction estimated on the test set.35

Models were assessed by sensitivity, specificity, balanced accuracy (average of sensitivity 

and specificity) and area under curve (AUC) on the test set. Standard errors of all metrics 

were calculated by bootstrapping with 1000 trials. Additionally, errors for the out-of-

modeling-bag sample (reported as OOB errors by RF) were used to determine a minimum 

subset of features.35 Since the accuracy of each model is estimated for compounds in the test 

sets only, which were never used to derive, bias, or select models, this protocol ensures an 

objective estimation of the true external predictivity of the models.

Step 2. Fragment selection—The process of identifying significant fragments 

associated with the chemical phenotype is similar to that used in GWAS,36 except that the 

compound’s “genotype” is denoted by chemical fragments. In this study, the significance of 

the association was determined according to the variable importance as given by the RF 

models.37

To determine the minimal subset of the f most important chemical fragments, we ranked 

them according to their associated RF conditional importance.38 Because the fragment 

ranking varied slightly across the five models generated from the 5-fold external cross-

validation protocol, only the f fragments that were always present among the top 100 

fragments in all five models were selected for rebuilding the reduced RF models. For each 

value of f, the reduced RF model’s OOBf error35 was compared with that of the full RF 

model (OOBfull) incorporating all fragments. Optimal f (i.e., fmin) was defined as f with the 

minimum OOBf error less than or equal to OOBfull error.

Step 3. Co-occurrence analysis—While the individual fragments identified from Step 

2 demonstrate an association with activity and each may be a reasonable alert for the activity 

class, we posit that combinations of fragments may make better structural alerts. To identify 

such combinations, we used co-occurrence analysis to determine which pairs of fragments 

would occur in toxic compounds more frequently than in non-toxic compounds and then 

employed community detection to expand from pairs of fragments to their clusters.

For each possible pair of fragments i and j, we computed a two-tailed Fisher’s exact test of 

association ti,j. A pair of fragments was considered to co-occur more frequently than 

expected when its p-value was less than 0.1 after adjusting for multiple testing by 

permutation. To adjust the test value for the pairwise co-occurrence of fragments i and j, ti,j 
was compared against the null distributions, Di and Dj, such that the larger of its quantiles 

along the null distributions, max(qi, qj), was taken as the adjusted p-value. The null 

distribution Di is generated from the Fisher’s test statistics of fragment i’s pairwise co-

occurrence with 1,000 noise fragments (randomly present or absent), ti,noise1, ti,noise2, …, 

ti,noise1000. This was repeated with fragment j to generate the other Dj distribution.
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Co-occurring fragments were represented by an adjacency matrix of the respective co-

occurrence p-values. Fragments that co-occurred with significant frequency (p-value < 0.1) 

were connected to form a network. Within this network, we looked out for densely 

connected subnetworks known as communities. These communities represent fragments that 

occurred as a cluster in compounds of one activity class disproportionately more frequently 

than in compounds of the other class. Such communities of fragments could serve as a 

collective indicator for an activity class. Further, these fragments could be spatially 

assembled into larger substructures (not all the fragments need to be chemically connected) 

as activity class indicators or structural alerts. The communities of fragments were detected 

by the walktrap algorithm proposed by Pons and Latapy39. Briefly, the algorithm 

agglomeratively merges nodes (individual fragments) into increasingly larger communities 

such that the probability of intracommunity connections is maximized than if they were 

connected at random. In the walktrap algorithm used here, the distance metric between two 

nodes is the probability distribution of random walks between the 2 nodes through 3 nodes 

instead of the shortest path. The intuition behind the random walks is that nodes frequently 

encountered in the indirect paths are likely to be near and thus, should belong to the same 

community.

For comparison, structural alerts obtained by the co-occurrence analysis were benchmarked 

against those derived from the maximum common substructure (MCS)40 analysis, an 

established approach for determining structural alerts. MCS analysis extracted the largest 

substructures that were more frequently associated with the active compounds than with the 

inactive compounds using the following parameters: (i) size ≥ 8 atoms, (ii) frequency ratio ≥ 

2, and (iii) present in ≥ 6 compounds. Ideally, co-occurrence analysis should reveal SA 

similar to those from MCS or include non-contiguous SA that MCS is not designed to 

uncover.

Step 4. Interaction analysis—Pairs of fragments with significant statistical interaction 

effects were identified. All possible pairwise interactions were inserted into the following 

lasso logistic regression equation (Eq. 1).

logit pi = log
pi

1 − pi

= μ + ∑
j = 1

m
β jxi j (Equation 1)

Where p
i

= P Y
i

= 1  is the probability of activity in the ith chemical compound, x
i j

is the 

value of the j
th fragment for the ith chemical, μ is the intercept, andβ = β

j
,   …, β

m
 are the 

effects of the m fragments.

Important interaction effects were determined using LLARRMA,41 a LASSO-based 

resample averaging model. Briefly, a random subsample was drawn without replacement and 

fitted to a lasso logistic regression. This process was repeated 100 times to obtain an 

ensemble lasso logistic regression. LLARRMA indicated the significance of each feature by 

a resample model inclusion probability (RMIP) metric,41 which measured the proportion of 

times a feature is selected into the lasso logistic regression. Only interaction effects with 

RMIP > 0.85 were considered as significant interactions. Of the significant interaction 
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effects, those with positive beta coefficients were considered synergistic as their combination 

positively contributed to the chemical activity while those with negative coefficients were 

deemed antagonistic as their combination had negative contribution to the chemical 

bioactivity.

Results

As a proof-of-concept, we performed two case studies of CWAS application to previously 

studied Ames mutagenicity42,43 and SJS23 datasets (see Methods). For Step 1 (QSAR 

modeling), model accuracy and other evaluation metrics are shown in Table 3. For Step 2 

(fragment selection), the 76 fragments associated with Ames mutagenicity with high mean 

variable importance scores are highlighted in green in the Manhattan plot (Figure 1). For 

Step 3 (co-occurrence analysis), fragments co-occurring disproportionately more frequently 

in one activity class than the other are described in Figure 2 and Figure 3 (Ames dataset) and 

Figure 4 (SJS dataset). For Step 4 (interaction analysis), the networks showing how the 

selected fragments statistically interact with one another to elicit a combined effect on 

mutagenicity are presented in Figure 5 for Ames and Figure 6 for SJS.

Step 1. QSAR modeling

QSAR models for both Ames mutagenicity and SJS were developed using RF on ISIDA 

substructural fragments. Models validated using 5-fold external cross validation successfully 

passed the Y-randomization test44, and hence, they were unlikely to be obtained by chance. 

The QSAR models for Ames mutagenicity using the full set of 967 fragments afforded 

balanced accuracy of 85% and AUC of 91% (Table 3), which is comparable with 

experimental reproducibility of the Ames test.20 Although the Ames dataset is indeed well-

studied, honest comparison could be made only using exactly the same test sets. Among 

these, two studies Sushko et al.42 and Alves et al.43 have used the same dataset, except that a 

subset of Ames dataset was used as a single test set in these two studies, whilst in our 

current study we have used 5-fold external cross validation procedure31. Thus, although 

direct comparison will not reflect the real picture, CWAS demonstrated similar or slightly 

better performance as compared to other studies42,43. For the full coverage of Ames dataset, 

balanced accuracies were reported as high as 50–90% in the study Sushko et al.42 and 79% 

in the study of Alves et al.43. In our study, full and reduced (in terms of descriptors) models 

presented balanced accuracies of 85% and 87%, respectively. The full model of SJS using all 

1,091 fragments presented a balanced accuracy of 71% and AUC of 77%.

Step 2. Fragment selection

We progressively rebuilt RF models using the f most important fragments yielding the model 

with OOB error less than or equal to that developed with all the fragments. The optimal 

number of important fragments to achieve this goal was f=76 for the Ames dataset. The 

prediction performances of the reduced model with 76 fragments and the full models with 

all 967 fragments were similar (Table 3). The corresponding Manhattan plot (Figure 1) 

shows that the 76 selected fragments (in green) have high mean variable importance score in 

the full RF model. These selected chemical fragments represent various chemical functional 

groups such as amine, sulfide, phenol, etc. Similarly, for the SJS dataset we have identified 
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29 important fragments used for building a reduced model with comparable OOB error as 

the full model containing 1,091 fragments (Table 3).

Step 3. Co-occurrence analysis

The co-occurrence analysis for the Ames mutagenicity dataset revealed which of the 76 

fragments frequently occurred together in the active class. These fragments could be fused to 

generate larger meaningful substructures of potential value as structural alerts of 

mutagenicity.

The heatmap (Figure 2A) shows the presence of 76 fragments in the active and inactive 

classes. The triangle map (Figure 2B) shows the pairwise co-occurrence significance 

determined by Fisher’s exact test: low adjusted p-values (< 0.1) were shaded for significance 

while insignificant values were unshaded. This triangle map formed the basis of an 

adjacency matrix for constructing a network graph (Figure 2C): the 76 fragment nodes were 

connected if they co-occurred with significant frequency (p-value < 0.1). From this network 

graph, the walktrap community detection algorithm identified seven distinct subnetworks (or 

communities) of frequently co-occurring fragments (represented by different colors). For 

example, one of the smallest communities (purple, sulfonate) is made up of two fragments 

O-S=O and O(-C’-S’) both of which are more likely to be present among mutagenic 

compounds than non-mutagens in the heatmap. Note that “*” denotes aromatic bonds, “-” 

denotes single bonds, and “=” denotes double bonds. Another example is the aromatic nitro 

(blue community) constructed from five co-occurring fragments almost exclusively present 

among mutagens.

As expected, the precision of structural alerts indicating mutagenicity increased with the 

number of co-occurring fragments used (Figure 3). The number of co-occurring fragments 

required to achieve high precision depends on the size of the fragment, its strength of 

association with mutagenicity and the extent of overlap among the co-occurring fragments. 

For example, the aromatic nitro SA (blue community), took only three out of five fragments 

to achieve the same precision as the polyaromatic hydrocarbon (PAH) SA (pink community) 

made up of over 10 fragments. This is because the two chemical classes have different 

modes of action involving chemical functional groups of very different sizes.45 Aromatic 

nitro compounds (upon metabolic activation) easily form reactive adducts and can be readily 

identified from at least an aryl fragment (e.g., C*C-N) and a nitro fragment (e.g., C*C-

N=O). In contrast, PAH are mutagenic through intercalation, slipping between DNA bases 

and distorting the DNA structure. They are much larger, comprising of multiple adjacent 

benzenes, and require more fragments for identification as a PAH SA, especially when its 

constituent aromatic fragments are highly ubiquitous and non-specific (e.g., C*C, 

C*(C’*C’)*C).

For the SJS dataset, the triangle map shows the pairwise co-occurrence between the 29 

important fragments (Figure 4A). Significantly co-occurring pairs of fragments (i.e., p-value 

< 0.1) were connected in the network graph (Figure 4B). Community detection partitioned 

the network graph into five densely connected subnetworks representing communities (C1-

C5, distinctly colored) of frequently co-occurring fragments (Figure 4B). To illustrate, 

Figure 4C shows two SA reconstructed from the fragments in communities C1 (pink, 
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sulfonarylamine) and C2 (blue, beta lactam with adjacent sulfur). Indeed, as shown in the 

heatmap (Figure 4C), the fragments creating these 2 SA were simultaneously present among 

SJS inducers much more frequently than among non-inducers. The densely populated upper 

left corner (Figure 4C) suggests that SJS inducers often contain sulfones (O=S=O), 

sulfonylarenes (C*C*C*C-S=O), and thia-aza groups (S-C-N), while non-inducers (bottom 

right of the heat map) often contain arenes with aliphatic chains (H-C-C-C*C*C) and 

secondary amines (C-C-N-C-C). The two SA discussed, sulfonylarylamine and beta-lactam, 

were consistent with those obtained from MCS analysis.

Step 4. Interaction analysis

Statistically significant co-occurring fragments that affect mutagenicity are shown as an 

interaction network (Figure 5A). The fragment O=N=O is linked to mutagenicity in 84% of 

the cases (620 out of 738 mutagens); it forms a synergistic interaction with C(*C’-N’*O’), 

but also an antagonistic interaction with C-C-C-H. The synergistic interaction confers an 

additional mutagenic effect beyond the sum of its component fragments (O=N=O and 

C(*C’-N’*O’)). In contrast, the antagonistic interaction reduces mutagenicity effect beyond 

the sum of its component fragments (O=N=O and C-C-C-H). Figure 5B illustrates how the 

synergistically interacting pair of fragments O=N=O and C(*C’-N’*O’) are more prevalent 

(100%) among mutagens and, conversely, how the antagonistically interacting pair of 

fragments are much less prevalent (69%) in mutagens.

Four following structural alerts (see Figure 6) derived from smaller co-occurring fragments 

were identified for SJS: (i) sulfonylarylamine; (ii) β-lactam ring with adjacent sulfur; (iii) 

fluorquinolones; and (iv) tetracyclines. Sulfonylarylamine is reconstituted from five co-

occurring fragments and is the most common structural alert present among SJS-active 

drugs.

Discussion

This study demonstrates that GWAS-like approaches can be successfully adapted for 

cheminformatics both to build statistically significant models of bioactivity and identify key 

substructures associated with a chemical bioactivity. Herein, we show that such analysis can 

elucidate and analyze chemical substructures that jointly influence biological activity (or 

toxicity) of compounds, in which these substructures occur.

As a proof of concept, we have developed robust and predictive QSAR models with the 

entire set of fragments for Ames mutagenicity (CCR=85%, AUC = 91%) and SJS 

(CCR=71%, AUC = 77%) data sets. Following the model building step, the application of 

CWAS identified a minimal number of key fragments required for obtaining reliable QSAR 

models with slightly improved characteristics for Ames mutagenicity (76 fragments, 

CCR=87%, AUC = 94%) and SJS (29 fragments, CCR=74%, AUC = 81%). Then, fragment 

co-occurrence analysis determined the communities of fragments disproportionately 

frequent in the active class such that they could be fused together to form more meaningful 

and reliable structural alerts compared to individual constitutional fragments. These alerts 

were comparable to those derived from the MCS analysis, lending support to the notion that 
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co-occurrence analysis is a valid method for determining structural alerts. Finally, we 

characterized pairs of fragments that statistically interact to potentiate or negate activity.

Four steps described above are combined into the CWAS workflow, which can be employed 

for the analysis of any chemical bioactivity dataset both for predicting chemical bioactivity 

and interpretation and understanding of structure-activity relationships.

Application of CWAS to identify novel toxicity alerts

A few structural alerts known to be associated with mutagenicity and SJS were in 

concordance with CWAS results. For instance, nitro groups in aromatic rings and sulfonate 

esters45 alerts were validated for Ames mutagenicity. As observed in the results (Figure 5), 

the fragment O=N=O statistically interacts with C(*C’-N’*O’) synergistically and with C-C-

C-H antagonistically. The chemical rationale behind the synergistic interaction (i.e. more 

mutagenic than individual fragments) is that the combined aromatic nitro is more readily 

activated into a resonance stabilized nitro anion radical which in turn form genotoxic 

metabolites. 47 If the nitro group were instead paired with an aliphatic chain C-C-C-H into 

an antagonistic pair, their combined mutagenic effect is reduced as the aliphatic fragment 

does not provide resonance stability like the arene fragment. Thus, metabolic activation of 

an aliphatic nitro into a mutagenic form is less likely than an aryl nitro.

In another example, synergistic interactions between O-S=O and S-O-C fragments 

potentiated mutagenicity because taken together, they form a sulfonate ester, a potential 

alkylating agent related to mutagenicity.46 Conversely, the antagonistic interaction between 

O-S=O and O-H reduces mutagenicity because the resultant sulfonic acid O=S-O-H can be 

readily cleared given that the addition of sulfo group is an endogenous mechanism.47 The 

above pairwise interactions provided plausible explanations for mutagenicity variation 

consistent with already established mechanisms, which serve as a validation of our 

methodology.

The co-occurrence analysis on SJS dataset identified larger, i.e., more specific substructures, 

that were expected to yield true positives (i.e., higher precision) compared to known expert-

based structural alerts inferred from epidemiological studies of drug classes associated with 

SJS (Figure 6).48,49 For example, in the present dataset, all compounds containing a 

sulfonylarylamine were associated with SJS. However, another structural alert, sulfonamide, 

was found in both actives and inactives. Consequently, blind use of only sulfonamide as an 

alert predicting SJS could wrongly discard plenty of widely used sulfonamide-containing 

antibacterials (e.g., sulfafurazole, sulfadiazine, sulfadimethoxine, etc.). As we have recently 

shown, structural alerts should be used carefully: usually the alerts fail to work as an actual 

predictor, but, after proper statistical validation and, if needed, refinement, they could be 

used as a mechanistic hypothesis.8

Indeed, the additional chemical structures condensed in the larger structural alerts identified 

by CWAS offered important mechanistic clues. For instance, the sulfonamide-containing 

antibacterials have been implicated with SJS,48 although sulfonamides alone do not induce 

SJS.50 Immunogenic reactions related to SJS has been attributed to the arylamine group 

within the sulfonylarylamine structural alert.51 The supposed mechanism involves the 
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metabolic transformation of the arylamine group into a reactive nitroso metabolite, which 

covalently binds to cellular macromolecules to initiate an immune response consistent with 

the hapten hypothesis.50–52 Arylamines are generally rare among drugs due to their 

reactivity at the nitrogen site. Exceptions often contain electron-withdrawing groups in the 

para-position to help stabilize the arylamine, such as sulfonamide-containing antibacterials, 

which involve a stabilizing para-sulfone group (SO2).53

Another structural alert, β-lactam ring with adjacent sulfur, suggests that the additional 

sulfur atom may be necessary for SJS activity. By specifying the adjacent sulfur atom, 

precision increased to 100%: all β-lactam antibacterials containing it are SJS inducers in our 

dataset. On the contrary, analogs without the adjacent sulfur atom such as latamoxef were 

found to be non-inducers.

Fluoroquinolone was also identified as a structural alert since all the quinolones in the 

present dataset were fluoroquinolones; it is not possible to extrapolate that quinolone alone 

is associated with SJS. Nevertheless, this distinction seems irrelevant since non-fluorinated 

quinolones have been discontinued in favor of the more efficacious fluoroquinolones.54 The 

analysis of tetracycline antibacterials revealed that only tetracyclines were inducers of SJS, 

while all three anthracyclines were non-inducers. This demonstrates that the four-ring 

system present in both tetracyclines and anthracyclines is not a statistically significant 

structural alert. By using a more refined structural alert that can differentiate the SJS-

inducing tetracycline antibacterials from the non-inducing anthracyclines, we were able to 

improve significantly the accuracy of prediction.

Other substructures such as aromatic rings in anticonvulsants have been suggested as a 

structural alert for SJS in a previous study.55 However, we did not find this structural pattern 

in our study using our expanded set of drugs including non-anticonvulsants. One reason may 

be the ubiquity of aromatic rings in both SJS inducers and non-inducers.

On the importance of using statistically significant structural alerts

Structural alerts are molecular moieties associated with a particular adverse outcome 

pathway and they are widely used by toxicologists and regulatory agencies to flag potential 

chemical hazards.4,6 We recently showed through several case studies that the mere presence 

of structural alerts in a chemical is most likely an unreliable method to discriminate 

toxicants and thus should be avoided.8 Structural alerts act within the whole chemical 

structure, even though their actual effect on chemical toxicity critically depends on their 

structural environment.

Nevertheless, alerts play an important role in understanding the mechanism underlying the 

chemical activity. They provide hypotheses of possible toxicological effects to guide further 

investigation and safer drug design. Although structural alerts may be derived by expert 

rules and/or (Q)SAR models, they must be validated by statistical analysis. More 

importantly, structural alerts should be used with caution for any dataset and molecular 

context in which they have been derived. To that end, we recently proposed a new 

framework that systematically integrates structural alerts and rigorously validated QSAR 

models for both transparent and accurate toxicity prediction of new chemicals.8
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Conclusions

We have introduced the CWAS framework for assessing and interpreting the combined 

effects of molecular fragments towards the overall chemical activity. CWAS further extends 

the concept of quantitatively validated structural alerts by merging the advantages of well-

established methods in GWAS and systems biology and QSAR modeling. Proposed CWAS 

framework consists of the following steps: (i) development of predictive QSAR model for an 

endpoint of interest; (ii) identification of important chemical fragments for this endpoint; 

(iii) determination of communities of co-occurring fragments which can be assembled to 

form larger and not necessarily connected structural alerts; and (iv) establishing the 

combined contribution of the co-occurring fragments into the activity. Steps (ii)-(iv) of 

CWAS contribute to enhance the interpretability of QSAR models.

We have applied CWAS for modeling Ames mutagenicity and SJS datasets. While for well-

studied Ames mutagenicity dataset we have identified combined SA consistent with 

established knowledge of mutagenicity, for less-studied SJS dataset, in addition to existing 

SA, we identified new SA with increased precision. These alerts revealed mechanistic clues, 

contributing to better understanding of SJS. Overall, our results demonstrate that CWAS 

represents a new approach that improves the interpretation of QSAR models while 

preserving their predictive power. Combined structural alerts derived by CWAS consider the 

mutual influence of the fragments in the molecule and are useful for both effective design 

and safety assessment of drugs as well as for mechanistic interpretation of their action.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Manhattan plot for Ames mutagenicity showing minimal set of 76 chemical fragments (in 

green) predictive of mutagenicity in all folds. Other fragments are shown in either black or 

gray (alternately colored for visual clarity).
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Figure 2. 
Results of the co-occurrence analysis of chemical fragments for the Ames data set. (A) 

Heatmap shows the joint presence of 76 fragments (rows) in the mutagenic and non-

mutagenic compounds (columns). (B) Triangle map shows the pairwise co-occurrence 

determined by Fisher’s exact test: low adjusted p-values (< 0.1) were shaded for significance 

while insignificant values were unshaded. (C) The 76 fragment nodes were connected if they 

co-occurred with significant frequency (p-value < 0.1). From this network graph, the 

Low et al. Page 17

J Chem Inf Model. Author manuscript; available in PMC 2019 November 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



walktrap community detection algorithm identified seven distinct subnetworks (or 

communities) of frequently co-occurring fragments (represented by different colors).
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Figure 3. 
Precision of five structural alerts. Precision of each structural alert increases with the number 

of co-occurring fragments used to construct the structural alert.
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Figure 4. 
Results of co-occurrence analysis of chemical fragments in the SJS data set. (A) Adjusted p-

values show the association between pairwise co-occurrence of the 29 fragments and SJS 

activity. Rows show the first 28 fragments while columns show the 2nd to 29th fragment to 

avoid showing the self-identity diagonal (i.e., pairwise co-occurrence with itself). (B) 

Fragment nodes are connected if significantly co-occurring (adjusted p-value < 0.1). The 

network graph is partitioned into densely connected subnetworks or communities C1–5 of 

co-occurring fragments using walktrap community detection. (C) As an example, the SA 
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reconstructed from the fragments in communities C1 (sulfonylarylamine) and C2 (beta-

lactam with adjacent sulfur) are shown. The heatmap demonstrates the joint presence of the 

co-occurring fragments within a community (e.g., C1, sulfonylarylamine), is more likely 

among SJS-inducing drugs than among non-inducers (fragments are mostly absent).
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Figure 5. 
(A) Interaction network plot showing synergistic (red) and antagonistic (green) interactions 

among selected chemical fragments in the Ames dataset; (B) Example of synergistic and 

antagonistic interactions affecting mutagenicity.
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Figure 6. 
Structural alerts for SJS. Left column shows expert-based structural alerts and right column 

shows structural alerts revealed by QSAR analysis.
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Table 1.

Parallels between GWAS and QSAR.

GWAS QSAR

Samples Patients Chemical compounds

Features Single Nucleotide Polymorphisms (SNPs)/loci Chemical descriptors e.g., fragments)

Response Phenotype (e.g., disease/no disease) Activity (e.g., active/inactive)

Objectives Identify SNPs/loci associated with phenotype
Predict phenotype from SNPs/loci

Identify structures associated with activity
Predict activity from structures
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Table 2.

Principal steps of CWAS: (i) QSAR modeling; (ii) fragment selection; (iii) co-occurrence analysis; and (iv) 

interaction analysis.

Step Method Output

QSAR modeling Random forest (RF), following best practices for model 
development and validation

Predictive QSAR models with external CCR, 
sensitivity, specificity, and AUC above 0.6

Fragment selection Variable importance on RF Minimum set of fragments predictive of activity

Co-occurrence analysis Fisher’s exact test and network clustering by walktrap 
community

Structural alerts

Interaction analysis Lasso regression with 2-way interaction Combined effect of interacting fragments on activity
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Table 3.

Prediction performance (estimated by 5-fold external CV) of QSAR models developed with all the fragments 

(step 0) and with reduced number of fragments (step 1).

Mutagenicity dataset (n=5,439) SJS dataset (n=364)

Full model
(967 fragments)

Reduced model
(76 fragments)

Full model
(1,091 fragments)

Reduced model
(29 fragments)

Balanced accuracy 0.85 ± 0.005 0.87 ± 0.005 0.71 ± 0.02 0.74 ± 0.02

Sensitivity 0.78 ± 0.005 0.81 ± 0.005 0.74 ± 0.04 0.77 ± 0.04

Specificity 0.92 ± 0.009 0.92 ± 0.009 0.69 ± 0.03 0.71 ± 0.03

AUC 0.91 ± 0.004 0.94 ± 0.003 0.77 ± 0.02 0.81 ± 0.02

n = number of compounds.
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