
Chemoenzymatic and Template-Directed Synthesis of 

Bioactive Macrocyclic Peptides 

 
 
 
 
 

Dissertation 

zur Erlangung des Doktorgrades 

der Naturwissenschaften 

(Dr. rer. nat.) 

 
 
 
 
 

dem 

Fachbereich Chemie 

der Philipps-Universität Marburg 

vorgelegt von 

 
 
 
 
 
 
 
 

Jan Grünewald 

 

aus Fritzlar 

 
 
 
 
 
 
 
 
 

Marburg/Lahn 2005 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Vom Fachbereich Chemie 

der Philipps-Universität Marburg als Dissertation 

am 15. November 2005 angenommen. 

 

Erstgutachter : Prof. Dr. M. A. Marahiel (Philipps-Universität, Marburg) 

Zweitgutachter : Prof. Dr. T. Schrader (Philipps-Universität, Marburg) 

 

Tag der Disputation: 15. Dezember 2005 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        To my parents... 
 
 
 



Summary 
Nonribosomal peptide synthetases (NRPS) are large multienzyme complexes, which 
simultaneously represent template and biosynthetic machinery for the production of 
structurally diverse peptidic products that feature high pharmacological and biological 
activities. A key determinant of nonribosomal peptide product activity is the common 
macrocyclic structure of many compounds. Macrocyclization is catalyzed in the last step of 
nonribosomal synthesis by thioesterase (TE) domain activity. The herein presented work 
describes the first biochemical characterization of a TE domain of a streptomycete, the 
thioesterase of the S. coelicolor calcium-dependent antibiotic (CDA) synthetase. This 
recombinant cyclase catalyzes macrolactone formation of linear peptidyl-thioesters based on a 
sequence analogous to natural CDA. For substrate mimics, the phosphopantetheine cofactor 
was successfully substituted by various thioester leaving groups. The best rates for cyclization 
were determined for the thiophenol leaving group, revealing that chemical reactivity is more 
important for enzyme acylation than cofactor recognition. Interestingly, CDA cyclase 
catalyzes the formation of two regioisomeric macrolactones, which arise from simultaneous 
nucleophilic attack of the two adjacent Thr2 and Ser1 residues onto the C-terminal Trp11 of the 
acyl-enzyme intermediate. To further explore this relaxed regioselectivity of CDA TE, 
alterations to the peptide backbone and the fatty acyl chain were made. Substitution of either 
Thr2 or Ser1 by alanine led to selective formation of a decapeptide or undecapeptide lactone 
ring. However, the stereoselectivity of CDA cyclase was fully retained, thus accepting only L-
configured Ser1 and Thr2 for cyclization. Elongation of the fatty acyl group by four methylene 
groups to the natural length (C6) of CDA turned the relaxed regioselectivity into a strict 
regioselectivity, yielding solely the decapeptide lactone ring, along with decreased hydrolysis 
of the peptidyl-thioester substrate. This provides evidence for the crucial role of the lipid 
chain in controlling the regio- and chemoselectivity of TE-mediated macrocyclization. 
CDA belongs to the group of acidic lipopeptides, which includes the clinically approved 
antibiotic daptomycin. To evaluate the capability of CDA cyclase for the chemoenzymatic 
generation of daptomycin, six daptomycin-specific residues were successively incorporated 
into linear CDA undecapeptidyl-thioesters. All these six substrates were efficiently cyclized 
by CDA TE. Simultaneous incorporation of all six of these residues into the peptide backbone 
and elongation of the N-terminus of CDA by two residues finally yielded a daptomycin 
derivative that lacked only the β-methyl group of L-3-methylglutamate. In accordance with 
acidic lipopeptide antibiotics, the bioactivity of the chemoenzymatic assembled daptomycin 
analogue is dependent on the presence of calcium ions. To identify calcium-binding sites in 
the lipo-tridecapeptide chain of the daptomycin analogue, all four acidic residues were 
successivelyT substituted by either Asn or Gln. Bioactivity studies revealed that only Asp  and 
Asp  are essential for antimicrobial potency. Moreover, these two residues are strictly 
conserved among all other nonribosomal acidic lipopeptides and the calcium-binding EF-
motif of ribosomally assembled calmodulin. 
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The final part of this work is dedicated to the selective detection of peptide cyclization by 
fluorescence resonance energy transfer (FRET). In this approach, peptide cyclization 
catalyzed by NRPS-derived TE domains brings the donor Trp and the acceptor Kyn 
(kynurenine) in sufficiently close proximity to enable efficient FRET. Theses fluorophores 
were readily incorporated into the peptide backbone by solid-phase peptide chemistry and 
show excellent spectral overlap between the donor emission and acceptor absorption. 
Application of this method provided a tool to track TE-mediated peptide cyclization in real-
time. Furthermore, picomolar detection limits of cyclopeptides were realized, thereby 
facilitating kinetic studies of TE-mediated macrocyclization. The general utility of FRET-
assisted detection of cyclopeptides was demonstrated for two cyclases, namely tyrocidine 
(Tyc) TE, and CDA TE. For the latter cyclase, this approach was combined with site-directed 
affinity labelling, opening the possibility for high-throughput enzymatic screening. 

http://dict.leo.org/se?lp=ende&p=/Mn4k.&search=successively
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Zusammenfassung 

Nichtribosomale Peptidsynthetasen (NRPS) sind Multienzymkomplexe, die gleichzeitig Templat und 
biosynthetische Maschinerie für die Herstellung strukturell diverser peptidischer Produkte mit oftmals 
bedeutender pharmakologischer und biologischer Aktivität repräsentieren. Ein Schlüsselfaktor für die 
Bioaktivität nichtribosomaler Peptide ist die makrozyklische Struktur vieler dieser Verbindungen. 
Makrozyklisierung wird durch Thioesterase- (TE-) Domänen im letzten Schritt der nichtribosomalen 
Synthese katalysiert. Diese Arbeit beschreibt die erste biochemische Charakterisierung einer TE-
Domäne eines Streptomyceten: Die Thioesterase des kalzium-abhängigen Antibiotikums (CDA) von 
S. coelicolor. Diese Zyklase katalysiert die Ringbildung linearer Peptidylthioester, die auf einer zu 
CDA analogen Sequenz basieren. Hierzu wurde der natürliche Phosphopantethein-Kofaktor durch 
verschiedene Abgangsgruppen ersetzt. Die höchsten Zyklisierungsraten wurden für die Thiophenol-
Abgangsgruppe erzielt. Chemische Reaktivität ist demnach für eine effiziente Enzym-Acylierung 
wichtiger als Kofaktorerkennung. Die CDA-Zyklase katalysiert die Bildung zweier regioisomerer 
Laktone durch konzertierten Angriff der benachbarten Reste Thr2 und Ser1 auf das C-terminale Trp11 
des Acyl-Enzym-Intermediates. Um diese relaxierte Regioselektivität der CDA TE eingehender zu 
untersuchen, wurden Änderungen im Peptidrückgrat und der Fettsäure vorgenommen. Substitution 
von Thr2 oder Ser1 durch Alanin führte zur selektiven Bildung eines Dekapeptid- oder Undekapeptid-
Ringes. Die Stereoselektivität der Zyklase blieb voll erhalten, und nur L-konfiguriertes Ser1 bzw. Thr2 
wurde toleriert. Elongation der Fettsäure um vier Methyleneinheiten auf die natürliche Länge (C6) von 
CDA wandelte die relaxierte in eine strikte Regioselektivität um, was zur ausschließlichen Bildung des 
Dekapeptid-Laktons führte. Zudem wurde weniger Hydrolyse beobachtet. Diese Ergebnisse 
verdeutlichen den Einfluss der Fettsäure auf die Regio- und Chemoselektivität der TE-vermittelten 
Makrozyklisierung. 
CDA gehört, wie das klinisch zugelassene Antibiotikum Daptomycin, den sauren Lipopeptiden an. 
Um das Potential der CDA-Zyklase zur chemoenzymatischen Synthese von Daptomycin abschätzen 
zu können, wurden sukzessive sechs Daptomycin-spezifische Reste in lineare CDA-Undekapeptidyl-
Thioester eingebaut. Alle sechs Substrate wurden durch die CDA TE zyklisiert. Gleichzeitiger Einbau 
aller sechs Reste in das CDA-Peptidrückgrat und Verlängerung des N-Terminus um zwei Reste führte 
schließlich zur Synthese eines Daptomycin-Analogons, dem nur die β-Methylgruppe von L-3-
Methylglutamat fehlte. In Übereinstimmung mit sauren Lipopeptiden war die Bioaktivität des 
chemoenzymatisch hergestellten Daptomycin-Derivats von der Anwesenheit von Kalzium abhängig. 
Um Kalzium-Bindungsstellen in dem Daptomycin-Analogon zu identifizieren, wurden sukzessive alle 
vier sauren Reste gegen Asn oder Gln ausgetauscht. Bioaktivitätstests wiesen die essentielle 
Bedeutung von Asp7 und Asp9 für die antimikrobielle Potenz nach. Zudem sind diese Reste in allen 
nichtribosomalen sauren Lipopeptiden und dem Kalzium-bindenden EF-Motiv ribosomal-hergestellten 
Calmodulins konserviert. 
Der letzte Teil dieser Arbeit beschreibt die Detektion von Peptidzyklisierung durch Fluoreszenz-
Resonanz-Energie-Transfer (FRET). Hierbei werden der Donor Trp und der Akzeptor Kyn 
(Kynurenin) durch TE-Domänen-katalysierte Peptidzyklisierung räumlich so nahe zusammengebracht, 
das effizienter FRET ermöglicht wird. Die beiden Fluorophore konnten mittels Festphasensynthese in 
das Peptidrückgrat eingebaut werden und zeigen exzellente spektrale Überlappung zwischen Donor-
Emission und Akzeptor-Absorption. Mittels dieser Methode konnte TE-vermittelte Zyklisierung in 
Echtzeit verfolgt werden. Zudem konnten Zyklopeptide im picomolaren Bereich detektiert werden, 
was kinetische Studien TE-katalysierter Makrozyklisierung erleichterte. Die generelle Anwendbarkeit 
FRET-unterstützter Detektion von Zyklopeptiden wurde für zwei Zyklasen gezeigt: Tyrocidin (Tyc) 
TE und CDA TE. Bei letzterer wurde diese Methode mit ortsgerichtetem Affinitätslabelling 
kombiniert, was neue Möglichkeiten für das Hochdurchsatz-Enzymscreening eröffnete. 
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1. Abbreviations 

aa   amino acid 
Ac   acetyl 
AcOH   acetic acid 
ACP   acyl carrier protein 
A-domain  adenylation domain 
Aloc   allyloxycarbonyl 
Amp   ampicillin 
AMP   adenosine-5’-monophosphate 
ADP   adenosine-5’-diphosphate 
ATP   adenosine-5’-triphosphate 
B   base 
Boc   tert-butyloxycarbonyl 
bp   base pairs 
BSA   bovine serum albumin 
calcd.   calculated  
CDA   calcium dependent antibiotic 
C-domain  condensation domain 
CoA   coenzyme A 
COM domain  communication-mediating domain 
CP   carrier protein 
cy   cyclic 
Cy-domain  heterocyclization domain 
Da   Dalton 
DCC   dicyclohexylcarbodiimide 
DCM   dichloromethane 
DEBS   6-deoxyerythronolide B synthase 
Dec   decanoyl 
DHB   dihydroxybenzoyl 
DMSO   dimethyl sulfoxide 
DIPEA   diisopropylethylamine 
DMF   N,N-dimethylformamide 
dNTP   2‘-desoxynucleosid-5‘-triphosphate 
E-domain  epimerization domain 
EDTA   ethylene-diamino-tetraacetic acid 
EK   enterokinase 
Em   emission 
ESI-MS  electron spray ionization – mass spectrometry 
eq.   equivalent 
Ex   excitation 
FAAL    fatty acyl-AMP ligase  
FAS   fatty acid synthase 
Fen   fengycin 
Fig.   Figure 
FMN   flavin mononucleotide 
Fmoc   9-fluorenylmethyloxycarbonyl 
FPLC   fast performance liquid chromatography 
FRET   fluorescence resonance energy transfer 
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HBTU 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium 
hexafluorophosphate 

Hepes   2-N’-[N-(2-hydroxylethyl)-piperazinyl]-ethansulfonic acid 
Hex   hexanoyl 
HOBt   1-hydroxybenzotriazole 
HPLC   high performance liquid chromatography 
ICL    isochorismate lyase 
IMAC   immobilized metal ion affinity chromatography  
IPTG   isopropyl-β-D-thiogalactoside 
Kan   kanamycin 
kb   kilo base pairs 
LB medium   Luria-Bertani medium 
LC/MS  liquid chromatography/mass spectrometry 
ln   linear 
MALDI-TOF  matrix assisted laser desorption ionization-time of flight 
MCS   multiple cloning site 
MES   2-morpholinoethanesulfonic acid 
MIC   minimal inhibitory concentration 
MS   mass spectrometry 
Myc   mycosubtilin 
n. d.   not detected 
N-Mt-domain  N-methylation domain 
NMR   nuclear magnetic resonance 
NRPS   nonribosomal peptide synthetases 
NTA   nitrilotriacetate 
OD   optical density 
OSu   hydroxysuccinimide ester 
Ox-domain  oxidation domain 
PAGE   polyacrylamide gel electrophoresis 
PCP   peptidyl carrier protein or thiolation domain 
PCR   polymerase chain reaction 
PEGA   poly(ethylene glycol)acrylamide copolymer 
PKS   polyketide synthase 
PLP   pyridoxal phosphate 
PMP  pyridoxamine phosphate 
ppan   4’-phosphopantetheine 
PPi   inorganic pyrophosphate 
PyBOP benzotriazole-1-yl-oxy-tris-pyrrolidino-phosphonium 

hexafluorophosphate 
R-domain reductase domain 
rpm   rounds per minute 
RT    room temperature 
SAM   S-adenosylmethionine 
SB   streptogramin B 
SDS   sodium dodecylsulfate 
Sfp   4’-phosphopantetheine transferase involved in surfactin production 
SNAC   N-acetylcysteamine 
SPPS   solid phase peptide synthesis 
Srf   surfactin 
Syr   syringomycin 
tBu   tert-butyl 
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TCEP   tris(carboxyethyl)phosphine 
T-domain  thiolation domain or peptidyl carrier protein 
TE-domain  thioesterase domain 
TFA   trifluoroacetic acid 
TFE   trifluoroethanol 
THF   tetrahydrofuran 
TIPS   triisopropylsilane 
tR   retention time 
Tris   tris-(hydroxymethyl)-aminomethane 
Trt   trityl 
Tyc   tyrocidine  
V   volts 
v/v   volume per volume 
wt   wild type 
w/v   weight per volume 
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Table 1.1: Amino acids: Abbreviations and molecular weights 
 
 
amino acid 
 

3-/1-letter code MW [g/mol] 

alanine Ala A   89 
arginine Arg R 174 
asparagine Asn N 132 
aspartate Asp D 133 
cysteine Cys C 121 
2,3-diaminobutyrate Dab  118 
(Z)-dehydrotryptophan dTrp  202 
glutamine Gln Q 146 
glutamate Glu E 147 
glycine Gly G   75 
histidine His H 155 
3-hydroxyasparagine hAsn  148 
4-hydroxyphenylglycine Hpg  167 
isoleucine Ile I 131 
kynurenine Kyn U 208 
leucine Leu L 131 
lysine Lys K 146 
methionine Met M 149 
3-methylaspartate mAsp  147 
3-methylglutamate mGlu  161 
3-methoxyaspartate omAsp  163 
ornithine Orn O 132 
phenylalanine Phe F 165 
phenylglycine Phg  151 
3-phosphohydroxyasparagine  pAsn  228 
pipecolic acid Pip  129 
proline Pro P 115 
sarcosine Sar  89 
serine Ser S 105 
threonine Thr T 119 
tryptophan Trp W 204 
tyrosine Tyr Y 181 
valine Val V 117 
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2. Introduction 

Natural products that are produced by microorganisms have for decades attracted considerable 

attention for modern therapy. The bioactivity of these structurally complex substances reaches 

from antibiotic over immunosuppressive, cytostatic to antitumor [1]. Not only have these 

secondary metabolites been elaborated for their dedicated function over eons of evolution, 

they also represent promising scaffolds for the development of novel drug leads with 

improved or altered activities. Optimization can be achieved by the introduction of artificial 

modifications, which yields semisynthetic derivatives of existing structures, although total 

synthesis of complete natural product-based compounds is also envisioned [2, 3]. 

Peptidic products represent a large subclass of highly diverse natural products, many of which 

display therapeutically useful activity. They can be classified into different groups according 

to their synthesis pathway. The lantibiotics, for example, are ribosomally synthesized 

antimicrobial agents, that are posttranslationally modified to their biologically active forms 

[4]. Yet another and widespread class of therapeutically important peptides are produced 

nonribosomally by large multienzyme complexes, the nonribosomal peptide synthetases 

(NRPS) [5, 6]. In contrast to ribosomal peptide synthesis, nonribosomally assembled peptides 

contain not only the common 20 amino acids, but hundreds of different building blocks. 

Moreover, these secondary metabolite peptides contain unique structural features such as D-

amino acids, N-terminally attached fatty acid chains, N- and C-methylated residues, N-

formylated residues, heterocyclic elements, glycosylated amino acids as well as 

phosphorylated residues [5]. In recent research using both genetic and biochemical methods, 

experiments have revealed deep insights into the mechanism of nonribosomal peptide 

synthesis. In many cases it was possible to alter existing nonribosomally produced peptides by 

the combined action of chemical peptide synthesis and subsequent enzyme catalysis. This 

chemoenzymatic approach, along with a brief overview of the nonribosomal peptide synthesis 

machinery, will be discussed in more detail later in this introduction. Another focus of this 
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introduction is the labeling of NRPS-derived proteins by site-specific posttranslational 

modification. 

2.1. Structural Rigidity of Nonribosomally Synthesized Peptides 

Selected structures of some nonribosomally produced peptides are shown in Figure 2.1. A 

common feature of these compounds is their constraint structure, which ensures bioactivity by 

a precise orientation required for interaction with a dedicated molecular target [7]. In some 

cases, these constraints are imposed by heterocyclization. For instance, the iron-chelating 

siderophore vibriobactin 1 comprises two oxazoline rings, both of which originate from 

threonine residues [8]. This oxazoline ring can be further oxidized to yield oxazole, as found 

in the potent telomerase inhibitor telomestatin 2 [9]. In addition to oxazoles, telomestatin also 

contains a thiazoline ring that is synthesized by the heterocyclization of cysteine. In the case 

of the antibiotic bacitracin 3, this heterocyclic element mediates a specific cation-dependent 

complexation of the phosphate group of the C55 lipid carrier, leading to depletion of this 

carrier and subsequent blocking of bacterial cell wall synthesis [10, 11]. An additional 

strategy to modify and thus constrain the conformation of nonribosomal peptides is 

exemplified by the glycopeptide antibiotics of the vancomycin 4 and teicoplanin class [12]. 

These closely related compounds contain a homologous heptapeptide scaffold, whose 

backbone is constrained by extensive oxidative crosslinking. The joining of electron-rich 

aromatic rings by aryl ether linkages and direct C-C coupling convert these acyclic, floppy 

heptapeptides into rigid, cup-shaped structures. The constraint glycopeptides sequester the N-

acyl-D-Ala-D-Ala termini of bacterial peptidoglycan strands with five hydrogen bonds and 

inhibit the transglycosylation and/or transpeptidation steps of bacterial peptidoglycan 

synthesis [13, 14]. 
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Figure 2.1: A selection of nonribosomally synthesized peptides. Characteristic structural 
features that confer rigidity to the peptide backbone are highlighted. 
 
Macrocyclization is another common constraint of nonribosomally synthesized peptides 

whereby parts of the molecule distant in the linear peptide precursor are covalently linked to 

one another [7]. Many cyclization strategies are known so far, giving rise to the high diversity 

of nonribosomal cyclopeptides. For instance, the intramolecular capture by amines leads to 

peptidolactams, whereas cyclization via hydroxyl substituents leads to peptidolactones. The 

former strategy is observed for the peptide antibiotics tyrocidine A 5, bacitracin 3 and 

gramicidin S 6 [15]. In the case of tyrocidine A, amide bond formation occurs head-to-tail 
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between the N-terminal amino group and the C-terminus of the decapeptide. The 

dodecapeptide bacitracin instead has a lariat structure, with the heptapeptide lactam ring 

arising from capture of the C-terminal carbonyl group by the ε-amino group of Lys6. 

Moreover, the macrolactam gramicidin S is composed of two identical pentapeptides bridged 

head-to-tail yielding a symmetric dilactam ring. For macrolactones, analogous cyclization 

strategies lead to branched-cyclic structures as seen for the antifungal lipopeptide fengycin 7 

and the biosurfactant surfactin A 8 [15]. The former depsipeptide is cyclized via the side 

chain of a hydroxy amino acid such as tyrosine, whereas the latter compound is cyclized via a 

β-hydroxylated fatty acid moiety. Finally, the iron-chelating siderophore bacillibactin 9 is a 

cyclic trilactone, that arises from cyclotrimerization of threonine [16]. 

2.2. Diversity of Nonribosomal Peptides: The Acidic Lipopeptide Antibiotics 

The structural diversity of nonribosomally produced peptides is best exemplified for the class 

of acidic lipopeptide antibiotics, including the calcium-dependent antibiotic (CDA) from 

Streptomyces coelicolor [17], daptomycin from Streptomyces roseosporus [18], A54145 from 

Streptomyces fradiae [19] as well as friulimicins and amphomycins from Actinoplanes 

friuliensis [20]. All of these lipopeptides originate from streptomycetes, which produce over 

two-thirds of naturally derived antibiotics [21]. Each member of this class of lipopeptides can 

be subdivided into various individual compounds that differ in the structure of the N-

terminally attached fatty acid moiety and/or the peptide backbone (Figure 2.2). For example, 

A54145 is a complex of eight lipopeptides which are acylated with either a 2-decanoyl, n-

decanoyl or undecanoyl lipid side chain. These factors also contain four different cyclic 

peptide nuclei which vary in glutamate/3-methylglutamate (position 12) and/or 

valine/isoleucine (position 13) substitutions [19]. The diversity of acidic lipopeptide 

antibiotics is further amplified by the occurrence of D-configured as well as nonproteinogenic 

amino acids, including D-4-hydroxyphenylglycine, D-3-phosphohydroxyasparagine, 3-
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methylglutamate, D-pipecolic acid, kynurenine, and many more. Interestingly, all of the 

acidic lipopeptide antibiotics are comprised of a branched cyclic decapeptide lactone ring or 

lactam ring. The positions of the D-configured amino acids are strictly conserved in this 

macrocyclic scaffold. Moreover, two aspartic acid residues are found in equivalent ring 

positions of the macrolactone or macrolactam ring. Recently, a genomics-based approach 

revealed the existence of numerous uncharacterized lipopeptide biosynthetic gene clusters, 

indicating that much more antibiotics of this class have yet to be identified [22]. 

 

Figure 2.2: Diversity of acidic lipopeptide antibiotics. At least 27 compounds have been 
characterized so far. CDA is produced by Streptomyces coelicolor, friulimicins and 
amphomycins by Actinoplanes friuliensis, A54145 by Streptomyces fradiae, and daptomycin 
is derived from Streptomyces roseosporus. Conserved acidic residues are indicated in red and 
D-configured/achiral residues at equivalent positions are highlighted in blue. 
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The therapeutic importance of the acidic lipopeptide antibiotics is best exemplified for 

daptomycin. This tridecapeptide is a member of the A21978C complex produced by S. 

roseosporus (Figure 2.2). Although the major components, A21978C1-3, have 11-, 12- or 13-

carbon fatty acids, the yield of daptomycin (10-carbon fatty acid) from fermentations is 

significantly increased by adding decanoic acid to the medium. Daptomycin, under the trade 

name CubicinTM, exhibits bactericidal activity against resistant pathogens for which there are 

very few therapeutic alternatives, such as vancomycin-resistant enterococci (VRE), 

methicillin-resistant Staphylococcus aureus and penicillin-resistant Streptococcus 

pneumoniae (PRSP) [23]. At present, spontaneous acquisition of resistance to daptomycin is 

rare, which might be due to a unique mechanism of action [18]. 

Although the mechanism of action of daptomycin is not yet fully understood, it has been 

clearly established that calcium ions play an essential role in antimicrobial potency [24, 25]. 

Based on detailed NMR studies, Jung et al. proposed that calcium binding to daptomycin 

increases its amphipathicity due to the redistribution of charged side chains toward the top of 

the ring structure and the clustering of the lipid chain with the hydrophobic Trp1 and Kyn13 

residues at the bottom of the ring structure (Figure 2.3) [24]. These changes in the daptomycin 

structure also led to a 5% increase in the solvent-exposed hydrophobic surface. Furthermore, 

the total charge of the Ca2+-conjugated daptomycin (-1) is lower than for Ca2+-free 

daptomycin (-3) at neutral pH. Therefore, the increased amphipathicity and solvent exposed 

hydrophobic surface as well as the decreased total charge may facilitate interaction of Ca2+-

conjugated daptomycin with either neutral or acidic bacterial membranes. Upon association 

with cytoplasmatic membranes, a second Ca2+-dependent structural transition is proposed that 

promotes deeper insertion of daptomycin into the lipid bilayer [24]. This is followed by large 

membrane perturbations, including lipid flip-flop and membrane leakage. Formation of any of 

these structures presumably disrupts the functional integrity of the membrane leading to cell 

death of Gram-positive bacteria. 
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Figure 2.3: Surface representation of Ca2+-free (left) and Ca2+-conjugated (right) daptomycin 
[24]. Negative charges are indicated in red, positive charges in blue and uncharged regions in 
white. 
 

Although some of the key structural prerequisites for daptomycin's antibacterial activity have 

been identified, the exact nature of the molecular targets within the cytoplasmatic membrane 

has yet to be established. However, this two-step model of the mechanism of action provides 

an initial step toward understanding how this antibiotic gains access to and interacts with 

bacterial membranes. Since the other acidic lipopeptide antibiotics CDA, A54145, 

friulimicins, and amphomycins share key structural features with daptomycin; they might 

undergo similar interactions with calcium ions and bacterial membranes. Therefore, it is 

essential to further probe the structure-function relationship of all acidic lipopeptide 

antibiotics. Using this knowledge will enable the design of new and improved derivatives of 

this remarkable class of antibiotics. However, in order to engineer more potent variants, one 

has to understand the biosynthesis of these complex compounds. This will be the focus of the 

following section. 
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2.3. Production of Acidic Lipopeptides by Nonribosomal Peptide Synthetases (NRPSs) 

Despite the structural diversity of the nonribosomally produced acidic lipopeptide antibiotics, 

these secondary metabolites share a common mode of synthesis, the so-called “multiple 

carrier thio-template mechanism” [6, 26, 27]. According to this model, peptide synthesis is 

performed by nonribosomal peptide synthetases (NRPSs). Figure 2.4 shows the NRPS 

assembly lines for daptomycin, A54145 and CDA. Detailed analysis of the daptomycin gene 

cluster revealed that the daptomycin biosynthetic system consists of three distinct NRPSs, 

namely DptA (684 kDa), DptBC (815 kDa), and DptD (265 kDa). In contrast, the closely 

related A54145 biosynthetic system comprises 4 NRPSs (LptA, LptB, LptC, and LptD). It is 

assumed that DptBC arises from a fusion of two NRPSs similar to LptB and LptC [28]. 

Finally, the nonribosomal CDA biosynthetic system is a multienzyme complex consisting of 

three enzymatic subunits, CDA I (799 kDa), CDA II (395 kDa), and CDA III (259 kDa) [17]. 

The multifunctional NRPSs of daptomycin, A54145, and CDA are organized into sets of 

repetitive catalytic units called modules (Figure 2.4). Each module is responsible for the 

specific incorporation of one residue into the peptide backbone [29]. Therefore, the number of 

modules within the NRPSs exactly matches the number of residues of the corresponding 

peptides. Moreover, the order of modules corresponds directly to the primary sequence, 

because nonribosomal peptide synthesis proceeds colinearly in an N- to C-terminal direction 

[30]. 

The proper coordination of communication between partner NRPSs in trans (i.e., last module 

of DptA and first module of DptBC) is facilitated by short regions at the C and N termini of 

the corresponding proteins [31]. These communication-mediating (COM) domains, also 

referred to as docking domains, comprise 15-30 amino acid residues and prevent undesired 

interactions between mismatching NRPSs (i.e., last module of DptA and first module of 

DptD), which would lead to the formation of truncated peptide products. Sequence alignments 
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Figure 2.4: Comparison of enzymatic subunits of the daptomycin (DptA, BC and D), A54145 
(LptA, B, C and D), and CDA (CDAI, II and III) NRPSs that are responsible for the synthesis 
of the respective peptide cores. Parts of the peptide cores that are synthesized by their 
dedicated enzymatic subunits are surrounded by red dotted lines. The modules indicated in 
red and white are subdivided into catalytically independent domains responsible for substrate 
recognition/activation (A, adenylation-domain), binding (PCP, peptidyl-carrier protein), 
elongation (C, condensation-domain), epimerization (E, epimerization-domain), N-
methylation (M, N-methyltransferase) and release by cyclization (TE, thioesterase-domain). 
FA, fatty acid; hAsn, 3-hydroxyasparagine; HPG, 4-hydroxyphenylglycine; mGlu, 3-
methylglutamate; Sar, sarcosine; omAsp, 3-methoxyaspartate; Orn, ornithine; Kyn, 
kynurenine. 
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revealed that the overall identity among COM domains is low, reflecting the high degree of 

specialization for their dedicated partner COM domains. First structural insights into the 

interaction between multimodular subunits were gained from NMR spectroscopy on related 

polyketide synthases (PKS) [32]. Studies of fused docking domains of the 6-

deoxyerythronolide B synthase (DEBS) multienzyme subunits DEBS 2 and DEBS 3 revealed 

that protein-protein recognition is primarily mediated by interhelical contacts. The most 

important determinant of docking is a set of conserved hydrophobic interactions between four 

α-helices, which together form the core of a parallel four-helix bundle. In addition to the 

hydrophobic interface, two partially buried salt bridges between two of these α-helices may 

play a role in stabilizing this docking interaction. Furthermore, such ionic contacts might 

contribute to the destabilization of misdocked partner PKS subunits. The knowledge of the 

structural aspects of intersubunit communication may contribute to engineering of optimized 

protein-protein interfaces between NRPS, PKS, and mixed NRPS/PKS systems. 

NRPS modules are further subdivided into domains that catalyze the single reaction steps 

such as amino acid activation, covalent binding of activated residues, amide bond formation, 

epimerization of covalently bound residues, and peptide release from the NRPS complex. 

These autonomous catalytic units will be discussed below. 

 

2.3.1. Principles of Nonribosomal Peptide Synthesis: Dissecting the Modules into Domains 

At least three domains are necessary for the nonribosomal production of peptides (Figure 2.5), 

the adenylation-domain (A-domain), the peptidyl-carrier protein (PCP), and the condensation-

domain (C-domain). The A-domain (ca. 550 aa) controls the first step of nonribosomal 

peptide synthesis, namely the specific recognition and activation of the dedicated amino acid 

[33, 34]. This domain catalyzes two reactions. First, the A-domain selects the cognate 

building block from the pool of available substrates, followed by activation as an aminoacyl 

adenylate intermediate (Figure 2.5). The corresponding reaction in ribosomal synthesis is 
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performed by aminoacyl-tRNA-synthetases, although these enzyme families share neither 

sequence nor structural relations [35]. Second, the activated aminoacyl adenylate is 

transferred onto the thiol-group of the ppan cofactor of the PCP, which is the only NRPS 

domain without autonomous catalytic activity. 

 

Figure 2.5: Chemical principles of nonribosomal peptide synthesis. Domains in action are 
indicated in red and the respective crystal structure is shown above. First, the A-domain 
specifically recognizes a dedicated amino acid and catalyses formation of the aminoacyl 
adenylate under consumption of ATP. Second, the activated aminoacyl adenylate is tethered 
to the free thiol group of the PCP-bound ppan cofactor. Third, the C-domain catalyzes peptide 
elongation. Here, the nucleophilic amine of the acceptor substrate nucleophilically attacks the 
electrophilic thioester of the donor substrate (a, acceptor site; d, donor site). 
The crystal structure of the A-domain is derived from the phenylalanine-activating A-domain 
(PheA) of the first module of gramicidin S synthetase of B. brevis [44]. The NMR-structure of 
the PCP is derived from the third module of the B. brevis tyrocidine synthetase [45] and the 
C-domain is derived from the crystal structure of VibH, a stand alone C-domain of the V. 
cholerea vibriobactin synthetase [46]. 
 

The PCP (ca. 80 aa) facilitates the ordered transport of substrates and elongation 

intermediates to the catalytic centers with all intermediates covalently tethered to the 20 Å 

long 4’-phosphopantetheine (ppan) cofactor (Figure 2.5) [36, 37]. This principle facilitates 

substrate channeling and overcomes diffusive barriers, therefore maximizing the catalytic 

efficiency of the NRPS-mediated biosynthesis [5]. The ppan cofactor is post-translationally 

transferred from CoA to a conserved serine residue of the PCP. This apo-to-holo conversion 
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of the PCP is mediated by NRPS associated 4’-phosphopantetheinyl transferases (see also 

chapter 2.6) [38]. 

Formation of the peptide bond in nonribosomal peptide biosynthesis is mediated by the C-

domain (ca. 450 aa) [39, 40]. This domain catalyzes the nucleophilic attack of the 

downstream PCP-bound amino acid with its α-amino group on the electrophilic thioester of 

the upstream PCP-bound amino acid or peptide (Figure 2.5). The directionality of this process 

is realized by donor and acceptor sites on the C-domain for electrophiles and nucleophiles, 

respectively [30]. According to the multiple carrier thio-template mechanism [41], the 

acceptor site binds the nucleophile with high affinity until the incoming electrophile 

completes the condensation process. Biochemical characterization of different C-domains 

revealed that the acceptor site discriminates against amino acids of opposite stereochemistry 

and with non-cognate side chains [42, 43]. In contrast, the donor site is more tolerant to the 

respective electrophile. Nevertheless, further investigations with the C-domain of tyrocidine 

elongation module 5 indicated that the donor position exhibits stereoselectivity towards the C-

terminal residue for condensation reactions [42]. This shows that, in addition to A-domains, 

C-domains serve as a selectivity filter in nonribosomal peptide synthesis. 

 

2.3.2. Proofreading of Nonribosomal Peptide Synthesis 

The low substrate specificity of ppan transferases causes undesired misacylation of PCPs. 

Since the bacterial cell produces a large fraction of CoA in the form of acyl-CoAs [47], it is 

therefore likely that these enzymes also modify the PCPs of NRPSs with acylated ppan 

cofactors. Such misprimed PCPs are not recognized by later-acting domains, thereby blocking 

nonribosomal peptide synthesis. In order to regenerate these misprimed NRPS templates, a 

type II  thioesterase (TEII) is assumed to catalyze hydrolysis of the undesired acyl groups 

[48]. Moreover, a recent study suggests, that the TEII also hydrolyzes incorrectly loaded 

amino acids that are not processed by the nonribosomal machinery [49]. According to this 
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model, TEII discriminates “correct” from “incorrect” residues based on the increased half-life 

of unprocessed aminoacyl-S-ppan intermediates. In contrast to this, TEII does not catalyze the 

hydrolysis of stalled peptide intermediates, which indicates that the release of these energy-

consuming intermediates is prevented by rigorous editing of misloaded amino acids prior to 

incorporation into the product [49, 50]. 

2.3.3. Lipidation of Nonribosomally-Produced Peptides 

N-terminal lipidation is a key structural feature of many nonribosomal peptides such as the 

acidic lipopeptide antibiotics, fengycin, surfactin, syringomycin, mycosubtilin, etc. As 

discussed in chapter 2.2, it is important for interaction with hydrophobic targets, e.g., cell 

membranes. However, in contrast to the well-studied peptide elongation, very little is known 

about the mechanism of this chemical transformation. In the case of daptomycin, the deduced 

translation products of the dptE and dptF genes are likely to have a role in N-terminal 

lipidation [51]. DptE exhibits conserved motifs typical of adenylate-forming enzymes and 

may therefore activate the long-chain fatty acid as acyl-adenylate (Figure 2.6). A similar 

mode of activation was previously described for the long-chain fatty acyl-AMP ligases 

(FAALs) of Mycobacterium tuberculosis [52]. According to this work, long-chain fatty acids 

are activated as acyl-adenylates, which are then transferred on to the ppan cofactor of the N-

terminal PCP of the corresponding PKS. However, the daptomycin biosynthetic system lacks 

such an N-terminal PCP. Instead, DptF may serve this function due to its significant 

alignment to ppan-binding acyl carrier proteins (ACPs). This domain could then transfer the 

ppan-bound fatty acid to Trp1 tethered to the N-terminal module of DptA. Acylation of Trp1 is 

presumably catalyzed by the most upstream C-domain, the so-called starter C-domain. 

Specific starter C-domain-ACP docking may facilitate this acyl transfer reaction (Figure 2.6). 

However, further studies are needed to clarify the specificity and biochemistry of the 

 28



2 Introduction

 

interaction between the ACP and the starter C-domain of the daptomycin as well as other 

lipopeptide-encoding biosynthetic systems. 

 

Figure 2.6: Proposed mechanism of the lipidation of daptomycin. 1. Decanoic acid is 
activated as decanoyl-adenylate under the consumption of ATP. This step is catalyzed by 
DptE. 2. The fatty acid is transferred on to the ppan cofactor of the putative acyl-carrier 
protein DptF. 3. DptF interacts with the starter C-domain (red) of DptA, which catalyzes the 
subsequent acylation of Trp1. 4. DptF is released. 
 

2.3.4. Generation of D-Amino Acid Residues in NRPSs 

One striking feature of many NRPSs is that they incorporate D-amino acids into their peptide 

products. The D-configured residues may inhibit the degradation of nonribosomal peptides by 

naturally L-specific proteases or may serve structural functions by determining the bioactive 

conformation [53-55]. In most cases, incorporation of D-amino acids into the peptide 

sequence is mediated by an interplay between the epimerization domain (E-domain, ~ 450 aa) 

[55, 56] and the downstream C-domain (Figure 2.7 A). The E-domain catalyzes racemization 

(equilibration between L- and D-enantiomers) of the PCP-bound L-amino acid or 
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epimerization of the C-terminal amino acid (equilibration between L- and D-epimers) of the 

growing peptide chain. In order to ensure selective incorporation of the D-amino acid into the 

peptide backbone, the donor site (d) of the downstream C-domain is D-specific for the 

incoming cofactor-bound electrophile [43]. Hence, the C-domain functions as a DCL catalyst, 

directing the condensation of an upstream D-amino acid with a downstream L-amino acid. 

A different mechanism for the incorporation of D-amino acids is realized by the cyclosporin 

synthetase (Figure 2.7 B) [57]. The corresponding biosynthetic gene cluster encodes an 

alanine racemase to provide substrate for the D-Ala selective A-domain in the first module. 

This shows that besides C-domains, A-domains may also represent a stereoselective filter in 

nonribosomal peptide synthesis. 

Recently, a third strategy of D-amino acid incorporation was observed in multiple Gram-

negative Pseudomonas strains producing arthrofactin, syringomycin, and syringopeptin [58]. 

The lipopeptidolactone arthrofactin, for instance, contains seven D-amino acids, yet there are 

no E-domains in any of the three NRPSs, ArfA, ArfB, and ArfC. Moreover, kinetic 

measurements revealed that at least the three most upstream A-domains activate L-amino 

acids rather than D-amino acids. Interestingly, epimerization of amino acids is catalyzed by a 

new type of C/E-domain, which is proposed to have dual catalytic roles for epimerization and 

condensation (Figure 2.7 C). Remarkably, the epimerization reaction does not take place 

unless the PCP downstream of this C/E-domain is loaded with the dedicated amino acid. 

Therefore, the epimerization activity may be triggered by a conformational change of the C/E-

domain which is induced by the aminoacylated downstream PCP that is primed for peptide 

bond formation. After epimerization of the upstream aminoacyl/peptidyl thioester, the C/E-

domain finally catalyzes the elongation of the peptidyl chain with DCL chirality. 
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Figure 2.7: Proposed mechanisms underlying amino acid epimerization. (A) The E-domain 
converts the PCP-tethered aminoacyl substrate into a D/L equilibrium. The stereoselective 
donor site (d) of the C-domain of the downstream module uses only the D-configured amino 
acid for subsequent peptide elongation. (B) In some cases, an external racemase (Rac) 
catalyzes the racemization of a freely diffusible amino acid. Here, a stereoselective A-domain 
is the determinant that activates solely the corresponding D-enantiomer. (C) D-amino acid 
incorporation into arthrofactin, syringomycin, and syringopeptin is catalyzed by a new type of 
condensation-domain (C/E-domain). Epimerization does not take place unless the PCP 
downstream of this C/E-domain is loaded with the dedicated amino acid. It is not yet known, 
whether the epimerization reaction is reversible or not. After epimerization of the upstream 
aminoacyl/peptidyl thioester, the C/E-domain mediates the elongation of the peptidyl chain 
with DCL chirality. 
 

2.4. Macrocyclization Catalyzed by Nonribosomal Thioesterase-Domains 

Nonribosomal peptides grow by consecutive addition of activated aminoacyl monomer units. 

The elongated chain is translocated each time from upstream to downstream PCPs during 

chain elongation. Once the peptide chain reaches its full length at the most downstream PCP, 

it has to be released in order to reactivate the NRPS machinery for the next synthesis cycle. 

Typically, termination of peptide synthesis is accomplished by a thioesterase-domain (TE-
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domain, ca. 280 aa) fused to the C-terminal module [7]. This enzyme uses an active site serine 

as a nucleophilic catalyst. Peptide release is initiated by transfer of the ppan-bound peptide 

chain to the active site serine of the downstream TE-domain to generate an acyl-O-TE 

intermediate [7]. This covalent enzyme intermediate may break down either by the attack of a 

water molecule to yield a linear peptide (e.g., vancomycin) or by attack of an internal 

nucleophile, producing a cyclopeptide (e.g., daptomycin; Figure 2.8 A). 

While TE-domains represent the most common solution to peptide release in nonribosomal 

biosynthesis, alternative strategies are known. In the synthesis of cyclosporin, for instance, the 

most downstream C-domain of cyclosporin synthetase is proposed to catalyze peptide release 

by head-to-tail condensation (Figure 2.8 B) [59]. Moreover, peptide release can occur under 

reduction of the carboxy group mediated by the NAD(P)H-dependent reduction-domain (R-

domain) such as in the biosynthesis of the linear peptide alcohol gramicidin A in B. brevis 

[60] and in the formation of the macrocyclic imine nostocyclopeptide 12 from Nostoc sp. [61] 

(Figure 2.8 C). 

However, macrocyclization catalyzed by nonribosomal TE-domains seems to be the favored 

mechanism for peptide release, not least because of the role this structural constraint plays in 

resistance to proteolytic degradation and enhanced bioactivity. For example, the conformation 

of daptomycin is constrained by a branched cyclic decapeptide lactone derived from TE-

mediated cyclization of an L-threonine side chain onto the C-terminus [17]. Considering the 

diversity in cyclization strategies of nonribosomal peptides (see chapter 2.1), it is not 

surprising that the overall identity among TE-domains is only 10-15%, therefore reflecting the 

high degree of specialization for their catalyzed cyclization reactions [1]. Structural and 

mechanistic aspects of these versatile macrocyclization catalysts (also referred to as peptide 

cyclases) are discussed in the following section. 
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Figure 2.8: Macrocyclization 
strategies. (A) The tridecapeptidyl-
chain of daptomycin tethered to the 
ppan cofactor of the most 
downstream PCP is transferred to 
an active site serine of the TE-
domain forming the acyl-O-TE 
intermediate. Subsequent product 
release is carried out by the attack 
of an internal nucleophile (L-Thr4) 
on the oxoester bond to give the 
cyclic branched macrolactone. (B) 
Head-to-tail macrolactamization of 
the undecapeptide cyclosporin is 
catalyzed by the most downstream 
C-domain. Mechanistic details are 
still unknown. (C) Macrocyclic 
imine formation of 
nostocyclopeptide. First, the C-
terminal residue of the ppan-
tethered peptide is reduced by the 
action of an NAD(P)H-dependent 
R-domain to give an aldehyde, 
which is intramolecularly captured 
by the N-terminus to give a 
macrocyclic imine. Future research 
will show if the R-domain also 
mediates this final macrocyclization 
step. 
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2.4.1. Structural and Mechanistic Aspects of Peptide Cyclases 

First structural and mechanistic insights into the mode of TE-mediated peptide cyclization 

were gained from the crystal structure of the surfactin cyclase (Srf TE) [62]. The 

crystallographic studies revealed similarities to structures previously solved for α/β hydrolase 

family members. However, the Srf TE most significantly differed from the canonical fold of 

this superfamily by an extended insertion composed of three α-helices that reach over the 

active site. Based on alignment, this “lid” differs significantly from the corresponding regions 

of other TE domains, suggesting that the substrate specificity is encoded in this predominantly 

nonconserved region of the cyclase [7]. The nonconserved residues in the lid may direct 

cyclization through specific interactions with the Srf TE-bound peptide chain. Based on 

further studies, the two positively charged residues Lys111 and Arg120 in the active site may 

also contribute to the proper folding of the substrate by coordination of the negatively charged 

residues Glu1 and Asp5 in the surfactin sequence [63]. 

In NRPS assembly lines, the TE-domain acts in concert with the upstream PCP that donates 

the ppan-bound peptide chain. In the case of Srf TE, a putative interaction site allows docking 

of the Cα chain of PCP to the cyclase [62]. The peptide chain tethered to the 20 Å-long ppan 

cofactor is presumably directed via a cleft into the active site of the globular cyclase and 

transferred onto a conserved serine residue. This residue belongs to a catalytic triad composed 

of Ser80, His207, and Asp107. Cocrystallization studies with a boronic acid inhibitor revealed 

distinct recognition and binding of the C-terminal residues Leu7 and D-Leu6 of the surfactin 

peptide in the active site [63]. Finally, breakdown of the generated acyl-O-TE intermediate 

occurs by regioselective intramolecular attack of the fatty acid β-hydroxyl group on the 

oxoester bond to exclusively release the macrolactone. 
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2.4.2. Autonomous Cyclization Activity of Excised TE Domains 

The great pharmacological potential of many cyclic peptides emphasizes their role in drug 

discovery, as they show specific interactions with defined cellular targets and high stability 

against proteolytic digestion [5]. They are therefore most promising scaffolds for drug leads. 

So far, modern organic chemistry faces many difficulties in the reliable production of 

cyclopeptides. In many cases the yield is poor or the reaction lacks sufficient regio- and 

stereoselectivity [64, 65]. These problems could be solved by using nonribosomal cyclases, 

which catalyze the regio- and stereoselective cyclization of linear precursor peptides without 

the use of protecting groups. However, the application of nonribosomal TE-domains for cell-

free synthesis of cyclic peptides requires translation between the biological and chemical 

languages. First, the complex NRPS multienzyme machinery required for peptide elongation 

is replaced by well established solid-phase peptide synthesis (SPPS), which greatly facilitates 

the rapid synthesis of peptides containing unnatural amino acids [64]. Second, the TE-domain 

is used as an isolated enzyme for in vitro peptide cyclization, because the large size of the 

whole multienzyme complex causes severe preparative problems. Third, to ensure acylation 

of the excised TE-domain, the natural PCP-bound phosphopantetheine prosthetic group is 

replaced by a cofactor mimic, which is attached to the C-terminal end of the chemically 

synthesized peptide. 

This chemoenzymatic approach was first achieved by a cooperation between the Walsh and 

Marahiel laboratories, which reported on the isolation and characterization of the TE-domain 

of tyrocidine synthetase from Bacillus brevis (Figure 2.9) [66]. Incubation of a chemically 

synthesized tyrocidine decapeptidyl-SNAC thioester and excised tyrocidine cyclase (Tyc TE) 

resulted in the formation of the cyclic decapeptide antibiotic tyrocidine A. Hydrolysis of the 

substrate mimic could be detected to a lesser extent and might be due to the fact that the 

excised cyclase lacks the hydrophobic environment of the multienzyme complex. Recent 

results indicate that the interaction of the isolated Tyc TE with detergent micelles may serve 
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to mimic the natural contacts of this domain with the larger synthetase [67]. In fact, the 

addition of nonionic detergent induced a significant shift in the product ratio of Tyc TE in 

favor of macrocyclization. 

To explore the substrate specificity of Tyc TE, a scan through all ten positions of the peptidyl-

SNAC thioester was performed [66]. Notably, it was found that only the substitution of amino 

acids near the end of the decapeptide, namely D-Phe1 and L-Orn9, significantly decreased the 

rate of TE-catalyzed cyclization. It was also observed that thioester substrates 6-14 residues in 

length could be efficiently cyclized by Tyc TE, resulting in the formation of different size 

macrolactams [68]. Alterations of the peptide backbone either by the replacement of three 

amino acid blocks with flexible spacers or by replacement of individual amide bonds with 

ester bonds provided evidence that product-like intramolecular hydrogen bonds facilitate 

peptide preorganization [69]. This preorganization was efficient enough to allow 

macrolactone formation by using a hydroxyl group as intramolecular nucleophile despite the 

lower nucleophilicity of hydroxyl versus amine. Based on these findings, a model of a 

minimal cyclization substrate for the Tyc TE was postulated [69]. 

 
 
Figure 2.9: The experimental design for the study of excised cyclases exemplified for Tyc-
TE. First, the NRPS multienzyme machinery for tyrocidine synthesis is replaced by solid-
phase peptide synthesis. Second, the TE-domain is used as an excised enzyme for in vitro 
peptide cyclization. Third, recognition of the artificial substrate by the excised cyclase is 
ensured by the phosphopantetheine cofactor mimic SNAC (highlighted by shading). 
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2.4.3. Generality of TE-Catalyzed Peptide Cyclization 

To provide evidence for the general utility of TE catalysis as a means to synthesize a wide 

range of macrocyclic compounds, peptide cyclases from other NRPS systems were cloned 

and overexpressed. The excised TE-domain of surfactin synthetase (Srf TE) retains 

autonomous macrocyclization activity when provided with a 3-hydroxybutyryl-heptapeptidyl-

SNAC substrate [63, 68]. However, in contrast to Tyc TE, alterations in the cyclization 

nucleophile and insertion of residues into the peptide were not tolerated [63]. 

The recombinant thioesterase domain SnbDE TE of the pristinamycin I nonribosomal peptide 

synthetase from S. pristinaespiralis is a versatile cyclase for the production of streptogramin 

B antibiotics [70]. Although the streptogramin B (SB) SNAC substrates with the natural 

phenylglycine (Phg) at the C-terminus undergo rapid C-terminal racemization under assay 

conditions, stereoselective SnbDE TE only incorporates L-Phg into the cyclic product (Figure 

2.10). This dynamic kinetic resolution [71] simplifies challenging SB synthesis to standard 

peptide chemistry and subsequent enzymatic reaction. Besides the high stereoselectivity, 

SnbDE TE was able to mediate both macrolactonization and macrolactamization of peptide 

thioester substrates. Interestingly, macrolactamic SB derivatives are promising 

pharmacophores because in some cases SB resistance arises from lyase-catalyzed cleavage of 

the natural lactone bond [72]. 

To further expand the set of cyclization catalysts the peptide cyclases Syr TE from 

syringomycin synthetase, Fen TE from fengycin synthetase, and Myc TE from mycosubtilin 

synthetase were cloned and overexpressed [73, 74]. However, the inability to recognize and 

bind conventional peptidyl-SNAC substrates precluded examination of these cyclases. To 

mimic the natural substrate presentation as close as possible, a strategy was employed which 

allowed Sfp-catalyzed loading of peptidyl-CoA substrates onto apo-PCP-TE didomains [74]. 
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Figure 2.10: Dynamic kinetic resolution of a streptogramin B (SB) SNAC substrate with Phg 
at the C-terminus, which is prone to in situ substrate racemization. The resulting two 
diastereomers are able to acylate the active Ser residue of SnbDE TE resulting in two different 
peptidyl-O-TE intermediates. However, only the peptidyl-O-TE intermediate with the L-Phg-
configuration is able to undergo cyclization to the natural product with L-Phg configuration. 
 

This strategy takes advantage of the direct interaction between the ppan-bound substrate of 

the PCP and the C-terminally adjacent TE-domain. Using this approach, it was possible to 

detect cyclization of a linear fengycin analog. However, one major drawback of this method is 

that the ppan cofactor remains attached to the PCP-TE didomain, thereby blocking Sfp-

catalyzed transfer of additional peptidyl-CoA substrates onto PCP. To force multiple turnover 

catalysis, it was tried to reload the ppan-PCP-TE didomain by chemical trans-

thioesterification using peptidyl-thiophenol substrates [73]. Surprisingly, instead of ppan 

reloading the highly electrophilic peptidyl-thiophenol substrates directly acylated the TE 

active site serine. Furthermore, it was possible to biochemically characterize Syr TE, Fen TE, 

and Myc TE, which displayed no activity with less electrophilic peptidyl-SNAC substrates. 

Activity-based TE acylation with various leaving groups is also subject of investigations 

presented in this work. 
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2.4.4. Chemoenzymatic approaches towards novel cyclopeptides 

In order to investigate the general utility of NRPS cyclases for generating small molecules 

with different therapeutic potential, broad substrate tolerance would be highly desirable. 

Walsh and co-workers showed that Tyc TE was capable to cyclize peptide substrates, in 

which up to 7 of 10 cognate residues were simultaneously replaced [75]. Macrolactamization 

of these linear peptide precursors containing an integrated RGD sequence yielded potent 

inhibitors of ligand binding by integrin receptors, with cyclization and N-methylation being 

important contributors to nanomolar potency (Figure 2.11). Therefore, the therapeutic activity 

of the cyclization product was successfully moved from infectious disease (tyrocidine A) to 

cardiovascular pharmacology. The ability of Tyc TE to tolerate simultaneous side chain 

alterations was further utilized to mediate cyclization of substrates containing nonpeptidic 

elements. Incorporation of ε-amino acid building blocks into the peptide backbone led to the 

formation of cyclic polyketide/tyrocidine hybrids (Figure 2.11) [76], which could be used to 

further optimize macrocyclic peptide/polyketide natural products, such as the 

immunosuppressant rapamycin and the anticancer agent epothilone [77]. Furthermore, the 

insertion of (E)-alkene-dipeptide isosters allows the peptide backbone to be modified post-

synthetically by chemical metathesis [78]. 

To evaluate the potential utility of excised TE domains for generating cyclic peptide libraries, 

a combinatorial approach was developed by Walsh and co-workers [7]. In a biomimetic 

synthetic strategy, a solid-phase PEGA (poly(ethylene glycol)acrylamide copolymer) resin 

functionalized with a synthetic tether substitutes for the ppan cofactor of the PCP (Figure 

2.11). Subsequent SPPS was used for the preparation of more than 300 linear tyrocidine 

derivatives. When these solid support-bound peptides were incubated with the recombinant 

Tyc TE, the cyclase could productively catalyze peptide release by enzymatic on-resin 

cyclization. The resulting library of cyclopeptides revealed that replacement of D-Phe4 in 

tyrocidine by a positively charged D-amino acid led to 30-fold selectivity for bacterial 
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membranes, thereby minimizing the hemolysis of red blood cells. These improved tyrocidine 

derivatives can now be translated back into an engineered NRPS template for large scale 

production via fermentation. 

 

Figure 2.11: Chemoenzymatic synthesis of novel bioactive compounds by excised TE- 
domains. Substrates can be presented to the cyclase either bound to an artificial solid support 
(PEGA resin) or by soluble thioester leaving groups. 
 
 
The chemoenzymatic potential of Tyc TE was also used to generate glycosylated 

cyclopeptides. Using this cyclase, macrocyclized tyrocidine decapeptide analogs with 

unnatural propargylglycine residues incorporated at positions 3 to 8 were prepared [79]. The 

peptide backbones containing these alkyne residues allowed subsequent postsynthetic 

modification to selectively introduce azido-functionalized sugar residues by copper(I)-

mediated [2+3] cycloaddition reactions, also referred to as “click chemistry” (Figure 2.12 A). 
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Later, Walsh and co-workers developed an alternative method to prepare glycosylated 

cyclopeptides by incorporating glycosylated amino acids into linear peptides via SPPS 

followed by enzyme-catalyzed macrolactamization (Figure 2.12 B) [80]. Numerous O-linked 

glycosylated peptidolactams were prepared using glycosylated serine or tyrosine residues at 

positions 5-8. 

While conventional chemical glycosylation of cyclic peptides suffers from little 

regiochemical control and enzymatic glycosylation is limited by the high substrate specificity 

of glycosyltransferases, these chemoenzymatic strategies combine regioselective 

incorporation of sugar moieties with the broad tolerance of Tyc TE for side chain 

replacements. Hence, these approaches allow carbohydrate complexity to be generated into 

macrocyclic peptides and should be generalizable to other NRPS cyclases, thereby providing 

a powerful tool for the production of novel drug leads by large cyclic library screens. The 

ability of recombinant TE-domains to synthesize and to derivatize important drug candidates 

is also subject of investigations in this thesis. 

 

2.5. Diversification and Rigidification of Peptides Mediated by Tailoring Enzymes 

Tailoring enzymes act in the maturation of NRPS-derived products. These supplementary 

enzymes can carry out modifications to the peptide backbone like C-, N-methylation, 

oxidation, and cross-linking, thereby enlarging the structural diversity of these natural 

products. Furthermore, these chemical modifications add much to the structural rigidity and 

stability against proteolytic digestion. 
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Figure 2.12: Chemoenzymatic approaches to glycopeptide antibiotics. (A) A chemically 
synthesized propargylglycine substituted tyrocidine SNAC substrate is cyclized by Tyc TE. 
The resulting alkyne-containing macrolactam is then conjugated to an azido sugar to produce 
a glycosylated cyclic peptide using copper(I)-catalyzed [3+2] cycloaddition. (B) A 
glycosylated amino acid is incorporated into a linear tyrocidine SNAC thioester via SPPS. 
Tyc TE-catalyzed head-to-tail-cyclization then produces a glycosyl-tyrocidine analog. 
 

2.5.1. C-, N-Methylation of Nonribosomal Peptides 

One striking feature of many acidic lipopeptide antibiotics is that they incorporate C-

methylated amino acids into their peptide backbones (see chapter 2.2). For instance, in 

daptomycin, CDA, and A54145 the penultimate position in the cyclopeptide is 

nonproteinogenic 3-methylglutamate (3mGlu). However, some A54145 and CDA variants 

also contain nonmethylated Glu at this position. For A54145 produced by S. fradiae, a 

temporal shift toward 3mGlu-containing variants was observed during fermentation [81], 

whereas Glu-containing daptomycin/A21978C factors have no been reported to date. In the 
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biosynthetic gene clusters for each of these acidic lipopeptides the deduced translation 

products of the dptI gene (daptomycin) [51], the lptI gene (A54145) [28], and the glmT gene 

(CDA) [17] are likely to have a role in β-methylation of Glu. These putative 3-mGlu 

methyltransferases contain three key S-adenosylmethionine (SAM) dependent 

methyltransferase motifs [82]. β-Methylation of Glu is proposed to occur prior to its 

activation by the cognate A-domain in the CDA biosynthetic system, because the respective 

A-domain differs from conventional Glu-activating domains [17]. It is further speculated that 

Glu is converted into a more Cβ-H-acidic 2-oxoglutarate by a transaminase prior to 

deprotonation by an as yet unknown base (Figure 2.13 A) [83]. After methyltransferase-

mediated stereoselective β-methylation, transamination of 2-oxo-3-methylglutarate leads to 

the formation of final product L-threo-3-mGlu. 

In contrast to β-methylation of glutamate in daptomycin, CDA, and A54145, a different 

mechanism has been proposed to be involved in the formation of analogous 3-methylaspartate 

(3mAsp) found in the structures of the acidic lipopeptides amphomycin and friulimicin [84]. 

By a reverse genetic approach, the two overlapping genes glmA and glmB were identified in 

the friulimicin biosynthetic gene cluster. The deduced active enzyme GlmA-GlmB probably 

forms a complex of two subunits. Furthermore, a putative cofactor B12 binding motif in GlmA 

suggests a glutamate mutase mechanism, which was previously described for glutamate 

fermentation in Clostridium sp. [85] or members of the family Enterobacteriaceae [86] 

(Figure 2.13 B). Overexpression of the resulting genes in Streptomyces lividans verified the 

assumed function of GlmA-GlmB as a glutamate mutase in providing 3mAsp in friulimicin 

biosynthesis [84]. 
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Figure 2.13: C-Methylation of nonribosomal peptides. (A) C-Methylation of L-glutamate in 
CDA. L-Glu is converted into 2-oxoglutarate in the presence of a transaminase, which uses 
pyridoxal phosphate (PLP) as a cofactor. After deprotonation by an as yet unknown base (B), 
GlmT catalyzes the stereoselective methylation of the resulting enolate using SAM. The 
methylated product 2-oxo-3-methylglutarate is finally converted to L-threo-3-
methylglutamate under consumption of pyridoxamine phosphate (PMP). (B) β-
Methylaspartate formation in friulimicin. The conversion of L-Glu into L-threo-3-
methylaspartate is mediated by a GlmA/GlmB mutase complex, which uses cofactor B12 as a 
cofactor. 
 
Numerous nonribosomal peptides such as cyclosporin [87], pristinamycin [70, 88], and 

actinomycin [89] contain N-methylated peptide bonds. In most cases, N-methylation is 

introduced by an in-cis acting N-methyltransferase (N-Mt-domain, ca. 420 aa) which is 

inserted into the C-terminal end of the accompanying A domain. Transfer of the S-methyl 

group of SAM to the α-amino group occurs when the respective amino acid is tethered to the 

ppan cofactor, whereupon amide bond formation can occur, generating an N-methylated 

peptide bond [89]. However, in contrast to in in-cis acting N-methyltransferases, MtfA of the 

chloroeremomycin biosynthetic system catalyzes in-trans methyl transfer to the N-terminal 

leucine of chloroeremomycin [90]. 
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2.5.2. Tailoring of Rigidity-Conferring Heterocyclic Elements 

In some cysteine-, serine- and threonine-incorporating NRPS modules the C-domain is 

replaced by a cyclization-domain (Cy-domain) [5]. In addition to peptide bond formation, the 

Cy-domain catalyzes cyclodehydration of the peptide bond to generate rigid five-membered 

heterocycles, such as oxazolines derived from threonine or serine, and thiazolines derived 

from cysteine. In many cases, Cy-domain catalyzed heterocyclization is subsequently 

followed by a two-electron oxidation to form aromatic thiazoles and oxazoles. This is 

achieved by an oxidation-domain (Ox-domain, ca. 250 aa), which uses flavin mononucleotide 

(FMN) as a cofactor [91, 92]. Although Ox-domains are strictly associated with Cy-domains, 

they can be found in two different locations within the corresponding NRPS module: inserted 

into the C-terminal part of the A-domain or downstream of the PCP [93-96]. For instance, in 

epothilone synthase the Ox-domain is an integral part of the A-domain of EpoB whereas for 

bleomycin the Ox-domain is C-terminally fused to the PCP in BlmIII. 

Since heterocyclic thiazoles are important determinants for bioactivity in both bleomycin and 

epothilone molecules, Ox-domains are interesting targets for engineering NRPSs. Entire 

modules containing Ox domains were swapped into bimodular model systems, resulting in the 

release of unnatural oxidized dipeptide products [97]. Moreover, the portability of an Ox-

domain to a heterologous NRPS assembly line was reported recently [92]. Replacement of an 

E-domain of PchE, involved in pyochelin biosynthesis, with an Ox-domain from MtaD of the 

myxothiazol NRPS assembly line led to the production of a soluble FMN-containing chimeric 

module, which was assayed for oxidation activity in vitro. In fact, the chimeric module 

catalyzed the formation of an anticipated oxidized product, revealing the activity of the 

transplanted Ox-domain. Therefore, this result underscored the high portability of Ox-

domains and their potential for the development of novel heterocyclic compounds. 
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2.5.3. Rigidification of Peptide Scaffolds by Oxidative Cross-Linking 

During the biosynthesis of the glycopeptides vancomycin and balhimycin – both molecules 

share the same aglycone – three oxidative cross-linking reactions of the electron-rich phenol 

side chains are catalyzed by three cytochrome P450-like oxygenases (OxyA, OxyB, and 

OxyC) [98]. These cross-links convert the acyclic, floppy heptapeptides into rigid, cup-shaped 

scaffolds. Gene knockout experiments in the balhimycin-producing A. mediterranei revealed 

the order of the three oxidative phenol coupling reactions that sets the rigid architecture of the 

heptapeptide scaffold. The first coupling reaction takes place between rings C and D and is 

mediated by OxyB, followed by the second cross-link formation between D and E catalyzed 

by OxyA. The last coupling reaction occurs between rings A and B and is catalyzed by OxyC 

(Figure 2.14 A) [99]. 

Further insights into the timing of oxidative cross-linking were provided by experiments with 

recombinant OxyB from the vancomycin NRPS (Figure 2.14 B) [100]. The purified enzyme 

failed to catalyze the phenol coupling reaction of a free hexapeptide substrate. However, when 

the same peptide was loaded onto a PCP using the ppan transferase Sfp, incubation with 

OxyB resulted in 80% conversion into the desired cross-linked product. These results provide 

evidence that the oxidative cross-linking reaction between rings C and D takes place whilst 

the peptide intermediate is covalently attached as a thioester to a PCP of the glycopeptide 

assembly line. Although little is known about the cross-linking mechanism in detail, it was 

demonstrated that at least the catalytic action of OxyB is closely associated with the 

nonribosomal biosynthetic machinery. 
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Figure 2.14: Oxidative cross-linking of phenol side chains occurs only on NRPS-bound 
peptide chains. (A) Chemical structure of vancomycin. The order of oxidative cross-linking 
mediated by OxyB, OxyA and OxyC is indicated. (B) A chemically synthesized balhimycin-
like hexapeptide CoA thioester is loaded onto a PCP using Sfp. Subsequent incubation with 
OxyB leads to cross-linking between rings C and D. 
 

2.6. Manipulation of Carrier Proteins by Posttranslational Modification 

Nonribosomal PCPs are post-translationally modified at a conserved serine residue with a 

ppan moiety from coenzyme A (CoA). This modification is catalyzed by ppan transferases, 

such as Sfp from B. subtilis (Figure 2.15 A). Sfp was shown to exhibit extremely low 

substrate specificity and has been frequently used in metabolic engineering [101]. An 

interesting feature of Sfp lies in its ability to accept various functionalized CoA derivatives 

(Figure 2.15 B). The synthesis of these CoA conjugates can be readily achievable via Michael 

addition once maleimide functionalities are linked to the desired small molecule [102].  
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Figure 2.15: Posttranslational modification of PCPs. (A) Ppan transferases such as Sfp from 
B. subtilis transfer a 4’-phosphopantetheine residue from CoA to a strictly conserved serine 
residue of apo-PCP, creating the holo-PCP and 3’,5’-ADP. (B) CoA-reporter analogs are 
created through a Michael addition of the free thiol group in CoA across the double bond of 
reporter-linked maleimide. Subsequent Sfp-catalyzed reporter labeling of PCP fusion proteins 
may be used to label the target protein with small molecules, i.e., fluorophores and affinity 
tags. 

 

Researches have used the relaxed specificity of Sfp to tag carrier proteins with a variety of 

reporter groups, such as fluorophore- and affinity-labeled CoA [102]. The kinetics of this site-
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specific posttranslational modification depends on the small molecule tethered to CoA. Based 

on this finding, a three-color fluorescent multiplex analysis of carrier proteins was constructed 

by using orthogonal sets of fluorescent CoA derivatives [103]. Here, the relative population of 

the three fluorescent tags depends on the type of carrier protein. By using this approach 

carrier proteins within mixtures were convincingly identified spectrophotometrically. 

The advantage of posttranslational modification of carrier proteins is that this method can be 

selectively carried out in a complex mixture of cellular proteins. Hence, PCP can be used as a 

peptide tag to direct the specific labeling of a target protein. Recently, Yin et al. reported the 

affinity labeling of target proteins that were expressed as artificial fusions to a PCP. These 

PCP-tagged target proteins were selectively labeled with biotin in the cell lysate followed by 

rapid immobilization on a streptavidin surface, thereby providing a high-throughput method 

for protein microarray fabrication and enzymatic screening [104]. In an other application, the 

PCP was N-terminally fused to the phage capsid protein III [105]. Subsequent Sfp catalyzed 

PCP modification with CoA-small molecule conjugates enabled the display of small 

molecules on phage surfaces. By using this method, phagemid encoded small molecule 

libraries could be screened for target binding. 

In addition to phage surfaces, specific labeling of carrier proteins with chemically diverse 

compounds can be achieved on cell surfaces [106, 107]. This approach was demonstrated 

with the E. coli acyl carrier protein (ACP) fused to the a-agglutinin receptor Aga2p in yeast as 

well as ACP-tagged human G protein-coupled receptor neurokinin-1 (NK1) in mammalian 

HEK293 cells. Instead of Sfp from B. subtilis, the E. coli ppan transferase AcpS was used to 

achieve specific labeling of these cell surface proteins due to its narrow substrate specificity 

with respect to ACP, thereby suppressing undesired side reactions. 

The cell-impermeability of CoA-small molecule conjugates limits posttranslational 

modification of carrier proteins to cell-surface protein labeling. In order to label proteins 

inside of cells Clarke et al. replaced these CoA derivatives with a cell-permeable fluorophor-
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labeled pantetheine analog (Figure 2.16) [108]. After cellular uptake in E. coli, this reporter-

labeled pantetheine was converted to reporter-labeled CoA via a four-step enzymatic 

sequence including CoAA, CoAD, and CoAE. The metabolic conversion into an active, 

labeled CoA derivative was followed by Sfp-mediated posttranslational modification of 

coexpressed VibB from Vibriobacter cholerae, a natural fusion between a carrier protein (CP) 

and isochorismate lyase (ICL). Labeling of VibB was confirmed by fluorescent SDS-PAGE 

of the cell lysate. These results demonstrated for the first time that one could rationally 

engineer a chemoenzymatic route to covalently label carrier proteins in vivo via metabolic 

delivery of cell-permeable CoA precursors. 

The utility of chemoenzymatic modification of carrier proteins with synthetic CoA analogs 

will be part of this thesis and discussed later. 

 

Figure 2.16: In vivo tagging of carrier protein fusion VibB within E. coli. To allow cellular 
uptake, a cell-permeable fluorophor-labeled pantetheine analog was used. This reporter-
labeled pantetheine is converted to reporter-labeled CoA by CoAA, CoAD, and CoAE in vivo. 
This process is followed by reaction of coexpressed Sfp to yield fluorophore-labeled VibB. 
CP, carrier protein; ICL, isochorismate lyase. 
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2.7. Task 

The main task of this work was to investigate the mechanism of peptide cyclization catalyzed 

by the thioesterase domain of the nonribosomal CDA synthetase (CDA TE). One aspect of 

this thesis was to elucidate the role of the fatty acid chain of the CDA lipopeptide for 

enzymatic peptide cyclization, especially its influence on the regio-, stereo-, and 

chemoselectivity. Moreover, systematic alterations were made to the CDA peptide backbone 

in order to evaluate the utility of CDA TE as a catalytic cyclization tool for the synthesis of 

the approved antibiotic daptomycin. Finally, investigations were made to determine the 

feasibility of FRET as a probe for monitoring peptide cyclization catalyzed by nonribosomal 

thioesterase domains. In particular, the following questions were addressed: 

- To what extent is TE-mediated macrocyclization of lipopeptides controlled by the 

fatty acid chain length? 

- What is the best leaving group for enzymatic peptide cyclization? 

- How tolerant is the CDA TE to side chain alterations of the peptide substrate? 

- Is it possible to monitor TE-catalyzed peptide cyclization via FRET? 

- Is the immobilized CDA TE an active peptide cyclization catalyst? 
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3. Material 

 

3.1. Chemicals, Enzymes and General Materials 

 
Chemicals not listed were purchased as standard compounds from other manufacturers in p.a.-
quality. 
 
 
Table 3.1: Materials. 
 
Manufacturer Product 

 
Agilent Technologies DHB-matrix solution 
Amersham Biosciences European GmbH various restriction endonucleases, ampicillin, 

IPTG, kanamycin, yeast extract, coomassie 
brilliant blue G and R250, agar Nr.1, 
HiTrap™-desalting columns, ECL-detection 
reagent 1 and 2 

Applied Biosystems ABI prismTM dRhodamine terminator cycle 
sequencing ready reaction kit v. 3.0, HiDi 
Formamide 

Bachem Nα-Fmoc-protected amino acids, Nα-Boc-
protected amino acids 

Böhringer Mannheim ExpandTM Long Template PCR Kit,  
lysozyme 

Eurogentech agarose, electroporation cuvettes 
Fluka SDS, TEMED, DMF 
IBA Strep-Tactin sepharose column  
Kodak Biomax X-ray film 
Macherey und Nagel C18-Nucleodur HPLC column, C18-Nucleosil-

HPLC column 
Merck silica gel 60 F254

 
plates 

Millipore dialysis membrane (0,025 µm) 
New England Biolabs desoxyribonucleotides (dATP, dTTP, dGTP, 

dCTP), prestained protein molmarker, various 
restriction endonucleases, 1kb-DNA-ladder 

Novabiochem Nα-Fmoc-protected amino acids, 2-
chlorotritylchloride resin, HBTU, HOBt, 
PyBOP 

Oxoid agar Nr.1, tryptone 
Pierce biotin maleimide 
Promega SoftLinkTM

 

soft release avidin resin 
Qiagen oligonucleotides, QIAquick-spin PCR 

purification kit, Ni2+-NTA-agarose, 
QIAexpress vector kit ATG, QIAEXII 
extraction kit, anti-His-antibody 

Roth EtBr, β-mercaptoethanol, acrylamide for 
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SDS-PAGE, piperidine 
Manufacturer Product 

 
Schleicher & Schüll Whatmann-3MM paper 
Serva Triton X-100, Visking dialysis tubes, APS 
Sigma EDTA, coenzyme A, N-acetylcysteamine, 

thiophenol, nucleotide pyrophosphatase 
Stratagene  QuikChangeTM site-directed mutagenesis kit, 

PfuTurbo DNA polymerase 

Vivascience AG 
Vivaspin 20 concentrators 10000 MWCO, 
30000 MWCO 

 

3.2. Equipment 

 
Table 3.2: Equipment 
 
Device Manufacturer 

 
Autoclave Tuttnauer 5075 ELV 
Bidestilled water supply Seral Seralpur Pro90CN 
Centrifugation Heraeus Biofuge pico, Sorvall RC 26 plus, 

rotors SS34 und SLA3000, Sorvall RC 5B 
Plus, Kendro Megafuge 1.0R, Minifuge RF 

DNA-gel documentation Cybertech CS1, thermoprinter Mitsubishi 
Video Copy processor 

DNA-sequence analyzer Perkin-Elmer/ABI, ABI Prism 310 Genetic 
Analyzer 

Electroporation-pulse control Bio-Rad Gene Pulser II 
fluorescence detection Agilent Standard FLD cell;  

Jasco spectrofluorometer FP-6500, Jasco 
temperature controller ETC-273T 

FPLC-system Pharmacia FPLC-biotechnology FPLC-
System 250: Gradient-programmer GP-250 
Pump P-500 
Uvicord optical device UV-1 (l = 280 nm) 
Uvicord control element UV-1 
2-channel printer REC-102 
Injection valve V-7 
3-way-valve PSV-100 
Fraction collector FRAC-100 

French Press SLM Aminco; French-Pressure Cell-Version 
5.1; 20k Rapid-fill cell (40 mL) 
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Device 
 
HPLC-system 

Manufacturer 
 
Agilent series 1100 HPLC-System with 
DAD-detection, vacuum degasser, quaternary 
pump, auto sampler and HP-chemstation 
software 
columns: Macherey & Nagel Nucleosil 250/3, 
pore diameter 120 Å, particle size 3 µm; 
Nucleodur 250/3, pore diameter 100 Å, 
particle size 3 µm 
columns: Macherey & Nagel Nucleodur 
250/21, pore diameter 100 Å, particle size 3 
µm 

MALDI-TOF Per Septive Biosystems Voyager-DE RP 
BioSpectrometry, 
Bruker FLEX III 

MS-MS sequencing Applied Biosystems, API Qstar Pulsar I  
Peptide synthesizer Advanced ChemTech APEX 396 synthesizer 
Photometer Pharmacia Biotech Ultraspec 3000 
Shaker New Brunswick Scientific Series 25 Incubator 

Shaker, New Brunswick Scientific Innova 
4300 Incubator Shaker 

Speed-Vac Savant Speed Vac Concentrator, 
Uniequip Univapo 150 

Thermocycler Perkin-Elmer Thermal Cycler 480, 
Perkin Elmer Gene Amp PCR System 2400, 
Perkin Elmer Gene Amp PCR System 9700 

Water bath Infors Aquatron Shaker 
 
 

3.3. Vector systems 

3.3.1. pQE60-vector 

The pQE60 vector system was used for cloning and overexpression of Tyc TE (Figure 3.1). 

The vector allows purification of recombinant proteins by Ni-NTA chromatography by fusing 

a His6-tag to the C-terminal end of the overexpressed protein. The pQE60-vector carries two 

lac-operators in the promoter region. In the presence of a lac-repressor the gene can not be 

transcribed. After induction with IPTG, repression is abolished and gene transcription occurs. 

Therefore, this system allows a defined start of protein overexpression. 
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Figure 3.1: Physical map of the pQE60-vector. 

The vector contains the following components: 

- replication origin from E. coli (ColE1) 
- synthetic ribosomal binding site RBSII 
- T5-promotor from E. coli-phages 
- two lac-operator sequences for expression control by the lac-repressor 
- MCS with recognition sequences for: BamHI and BglII 
- Stop codons in all three reading frames 
- codon sequence, which encodes a hexahistidine tag (C-terminal His6-tag) 
- β-lactamase-gene bla for ampicillin resistance up to a final concentration of 100 

µg/mL 
- two transcription terminators: 

t0 of an λ-phage 
T1 of the rnnB-operon from E. coli 

 

3.3.2. pQTEV-vector 

The pQTEV-vector is a derivatized pQE60-vector and was used for cloning and 

overexpression of CDA TE and CDA PCP-TE. The vector allows purification of recombinant 

proteins by Ni-NTA chromatography by fusing a His7-tag to the N-terminal end of the 

overexpressed protein. After purification, this heptahistidine tag can be cleaved from the 

recombinant protein using TEV protease. The pQTEV-vector carries two lac-operators in the 

promoter region. In the presence of a lac-repressor, which is also encoded by the vector, the 
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gene can not be transcribed. After induction with IPTG, repression is abolished and gene 

transcription occurs. 

 

Figure 3.2: Physical map of the pQTEV-vector. 

 

3.3.3. pBAD202/D-TOPO 

The pBAD202/D-TOPO vector system (Invitrogen) was used for cloning and overexpression 

of CDA TE and CDA PCP-TE. The vector is regulated by the araBAD-promoter (PBAD) and is 

induced by arabinose. The His-patch thioredoxin leader (11.7 Da) increases translation 

efficiency and improves protein solubility. Removal of this thioredoxin fusion can be 

performed using EK (enterokinase) protease, which selectively recognizes the EK cleavage 

site. The vector also allows Ni-NTA chromatography purification of recombinant proteins by 

fusion of a His6-tag to the C-terminal end of the overexpressed protein. 

The plasmid also contains the following components: 
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- origin of replication from pUC plasmids 
- rrnB transcription terminator 
- codon sequence coding a V5 epitope 
- CAP-(cAMP binding protein) binding site for transcription enhancement by binding of 

the CAP-cAMP-complex 
- Kanamycin resistance 

 
 

3.4. Microorganisms 

3.4.1. E. coli XL1-Blue 

This strain was frequently used for cloning and sequencing purposes. The genotype is as 

follows: recA1, endA11, gyrA96, thi-1, hsdR17, supE44, relA1, lac, F’(proAB+, lacIq, 

lacZDM15, Tn10(TetI)). 

 

3.4.2. E. coli Top 10 

E. coli Top 10 is another strain for cloning and sequencing purposes. The genotype is as 

follows: F- mcrA. (mrr-hsdRMS-mcrBC) 80lacZ.M15.lacX74 deoR recA1 araD139. (ara-

leu)7697 galU galK rpsL (StrR) endA1 nupG. 

 

3.4.3. E. coli BL21(DE3) 

The E. coli strain BL21(DE3) with the genotype [ ] ---
bb

  F mrIonompT  is used as a bacterial host 

for the expression of plasmid DNA. It is characterized by a lack of Ion protease and by a 

deficiency of OmpT protease, thereby significantly increasing protein stability. It further 

contains the IPTG-inducible T7 RNA polymerase gene, which is inserted in the chromosome 

after lacZ and the promoter lacuV5 on a λ-prophage. This is essential for the IPTG induction 

of genes under T7-promotor control. 
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3.4.4. E. coli BL21(M15) 

This strain lacks the T7-polymerase. It has the following genotype: nals, strs, rifs, lac, ara, 

gal, mtl, F-. 

 

3.5. Media 

E. coli strains were grown in LB-media. 

 16 g/L bactotrypton 

10 g/L yeast-extract 

LB-media 

5 g/L NaCl 
 

 

Culture plates: 1.2% (w/v) of agar no.1 was added to the LB-media and heated at 121°C and 

1,5 bar for 30 min. Antibiotics were added after cooling down to 55°C in the following 

standard concentrations: 100 µg/mL ampicillin, 50 µg/mL kanamycin, 34 µg/mL 

chloramphenicol. 
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4. Methods 

4.1. Molecular Biology Techniques 

4.1.1. Construction of Recombinant Plasmids 

Amplification of all DNA gene fragments was performed by polymerase chain reaction (PCR) 

with Pfu Turbo DNA polymerase (Stratagene) according to the manufacturer’s protocol with 

synthetic oligonucleotides (Qiagen). Purification of PCR-fragments was performed by the 

“QIAquick-spin PCR purification kit” in agreement with the manufacturer’s manual (Qiagen). 

All constructs were analyzed by restriction digests and DNA-sequencing. 

 

Construction of pBAD202/D-TOPO[cda TE] – The cda TE gene fragment was amplified 

using the chromosomal DNA of S. coelicolor A3(2) as template. The following 

oligonucleotides were used: 5’-C ACC ATG CGC GGC GGC CGG GAG CC-3’ and 5’-GGC 

GAC CTC GGT CGA ATC G-3’. The PCR product of cda TE was directionally cloned into a 

pBAD202/D-TOPO vector (Invitrogen) using the pBAD directional TOPO expression kit 

(Invitrogen) according to the manufacturer’s guidelines. The pBAD202/D-TOPO vector 

appends an N-terminal His-patch thioredoxin leader and a C-terminal His6-tag to the 

expressed protein. Preparation of recombinant plasmids was carried out in E. coli TOP 10. 

 

Construction of pBAD202/D-TOPO[cda PCP-TE] – The cda PCP-TE gene fragment was 

amplified using the chromosomal DNA of S. coelicolor A3(2) as template. The following 

oligonucleotides were used: 5’-C ACC CGC ACC GTC GAG GGC CGC-3’ and 5’-GGC 

GAC CTC GGT CGA ATC G-3’. The PCR product was directionally cloned into a 

pBAD202/D-TOPO vector (Invitrogen) using the pBAD directional TOPO expression kit 

(Invitrogen) according to the manufacturer’s protocol. 
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Construction of pQTEV[cda TE] – The cda TE gene fragment was amplified using the 

chromosomal DNA of S. coelicolor A3(2) as template. The PCR reaction was performed with 

Pfu Turbo DNA polymerase (Stratagene) using the following oligonucleotides: 5’-AAA AAA 

GGA TCC CGC GGC GGC CGG GAG CC-3’ and 5’-AAA AAA AAG CTT GGC GAC 

CTC GGT CGA ATC GAG CG-3’. The PCR product of cda TE was cloned into the 

BamHI/HindIII site of the pQTEV vector (Qiagen). The plasmid was directly used to produce 

protein with an N-terminal heptahistidine tag. Preparation of recombinant plasmids was 

carried out in E. coli XL1-Blue. 

 

Construction of pQTEV[cda PCP-TE] – The cda PCP-TE gene fragment was amplified using 

the following oligonucleotides: 5’-AAA AAA GGA TCC CGC ACC GTC GAG GGC CGC 

TC-3’ and 5’-AAA AAA AAG CTT GGC GAC CTC GGT CGA ATC GAG CG-3’. The 

PCR product of cda PCP-TE was cloned into the BamHI/HindIII site of the pQTEV vector 

(Qiagen). The recombinant plasmid was directly used to produce protein with an N-terminal 

His7-tag. 

 

Construction of pQE60[Tyc TE] – The construction of pQE60[Tyc TE] has been described 

elsewhere [66]. 

 

4.1.2. DNA Sequencing 

DNA sequencing of double stranded DNA was performed by the method of chain termination 

(147 RF) with the “ABI prismTM dRhodamine terminator cycle sequencing ready reaction kit” 

according to the manufacturer’s protocol. Sequencing of the GC-rich targets was performed 

with 500 ng DNA per kbp, 10 pmol primer, 5 % DMSO (v/v), and 4 µL sequence mix. After 

30 rounds of PCR and subsequent purification the sequence analysis was performed on an 
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“ABI Prism 310 Genetic Analyzer” (Applied Biosystems). Alternatively, DNA sequencing 

was carried out by GATC Biotech. 

 

Table 4.1: PCR protocol for DNA sequencing 

Cycles Temperature [°C] Time [min] 

1 95 1:00 

95 1:00 

50 0:10 

30 

60 4:00 

1 60 5:00 

 

4.2. Protein Methods 

Standard methods frequently used in protein analysis like SDS-PAGE and coomassie-staining 

have been described elsewhere [109, 110]. 

 

4.2.1. Gene Expression 

Heterologous expression of recombinant TE and PCP-TE enzymes was performed in the 

pQE60, pQTEV and pBAD202/D-TOPO vectors systems. For this purpose E. coli BL21 

(DE3) were transformed with the expression plasmids, with the exception of tyc TE where E. 

coli M15 was transformed with the corresponding expression plasmid. 

 

4.2.1.1. Expression with the pQE60- and pQTEV-Vector Systems 

20 mL overnight culture of the corresponding expression strain in LB-media was inoculated 

in 2L of LB-media. Cells were grown to OD = 0.5 (600 nm), induced with 1 mM IPTG, and 
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again grown at 30°C, 250 rpm for 3 h. The culture was subsequently harvested by 

centrifugation (7000 rpm, 4°C, 15 min) and the resulting pellet was resuspended in Hepes A 

buffer (50 mM Hepes, 300 mM NaCl, pH 8.0). The cell suspension was stored at -20°C. 

 

4.2.1.2. Expression with the pBAD202/D-TOPO-Vector System 

20 mL overnight culture of the corresponding expression strain in LB-media was inoculated 

in 2L of LB-media. The transformed cells were grown to OD = 0.5 (600 nm), induced with 

0.01% arabinose (w/v), and again grown at 25 °C, 250 rpm for 2.5 h. The cells were 

subsequently harvested by centrifugation (7000 rpm, 4°C, 15 min) and the resulting pellet was 

resuspended in Hepes A buffer (50 mM Hepes, 300 mM NaCl, pH 8.0). The cell suspension 

was stored at -20°C. 

 

4.2.2. Protein Purification  

All recombinant proteins were purified by nickel-nitrilotriacetic acid (Ni-NTA) affinity 

chromatography (Amersham Pharmacia Biotech). 

 

4.2.2.1. Disruption of cell material 

Disruption of cell material was carried out by using a pre-cooled 20k French Press cell (SLM 

Aminco). Four cycles of compression and decompression were carried out with each cell 

extract. Insoluble cell material was separated from the cell extract by centrifugation (17000 

rpm, 30 min, 4°C). The supernatant was subsequently used for Ni2+-NTA affinity 

chromatography. 
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4.2.2.2. Ni2+-NTA affinity chromatography 

Recombinant His6-tagged proteins were purified by Ni2+-NTA affinity chromatography 

(Amersham Biosciences). In standard purifications cell extracts from 2L expressions were 

loaded onto a Ni2+-NTA superflow (Qiagen) column (HR 10/2, Amersham Biosciences). The 

column was loaded with a flow rate of 1 mL/min in 3 % buffer Hepes B (50 mM Hepes, 300 

mM NaCl, 250 mM imidazole, pH 8.0) on a FPLC system (Amersham Biosciences). When 

the absorbance at λ = 220 nm was at baseline again, a 30 min linear gradient up to 45 % 

Hepes B followed by a 10 min linear gradient to 100 % Hepes B with a flow rate of 1 mL/min 

was applied. Proteins were identified by Bradford-assay [111] and by SDS-PAGE. Dialysis 

into 25 mM Hepes and 50 mM NaCl, pH 7.0, was carried out using HiTrap desalting columns 

(Amersham Biosciences). After being flash frozen in liquid nitrogen, the proteins were stored 

at -80 °C. 

 

4.2.2.3. Determination of Protein Concentrations 

The concentrations of the purified proteins were determined spectrophotometrically using the 

calculated extinction coefficient at 280 nm, which was determined by the program “Protean”. 

 

Table 4.2: Theoretical extinction coefficients (λ = 280 nm) 

Protein 

(vector system) 

Theoretical extinction 

coefficient [mg/mL] 

CDA TE (pBAD202/D-TOPO) 1.22 

CDA PCP-TE (pBAD202/D-TOPO) 1.43 

CDA TE (pQTEV) 1.24 

CDA PCP-TE (pQTEV) 1.54 

Tyc TE (pQE60) 1.34 
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4.3. Biochemical Methods 

4.3.1. Cyclization Assays 

Reactions were performed in 25 mM Hepes and 50 mM NaCl, pH 7.0, in a total volume of 50 

µL. Dissolution of peptidyl thiophenols was facilitated by the addition of 5% DMSO (v/v). In 

standard reactions the substrate concentration was 250 µM. Kinetic characterization of the 

cyclization reactions was performed by determining initial rates at varying substrate 

concentrations. All cyclization reactions were initiated by addition of enzyme to a final 

concentration of 5 µM for CDA TE, 5 µM for CDA PCP-TE, and 0.5 µM for Tyc TE. 

Reactions were quenched by addition of 35 µL of 4% TFA/H2O. All assays were analyzed by 

LC/MS on a reversed phase C18 Nucleodur column (Macherey and Nagel, 250/3, pore 

diameter 100 Å, particle size 3 µm) except for assays with CDA SNAC substrate, which were 

analyzed on a C18 Nucleosil column (Macherey and Nagel, 250/3, pore diameter 120 Å, 

particle size 3 µm) with the following gradients: all CDA thiophenol substrates (expect hex-

CDA thiophenol), CDA CoA, and CDA SNAC, 0-40 min, 15-45% acetonitrile/0.1% TFA in 

water/0.1% TFA, 0.4 mL/min, 45 °C; CDA ppan, 0-40 min, 5-60% acetonitrile/0.1% TFA in 

water/0.1% TFA, 0.4 mL/min, 45 °C; hex-CDA thiophenol, hybrid CDA-daptomycin 

thiophenol substrates, and daptomycin-like thiophenol substrates 0-40 min, 15-60% 

acetonitrile/0.1% TFA in water/0.1% TFA, 0.4 mL/min, 45 °C. Identities of the products were 

verified by ESI-MS and MALDI-TOF. Connection regiospecificity of cyclic products was 

determined by MS-MS analysis on an API Qstar Pulsar i Q-q-TOF mass spectrometer 

(Applied Biosystems).  

Concentrations of various peptidyl thioesters were calculated using experimentally 

determined extinction coefficients at a wavelength of 220 nm. The extinction coefficients of 

peptidyl thioesters were assumed to be identical to the corresponding cyclized and hydrolyzed 

products. 
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4.3.2. Preparation of Linear and Cyclic Peptides for Bioassays and Fluorescence 

Measurements 

Semipreparative scale production of linear and cyclic peptide products was performed to 

obtain enough material for bioactivity and fluorescence studies. For the semipreparative scale 

generation of cyclic products, the reactions were carried out in a total volume of 3-12 mL 

with 5 µM CDA TE, 250 µM peptidyl thiophenol, 25 mM Hepes, 50 mM NaCl, and 5% 

DMSO (v/v), at pH 7.0 and room temperature. Substrate turnover into cyclic product and 

linear peptide acid was monitored by analytical HPLC and thin-layer chromatography (TLC) 

on silica gel 60 F254
 
plates (Merck) and visualized under UV (365 nm). After a time period of 

2-5 h the semipreparative scale assays were quenched by adding TFA to a final concentration 

of 1.6% (v/v). After flash freezing in liquid nitrogen the samples were lyophilized overnight. 

The resulting solid was redissolved in 1 mL of 35-50% acetonitrile/water. Purification of the 

cyclic products was achieved on a 250/10 Nucleodur 100-7 C18 reversed-phase column 

(Macherey and Nagel) by applying a gradient from 35% to 45% acetonitrile in 0.1%TFA/ 

water over 30 min at a flow rate of 8 mL min-1. The purity of the products was more than 95% 

as determined by analytical HPLC. 

The concentrations were determined by comparing the area of absorption at 215 nm with that 

of a known concentration of linear peptide thioester or daptomycin. 

Semipreparative scale generation of the linear peptide acid was performed by treatment of the 

peptide loaded 2-chlorotrityl resin with a mixture containing trifluoroacetic acid (TFA), 

triisopropylsilane (TIPS), and water in a ratio of 95:2.5:2.5 (v/v). The peptide acid was 

precipitated in ice cold diethyl ether and purified by semipreparative HPLC as described for 

the cyclic products. 

 

 65



4 Methods

 

4.3.3. Peptide Cyclization by the Immobilized CDA PCP-TE Didomain 

Sfp phosphopantetheine transferase catalyzed biotin CoA labeling of the purified CDA PCP-

TE (pQTEV) protein was performed according to Clugston et al. [42]. In a total volume of 

100 µL, 5 µM Sfp, 5 µM biotin CoA, 10 mM MgCl2,
 
and 1 mM TCEP in 50 mM Hepes (pH 

7.5) were incubated with 20 µM CDA PCP-TE didomain for 90 minutes at 30°C. The labeling 

reaction mixture was then run over a column loaded with SoftLinkTM
 

soft release avidin resin 

(Promega) (bed volume 1 mL). Incubation was carried out at 4°C prior to washing with a 

solution containing 5 mL 0.1 M NaPO4
 
(pH 7.0). 5 mM peptidyl thiophenol lnDap-U1W13 

(see appendix)
 
dissolved in 100 µL DMSO was then added to the column. After incubation at 

25°C for 3h, the reaction products were eluted with 1 mL phosphate buffer. After lyophilizing 

to dryness, the eluate was extracted with methanol:DMSO 9:1. Product analysis was 

conducted by analytical HPLC on a C18
 
Nucleodur column (Macherey and Nagel, 125/3, pore 

diameter 100 Å, particle size 3 µm) by applying a gradient from 30% to 90% acetonitrile in 

0.1% TFA/water over 10 min at a flow rate of 0.8 mL min-1
 

and by fluorescence detection 

without HPLC column (Standard FLD cell (Agilent), emission wavelength 452 nm, excitation 

wavelength 280 nm, PMT gain 10, injection volume 10 µL, 100% methanol over 2 min, 0.5 

mL min-1). The CDA PCP-TE didomain was eluted with 5 mM biotin in the phosphate buffer. 

The eluate was resolved by SDS-PAGE (12.5%) and visualized by Coomassie stain. 

 

4.4. Analytical Methods 

4.4.1. Biological Activity Assays 

Two-fold serial dilutions of peptide acids and peptidolactones including authentic daptomycin 

as reference compound were prepared in sterile microtitre plates as described elsewhere [112]. 

All tests were performed with B. subtilis PY79. Incubation was carried out at 37 °C for 18 h 
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prior to visual determination of MICs. The bactericidal activity was examined in LB media as 

well as in LB media supplemented with 50 mg of Ca2+/L. The calcium content of LB media 

was determined by elementary analysis to be 23.6 mg/L. For determination of hemolytic 

activity sheep blood agar plates were used. Sterile disks (6 mm diameter) were soaked with 

2.5-10 µL of solutions of cyclic peptides in methanol varying in their concentrations from 

0.64 µg/mL to 640 µg/mL. Plates were incubated at 37 °C for 16 h. Surfactin was used as a 

positive control. The hemolytic zone diameters were determined by visual assay. 

 

4.4.2. Mass Spectrometry 

All substrates and products were analyzed by LC-MS or MALDI-TOF MS. 

Matrix assisted laser desorption ionization – time of flight mass spectrometry (MALDI-TOF 

MS) is an analytical method to determine the molecular mass of peptides and proteins in high 

vacuum. Samples were prepared by mixing 1 µL peptide/protein solution with 1 µL DHB-

matrix solution (Agilent Technologies). 1 µL of this mixture was pipetted onto a metallic 384-

well plate. After evaporation to dryness, the cocrystallized samples were investigated with a 

“Bruker FLEX III” (Bruker Daltonics). 

High performance liquid chromatography – mass spectrometry (HPLC-MS) was used to 

separate and to analyze complex peptide/protein mixtures. Separation is achieved by reversed 

phase chromatography, which is based on hydrophobic interactions with the unpolar 

stationary phase (C18 or C8 coated silica gel). Elution is mediated by a gradual increase of the 

acetonitrile-to-water ratio. The characteristic retention times of the separated peptides/proteins 

are monitored by UV-detection. The ESI interface allows the mass analysis of samples at 

atmospheric pressure. Ionization of the analytical compounds is facilitated by the addition of 

0.1 % TFA. Experiments were performed on an Agilent series 1100 HPLC-System. 
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Table 4.3: Characterization of CDA-like thioester substrates by MS 

 
Compound Species Ionization 

method 
Observed mass 
(calculated mass) (Da) 

Cy/Hy ratio 

CDA-CoA [M+H]+ ESI 2176.4 (2176.6) 8 : 1 
CDA-ppan [M+H]+ ESI 1767.3 (1767.6) 2 : 1 
CDA-SNAC [M+H]+ ESI 1528.4 (1528.6) 9 : 1 
CDA-thiophenol [M+H]+ ESI 1519.3 (1519.5) 5 : 1 
Hex-CDA-thiophenol [M+H]+ ESI 1575.4 (1575.6) 10 : 1 
CDA-A1A2 [M+H]+ ESI 1473.4 (1473.5)  
CDA-A1 [M+H]+ ESI 1503.2 (1503.5) 3 : 1 
CDA-A2 [M+H]+ ESI 1489.3 (1489.5) 1 : 3 
CDA-DS1A2 [M+H]+ ESI 1489.3 (1489.5)  
CDA-A1DT2 [M+H]+ ESI 1503.4 (1503.5)  
CDA-DS1 [M+H]+ ESI 1519.4 (1519.5) 2 : 1 
CDA-DT2 [M+H]+ ESI 1519.3 (1519.5) 1 : 5 
CDA-DS1DT2 [M+H]+ ESI 1519.4 (1519.5)  

 

 

 

 

 

 

 

Table 4.4: Characterization of CDA-like products by MS 

 

Compound Species Ionization 
method 

Observed mass (calculated mass) (Da) 
 
cyclized product    hydrolyzed product 

Cy/Hy 
ratio 

CDA-CoA [M+H]+ ESI 1409.4 (1409.5) 1427.4 (1427.5) 8 : 1 
CDA-ppan [M+H]+ ESI 1409.3 (1409.5) 1427.3 (1427.5) 2 : 1 
CDA-SNAC [M+H]+ ESI 1409.3 (1409.5) 1427.4 (1427.5) 9 : 1 
CDA-thiophenol [M+H]+ ESI 1409.4 (1409.5) 1427.3 (1427.5) 5 : 1 
Hex-CDA [M+H]+ ESI 1465.4 (1465.6) 1483.4 (1483.6) 10 : 1 
CDA-A1A2 [M+H]+ ESI n. d. (1363.5) 1381.4 (1381.5)  
CDA-A1 [M+H]+ ESI 1393.4 (1393.5) 1411.4 (1411.5) 3 : 1 
CDA-A2 [M+H]+ ESI 1379.4 (1379.5) 1397.3 (1397.5) 1 : 3 
CDA-DS1A2 [M+H]+ ESI n. d. (1379.5) 1397.3 (1397.5)  
CDA-A1DT2 [M+H]+ ESI n. d. (1393.5) 1411.4 (1411.5)  
CDA-DS1 [M+H]+ ESI 1409.4 (1409.5) 1427.4 (1427.5) 2 : 1 
CDA-DT2 [M+H]+ ESI 1409.4 (1409.5) 1427.2 (1427.5) 1 : 5 
CDA-DS1DT2 [M+H]+ ESI n. d. (1409.5) 1427.4 (1427.5)  
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Table 4.5: Characterization of hybrid CDA-daptomycin and daptomycin-like substrates 
and products by MS 

 
*cyclization via L-Orn; †cyclization via L-Kyn 

 

observed mass (calculated mass) (Da) compound species ionization 
method substrate cyclized product   hydrolysis 

AcCDA-G3 [M+H]+ ESI 1390.3 (1390.5) 1280.2 (1280.5) 1298.3 (1298.5) 
AcCDA-O4 [M+H]+ ESI 1518.2 (1518.6) 1408.4 (1408.6) 

1408.7 (1408.6)*
1426.3 (1426.6) 

AcCDA-DA6 [M+H]+ ESI 1443.2 (1443.5) 1333.2 (1333.5) 1351.2 (1351.5) 
AcCDA-DS9 [M+H]+ ESI 1492.3 (1492.5) 1382.2 (1382.5) 1400.3 (1400.5) 
HexCDA-G3 [M+H]+ MALDI-TOF 1446.6 (1446.5) 1336.5 (1336.5) 1354.5 (1354.5) 
HexCDA-O4 [M+H]+ MALDI-TOF 1574.6 (1574.7) 1464.4 (1464.7) 

1465.2 (1464.7)*
1482.4 (1482.7) 

HexCDA-DA6 [M+H]+ MALDI-TOF 1499.4 (1499.6) 1389.4 (1389.6) 1407.3 (1407.6) 
HexCDA-DS9 [M+H]+ MALDI-TOF 1548.5 (1548.6) 1438.5 (1438.6) 1456.4 (1456.6) 
HexCDA-D1 [M+H]+ ESI 1603.4 (1603.6) 1493.4 (1493.6) 1511.3 (1511.6) 
HexCDA-U11 [M+H]+ ESI 1579.3 (1579.6) 1469.4 (1469.6) 

1469.3 (1469.6)†
1487.3 (1487.6) 

Dap [M+H]+ ESI 1716.6 (1716.7) 1606.6 (1606.7) 
1606.7 (1606.7)* 
1606.6 (1606.7)†

1624.4 (1624.7) 

 
Table 4.6: Characterization of semi-preparative scale generated cyclic and linear 
daptomycin-like peptides by MALDI-TOF MS. 
 

 Compound Species observed mass (calculated mass) (Da) 
 

Dap [M+H]+ 1606.7 (1606.7) 
Dap-Hyd [M+H]+ 1624.7 (1624.7) 
Dap-N3 [M+H]+ 1606.0 (1605.7) 
Dap-N7 [M+H]+ 1606.0 (1605.7) 
Dap-N9 [M+H]+ 1605.9 (1605.7) 
Dap-Q12 [M+H]+ 1605.9 (1605.7) 
Dap-DD11 [M+H]+ 1634.9 (1634.7)  
Dap-Aloc [M+H]+ 1691.0 (1690.7) 
Dap-W13 [M+H]+ 1603.0 ( 1602.7) 
Dap-W13K6 [M+H]+ 1617.0 ( 1616.7) 

 
 
 
 
 

 

 

 

 69



4 Methods

 

Table 4.7: Characterization of cyclic and linear daptomycin-like peptides and the 
fluorescent Tyc SNAC substrate by MS 
 

 Compound Species Observed mass 
(Da) 
 

Calculated mass 
(Da) 

lnDap-U1W13 [M+H]+ 1717.2 1716.7 
lnDap-U2W13 [M+H]+ 1716.3 1716.7 
lnDap-U3W13 [M+H]+ 1717.0 1716.7 
lnDap-U5W13 [M+H]+ 1716.6 1716.7 
lnDap-U7W13 [M+H]+ 1717.0 1716.7 
lnDap-U1W14 [M+H]+ 1773.9 1773.7 
lnDap-U1W15 [M+H]+ 1830.3 1830.8 
lnTyc-U2W8 [M+H]+ 1569.9 1569.7 
cyDap-U1W13 [M+H]+ 1607.1 1606.7 
cyDap-U2W13 [M+H]+ 1606.9 1606.7 
cyDap-U3W13 [M+H]+ 1607.0 1606.7 
cyDap-U5W13 [M+H]+ 1606.8 1606.7 
cyDap-U7W13 [M+H]+ 1606.9 1606.7 
cyDap-U1W14 [M+H]+ 1663.8 1663.7 
cyDap-U1W15 [M+H]+ 1721.0 1720.8 
cyTyc-U2W8 [M+H]+ 1450.6 1450.7 
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4.5. Fluorescence Techniques 

Fluorescence measurements were performed on a spectrofluorometer (FP-6500, Jasco) with 

slits set to 10 nm (excitation) and 5 nm (emission) at an excitation wavelength of 280 nm. The 

detector was set to low sensitivity. Constant temperature was achieved by circulating water 

through the cell holder in which the temperature was measured by a temperature controller 

(ETC-273T, Jasco). The fluorescence results are expressed as the relative quantum yield (φ) 

calculated as the integrated fluorescence emission between 300 and 390 nm (Trp) and 

between 400 and 550 nm (Kyn). All experiments were performed in 10 mm path length 

cuvettes containing 300 µL of linear peptide thioester or cyclic peptide dissolved in 

methanol:DMSO 9:1 to a final concentration of 200 µM. Fluorescence measurements were 

also carried out using a fluorescence detector (Standard FLD cell, Agilent) without HPLC 

column (emission wavelength 452 nm, excitation wavelength 280 nm, PMT gain 10, injection 

volume 10 µL, 100% methanol over 2 min, 0.5 mL min-1). To determine kcat/KM values, the 

integrated fluorescence emission at 452 nm was compared with the area of known 

concentrations of the corresponding cyclic peptides. 

Absorptions measurements were performed on an Ultraspec 3000 UV/Visible 

Spectrophotometer (Pharmacia Biotech). 

 

4.5.1. Real-time fluorescence measurements 

Reactions were carried out in 10 mm path length cuvettes in a total volume of 300 µL with 25 

mM HEPES, 50 mM NaCl, and 5% DMSO (v/v) at pH 7.0 and 25 °C. The enzyme 

concentrations were 0.5 µM for Tyc TE and 5 µM for CDA cyclase. The negative controls 

were conducted in the presence of the corresponding heat denatured enzymes. Reactions were 

initiated by addition of 50 µM peptidyl SNAC lnTyc-U2W8 or 75 µM peptidyl thiophenol 

lnDap-U3W13 (see appendix). Real-time measurements were performed using various time 
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points with slits set to 5 nm (excitation) and 5 nm (emission) at an excitation wavelength of 

280 nm and an emission wavelength of 452 nm. The detector was set to medium sensitivity. 

All assays were quenched by the addition of 1.6% TFA (v/v) and analyzed by analytical 

HPLC. 

 

4.6. Solid Phase Peptide Synthesis (SPPS) 

Solid Phase Peptide Synthesis can be defined as the process in which a peptide is constructed 

by the successive addition of the protected amino acids constituting its sequence. The growing 

peptide chain anchored via its C-terminus to an insoluble solid support makes it possible to 

eliminate the excess of reagents and by-products by simple filtration with savings in time and 

labor. However, there are also limitations in this approach: By-products from incomplete 

reactions, side reactions, or impure reagents will accumulate on the solid support during chain 

assembly. In this work Fmoc/tBu chemistry was performed on a fully automated peptide 

synthesizer (APEX 396 synthesizer, Advanced ChemTech) for batchwise SPPS [1/121]. 2-

chlorotrityl resin was used as solid support, which allows the cleavage of fully protected 

sequences. Protecting groups included: tert-butyl (tBu), trityl (Trt), allyloxycarbonyl (Aloc), 

and tert-butyloxycarbonyl (Boc). 

 

4.6.1. Initiation: Loading of 2-chlorotritylchloride resin 

Loading of 2-chlorotritylchloride resin is achieved by treatment with the triethylammonium 

salt of the desired Fmoc amino acid, thus, concomitant racemization is minimized. The 

loading step is very important because the extent of this reaction will determine the yield of 

the final product. To ensure efficient loading, the resin was swelled in dry DCM, followed by 

incubation with 2 equivalents of Fmoc-protected amino acid supplemented with 8 equivalents 

of DIPEA. This sterically hindered base ensures complete deprotonation of the carboxyl-
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group. The carboxyl-group then nucleophilically attacks the carbon-chlorine bond of the 2-

chlorotritylchloride resin, covalently attaching the C-terminal residue to the solid phase 

(Figure 4.1). After 2h vigorous stirring the solvent was removed by filtration and the resin 

was washed several times with dry DCM. Unreacted sites on the resin were capped by using 

methanol, which prevents the formation of truncated peptidic products. 
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Figure 4.1: Loading of 2-chlorotritylchloride resin. 

 

4.6.2. Elongation: Coupling of Fmoc amino acids 

Elongation of the peptide chain requires deprotection of the N-terminally attached Fmoc 

group of the resin bound amino acid/peptide. This protecting group is removed via base-

induced-elimination by treatment with 15 % piperidine in DMF for 20 min. The key step is 

initial deprotection of the fluorene ring to generate the aromatic cyclopentadiene-type 

intermediate. As a result dibenzofulvene and carbon dioxide are split off (Figure 4.2). 

Chemical approaches to form peptide bonds require activation of the carboxyl-group of the 

Fmoc-protected amino acid. The acyluronium salt HBTU with its additive HOBt was used for 

the in situ coupling of peptide bonds as shown in Figure 4.3. After deprotonation by a ten fold 

excess of DIPEA, the carboxyl-group attacks the electrophilic carbenium ion of HBTU. A 
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highly reactive tetramethylurea intermediate is generated which is subsequently converted 

into the reactive benzotriazole ester in the presence of the nucleophile HOBt. The free N-

terminus of the resin bound amino acid/peptide then nucleophilically attacks this intermediate 

giving rise to an elongated peptide chain. To ensure quantitative reactions, a 3-fold excess of 

Fmoc-protected amino acid is used. 
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Figure 4.2: Deprotection of the N-terminally attached Fmoc group. 
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Figure 4.3: Chemical peptide bond formation. 
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4.6.3. Termination: Cleavage from the Resin 

Protected peptide fragments can be obtained from 2-chlorotrityl resin with TFE/AcOH/DCM 

(2:1:7). After stirring the peptide-resin for 2 h in this cleavage mix, the reaction mixture is 

filtered and the resin rinsed with TFE/AcOH/DCM (2:1:7). The filtrates are pooled, the 

protected peptide is precipitated with hexane, and the solvent was removed by rotary 

evaporation. 

 

4.7. Organic Synthesis 

Linear peptides were synthesized on an Advanced ChemTech APEX 396 peptide synthesizer 

(0.1 mmol scale, HBTU/HOBt activation) by using 2-chlorotrityl resin derivatized with the 

appropriate C-terminal amino acid using Fmoc-protected monomers except for the N-terminal 

monomer of the linear tyrocidine derivative, which was Boc-protected. The following side 

chain protection groups were employed: t-Bu for Asp, Glu, Ser, Thr, and Tyr; Boc for Lys, 

Orn and Trp; Aloc for Orn; and Trt for Asn and Gln. 

 

4.7.1. Synthesis of Peptidyl-SNAC and Peptidyl-Thiophenol Substrates 

Side-chain protected peptides (1 eq.) were dissolved in DCM, followed by the addition of 

DCC (2 eq.), HOBt (2 eq.), thiophenol or N-acetylcysteamine (10 eq.), and potassium 

carbonate (2 eq.). The reaction was stirred at ambient temperature for 3 hr. After removal of 

the DCM, the protected peptide thioesters were treated with 95:2.5:2.5 TFA:H2O:TIPS (2 

mL) at room temperature for 2 h. Precipitation of the deprotected peptide thioesters was 

carried out with ice cold ether (30 mL). After centrifugation the peptide thioesters were 

dissolved in 50% acetonitrile/water and purified on a semipreparative 250/21 Nucleodur 100-

5 C18
 
reverse-phase column (Macherey and Nagel) by applying a gradient from 20% to 60% 

acetonitrile in 0.1% TFA/water over 30 min at a flow rate of 20 mL min-1. The identities of 
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peptidyl-SNAC and peptidyl-thiophenol substrates were determined by LC-MS and MALDI-

TOF MS (Tables 4.3, 4.4, and 4.5). 

 

4.7.2. Synthesis of 4’-Phosphopantetheine (ppan) 

One eq. of coenzyme A, 0.2 eq. of TCEP.HCl, and 0.5 unit/µmol nucleotide pyrophosphatase 

(Sigma) were dissolved in Hepes buffer (50 mM, pH 7.5). The mixture was incubated at 30 

°C for 18 h and then lyophilized to dryness. The product was verified by LC-MS [113]. 

 

4.7.3. Synthesis of Peptidyl-CoA and Peptidyl-ppan Substrates 

The preparation of peptidyl-ppan is based on the synthesis of peptidyl-CoA substrates 

described elsewhere [43]. To 1 eq. of protected peptide was added 1.5 eq. of ppan/CoA, 1.5 

eq. of PyBOP, and 4 eq. of potassium carbonate, dissolved in a 1:1 THF/water mixture. The 

mixture was stirred for 2 h at room temperature which was followed by the removal of the 

solvent. Subsequent cleavage of the side-chain protecting groups was carried out using a 

mixture containing TFA, TIPS, and H2O in a ratio of 95:2.5:2.5. The deprotected peptidyl-

ppan/peptidyl-CoA substrate was precipitated in ice-cold diethyl ether and purified by 

preparative high-performance liquid chromatography (HPLC) on an Äkta purifier (Pharmacia) 

HPLC system with a reverse-phase C18 Nucleodur (Macherey and Nagel) column. 

Identification of the peptidyl-CoA and peptidyl-ppan substrates was verified by LC-MS 

(Table 4.4). 

 

4.7.4. Synthesis of N-(9-Fluorenylmethoxycarbonyl)-L-kynurenine 

Kynurenine sulfate (306 mg, 1 mmol) and sodium bicarbonate (252 mg, 3 mmol) were 

dissolved in a mixture of acetone (2.5 mL) and water (2.5 mL). After addition of Fmoc-OSu 
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(Novabiochem) (337.3 mg, 1 mmol), the solution was stirred overnight. The mixture was 

acidified to pH 2 with concentrated hydrochloric acid, and the acetone was removed by rotary 

evaporation. The product was extracted with chloroform and washed with 0.1 N HCl and 

water. After drying over anhydrous sodium sulfate, the combined organic phases were 

evaporated and the product was confirmed by ESI-MS and NMR: Fmoc-L-Kyn m/z 431.1 [M 

+ H]+ (431.2 calc.); δH(300 MHz, CD3OD) 3.46 [dd, 1 H, J 4.6 and 17.6, CHβa], 3.59 [dd, 1 

H, J 6.5 and 17.4, CHβb], 4.22 [t, 1 H, J 7.0, Fmoc-CH], 4.34 [d, 2 H, J 7.3, Fmoc-CH2], 4.71 

[dd, 1 H, J 4.6 and 6.3, CHα], 6.60 [t, 1 H, J 7.5, Ph], 6.75 [d, 1 H, J 8.6, Ph], 7.27 [m, 3 H, 

Ph], 7.36 [m, 2 H, Ph], 7.64 [d, 2 H, J 7.3, Ph], 7.76 [m, 3 H, Ph]. 

 

4.7.5. Synthesis of Biotin CoA 

A solution of biotin maleimide (Pierce) (10 mg, 19 µmol) in 300 µL DMSO was added to 

coenzyme A lithium salt (Sigma) (18.2 mg, 23 µmol) in 2 mL MES acetate 50 mM at pH 6.0. 

After stirring overnight, the reaction mixture was purified on a semipreparative 250/21 

Nucleodur 100-5 C18 reverse-phase column (Macherey and Nagel) by applying a gradient 

from 0% to 60% acetonitrile in 0.1% TFA/water over 35 min at a flow rate of 18 mL min-1. 

The purified product was characterized by MALDI-MS: Biotin CoA m/z 1293.2 ([M+H]+), 

calcd. 1293.3. 
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5. Results 

5.1. Peptide Cyclization Catalyzed by the Recombinant Thioesterase Domain of the 

Calcium-Dependent Antibiotic 

A key determinant of many nonribosomally synthesized microbial peptides is a rigid cyclic 

structure which ensures stabilization of the bioactive conformation. The generation of this 

structural feature is mostly catalyzed by the C-terminal TE domain of NRPS synthetases. 

The following section will focus on the TE domain of the calcium-dependent antibiotic 

(CDA). This cyclase was excised as a free standing enzyme and the NRPS machinery for 

peptide elongation was replaced by solid phase peptide chemistry. Therefore, this 

chemoenzymatic approach allows the investigation of the principles of enzymatic peptide 

cyclization on the example of this lactone forming cyclase. In the course of these studies 

enzymatic recognition elements of CDA TE were investigated by systematic alteration of the 

fatty acyl group and the decapeptide backbone. In particular, these studies focused on 

elucidating the regio-, stereo-, and chemoselectivity of the CDA cyclase mediated 

macrolactonization. The last part of this section concentrates on the ability of this cyclase in 

producing derivatives of the approved antibiotic daptomycin, which are not accessible by the 

chemical modification of the parental compound. This makes possible the exploration of the 

calcium-dependence of this acidic lipopeptide by subsequent deletion of its four acidic 

residues, which are likely to be important for the interaction with calcium ions. 

 

5.1.1. Overexpression of CDA TE as a Thioredoxin-Fusion Protein 

CDA TE is a recombinant cyclase of the model actinomycete S. coelicolor A3(2). The 

corresponding cda TE gene fragment was cloned into a pBAD202/D-TOPO vector 

(Invitrogen) using a one-step cloning strategy without ligase and restriction enzymes. This 

expression system appends an N-terminal His-patch Thioredoxin domain (11.7 kDa) to the 
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recombinant cyclase, which facilitates solubility and translation efficiency of the expressed 

protein (49.4 kDa) [114] (Figure 5.1). 

 

Figure 5.1: Purified recombinant CDA cyclase examined 
in this study. CDA cyclase (49.4 kDa) was overproduced 
in E. coli BL21 and purified by Ni-NTA affinity 
chromatography. The concentrated protein was resolved 
by SDS-PAGE (12.5%) and visualized by Coomassie 
stain. 

5.1.2. CDA Cyclase Catalyzes Ring Formation of a Synthetic CDA Analogue 

In order to examine the ability of CDA cyclase to catalyze macrolactonization, a peptidyl-

thioester analogue of the natural CDA substrate was synthesized. So far seven CDA variants 

have been isolated, which differ in their incorporation of nonproteinogenic amino acids [17]. 

For synthetic reasons these nonproteinogenic amino acids were substituted by similar 

proteinogenic amino acids. D-4-Hydroxyphenylglycine/D-phenylglycine at position 6 was 

substituted by D-phenylalanine, and D-3-phosphohydroxyasparagine/D-3-hydroxyasparagine 

at position 9 was replaced by D-asparagine (Figure 5.2). At positions 10 and 11 the 

proteinogenic amino acids L-glutamate and L-tryptophan were incorporated 

 

Figure 5.2: Comparison between 
peptide analogues used in this work 
and wild-type CDA3b. Regions 
highlighted by shading represent 
the molecular parts of CDA3b, 
which were replaced in the CDA 
analogues CDA and Hex-CDA. 
The deviating parts of these 
analogues are indicated by circles. 
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into the peptide backbone as in the case of the CDA variants CDA1b and CDA3b. The N-

terminus of the synthetic CDA analogue was acetylated instead of attaching the 2,3-

epoxyhexanoyl fatty acid of the natural occurring CDA. Hence the sequence of the 

synthesized CDA (see also appendix) was chosen as follows: acetyl-Ser1-Thr2-DTrp3-Asp4-

Asp5-DPhe6-Asp7-Ala8-DAsn9-Glu10-Trp11 (Figure 5.3). The C-terminus of CDA was attached 

to the SNAC leaving group (Figure 5.4), which mimics the last part of the ppan arm of the 

natural cofactor. Assaying for CDA TE mediated cyclization revealed that the peptidyl-SNAC 

is cyclized. Remarkably, two products with the expected mass for cyclization were observed 

(Figure 5.5). Taking into account that CDA possesses two adjacent nucleophiles, L-Ser1 and 

L-Thr2, it was assumed that both nucleophiles are involved in ring formation. To ensure that 

no other nucleophiles except L-Ser1 and L-Thr2 contribute to cyclization, a thioester substrate 

CDA-A1A2 (Figure 5.3) was synthesized, where both nucleophiles of CDA are replaced by 

alanine. As expected, upon incubation with CDA cyclase no cyclization product was detected. 

Instead, the substrate was fully hydrolyzed (data not shown). 

The identities of both cyclic products were confirmed by MS-MS sequencing (Table 5.1). For 

the peak with the lower retention time (tR = 28.0 min) four fragments were detected, which 

did not appear in the MS-MS-spectrum of the peak with tR = 28.6 min. These fragments were 

characteristic for an undecapeptide lactone, where Ser1 contributes as internal nucleophile. In 

theses cases simultaneous fragmentation occurred between Ser1 and Thr2 as well as between 

Glu10 and Trp11, leading to fragments, where the former lactone bond was still maintained. If 

cyclization would occur via Thr2, no such fragments would have been obtained with the 

apparent masses of Ser1 cyclization. Therefore, the peak with tR = 28.6 min can be assigned to 

the lactone cyclizing via Thr2, because this is the only remaining nucleophile in the CDA 

analogue as evidenced with CDA-A1A2. The ratio between these two regioisomeric 

macrolactones was determined as 1:4 (undecapeptide lactone:decapeptide lactone), indicating 
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that the natural Thr2-nucleophile of CDA is still preferred. The flux toward hydrolysis was 

very low, revealing a cyclization-to-hydrolysis ratio of 9:1. 

 

 

 
 
Figure 5.3: Peptides synthesized for study of the regio-, stereo-, and chemoselectivity of the 
CDA cyclase mediated macrolactonization. Regions highlighted by shading represent 
differences in substrates with respect to CDA. Compound Hex-CDA is a linear CDA 
thioester analogue, where the C-terminal acyl chain is elongated to its natural length. 
Compounds CDA-A1A2, CDA-A1, and CDA-A2 are characterized by the replacement of the 
nucleophilic residues Ser1 and/or Thr2 with L-alanine. Compounds CDA-DS1A2 and CDA-
A1DT2 each contain only one internal nucleophile, Ser1 or Thr2, with a stereochemistry 
opposite of the natural configuration. Compounds CDA-DS1, CDA-DT2, and CDA-DS1DT2 
possess both internal nucleophiles, Ser1 and Thr2, where either one or both are changed in 
their configuration. CoA = coenzyme A, ppan = phosphopantetheine, and SNAC = N-
acetylcysteamine. 
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Figure 5.4: Structures of the leaving groups appended to the C-terminus of CDA are shown. 
Coenzyme A (CoA), phosphopantetheine (ppan), and N-acetylcysteamine (SNAC) are mimics 
of the phosphopantetheine cofactor covalently bound to a conserved Ser residue of the 
peptidyl-carrier protein (PCP). In contrast to that, thiophenol has no structural similarity to 
this prosthetic group. 
 

 

Figure 5.5: Exploring the role of the 
leaving group for CDA cyclase 
catalyzed ring formation. CDA cyclase 
incubated with CDA-SNAC for 3 h at 
20 °C (trace 2). Trace 1 shows substrate 
incubation in the absence of enzyme. 
Su = substrate, Hy = hydrolyzed 
product, and Cy = cyclized product. 
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Table 5.1: MS-MS-Sequencing of Macrolactones Derived from CDA Analogues CDA and 
Hex-CDA. 
 
The molecular part highlighted by shading represents a fragment (301.119 Da) characteristic 
for the undecapeptide lactone, where Ser1 contributed as internal nucleophile. If cyclization 
would occur via Thr2, no such fragment would have been obtained, because simultaneous 
fragmentation of the same two bonds would only result in an opening of the corresponding 
lactone ring. Fragmentation of C-C-bonds in the fatty acyl chain of Hex-CDA is not possible 
under experimental conditions. 
 

Observed mass of fragments 

(calculated mass) (Da) 

Compound Mol. formula Species 

cyclization via Ser 1 

C15H18N3O3
+ 288.118 (288.135) 

C16H17N2O4
+ 301.126 (301.119) 

C17H19N4O5
+ 359.138 (359.136) 

undecapeptide lactone 

C17H21N4O5
+

[M+H]+

361.172 (361.151) 

   cyclization via Ser 1 

C15H18N3O3
+ n. d. (288.135) 

C16H17N2O4
+ n. d. (301.119) 

C17H19N4O5
+ n. d. (359.136) 

decapeptide lactone 

C17H21N4O5
+

[M+H]+

n. d. (361.151) 

   cyclization via Ser 1 

C15H18N3O3
+ n. d. (344.197) 

C16H17N2O4
+ n. d. (357.181) 

C17H19N4O5
+ n. d. (415.198) 

decapeptide lactone 

with hexanoic acid 

C17H21N4O5
+

[M+H]+

n. d. (417.214) 

n. d. = not detected 
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5.1.3. Selecting the Best Leaving Group for Macrolactonization Mediated by the CDA 

Cyclase 

In order to determine which leaving group is best suited to support CDA TE catalyzed 

macrolactonization, four different leaving groups were attached to the C-terminus of CDA 

(Figure 5.4). Besides the SNAC leaving group, which was successfully employed for in vitro 

cyclization of tyrocidine A, gramicidin S, and surfactin [63, 66, 68], the following three other 

leaving groups were tested for their ability to support ring formation of CDA: Coenzyme A 

(CoA), phosphopantetheine (ppan), and thiophenol. Ppan is structurally identical to the 

prosthetic group of the peptidyl-carrier protein, which is derived from coenzyme A. In 

contrast, the thiophenol leaving group possesses no structural analogy to the 

phosphopantetheine arm of the PCP. Nevertheless peptidyl-thiophenol thioesters allowed 

biochemical characterization of fengycin, mycosubtilin, and syringomycin, which did not 

show any activity with SNAC substrates [73]. 

Examination of CDA cyclase catalyzed product formation with CDA-CoA (Figure 5.6), 

CDA-ppan, and CDA-thiophenol revealed that the observed products were identical to that 

observed for CDA-SNAC. To determine the best leaving group for CDA TE mediated 

cyclization of CDA, the kinetics of cyclization for all four peptidyl-thioesters were measured. 

The cyclization reaction follows Michaelis-Menten kinetics with the KM and kcat values 

reported in Table 5.2. Although CDA-ppan is structurally identical to the ppan arm of the 

PCP, its KM value is at least 10-fold higher than those measured for CDA-thiophenol or 

CDA-SNAC. It was also discovered that the kcat value for cyclization of the CDA-thiophenol 

substrate [kcat(undecapeptide lactone) = 0.097 min-1; kcat(decapeptide lactone) = 0.323 min-1] 

was approximately 3-fold higher than observed for the other three CDA thioesters. Its 

catalytic efficiency for cyclization [kcat/KM(undecapeptide lactone) = 2.44 mM-1min-1; 

kcat/KM(decapeptide lactone) = 8.13 mM-1min-1] was approximately 10-16-fold the value of 

the SNAC substrate [kcat/KM(undecapeptide lactone) = 0.156 mM-1min-1; kcat/KM(decapeptide 
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lactone) = 0.799 mM-1min-1]. Surprisingly, the kcat/KM value for CDA TE mediated 

cyclization was the second lowest for CDA-ppan [kcat/KM(undecapeptide lactone) = 0.023 

mM-1 min-1; kcat/KM-(decapeptide lactone) = 0.115 mM-1 min-1]. This result clearly indicates 

that the structural identity to the ppan arm of the PCP is not important for recognition by the 

dissected enzyme. 

 

Figure 5.6: HPLC trace of CDA 
cyclase incubated with CDA-CoA for 
5h at 20°C (trace 2). Trace 1 shows 
incubation of substrate without enzyme. 
Su = substrate, Hy = hydrolyzed 
product, and Cy = cyclized product. 

 
Table 5.2: Kinetic constants of CDA (four different leaving groups attached to the C-
terminus) and Hex-CDA are shown. 
 

 

Substrate 
KM 

(µM) 
kcat (min-1) kcat/KM (min-1mM-1) 

  
undecapeptide 

lactone 
decapeptide 

lactone 
undecapeptide 

lactone 
decapeptide 

lactone 
CDA-CoA 8150 0.030 0.178 0.004 0.022 
CDA-ppan 1440 0.023 0.115 0.016 0.080 

CDA-SNAC 147 0.023 0.117 0.156 0.799 
CDA-thiophenol 40 0.097 0.323 2.44 8.13 

Hex-CDA 65 n. d. 1.92 n. d. 29.8 

n. d. = not detected 
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The cyclization-to-hydrolysis ratios for CDA-SNAC and CDA-CoA in the presence of CDA 

TE were determined to be 9:1 and 8:1, respectively (Table 4.3, right column). Those values 

confirm the extraordinarily high chemoselectivity of this cyclase, which catalyzes almost 

exclusively macrolactonization of CDA. The lower cyclization-to-hydrolysis ratio of 5:1 for 

CDA-thiophenol indicates the higher background hydrolysis of this substrate due to the high 

chemical reactivity of the attached thiophenol leaving group. Surprisingly, the cyclization-to-

hydrolysis ratio of CDA-ppan was even lower than for CDA-thiophenol. 

 

5.1.4. Regioselectivity of CDA Cyclase 

The results with the thioester substrates of CDA showed that the recombinant CDA cyclase 

catalyzes the simultaneous formation of two regioisomeric cyclic products. To determine 

whether this cyclase can be employed for the regioselective formation of peptidolactones with 

defined ring sizes, two additional thiophenol substrates, CDA-A1 and CDA-A2, were 

synthesized (Figure 5.3). Compound CDA-A1 lacks Ser1 as a cyclization nucleophile, 

whereas CDA-A2 lacks Thr2, which was described to be the only cyclization nucleophile in 

naturally occurring CDA [115]. Probing CDA cyclase with these two CDA analogues 

revealed the formation of only one cyclization product in each case (Figure 5.7). Reaction 

profiles showed that CDA-A2 was primarily converted into the peptide acid with a 

cyclization-to-hydrolysis ratio of 1:3 (Table 4.4). Conversely, CDA-A1 led primarily to the 

formation of the peptidolactone, yielding a cyclization-to-hydrolysis ratio of 3:1, which 

indicates that Thr2 is the preferred nucleophile for cyclization. 
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Figure 5.7: Regioselective formation of decapeptide lactone or undecapeptide lactone 
catalyzed by CDA cyclase. HPLC traces of CDA cyclase incubated with peptidyl-thiophenol 
substrates. (A) CDA cyclase incubated with CDA-A2 for 3 h at 20 °C (trace 2). Trace 1 
shows incubation of substrate in the absence of enzyme. (B) CDA cyclase incubated with 
CDA-A1 for 3 h at 20 °C (trace 2). Trace 1 shows substrate incubation without enzyme. No 
uncatalyzed cyclization is observed. Su = substrate, Hy = hydrolyzed product, and Cy = 
cyclized product. 
 

5.1.5. Stereoselectivity of CDA Cyclase 

It was previously reported that syringomycin cyclase does not tolerate a change in 

stereochemistry of the cyclization nucleophile Ser1 [73]. To test if CDA cyclase retains its 

stereoselectivity as well, two thiophenol CDA derivatives were synthesized: CDA-DS1A2 

and CDA-A1DT2 (Figure 5.3). These peptidyl thioesters allow the selective examination of 

the stereochemistry of only one nucleophilic amino acid due to the replacement of the second 

one by alanine. Incubation of these CDA derivatives with CDA cyclase resulted only in the 

formation of hydrolysis product, indicating the importance of L-configured serine and 

threonine in positions 1 and 2 for the enzyme-mediated macrolactonization (data not shown). 

Additionally, the substrates CDA-DS1 and CDA-DT2 (Figure 5.3) were prepared, in which 

either serine or threonine is replaced by its corresponding D-isomer. It was found that CDA-

DS1 and CDA-DT2 generated only one cyclization peak on the HPLC trace in the presence 

of CDA cyclase (Figure 5.8). Remarkably, cyclization was observed to be the main product 
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for CDA-DS1 (cyclization-to-hydrolysis ratio = 2:1), while, on the other hand, CDA-DT2 

was converted primarily into the peptide acid (cyclization-to-hydrolysis ratio = 1:5) (Table 

4.4). These results show that cyclization selectively occurs via the L-configured amino acids 

serine and threonine, while the latter is the preferred cyclization nucleophile of the CDA 

cyclase. The role of CDA cyclase as a stereoselective macrolactonization catalyst could be 

further emphasized by the thiophenol substrate CDA-DS1DT2 (Figure 5.3), which possesses 

only D-configured nucleophiles. Incubation of this substrate with CDA cyclase revealed only 

hydrolysis (data not shown), thereby emphasizing the need for a correct stereochemistry for 

the enzyme-mediated cyclization at positions 1 and 2, respectively. 

 

Figure 5.8: Probing the stereoselectivity of CDA cyclase mediated macrolactonization. 
HPLC traces of CDA cyclase incubated with peptidyl-thiophenol substrates, where either 
Ser1 or Thr2 is replaced by its D-configured isomer. (A) Incubation of CDA cyclase with 
CDA-DT2 for 3 h at 20 °C (trace 2). Trace 1 shows incubation of substrate without enzyme. 
(B) CDA cyclase incubated with CDA-DS1 for 3 h at 20 °C (trace 2). Trace 1 shows substrate 
incubation in the absence of enzyme. Su = substrate, Hy = hydrolyzed product, and Cy = 
cyclized product. 
 

5.1.6. Extending the N-Terminal Acyl Chain of the CDA Thioester Substrate 

The observation that CDA cyclase catalyzes the generation of two regioisomeric 

macrolactones on incubation with CDA (Figures 5.5 and 5.6) contradicts the findings of 
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Kempter et al., who characterized naturally occurring CDA to be cyclized over Thr2 [115]. 

Therefore, it was tried to better approximate the natural interaction between the linear peptide 

precursor and the CDA cyclase. Hex-CDA as a new CDA analogue (Figure 5.3) was 

synthesized, which was structurally closer to its natural counterpart. The N-terminal acetyl 

residue of CDA was replaced by a hexanoyl fatty acid. The 2,3-epoxy group of natural CDA 

was omitted for synthetic reasons. Surprisingly, the reaction profile of Hex-CDA revealed 

that this compound was efficiently transformed into only one macrocycle (Figure 5.9). MS- 

 

Figure 5.9: The N-terminal hexanoyl 
fatty acid residue ensures regioselective 
cyclization of the CDA thioester 
analogue. HPLC trace of CDA cyclase 
incubated with Hex-CDA for 3 h at 
20°C (trace 2). Trace 1 shows 
incubation of substrate in the absence 
of CDA TE. 

MS sequencing revealed that solely the decapeptide lactone was formed (Table 5.1), because 

none of the four fragments characteristic for the macrolactone cyclizing via Ser1 were 

detected. This result indicates that the N-terminal hexanoyl fatty acid appears to be important 

for regioselective cyclization of Hex-CDA. The kinetic parameters for the CDA TE catalyzed 

cyclization were determined as KM = 65 µM and kcat = 1.92 min-1 (Table 5.2). In fact, the 

cyclization-to-hydrolysis ratio of 10:1 (Table 4.3, right column) was significantly higher than 

for the corresponding CDA-thiophenol with the N-terminal acetyl residue (cyclization-to-

hydrolysis ratio of 5:1). This result provides evidence for the substantial contribution of the 
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hexanoyl fatty acid in shifting the chemoselectivity of the CDA-catalyzed reaction toward 

cyclization. 

5.2. Exploring the Substrate Tolerance of CDA Cyclase to Produce Daptomycin 

5.2.1. Single Amino Acid Substitutions 

To explore the ability of CDA TE to catalyze cyclization of a linear daptomycin precursor 

peptide in principle, four peptidyl-thioester substrates were synthesized that differ from a 

CDA sequence analogue by only one single amino acid substitution. Specifically, 

daptomycin-specific residues were incorporated into the peptide backbone of the CDA 

lactone ring. Therefore, the following changes were made: D-Trp3 to Gly3 (AcCDAG3), L-

Asp4 to L-Orn4 (AcCDA-O4), D-Phe6 to D-Ala6 (AcCDADA6), and D-Asn9 to D-Ser9 

(AcCDA-DS9) (Figure 5.10, see also appendix). Additionally, the 2,3-epoxyhexanoyl fatty 

acid moiety of native CDA was replaced with a shorter acetyl chain for synthetic reason. 

 

Figure 5.10: Structure of a CDA analogue is shown. Single amino acid substitution 
experiments were carried out to probe the ability of CDA TE to generate branched cyclic 
daptomycin. The incorporation of daptomycin-specific residues into the peptide backbone is 
indicated by shading. In Dap all substitutions were performed simultaneously and the N-
terminus was extended by two additional amino acids fused to a decanoyl fatty acid moiety. 
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Assaying for CDA TE mediated cyclization revealed that three of four substrates were 

completely converted to macrocycles after 3 h. The only exception was AcCDA-G3, where 

only traces of cyclized product were detected within this period of time (data not shown). In 

all cases, the CDA cyclase catalyzed the formation of two regioisomeric macrolactones, 

which arise from simultaneous nucleophilic attack of the two adjacent Thr2 and Ser1 residues 

onto the C-terminus of the acyl enzyme intermediate as described earlier [113]. In order to 

better approximate natural CDA, the N-terminal acetyl chains of AcCDA-G3, AcCDA-O4, 

AcCDADA6, and AcCDA-DS9 were elongated by four methylene groups through 

replacement by hexanoic side chains (HexCDA-G3, HexCDAO4, HexCDA-DA6, and 

HexCDA-DS9) (Figure 5.10, see also appendix). The poor water solubility of the peptidyl-

thioester substrates was improved by the addition of 5% DMSO (v/v). In accordance with 

previous results, the elongated acyl side chain dramatically increased the regioselectivity of 

the enzyme mediated macrocyclization yielding exclusively the decapeptide lactone ring 

derived from nucleophilic attack of L-threonine onto the C-terminus [113] (Figure 5.11). 

Remarkably, the conversion to cyclic product was substantial for all substrates. This includes 

also HexCDA-G3, which is significantly converted to the macrocyclic product. In addition, 

the two peptidyl-thioester substrates HexCDA-U11 and HexCDA-D1 were prepared in which 

the C-terminal nonproteinogenic amino acid L-Kyn (U) and the exocyclic residue L-Asp of 

daptomycin were introduced to the CDA backbone (Figure 5.10). Incubation of CDA TE with 

the corresponding peptidyl-thiophenol substrates displays substantial formation of the 

corresponding peptidolactones (Figure 5.11). In conclusion, all single residue exchanges of 

the CDA backbone were tolerated by CDA cyclase, when hexanoic acid was fused to the N-

terminus. 
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Figure 5.11: HPLC traces of CDA cyclase incubated with linear peptide thioesters 
comprising daptomycin-specific residues. Assays were performed with 250 µM substrate, 25 
mM Hepes, 50 mM NaCl, pH 7.0 at 25°C for 2 h in the absence (trace a) and presence of 5 
µM CDA cyclase (trace b). Identities of substrates and products were verified by ESI-MS and 
MALDI-TOF MS (Table 4.5). Su = substrate, Hy = hydrolyzed product, Cy = cyclized 
product. Enzyme is indicated with an asterisk. 
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5.2.2. Simultaneous Amino Acid Changes and Branch Point Movement 

The single residue scan described above suggests that CDA TE is a permissive cyclization 

catalyst and raises the question of the effect on cyclization of simultaneous changes in the 

linear peptide precursor. Therefore, a peptidyl-thioester substrate (Dap) which was based on a 

sequence analogous to daptomycin was synthesized [116]. L-3-Methylglutamic acid in 

position twelve was replaced by L-glutamic acid for synthetic reason (Figure 5.10). In 

contrast to the substrates derived from CDA, Dap incorporates a longer N-terminal extension 

including two additional amino acids fused to a decanoyl fatty acid moiety moving the branch 

point of the peptidolactone from position 2 to position 4. Incubation of Dap with CDA 

cyclase revealed the formation of two products that were identified by ESI-MS as linear 

peptide acid (tR = 30.2 min) and decapeptide lactone (tR = 30.8 min) (Figure 5.12). MS-MS 

 

Figure 5.12: Cyclization of a 
daptomycin analog mediated by 
CDA TE. (A) Reactions of the 
linear precursor peptide Dap 
followed by HPLC. Trace a 
displays the negative control 
without enzyme (250 µM substrate, 
25 mM Hepes, 50 mM NaCl, pH 
7.0 at 25°C for 2h). Trace b shows 
the same reaction in the presence of 
5 µM CDA cyclase. Enzyme is 
indicated with an asterisk. (B) 
Shown is the ESI mass spectrum of 
the decapeptide lactone (tR = 30.9 
min) produced by CDA TE. 

 

sequencing of the cyclic species confirmed that cyclization is mediated through nucleophilic 

attack of L-Thr at position 4 as fragment ions containing the predicted linkage from Thr4 to
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(A) 

compound molecular 
formula 

species observed mass of fragments 
(calculated mass) (Da) 

C20H32N7O10
+ (1) 530.29 (530.22) 

C53H72N11O17
+ (2) 1134.62 (1134.51) 

C55H75N12O18
+ 1191.56 (1191.53) 

C57H77N12O20
+ 1249.55 (1249.54) 

C64H87N14O24
+ (3) 1435.74 (1435.60) 

decapeptide lactone of Dap 

C66H90N15O25
+

[M+H]+

1492.77 (1492.62) 

(B)  

Figure 5.13: Structure of the 
decapeptide lactone derived from 
Dap. The detected fragments 1 (solid 
line), 2 (dotted line), and 3 (dashed 
line) are indicated. The molecular part 
highlighted by shading represents the 
lactone linkage. 

hydrolysis  
observed mass of fragments  

(calculated mass) (Da) 

cyclization via L-Kyn13 

observed mass of 
fragments  

(calculated mass) (Da) 

x 

yx yx – H2O 
 [yx – NH3] 

yx

1 209.09 (209.09) 191.08 (191.08) 
[192.06 (192.07)] 

191.08 (191.08) 

2 n. d. n. d. n. d. 
3 425.20 (425.17) 407.18 (407.16) 407.18 (407.16) 
4 482.24 (482.19) 464.23 (464.18) 464.23 (464.18) 
5 n. d. n. d. n. d. 
6 668.29 (668.25) 650.27 (650.24) 650.27 (650.24) 
7 783.35 (783.28) 765.33 (765.27) 765.33 (765.27) 
8 897.48 (897.36) 879.45 (879.35) 879.45 (879.35) 
9 954.51 (954.38) 936.53 (936.37) 936.53 (936.37) 
10 1055.57 (1055.43) 1037.59 (1037.42) 1037.59 (1037.42) 
11 n. d. n. d. n. d. 

 12 1284.56 (1284.50) 1266.57 (1266.49) 1266.57 (1266.49) 
n. d. = not detected 

Table 5.3: MS-MS sequencing of the products derived from Dap. (A) MS-MS fragmentation 
of the decapeptide lactone (cyclization via L-Thr4). Shown are fragments arising from 
simultaneous breaking of two bonds. The corresponding fragment ions were not detected for 
the octapeptide lactam (cyclization via L-Orn6) and the 7-membered lactam (cyclization via 
L-Kyn13). The pattern giving rise to the fragments 1, 2, and 3 is illustrated below. (B) The y 
series of the hydrolyzed product and the 7-membered lactam (cyclization via L-Kyn13) 
derived from product ion MS-MS spectra. The table also indicates the loss of water or 
ammonia of the fragment ions. The fragmentation pattern of the y1 series is depicted in Figure 
5.14 (A). 
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Kyn13 can be identified (Table 5.3 (A)). Cyclization occurred with a kcat/KM value of 22.2 

mM-1min-1 and a ratio of cyclization to hydrolysis of 3:1. A control reaction without enzyme 

showed that the formation of this macrolactone was abolished. Instead, two new cyclic 

products were observed at retention times of 30.0 and 32.5 min, respectively. The identity of 

the former species (tR = 30.0 min) was also investigated by MS-MS fragmentation (Table 5.3 

(B), Figure 5.14 (A)). Cyclization was shown to occur through the L-Kyn residue at position 

13 leading to a seven-membered lactam (Figure 5.14 (B)). In the other case nonenzymatic 

cyclization yielded an octapeptide lactam ring derived from nucleophilic attack of L-Orn6 

onto the C-terminal carboxyl group, because the formation of this macrolactam was abolished 

by orthogonal Aloc-protection of the L-Orn residue (Dap-Aloc) (Figure 5.15). 

A 

 

Figure 5.14: MS-MS 
fragmentation 
(A) Overlaid MS-MS spectra 
of the 7-membered lactam 
(red) and the hydrolyzed 
product (blue). The 
assignment of the fragments is 
shown in Table 5.3B. The y1 
fragment ion of the 7-
membered lactam does not 
correspond to the y1 – H2O 
fragment ion of the 
hydrolyzed product, because 
the MS-MS spectrum of the 7-
membered lactam lacks a peak 
at m/z = 209.09. This signal is 
only detected for the 
hydrolyzed product (y1 
fragment ion). 
(B) Structure of the 7-
membered lactam (cyclization 
via L-Kyn13) derived from 
Dap.
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Figure 5.15: Identification of non-enzymatic macrolactam formation 
(A) HPLC trace showing the incubation of Dap without enzyme. The assay was performed 
with 250 µM substrate, 25 mM Hepes, 50 mM NaCl, pH 7.0 for 2h at 25°C. The 
corresponding masses are shown in the table below. 
(B) HPLC trace displaying the assay of Dap-Aloc under the same conditions as described 
above. Side chain protection of L-Orn6 by the Aloc-group abolishes macrolactam formation. 
The shift to higher retention times is caused by the loss of the positive charge of the ornithine 
side chain. The corresponding masses are shown in the table below. Su = substrate, Hy = 
hydrolyzed product, Cy = cyclized product. 
(C) Structure of the octapeptide lactam derived from Dap. 
 

5.2.3. Derivatization of Daptomycin and Bioactivity Studies 

To explore the significance of selected amino acid side chains for the bioactivity of the 

antibiotic daptomycin, eight peptidyl-thioesters (Dap-N3, Dap-N7, Dap-N9, Dap-Q12, Dap-
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DD11, Dap-Aloc, Dap-W13, and Dap-W13K6) in addition to the already mentioned linear 

precursor peptide Dap (Figure 5.16, see also appendix) were prepared. 

All compounds were tested as substrates for enzymatic transformation by CDA cyclase. In 

each case the conversion to cyclic product was sufficient to allow semipreparative-scale 

reactions. The purified cyclic products were then tested for their bactericidal activity against 

Bacillus subtilis PY79 (Table 5.4). 

 

Figure 5.16: 
Chemoenzymatic derivati-
zation of daptomycin. The 
daptomycin analogue Dap 
cyclized by CDA TE only 
lacks the β-methyl group 
of L-3-methylglutamate 
(position 12) of authentic 
daptomycin. The residues 
that were incorporated 
into the backbone of Dap 
are indicated by shading. 
The corresponding 
sequences of the dapto-
mycin derivatives are 
shown below. The 
differences to Dap are 
highlighted by gray boxes. 

 

At first the bioactivity of the cyclic peptide product of Dap was compared to authentic 

daptomycin. Both compounds differ only by the β-methyl group of glutamic acid in position 

twelve. The macrolactone of Dap has a MIC of 20 µg/mL, whereas the reference compound 

has an MIC of 3 µg/mL (Table 5.4). This result indicates that the β-methyl group of glutamic 
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acid is crucial for bioactivity. Further, when L-Kyn13 was replaced by L-Trp13 (Dap-W13), 

the MIC increased 5-fold to 100 µg/mL, displaying the importance of this nonproteinogenic 

amino acid for the bactericidal activity of daptomycin. In contrast to that, successive  

 

 Compound MIC90 (µg/mL) 
at 73.6 mg/L Ca2+ 

[at 23.6 mg/L Ca2+] 

Dap 20 [> 240] 
authentic daptomycin 3 [20] 

Dap-Hyd > 960 
Dap-N3 80 
Dap-N7 > 960 
Dap-N9 > 960 

Dap-Q12 30 
Dap-DD11 > 320 
Dap-Aloc 80 
Dap-W13 100 

Dap-W13K6 100 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5.4: MIC determination of daptomycin derivatives against B. subtilis PY 79 
 

substitution of the third nonproteinogenic residue L-Orn6 by L-Lys6 in Dap-W13K6 did not 

cause a further increase of the MIC (Table 5.4). 

In accordance to authentic daptomycin, the antimicrobial behavior of Dap strongly depends 

on the presence of physiological concentrations of calcium ions [117]. The MIC increased at 

least 12-fold, when the concentration of free calcium ions was reduced from 73.6 mg/L to 

23.6 mg/L (Table 5.4). Calcium ions presumably interact with the acidic residues of 

daptomycin, resulting in oligomerization of daptomycin molecules to form ion channels 

[118]. Recent results with the closely related CDA suggest that these acidic residues are 

crucial for antimicrobial potency [50]. Hence, the cyclic peptides Dap-N3, Dap-N7, Dap-N9, 

and Dap-Q12 were tested for antibiotic activity. In each peptidolactone one acidic residue of 

daptomycin is deleted by substitution with either L-Asn or L-Gln (Figure 5.16). Single 

deletion of the aspartic acid residues in the lactone ring (Dap-N7 and Dap-N9) resulted in a 
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total loss of bioactivity (Table 5.4). Surprisingly, replacement of the two remaining acidic 

residues (Dap-N3 and Dap-Q12) did not abolish bactericidal potency, indicating that these 

residues are not essential for calcium binding. Interestingly, the bioactivity of Dap was also 

abolished, when an additional acidic residue was incorporated into the peptide backbone of 

the lactone ring (Dap-DD11). 

The biological function of the positively charged Orn6 remains unclear [119]. Nevertheless, 

masking of the side chain by Aloc-protection (Dap-Aloc) significantly increased the MIC 4-

fold in comparison to Dap, indicating the importance of this residue for antibiotic activity. In 

addition, the lactone ring of Dap was shown to be important for bioactivity as the 

corresponding linear peptide acid (Dap-Hyd) did not show antimicrobial properties. Finally, 

the cyclic peptide Dap completely lacked hemolytic activity up to a concentration 4-fold 

above the MIC even after the addition of 50 mg/L Ca2+ (data not shown). This demonstrates 

its specific interaction with prokaryotic membranes. 
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5.3. FRET-Assisted Detection of Peptide Cyclization 

The following section focuses on a system for specifically detecting macrocyclic peptides by 

fluorescence resonance energy transfer (FRET). In this approach, peptide cyclization 

catalyzed by CDA TE brings the donor tryptophan (Trp) and the acceptor kynurenine (Kyn) 

in close spatial proximity to enable efficient FRET. To evaluate the utility and potential of 

FRET-assisted detection of peptide cyclization, a library of daptomycin-like peptides with 

variable positioning of the two fluorophores in the N- and C-terminal parts of the peptide 

sequence was created. Moreover, it was investigated whether this technique can be extended 

to TE domains of other nonribosomal peptide synthetases. The last part of this section then 

concentrates on initial results of such a fluorescence-based method to serve as a rapid and 

sensitive detection tool in high-throughput enzymatic screening. 

 

5.3.1. Synthesis and Fluorescence Characteristics of Linear and Cyclic Daptomycin 

Peptides 

The cyclic lipopeptide antibiotic daptomycin is a tridecapeptide that contains two 

fluorophores: tryptophan (Trp, W) at the N-terminus and kynurenine (Kyn, U) at the C-

terminus (Figure 5.17 A). The poor fluorescence yield of the Trp residue situated between the 

C10-fatty acid and the peptide headgroup was reported earlier [119]. It was assumed that this 

poor Trp emission is due to fluorescence resonance energy transfer (FRET), which results 

from the combination of the proximity of the two fluorophores and the overlap of the Trp 

emission spectrum (λEm ≈ 330 nm) and Kyn absorption spectrum (λEx ≈ 350 nm). The 

proximity of these fluorophores mainly arises from the lactone bond, which connects 

threonine at position 4 with the C-terminal Kyn13 residue. It was thus reasoned that the energy 
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Figure 5.17: Fluorescence resonance energy transfer (FRET) in daptomycin  
(A) Daptomycin adopts a conformation in which the kynurenine (Kyn) fluorophore is in close 
spatial proximity to the tryptophan (Trp) residue allowing FRET to occur. The methyl group 
of nonproteinogenic L-3-methylglutamate is indicated by shading. (B) The structure of a 
linear daptomycin derivative is shown. The fluorescent residues Kyn and Trp are highlighted. 
(C) Emission spectra of the linear and cyclic daptomycin derivatives in methanol and DMSO 
9:1 (v/v): red line, linear daptomycin derivative; black line, cyclic daptomycin derivative; 
excitation wavelength = 280 nm. 
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transfer might be less efficient in the linear peptide derived from daptomycin by opening of 

the decapeptide lactone ring (Figure 5.17 B). Given this assumption, it was chosen to compare 

the fluorescence characteristics of cyclic to linear daptomycin. The latter was prepared by 

solid phase peptide synthesis, followed by treatment with trifluoroacetic acid (TFA), 

triisopropylsilane (TIPS), and water in a ratio of 95:2.5:2.5 (v/v) to yield the linear peptide 

acid. For the generation of cyclic daptomycin (Figure 5.17 A), linear peptidyl-thiophenol was 

converted to the macrolactone in the presence of CDA cyclase. In the linear and cyclic 

daptomycin sequence, L-3-methylglutamate at position 12 was replaced by glutamate for 

synthetic reason. In order to investigate the assumed distance-dependent energy transfer 

between the two fluorophores Trp and Kyn, the linear and cyclic daptomycin analogues were 

excited at 280 nm, followed by measurement of the emission spectra. Fluorescence 

measurements were carried out in methanol and dimethylsulfoxide (DMSO) in a ratio of 9:1 

(v/v) due to 2.1-fold Kyn-fluorescence enhancement compared to 10% DMSO in water (data 

not shown). Interestingly, the Kyn emission at 453 nm of the linear daptomycin analogue is 

minimal resulting in a 4-fold difference between linear and cyclic peptide (Figure 5.17 C). 

Excitation at 280 nm produces preferentially UV light (λEm ≈ 330 nm). Conversely, excitation 

of Trp in the cyclic peptide generates a strong Kyn emission in the visible region of light (λEm 

≈ 455 nm) due to FRET. Further proof was obtained by analytical HPLC in combination with 

fluorescence studies (Figure 5.18). An assay with 200 µM linear (ln) daptomycin-like peptide 

precursor lnDap-U1W13 (comprising Kyn at position 1 and Trp at position 13, Figure 5.19 

shows the corresponding cyclic peptide cyDap-U1W13, see also appendix) and 5 µM CDA 

cyclase was quenched after a time period of 30 min by the addition of aqueous trifluoroacetic 

acid (TFA). Analytical HPLC with monitoring at 215 nm revealed identical concentrations of 

peptidyl-thiophenol substrate and its macrolactone product (Figure 5.18). Remarkably, 

determination of the emission at 452 nm using a fluorescence detector at an excitation 

wavelength of 280 nm significantly enhanced signal intensity of the decapeptide lactone. Peak 

 102



5 Results

 

area integration exhibited a 5.5-fold amplification of visible fluorescence in comparison to the 

linear precursor, indicating a greatly improved energy transfer between Trp and Kyn in the 

cyclopeptide. 

 

 

 
Figure 5.18: Fluorescence enhancement by TE-mediated peptide cyclization is shown. An 
assay containing 200 µM linear peptidyl thioester (lnDap-U1W13) and 5 µM CDA TE was 
quenched by aqueous TFA and analyzed by HPLC: Upper HPLC trace, absorbance at 215 
nm; lower HPLC trace, fluorescence at 452 nm (excitation wavelength = 280 nm). The 
fluorescence signal is slightly shifted to higher retention times, because the solvent reaches 
the fluorescence detector after passing the UV-detection cell. Su = substrate, Hy = hydrolyzed 
product, and Cy = cyclized product. 
 

5.3.2.  Examination of Distance-Dependent Interactions between Donor and Acceptor 

It was reasoned that the above FRET experiments could be transferred to a variety of peptides 

with varying spatial proximity of donor and acceptor. To investigate the feasibility of FRET 

detected peptide cyclization, it was chosen to create a small library of linear and cyclic 
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daptomycin-like peptides (Figure 5.19). In contrast to authentic daptomycin, the positions of 

the fluorophores Trp and Kyn in the peptide backbone were exchanged. This strategy 

maximizes the yield of cyclic peptide generated by CDA TE because Trp is the C-terminal 

amino acid of cognate CDA [17]. Therefore, in all cases the conversion to cyclic product was 

sufficient to allow fluorescence studies (data not shown). To vary the distance between both 

fluorophores, Trp was kept at the C-terminus, whereas the position of Kyn was systematically 

altered. All of the HPLC purified linear and cyclic peptides were dissolved in a mixture of 

methanol and DMSO 9:1 to a final concentration of 200 µM, followed by fluorescence 

measurements. 

Since the distances between the fluorophores were systematically altered in the above-

mentioned library of linear and cyclic (cy) daptomycin derivatives (Figure 5.19), a distance-

dependent relationship of integrated acceptor fluorescence to integrated donor fluorescence 

(EmKyn/EmTrp ratio) was expected. As shown in Figure 5.20, the EmKyn/EmTrp ratio changes in 

the order cyDap-U1W15 < cyDap-U1W14 < cyDap-U1W13 < cyDap-U2W13 < cyDap-U3W13 < 

cyDap-U5W13 > cyDap-U7W13 (see also appendix). Therefore, decreasing distance between 

both fluorophores clearly correlates with more effective energy transfer. Indeed, the 

compounds cyDap-U3W13 and cyDap-U5W13, the latter one with the fluorescent Kyn moved 

to a ring position, show the highest EmKyn/EmTrp ratios of this study because the FRET pair is 

only separated by the cyclization nucleophile threonine. 

In general, excitation at 280 nm revealed 3 to 5-fold increased EmKyn/EmTrp ratios, when the 

linear peptide precursors were converted into the corresponding macrolactones by CDA 

cyclase. The only exceptions were lnDap-U1W15 and lnDap-U1W14, where peptide 

cyclization yielded less than 2-fold increases of the EmKyn/EmTrp ratios (Figure 5.20), 

indicating that more than 3 amino acid residues in between Trp and Kyn significantly limits 

the energy transfer. 
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Figure 5.19: Macrocyclic peptides used in this study (see also appendix). All fluorophore-
tagged cyclopeptides are shown using three letter amino acid codes. The FRET pair in each 
compound is highlighted. The figures in the middle of the macrocycles denote the number of 
amino acid residues in between Trp and Kyn. Macrolactonization/macrolactamization is 
indicated by grey shading. Kyn = kynurenine, Orn = ornithine, and FA = fatty acid. 

 105



5 Results

 

 

Figure 5.20: Fluorescence studies of linear and cyclic daptomycin derivatives. Determination 
of EmKyn/EmTrp ratios of linear and cyclic daptomycin derivatives with systematically altered 
distance between Trp and Kyn: linear daptomycin derivatives = white bars; cyclic daptomycin 
derivatives = grey bars. All bars represent mean values of three measurements. The error bars 
indicate the standard error of the mean. Excitation wavelength = 280 nm. U = kynurenine, and 
W = tryptophan. 
 

5.3.3. Real-Time Monitoring of Peptide Cyclization 

FRET-assisted detection of peptide cyclization provides a useful means to follow reactions in 

real-time without disrupting enzymatic integrity. By incorporating fluorescent amino acids 

into linear peptide precursors, adding the respective recombinant cyclization enzyme, and 

measuring the visible fluorescence intensity (λEx = 280 nm; λEm = 452 nm) at defined time 

intervals, one can easily estimate the progression of the peptide cyclization reaction. This 

technique was demonstrated with the daptomycin derivative lnDap-U3W13 in which the 

fluorescent residues Trp and Kyn were placed at positions 13 and 3, respectively (Figure 5.19, 

see also appendix). After addition of 5 µM CDA cyclase, fluorescence intensity at 452 nm 

followed a time-dependent hyperbolic function, reaching a maximum after approximately 50 
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minutes (Figure 5.21 A). HPLC studies revealed total conversion to cyclic product within this 

period of time (Figure 5.22). Also, a control reaction in the presence of the corresponding heat 

denatured enzyme indicated no significant change in fluorescence emission. 

 

Figure 5.21: Real-time monitoring of peptide cyclization. (A) Sample contained 75 µM 
lnDap-U3W13 and 5 µM CDA TE (■). The negative control was conducted in the presence 
of 5 µM heat denatured CDA cyclase (▲). (B) The cuvette contained 50 µM lnTyc-U2W8 
and 0.5 µM Tyc TE (■). The negative control was done in the presence of 0.5 µM heat 
denatured Tyc TE (▲). Excitation wavelength = 280 nm, emission wavelength = 452 nm. 
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Figure 5.22: HPLC trace of CDA 
cyclase incubated with 75 µM lnDap-
U3W13 for 50 min (trace b). Trace a 
shows incubation of substrate in the 
presence of 5 µM heat denatured CDA 
TE. Su = substrate, Hy = hydrolyzed 
product, and Cy = cyclized product. 

The real-time monitoring of CDA cyclase mediated peptide cyclization raised the question 

whether this approach may be applicable to other peptide cyclization catalysts. To answer this 

question, the well-characterized tyrocidine synthetase thioesterase domain (Tyc TE) was 

chosen, which efficiently catalyzes head-to-tail cyclization with decapeptidyl thioesters. It 

was previously shown that Tyc TE tolerates replacement of residues 2–8 of peptidyl thioesters 

[[66, 69]. To follow Tyc TE catalyzed macrolactamization by FRET, the Trp/Kyn pair was 

incorporated into the wild-type tyrocidine A sequence. Specifically, Pro2 was replaced by Kyn 

and Val8 by Trp (Figure 5.19 shows the corresponding cyclic peptide cyTyc-U2W8, see also 

appendix). Incubation of the resulting substrate lnTyc-U2W8 with Tyc TE indicated a time-

dependent increase in fluorescence emission (λEm = 452 nm) (Figure 5.21 B), although the 

cyclization-to-hydrolysis ratio was quite low (0.28) as determined by analytical HPLC. 

Finally, no change in fluorescence was observed for heat denatured Tyc TE. 

 108



5 Results

 

5.3.4. FRET Can Be Used to Measure Kinetics of Enzyme Mediated Peptide Cyclization 

The above-mentioned results show that the close spatial proximity of donor and acceptor in 

the cyclic peptide induces up to 5.5-fold amplification of visible fluorescence in comparison 

to the linear precursor. In addition, FRET-assisted detection of peptide cyclization easily 

realizes picomolar detection limits using conventional fluorescence detectors without 

optimization. For example, the cyclic daptomycin derivative cyDap-U2W13 was characterized 

by a detection limit of 7 pmol, whereas its linear counterpart lnDap-U2W13 showed a limit of 

28 pmol. This high sensitivity raised the question whether FRET can be used to accurately 

determine kinetics of enzyme-mediated peptide cyclization. To address this question, 

thiophenol substrates of daptomycin derivatives (lnDap-U1W13 and lnDap-U3W13, see 

appendix) were chosen for kinetic measurements, which were performed by analytical HPLC 

combined with fluorescence detection. Initial investigations revealed a linear correlation 

between fluorescence emission at 452 nm and the concentrations of the respective cyclic 

peptides (cyDap-U1W13 and cyDap-U3W13) as determined by calibration curve plots, thus 

allowing simple quantification of the fluorophor-containing macrolactones. Kinetic 

characterization of the cyclization reactions was then carried out by calculating the initial 

reaction rates at 5–7 substrate concentrations. It was found that the kcat/KM values derived 

from integrated fluorescence emission were in good agreement with the corresponding kcat/KM 

values determined by conventional UV absorbance at 215 nm, resulting in 1.2 to 1.6-fold 

differences between both detection methods (Table 5.5). 

Compound kcat/KM 

(mM-1min-1) 
Method 

5.09 Absorbance 
(215 nm) 

lnDap-U1W13

6.13 Fluorescence 
emission wavelength = 452 nm

4.34 Absorbance 
(215 nm) 

lnDap-U3W13

6.75 Fluorescence 
emission wavelength = 452 nm

Table 5.5: 
Determination of cycli-
zation kinetics: UV-
absorption vs. Kyn-
fluorescence. 
U = kynurenine, W = 
tryptophan, and ln = 
linear. 
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5.3.5. FRET-Assisted Detection of Peptide Cyclization of Immobilized CDA Cyclase 

It has recently been shown that the use of NRPS-derived peptidyl-carrier protein (PCP) for 

biotin labeling is amenable to high-throughput enzymatic screening [104], which can be a 

powerful method for identifying and evolving biological catalysts. It was therefore reasoned 

that this approach could be transferred to TE domains in order to improve or alter their 

substrate specificity by directed evolution efforts. Since in the native context of NRPS, the 

PCP domain is N-terminally associated with the TE domain, the PCP–TE didomain was 

excised from the corresponding synthetase. Specifically, heterologous expression of CDA 

PCP–TE was carried out, which is a 44.5 kDa protein from the S. coelicolor CDA 

biosynthetic machinery [17]. The yield of the didomain was around 4 – 5 mg/L. After 

purification by Ni-NTA affinity chromatography, CDA PCP-TE was labeled with biotin ppan 

in the presence of Sfp and biotin CoA (see chapter 4.3.3). Site-directed posttranslational 

modification was allowed to proceed for 90 minutes at 30°C, followed by confirmation with 

an API Qstar Pulsar i Q-q-TOF mass spectrometer (measured mass m/z 45382, calculated 

mass 45379). The labeling-reaction mixture was then run over an avidin column (bed volume 

1 mL). After washing the column, the immobilized CDA PCP–TE didomain was incubated 

with 5 mM of lnDap-U1W13 (see appendix) for 3 hours at 25°C. Reaction products were 

eluted off the column, and the mixture was characterized by LC-MS (Figure 5.23 A). 

Interestingly, lnDap-U1W13 was significantly converted to the macrolactone product cyDap-

U1W13. The observed cyclization-to-hydrolysis ratio was 7.0, validating that the immobilized 

CDA cyclase retains excellent cyclization activity. Additionally, minor amounts of an 

octapeptide lactam derived from cyclization via Orn6 were detected. In contrast to the desired 

macrolactone, this byproduct is also generated in the absence of bound CDA cyclase, 

indicating its nonenzymatic origin (see chapter 5.2.2). Finally, the PCP–TE didomain was 

eluted with 5 mM biotin, and the protein was identified with SDS-PAGE to yield a single 

band of correct size (data not shown). 
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Remarkably, the substrate conversion into products was accompanied by a 3.5-fold increase 

in fluorescence emission at 452 nm (Figure 5.23 B). This result suggests that rapid detection 

of peptide cyclization by FRET can be transferred to immobilized TE domains, thus making 

the PCP-TE-tagging approach amenable to high-throughput enzymatic screening. 

 

 

Figure 5.23: Immobilization of CDA cyclase by site-directed posttranslational modification 
and subsequent detection of reaction products. (A) HPLC trace of lnDap-U1W13 prior to 
cyclization by immobilized CDA cyclase (red trace). Immobilized CDA TE was incubated 
with lnDap-U1W13 for 3 hours at 25°C (black trace). (B) Detection of generated 
cyclopeptide by FRET. The red trace shows the fluorescence signal of lnDap-U1W13 prior to 
loading onto the column. The black trace shows the fluorescence signal after CDA TE-
mediated cyclization. Excitation wavelength = 280 nm, emission wavelength = 452 nm. 
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6. Discussion 

6.1. The Enzymology of CDA Cyclase 

In nature the C-terminal CDA cyclase of CDA synthetase catalyzes the formation of a 

branched cyclic macrolactone through the nucleophilic attack of the L-Thr2 residue onto the 

C-terminal L-Trp11 of the bound acyl-undecapeptidyl oxoester. The released CDA 

macrolactone is structurally related to other antibiotics, including daptomycin, friulimicins, 

and amphomycins (Figure 6.1) [17]. In order to gain a deeper understanding of the regio-, 

stereo-, and chemoselective cyclization mechanism of this class of acidic lipopeptides, the 

CDA thioesterase domain was expressed as excised cyclase from the CDA NRPS. This CDA 

cyclase has been successfully assayed in a chemoenzymatic approach for the in vitro 

cyclization of various synthetic peptidyl-thioesters based on a modified CDA sequence. This 

finding is potentially important for engineering the synthesis of novel peptides based on CDA, 

which can be screened for altered biological activity. 

 

Figure 6.1: Acidic lipopeptide antibiotics. All structures are comprised of a decapeptide 
lactone or lactam ring (ester or amide linkage highlighted by shading), including several 
acidic residues probably important for calcium binding and antibiotic activity as well as 
several D-configured and nonproteinogenic residues. CDA is produced by S. coelicolor, 
friulimicin B and amphomycin A-1437B are produced by Actinoplanes friuliensis, and 
daptomycin is derived from Streptomyces roseosporus. 
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6.1.1. Enzymatic Cyclization of CDA: Substrate Recognition and Leaving Group Properties 

Streptomycetes are a group of soil bacteria, which possess an important role in modern 

medicine as they produce over two-thirds of the naturally derived antibiotics in current use 

[21]. The excised CDA TE domain is the first recombinant cyclase of this group of 

microorganisms. It was probed with four different peptidyl-thioesters based on a sequence 

similar to CDA, including the leaving groups SNAC, ppan, CoA, and thiophenol. CDA-

thiophenol was the best cyclization substrate, although thiophenol has no structural similarity 

to the ppan cofactor. Comparison of the catalytic cyclization efficiency of CDA-thiophenol 

with CDA-SNAC revealed a 10-16-fold higher kcat/KM value for the peptidyl-thiophenol 

substrate. This result is in good agreement with experiments of the recombinant surfactin 

cyclase (Srf TE), where it was shown that the enzyme-mediated cyclization with the peptidyl-

thiophenol substrate (kcat/KM = 44.9 mM-1 min-1) was 15 times more efficient than with the 

respective SNAC substrate (kcat/KM = 2.9 mM-1 min-1) [73]. In conclusion, the chemical 

reactivity of the leaving group displays a very important property for enzyme acylation in 

trans. 

The observation that structural similarity to the cofactor of the PCP is not an important feature 

for enzyme acylation in trans was further confirmed by the ppan leaving group. The structure 

of this compound exactly matches the prosthetic group of the PCP. Nevertheless, CDA-ppan 

revealed a 10-fold lower catalytic efficiency (kcat/KM) for cyclization than CDA-SNAC (Table 

5.2, chapter 5.1.3). The poorer leaving group properties of ppan (KM = 1440 µM) compared to 

SNAC (KM = 147 µM) may be due to additional steric repulsions of this larger ppan arm 

surrogate, which is reflected in a 10-fold higher KM value. Thus, enzymatic recognition of the 

ppan group by the TE domain in trans is less favored than in cis, where this structural element 

is properly aligned by the adjacent PCP for TE acylation. In accordance to the observed trend, 

CoA as the largest leaving group employed in this work revealed the highest KM value of 

8150 µM. Generally, the kcat/KM values of the CDA thioester analogues for cyclization 
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significantly increase in the order CDA-CoA < CDA-ppan < CDA-SNAC < CDA-

thiophenol. This indicates that the formation of the peptidyl-O-TE intermediate displays the 

rate-determining step in TE-mediated cyclization in vitro. 

 

6.1.2. Exploring the Regioselectivity of CDA TE-Catalyzed Macrolactonization 

In nature the C-terminal TE domain catalyzes the release of the NRPS-tethered linear peptide 

precursor by macrocyclization. So far, it has been shown that the regio- and stereoselectivity 

of this cyclization process is retained in excised TE domains, which makes these recombinant 

cyclases attractive for the in vitro synthesis of new cyclic compounds with a defined structure 

[7]. Nevertheless, the recombinant CDA cyclase from S. coelicolor A3(2) catalyzes the 

cyclization of a linear CDA analogue (CDA) with a relaxed regioselectivity generating two 

regioisomeric cyclic products (Figure 6.2). The main cyclic product was derived from 

nucleophilic attack of L-Thr2 onto the C-terminus, which corresponds to the regioselectively 

of naturally occurring CDA [115]. In contrast to that, the recombinant CDA cyclase also 

mediated the formation of a regioisomeric macrolactone, resulting in an increase of the ring 

size by one residue to a total number of 11. Therefore, CDA TE is the first cyclase where 

simultaneous formation of two macrocycles with different ring sizes was observed. The ratio 

between these two regioisomeric products was independent of the four leaving groups (CoA, 

ppan, SNAC, thiophenol) attached to the C-terminus of the linear peptide precursor CDA (see 

appendix). This indicates that solely the common acyl-enzyme intermediate of all thioester 

substrates determines the relaxed regioselectivity of the product formation (Figure 6.2). 
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Figure 6.2: Relaxed regioselectivity of CDA TE exemplified for the CDA-thiophenol 
substrate. The active site serine residue of CDA TE is acylated by the reactive CDA-
thiophenol substrate to generate the acyl-enzyme intermediate, which is then captured either 
by Thr2 to generate a decapeptide lactone (solid line) or by Ser1 to release the regioisomeric 
undecapeptide lactone (dotted line). 
 

 

It was reported that fengycin PCP-TE can catalyze the cyclization of the linear fengycin CoA 

substrate by covalent loading of the peptidyl substrate onto the PCP [74]. It was further shown 

that cyclization occurred regioselectively via nucleophilic attack of Tyr at position 3, despite 

the presence of two adjacent nucleophiles at position 2 (Orn) and position 4 (Thr), 

respectively. Relocation of Tyr from position 3 to position 2 resulted in the formation of a 

peptidolactone ring, where the ring size was expanded by one residue. This result indicates 

that relaxed regioselectivity presumably arises from identical or at least similar nucleophilic 

residues in adjacent positions, as in the case of CDA. The acidic lipopeptide CDA is 

characterized by two nucleophilic residues in position 1 (Ser) and position 2 (Thr), which 
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differ only by a β-methyl group. By substitution of one of these residues by alanine, it was 

demonstrated that CDA cyclase can be forced to selectively produce one of the observed two 

regioisomeric peptidolactones. Probing CDA cyclase with CDA-A1 (see appendix) resulted 

in the formation of the decapeptide lactone ring derived from cyclization of Thr2 onto the C-

terminus. Conversely, incubation with CDA-A2 (see appendix) led selectively to the release 

of the isomeric undecapeptide lactone ring where cyclization occurred via Ser1. The 

cyclization-to-hydrolysis ratio was much smaller in the latter case, indicating that CDA 

cyclase prefers Thr2 as the “natural” cyclization nucleophile. 

 

6.1.3. Probing the Stereoselectivity of CDA Cyclase 

The stereoselectivity of the CDA TE mediated ring formation was explored by incubating this 

recombinant cyclase with five linear CDA thiophenol analogues. The simultaneous 

replacement of L-Ser1 and L-Thr2 from CDA by the corresponding D-configured amino acids 

in CDA-DS1DT2 (see appendix) resulted in substantial hydrolysis but no cyclization in the 

presence of CDA cyclase. The same results were obtained when CDA cyclase was probed 

with substrates CDA-DS1A2 and CDA-A1DT2 (see appendix), which permitted the selective 

examination of the stereochemistry at positions 1 and 2. Remarkably, although Ser1 does not 

take part in the cyclization process of naturally occurring CDA, its involvement in the 

formation of the undecapeptide lactone ring mediated by CDA cyclase is strictly 

stereoselective. Therefore, CDA cyclase provides another example of stringent stereoselective 

discrimination against cyclizing nucleophiles with deviating stereochemistry. Additionally, 

CDA cyclase was probed with the thiophenol substrates CDA-DS1 and CDA-DT2 (see 

appendix), where the stereochemistry of either Ser1 or Thr2 was changed. Surprisingly, CDA 

cyclase employed only the residue with the correct stereoinformation for the cyclization of the 

linear peptide precursor. Therefore, it is possible to selectively generate the decapeptide 
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lactone ring or the regioisomeric undecapeptide lactone ring without replacing either serine or 

threonine by a nonnucleophilic residue (e.g., alanine). 

6.1.4. Regioselective Peptide Cyclization Triggered by the Fatty Acid Chain Length 

The observed relaxed regioselectivity of the CDA thioester substrates with CDA cyclase 

clearly deviates from the natural NRPS system, where cyclization regioselectively occurs by 

nucleophilic attack of L-Thr2. Therefore, it was tried to better approximate the natural CDA 

substrate. A new CDA thiophenol analogue (Hex-CDA, see appendix) was synthesized where 

the N-terminal acyl chain was elongated by four methylene groups to its natural length. 

Remarkably, CDA TE catalyzed the formation of only one macrocyclic product (Figure 6.3). 

Cyclization occurred regioselectively via L-Thr2, producing the decapeptide lactone ring as is 

also observed in the natural NRPS machinery. This result suggests that the N-terminal fatty 

acid of CDA controls the regioselectivity of the enzyme-mediated ring formation. Further, the 

kcat value for formation of the decapeptide lactone increased by a factor of 6 compared to 

CDA-thiophenol with the acetylated N-terminus. This may be explained due to a better 

alignment of the attacking L-Thr2 nucleophile through favorable hydrophobic interactions 

between the hexanoic fatty acid residue and the enzyme’s active site. Finally, the elongated 

acyl chain induced a much better chemoselectivity of the CDA cyclase catalyzed reaction. 

The cyclization-to-hydrolysis ratio of the corresponding thiophenol substrates rose from 5:1 

(CDA) to 10:1 (Hex-CDA). This very selective flux toward cyclization could be due to the 

improved exclusion of water from the active site mediated by the hydrophobic fatty acid, 

which facilitates the capture of the acyl-O-TE intermediate by the internal L-Thr2 nucleophile. 

Therefore, the relatively low cyclization-to-hydrolysis ratios of the in vitro cyclization of 

lipopeptides such as surfactin, fengycin, mycosubtilin, and syringomycin may be due to the 

shortened N-terminal acyl chains of the linear peptide analogues. 
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In summary, the results suggest that elongating the N-terminal acyl chain of linear peptide 

precursors improves the chemoselectivity, regioselectivity, and kinetics of recombinant TE-

mediated macrocyclization. Therefore, the role of these fatty acids is not constrained to 

biological tasks, e.g., hydrophobic interaction with lipid bilayer membranes. 

 

 

Figure 6.3: Regioselective peptide cyclization triggered by the fatty acid chain length. The 
invariant serine residue of CDA cyclase is acylated by the Hex-CDA-thiophenol substrate to 
form the acyl-enzyme intermediate, which is then captured by L-Thr2 to selectively release 
the decapeptide lactone. 
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6.2. A Chemoenzymatic Route to Daptomycin 

Natural products play an important role in drug development, which is exemplified by the 

finding that most antibiotics and anticancer drugs in human use were derived from such 

compounds [3, 120]. Among these complex compounds is the recently approved antibiotic 

daptomycin (Figure 6.4 A). Modifications of this nonribosomal lipopeptide have been 

performed at only two sites so far: the α-amino group of L-Trp1 and the δ-amino group of L-

Orn6 [116, 121, 122]. In order to make this cyclic tridecapeptide more accessible to 

derivatization, a new chemoenzymatic strategy was applied, which allows the production of 

novel variants of this important antibiotic. 

 

6.2.1. Probing the Substrate Specificity of CDA Cyclase 

The calcium-dependent antibiotic (CDA) is very similar in structure to the acidic lipopeptide 

daptomycin. Both compounds are decapeptide lactones, which share five common amino acid 

side chains in identical ring positions. Encouraged by this striking similarity, single amino 

acid substitution experiments were carried out. Instead of performing an alanine scan, 

daptomycin-characteristic residues were incorporated into the peptide backbone of CDA. 

Applying this strategy revealed that CDA TE is a very permissive cyclase. When hexanoic 

acid was fused to the N-terminus of the thioester substrates, CDA cyclase accepted all six 

amino acid side chains characteristic of daptomycin, including one exocyclic position. This is 

quite remarkable, considering that the side chain alterations in some positions resulted in 

dramatically different substituents, such as Gly for D-Trp3. Interestingly, substitution of the 

hexanoyl fatty acid by acetic acid decreased the substrate tolerance of CDA cyclase. 

Specifically, for the substrate thioester AcCDA-G3 (see appendix) only trace amounts of 

cyclic product were detected under standard assay conditions. Therefore, the chain length of 
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the N-terminal acyl residue also influences the substrate tolerance of TE mediated 

macrocyclization. 

Figure 6.4: Structures of CDA and 
daptomycin are shown in two 
different fashions. Common amino 
acids which are found at equivalent 
positions in the lactone rings are 
indicated by shading. mGlu = L-3-
methylglutamate; DAsn* = D-3-
hydroxyasparagine; D-HPG = D-4-
hydroxyphenylglycine.  
(A) The branched cyclic 
tridecapeptide daptomycin derived 
from the fermentation of 
Streptomyces roseosporus. 
(B) The calcium-dependent antibiotic 
(CDA) produced by Streptomyces 
coelicolor consists of 11 residues. 
CDA 4b represents one variant of this 
family of compounds. 

  

The single amino acid substitution experiments raised the question of the effect on cyclization 

of simultaneous changes in potentially substitutable positions. Assaying the linear precursor 

peptide Dap (see appendix) for CDA TE mediated cyclization revealed that this cyclase 

behaves very tolerantly toward multiple residue substitutions in the peptide backbone. 

Macrolactonization of Dap occurred with a kcat/KM only 1.3-fold reduced from that of the 

linear CDA analogue [113] and the ratio of cyclization to hydrolysis moderately dropped 

from 10:1 to 3:1 (Figure 6.5). This cyclization to hydrolysis ratio of Dap is still remarkable in 

comparison to studies with TycC TE, where simultaneous side chain alterations led to the 

predominance of hydrolysis over cyclization [75]. The efficient conversion to cyclic product 
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may be caused by the Asp-D-Ala-Asp-Gly motif of the linear peptide precursor. It is known 

that in the closely related acidic lipopeptide amphomycin the similar Asp-Gly-Asp-Gly motif 

induces a type II β-turn, which may preorganize the substrate in a product-like conformation 

[123]. Furthermore, CDA TE is capable of maintaining a macrolactone ring size of 10 

residues by tolerating a branch point movement from Thr2 to Thr4 as proved by MS-MS 

sequencing. This suggests that the active site cavity of the CDA cyclase is large enough to 

accommodate the N-terminal extension of daptomycin, which is composed of two additional 

amino acids linked to a decanoyl fatty acid residue. Hence, the cyclase of the calcium-

dependent antibiotic is a permissive cyclization catalyst allowing the synthesis of daptomycin 

in vitro. Although the methyl group of L-3-methylglutamate (mGlu) was omitted, it is very 

likely that the TE tolerates this nonproteinogenic amino acid for catalytic activity due to its 

occurrence in four natural variants of cognate CDA at the same position. It is assumed that a 

putative glutamate-3-methyltransferase catalyzes the stereospecific β-methylation of 

glutamate prior to activation by a specific A-domain which differs from conventional 

glutamate-activating A-domains [17]. This indicates that the corresponding tailoring step 

occurs prior to peptide cyclization by the TE domain. Notably, β-methylation of glutamate 

displays a key role in the biological activity of daptomycin. Substitution of mGlu12 by Glu12 

in Dap yielded a 7-fold increase of the MIC against B. subtilis. This suggests that the more 

hydrophobic mGlu induces a closer contact of daptomycin with the bacterial lipid bilayer than 

its nonmethylated counterpart. The importance of the nonproteinogenic constituents on the 

antimicrobial action of daptomycin was further shown for the tryptophan metabolite L-

kynurenine. Replacement by L-tryptophan resulted in an additional 5-fold increase of the 

MIC in comparison to Dap. 
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Figure 6.5: Regioselective cyclization of a daptomycin analogue catalyzed by CDA TE is 
shown. 
 

6.2.2. Chemoenzymatic Derivatization of Daptomycin 

The bioactivity of daptomycin is dependent on the presence of calcium ions. These divalent 

cations presumably trigger the oligomerization of daptomycin molecules to form ion 

channels, which disrupt the membrane potential of the bacterial cell [118]. Despite the 7-fold 

higher MIC of Dap in comparison to authentic daptomycin, its bactericidal activity was 

clearly calcium-dependent (Table 5.4, chapter 5.2.3). It is speculated that calcium interacts 

with the four acidic residues of daptomycin [124]. In order to explore this, the 

chemoenzymatic approach was used to delete these residues through replacement by 

noncharged amino acids (e.g., Asn and Gln). Significantly, only L-Asp7 and L-Asp9 in the 

lactone ring are essential for antibiotic activity. This is in agreement to experiments with 

CDA, where it was shown that deletion of L-Asp7 in the cyclic part completely abolished 

antimicrobial behaviour [50]. Moreover, these ring-membered aspartic acid residues are 

strictly conserved among the group of acidic lipopeptides including also the calcium-

dependent antibiotics friulimicins and amphomycins [20, 125] (Figure 6.6). Surprisingly, the 

consensus sequence DXDG of these nonribosomal peptides is also part of the calcium binding 

EF-hand motif of ribosomally assembled calmodulin [126]. Therefore, acidic lipopeptides and 

calmodulin use a similar language for calcium recognition despite their biosynthetic 

difference. 
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Figure 6.6: Alignment of nonribosomal acidic lipopeptides with the calcium binding EF-hand 
motif of ribosomally assembled calmodulin [126]. The conserved amino acids of the 
consensus sequence DXDG are highlighted by shading. O = ornithine, Z = unusual amino 
acid. 
 

The function of L-Orn6 in daptomycin is still unclear [119]. It was recently shown that the 

positively charged amino group of this residue is not essential for bactericidal activity but 

reduced the potency 8-fold compared to daptomycin [122]. In the studies presented here, a 4-

fold drop in efficiency was observed when the positive charge was masked by Aloc-

protection. 

In conclusion, CDA cyclase is a viable tool for the synthesis of daptomycin and derivatives 

that are hardly accessible by chemical modification of the parental compound. This allowed 

exploration of the influence of nonproteinogenic and charged residues on the bioactivity of 

this approved antibiotic. In future, this chemoenzymatic strategy using the versatility of CDA 

TE can be employed for the combinatorial generation of comprehensive libraries of 

daptomycin analogues that can be screened for improved therapeutic activity. 
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6.3. TE-Catalyzed Peptide Cyclization Followed by FRET 

Fluorescence resonance energy transfer (FRET) is a radiationless transfer of energy from an 

excited donor fluorophore to a suitable acceptor fluorophore, a physical process that depends 

on spectral overlap and proper dipole alignment of the two fluorophores [127]. In order to 

expand the scope of this technique to TE-mediated peptide cyclization, the two fluorophores 

Trp and Kyn were incorporated into the backbone of peptidyl-thioester substrates by using 

solid-phase peptide chemistry. In this case, FRET occurs by a process that comprises the 

excitation of the Trp residue that subsequently transfers its energy to a nonproteinogenic Kyn 

residue; this excited chromophore then relaxes via emission of blue light [119]. The Trp and 

Kyn fluorophores are originally found in the lipopeptide antibiotic daptomycin, which was 

clinically approved under the trade name Cubicin (see chapter 2.2). The Trp residue of 

daptomycin was previously shown to have a low fluorescence yield due to energy transfer to 

the Kyn residue. This efficient energy transfer results from the spectral overlap between the 

Trp donor emission (λEm ≈ 330 nm) and Kyn acceptor absorption (excitation wavelength λEx ≈ 

350 nm) [24, 119]. 

6.3.1. Distance Dependance and Detection Limits 

The efficiency of FRET depends on the distance between donor and acceptor. In the case of 

fluorescence-assisted detection of peptide cyclization, the linear peptide precursor adopts a 

conformation that spatially separates the Trp and Kyn fluorophores, limiting the Kyn 

emission process (Figure 6.7). However, the cyclized peptide adopts a conformation in which 

the Kyn fluorophore is in close spatial proximity to the Trp residue allowing efficient FRET 

to occur. Therefore, the Kyn fluorescence difference between the linear and cyclized peptide 

can be exploited to reliably detect peptide cyclization. Moreover, a library of daptomycin-like 

peptides revealed that fluorescence-assisted detection of peptide cyclization allows variable 

positioning of the fluorophores in the N- and C-terminal parts of the peptide sequence, which 
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is significant given that TE domains do not tolerate exchanges of specific residues of their 

peptidic substrates [7]. Therefore, this high flexibility in primary sequence makes this 

approach a general tool for various peptide cyclases by simple incorporation of the 

fluorophores Trp and Kyn into the terminal parts of the respective linear peptidyl-thioester 

substrates. Finally, picomolar detection limits and a linear correlation between acceptor 

fluorescence and cyclopeptide concentration are realized, thus allowing determination of 

cyclization kinetics. 

 

 
 
Figure 6.7: A proposed model for the energetic interactions between Trp and Kyn is shown. 
In case of the linear peptide precursor, excitation at 280 nm preferentially leads to emission of 
Trp. After cyclization this emission at ~330 nm is efficiently quenched due to fluorescence 
resonance energy transfer, which induces fluorescence of Kyn in the visible region of light. 
 
 

6.3.2. FRET-Assisted Detection of Peptide Cyclization Combined with PCP-TE Tagging 

 
The chemoenzymatic synthesis of macrocyclic peptides combines the strength of solid phase 

peptide synthesis with the strength of stereoselective and regioselective TE domain 

cyclization. However, a limitation of this approach is the high enzymatic selectivity of TE 

domains for cognate substrates, which can be a disadvantage when the cyclization of substrate 
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analogues is desired. Exchanges of C- and N-terminal residues of the linear peptide substrate 

often abolish formation of the macrocyclic product [5]. In other cases the yield of 

enzymatically generated ring formation dramatically suffers from linear hydrolytic by-

products due to nucleophilic attack of water molecules onto the acyl-enzyme intermediate 

[75]. Since the utility of TE domains strongly depends on substrate tolerance, efficient 

turnover, and high product yield, there is a constant need for engineered TE domains. This 

could be achieved by directed protein evolution, as previously shown for lipases [128]. 

However, such an approach requires reliable detection of cyclized peptides under high-

throughput conditions. 

In order to combine sensitive detection of peptide cyclization via FRET with high-throughput 

enzymatic screening, a new strategy was developed to rapidly isolate peptide cyclases from 

the cell lysate. It is known that the NRPS-derived peptide carrier protein (PCP) is a versatile 

tag for labelling PCP fusion proteins due to its small size (80 amino acids) and its good 

portability to various target proteins [102]. This autonomously folded domain directs the 

specific labelling of the target protein in a complex mixture of cellular proteins, which is 

efficiently catalyzed by the promiscuous 4’-phosphopantetheinyl transferase Sfp from B. 

subtilis [38]. Using this approach, a PCP-TE didomain was excised from the CDA synthetase 

followed by site-directed posttranslational labelling with biotin ppan in the presence of Sfp 

and biotin CoA (Figure 6.8). The biotinylated PCP–TE didomain was subsequently 

immobilized on an avidin column. Remarkably, the immobilized CDA cyclase retained 

excellent catalytic activity and the cyclization of the linear peptidyl-thioester substrate, 

comprising the Trp-Kyn FRET pair, was accompanied by a 3.5-fold increase in fluorescence 

emission. 

In future, this PCP-TE tagging approach combined with sensitive FRET-assisted detection of 

peptide cyclization can serve as a valuable tool in high-throughput enzymatic screening to 
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alter the substrate specificity of nonribosomal peptide cyclases by directed evolution efforts, 

thereby allowing the synthesis of novel cyclopeptides. Moreover, the PCP-TE didomain 

covalently anchored via its ppan cofactor to an insoluble solid support makes it possible to 

successively cyclize various linear peptide precursors in a combinatorial fashion. Such an 

approach would greatly facilitate the formation of comprehensive cyclic peptide libraries that 

can be screened for improved or altered activities. 

 

 

 

 
 
Figure 6.8: PCP-TE tagging combined with FRET-assisted detection of peptide cyclization is 
illustrated. Sfp-catalyzed site-directed biotin labelling of the recombinant PCP-TE didomain 
is followed by protein immobilization on an avidin/streptavidin surface. Successful TE-
mediated macrolactonization/macrolactamization is detected by sensitive FRET. 
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Name Peptide Sequence 
CDA Ac-Ser-Thr-DTrp-Asp-Asp-DPhe-Asp-Ala- DAsn-Glu-Trp 
Hex-CDA Hex-Ser-Thr-DTrp-Asp-Asp-DPhe-Asp-Ala- DAsn-Glu-Trp 
CDA-A1A2 Ac-Ala-Ala-DTrp-Asp-Asp-DPhe-Asp-Ala- DAsn-Glu-Trp 
CDA-A1 Ac-Ala-Thr-DTrp-Asp-Asp-DPhe-Asp-Ala- DAsn-Glu-Trp 
CDA-A2 Ac-Ser-Ala-DTrp-Asp-Asp-DPhe-Asp-Ala- DAsn-Glu-Trp 
CDA-DS1A2 Ac-DSer-Ala-DTrp-Asp-Asp-DPhe-Asp-Ala- DAsn-Glu-Trp 
CDA-A1DT2 Ac-Ala-DThr-DTrp-Asp-Asp-DPhe-Asp-Ala- DAsn-Glu-Trp 
CDA-DS1 Ac-DSer-Thr-DTrp-Asp-Asp-DPhe-Asp-Ala- DAsn-Glu-Trp 
CDA-DT2 Ac-Ser-DThr-DTrp-Asp-Asp-DPhe-Asp-Ala- DAsn-Glu-Trp 
CDA-DS1DT2 Ac-DSer-DThr-DTrp-Asp-Asp-DPhe-Asp-Ala- DAsn-Glu-Trp 
AcCDA-G3 Ac-Ser-Thr-Gly-Asp-Asp-DPhe-Asp-Ala- DAsn-Glu-Trp 
AcCDA-O4 Ac-Ser-Thr-DTrp-Orn-Asp-DPhe-Asp-Ala- DAsn-Glu-Trp 
AcCDA-DA6 Ac-Ser-Thr-DTrp-Asp-Asp-DAla-Asp-Ala- DAsn-Glu-Trp 
AcCDA-DS9 Ac-Ser-Thr-DTrp-Asp-Asp-DPhe-Asp-Ala- DSer-Glu-Trp 
HexCDA-G3 Hex-Ser-Thr-Gly-Asp-Asp-DPhe-Asp-Ala- DAsn-Glu-Trp 
HexCDA-O4 Hex-Ser-Thr-DTrp-Orn-Asp-DPhe-Asp-Ala- DAsn-Glu-Trp 
HexCDA-DA6 Hex-Ser-Thr-DTrp-Asp-Asp-DAla-Asp-Ala- DAsn-Glu-Trp 
HexCDA-DS9 Hex-Ser-Thr-DTrp-Asp-Asp-DPhe-Asp-Ala- DSer-Glu-Trp 
HexCDA-D1 Hex-Asp-Thr-DTrp-Asp-Asp-DPhe-Asp-Ala- DAsn-Glu-Trp 
HexCDA-U11 Hex-Ser-Thr-DTrp-Asp-Asp-DPhe-Asp-Ala- DAsn-Glu-Kyn 
Dap Dec-Trp-Asn-Asp-Thr-Gly-Orn-Asp-DAla-Asp-Gly-DSer-Glu-Kyn 
Dap-N3 Dec-Trp-Asn-Asn-Thr-Gly-Orn-Asp-DAla-Asp-Gly-DSer-Glu-Kyn 
Dap-N7 Dec-Trp-Asn-Asp-Thr-Gly-Orn-Asn-DAla-Asp-Gly-DSer-Glu-Kyn 
Dap-N9 Dec-Trp-Asn-Asp-Thr-Gly-Orn-Asp-DAla-Asn-Gly-DSer-Glu-Kyn 
Dap-Q12 Dec-Trp-Asn-Asp-Thr-Gly-Orn-Asp-DAla-Asp-Gly-DSer-Gln-Kyn 
Dap-DD11 Dec-Trp-Asn-Asp-Thr-Gly-Orn-Asp-DAla-Asp-Gly-DAsp-Glu-Kyn 
Dap-Aloc Dec-Trp-Asn-Asp-Thr-Gly-Orn(Aloc)-Asp-DAla-Asp-Gly-DSer-Glu-Kyn 
Dap-W13 Dec-Trp-Asn-Asp-Thr-Gly-Orn-Asp-DAla-Asp-Gly-DSer-Glu-Trp 
Dap-W13K6 Dec-Trp-Asn-Asp-Thr-Gly-Lys-Asp-DAla-Asp-Gly-DSer-Glu-Trp 
Dap-U1W13 Dec-Kyn-DAsn-Asp-Thr-Gly-Orn-Asp-DAla-Asp-Gly-DSer-Glu-Trp 
Dap-U2W13 Dec-DAsn-Kyn-Asp-Thr-Gly-Orn-Asp-DAla-Asp-Gly-DSer-Glu-Trp 
Dap-U3W13 Dec-DAsn-Asp-Kyn-Thr-Gly-Orn-Asp-DAla-Asp-Gly-DSer-Glu-Trp 
Dap-U5W13 Dec-DAsn-Asp-Gly-Thr-Kyn-Orn-Asp-DAla-Asp-Gly-DSer-Glu-Trp 
Dap-U7W13 Dec-DAsn-Asp-Gly-Thr-Orn-Asp-Kyn-DAla-Asp-Gly-DSer-Glu-Trp 
Dap-U1W14 Dec-Kyn-DAsn-Asp-Gly-Thr-Gly-Orn-Asp-DAla-Asp-Gly-DSer-Glu-Trp 
Dap-U1W15 Dec-Kyn-DAsn-Asp-Gly-Gly-Thr-Gly-Orn-Asp-DAla-Asp-Gly-DSer-Glu-Trp 
Tyc-U2W8 DPhe-Kyn-Phe-DPhe-Asn-Gln-Tyr-Trp-Orn-Leu 
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