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Abstract

Ultralow molecular weight (ULMW) heparins are sulfated glycans that are clinically used to treat

thrombotic disorders. ULMW heparins range from 1500 to 3000 daltons, corresponding from 5 to

10 saccharide units. The commercial drug Arixtra (fondaparinux sodium) is a structurally

homogeneous ULMW heparin pentasaccharide that is synthesized through a lengthy chemical

process. Here, we report 10- and 12-step chemoenzymatic syntheses of two structurally

homogeneous ULMW heparins (MW = 1778.5 and 1816.5) in 45 and 37% overall yield,

respectively, starting from a simple disaccharide. These ULMW heparins display excellent in vitro

anticoagulant activity and comparable pharmacokinetic properties to Arixtra, as demonstrated in a

rabbit model. The chemoenzymatic approach is scalable and shows promise for a more efficient

route to synthesize this important class of medicinal agent.

Heparin has been used as an anticoagulant drug for more than 50 years (1). It is currently

marketed in three forms: un-fractionated (UF) heparin [average molecular weight (MWavg)

~14000]; low molecular weight (LMW) heparin (MWavg ~6000); and the synthetic ultralow

molecular weight (ULMW) heparin pentasaccharide Arixtra (GlaxoSmithKline) (MW

1508.3). UF heparin is used in surgery and kidney dialysis due to its relatively short half-life

and its safety for renal-impaired patients (2). LMW heparins and Arixtra, introduced over a

decade ago, have played an increasingly important role in preventing venous thrombosis

among high-risk patients (3, 4) because of their more predictable anticoagulant doses, long

half-lives, and reduced risks of osteoporosis (5). Recent research on LMW heparin has

resulted in the European approval of Bemiparin (6), a second-generation LMW heparin, and

the U.S. approval of a generic LMW heparin, M-Enoxaparin.
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UF heparin is isolated from porcine intestine or bovine lung, and LMW heparins are

prepared through the chemical or enzymatic degradation of this animal-sourced UF heparin.

Worldwide distribution of contaminated heparin in 2007 has raised concerns over the

reliability and safety of animal-sourced heparins and LMW heparins (7, 8). As a result, a

cost-effective method for preparing new synthetic heparins is highly desirable (9). Heparin

is a polysaccharide that consists of a disaccharide-repeating unit of either iduronic acid

(IdoA) or glucuronic acid (GlcA) and glucosamine (GlcN) residues, each capable of

carrying sulfo groups. The locations of the sulfo groups and IdoA residues are crucial for

heparin’s anticoagulant activity. The chemical synthesis of Arixtra, the most successful

example to date for preparing a synthetic heparin (10), entails ~50 steps with an overall

yield of ~0.1% (11); as such, Arixtra is the most expensive drug among heparins (12).

Efforts to improve the synthesis of Arixtra with a purely chemical approach have achieved

only limited success (13).

A chemoenzymatic approach, relying on a series of heparan sulfate (HS) biosynthetic

enzymes, mimics the biosynthesis of heparin and HS (fig. S1) (14). Heparin and HS have

similar disaccharide repeating units; however, heparin carries more sulfo groups and a

higher level of IdoA residues and possesses the strongest anticoagulant activity among this

class of polysaccharide isolated from natural sources (15). HS polymerases synthesize the

backbone with a disaccharide repeating unit of GlcA and N-acetylated glucosamine

(GlcNAc). Subsequent modification relies on sulfotransferases and an epimerase, including

N-deacetylase/N-sulfotransferase [containing separate N-deacetylase and N-sulfotransferase

(NST) domains], C5-epimerase (C5-epi), 2-O-sulfotransferase (2-OST), 6-O-sulfotransferase

(6-OST), and 3-O-sulfotransferase (3-OST). Using these enzymes, we and others have

succeeded in the preparation of heparin polysaccharides (16–19) as well as structurally well-

defined HS oligosaccharides (20, 21). In particular, we developed a protocol to control the

size of the oligosaccharides, positions of the N-sulfo glucosamine, 2-O-sulfo IdoA or 6-

O-,N-disulfo glucosamine residues (20). However, the utility of this approach for the

targeted synthesis of medicinally significant heparin oligo-saccharides requiring all four

controlled sulfation steps, N-sulfation, 6-O-, 2-O- and 3-O-sulfation, has not been

demonstrated. Furthermore, until now, low recovery yields in each purification step have

cast doubt on the scalability of such chemoenzymatic synthesis.

We targeted two ULMW heparins, constructs 1 and 2, because of their apparent

compatibility with our chemoenzymatic approach (Fig. 1). These new constructs contain the

antithrombin (AT)–binding domains of porcine and bovine heparin, respectively, which

constitute the pharmacophores of anticoagulant heparin (22). Construct 1 also resembles the

AT-binding site of human heparin (23). Construct 2 has the same structure as Arixtra except

for replacement of a methyl aglycone with disaccharide 3. This structural similarity

facilitates comparison of the synthetic efficiency and the in vitro and in vivo biological

activities of these two homogeneous ULMW heparins to Arixtra.

Our synthesis of ULMW heparins includes backbone elongation and saccharide

modification (Fig. 1). Disaccharide 3 was chosen as the starting material because it can be

elongated by glycosyl transferases and can be prepared in multigram quantities from

heparosan, readily obtained by fermentation (24). Elongation of disaccharide 3 to

tetrasaccharide 4 was completed using two bacterial glycosyl transferases, N-acetyl

glucosaminyl transferase of Escherichia coli K5 (KfiA) (25) and heparosan synthase-2

(pmHS2) from Pasteurella multocida (26). Tetrasaccharide 4 was designed with an unnatural

monosaccharide, GlcNTFA (N-trifluoroacetyl glucosamine), because the N-TFA group can

be readily converted to an N-sulfo group (20) in a later step. In preparation of ULMW

heparin construct 1, tetrasaccharide 4 was elongated to heptasaccharide 5 in three steps, with

an overall yield of 80% (Fig. 1, steps a, b, and c). Heptasaccharide 5 was converted to the
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final product by a series of chemoenzymatic reactions, including conversion of the

GlcNTFA residue to GlcNS (Fig. 1, left column, steps d and e), epimerization and 2-O-

sulfation (Fig. 1, left column, step f; here, epimerization of GlcA to IdoA is accompanied by

2-O-sulfation using 2-OST to form an IdoA2S at residue D), 6-O-sulfation (Fig. 1, left

column, step g), and 3-O-sulfation (Fig. 1, left column, step h; the 3-O-sulfation occurred at

residue C). After these 10 steps, we obtained 3.5 mg of construct 1, corresponding to 45%

overall yield as assessed by nuclear magnetic resonance (NMR) spectral integration (fig.

S7). Selective epimerization/2-O-sulfation of residue D but not residue B (step f) takes

advantage of known enzyme specificity, as residue D is flanked by two GlcNS residues (27).

Similarly, in the 3-O-sulfation step (step h), 3-OST-1 selectively adds a 3-O-sulfo group to

residue C but not to residue E, because residue C is flanked by a GlcA residue at its

nonreducing end (28). In the conversion of heptasaccharide 5 to ULMW heparin construct 1,

it was critical to ensure that each modification was completed. For this purpose, small-scale

reactions were carried out in parallel using [35S]3′-phosphoadenosine 5′-phosphosulfate

([35S]PAPS) to form the 35S-labeled intermediates; monitoring by diethylami-noethyl high-

performance liquid chromatography (DEAE-HPLC) enabled optimization of the reagent

concentrations and reaction times required in the synthesis (fig. S2).

Two extra steps were required to add a GlcNS6S residue to the nonreducing end in the

synthesis of ULMW heparin construct 2. Tetra-saccharide 4 was first converted to

hexasaccharide 6, and the N-TFA groups were replaced by N-sulfo groups to afford

hexasaccharide 7 (Fig. 1, right column). Hexasaccharide 7 was elongated to a

heptasaccharide with a nonreducing end GlcNTFA (residue A). This heptasaccharide was

treated with C5-epi and 2-OST enzymes (Fig. 1, right column, step f) to place an IdoA2S at

residue D forming heptasaccharide 8. The introduction of a GlcNTFA residue at the

nonreducing end was a critical control point because it prevented the action of C5-epi and 2-

OST on the GlcA (residue B in step f). Heptasaccharide 8 was then converted to construct 2
in a sequential one-pot reaction format (Fig. 1, right column, steps d, e, g, and h). Carrying

out a small-scale reaction using [35S]PAPS ensured complete 6-O-sulfation (fig. S3). We

obtained 7.2 mg of ULMW heparin construct 2 in 12 steps with an overall yield of 37%, as

determined by NMR spectral integration (fig. S7). The synthesis of construct 2 was achieved

by rearranging the order of the modification and elongation steps without employing

additional enzymes or reagents, thus demonstrating that both structural control and target

diversification are possible in chemoenzymatic synthesis.

The structure of construct 1 was confirmed by electrospray ionization mass spectrometry

(ESI-MS), as well as one-dimensional (1D) and two-dimensional (2D) NMR analysis (Fig.

2). The 3-O-[35S]sulfo labeled construct 1 showed a single symmetric peak in a high-

resolution DEAE-HPLC trace (Fig. 2A), demonstrating that the purity of the product was

above 95% [in the large-scale reaction, purity was confirmed by poly-acrylamide gel

electrophoresis (PAGE)] (fig. S4). The ESI-MS analysis revealed construct 1 to have a

molecular mass of 1778.5 ± 0.8 daltons, which is identical to the expected calculated

molecular mass (1778.5 daltons) (Fig. 2B). High-resolution ESI-MS exhibited a signal at a

mass/charge ratio of 887.5313, consistent with [M-2H]2− (calculated mass/charge ratio,

887.5324). The 2D 1H NMR spectrum clearly demonstrates the presence of six anomeric

protons that resonate as doublets (Fig. 2, C and D). The small coupling constants (~3 Hz) of

three anomeric protons indicate α linkages between the A–B, C–D, and E–F rings; larger

coupling constants (~8 Hz) indicate β linkages between the B–C, D–E and F–G rings. The

presence of an internal IdoA2S is clearly indicated by a broad characteristic anomeric signal

at δ5.09 parts per million (ppm) that resonates ~0.6 ppm downfield relative to the anomeric

proton of GlcA residues. The complete assignment of the spectrum is shown in table S1A.

The structure of ULMW heparin construct 2 was confirmed using the same methods (fig. S6

and table S1B). High-resolution ESI-MS of construct 2 afforded a value consistent with
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[M-2H]2− of 906.5047 (calculated mass/charge ratio, 906.5056). A 1H-13C heteronuclear

multiple-quantum coherence (HMQC) analysis of constructs 1 and 2 further confirmed the

assignments discussed above (fig. S5). The structures of all intermediates were confirmed by

ESI-MS analysis (table S2).

The in vitro anticoagulant activities of construct 1 and 2 and in vivo pharmacokinetic

properties were next assessed and compared with those of Arixtra. We anticipated that these

ULMW heparins would exhibit anticoagulant activity by forming a 1:1 complex with AT,

which subsequently inactivates factor Xa in the blood coagulation cascade (29). The binding

affinities of AT to constructs 1 and 2 were 5.2 ± 0.2 nM and 9.1 ± 0.2 nM, respectively, very

similar to the 5.9 ± 1.5 nM value measured for Arixtra. Next, the in vitro anti-Xa activity of

each ULMW heparin was determined (16) (Fig. 3A). The median inhibitory concentration

(IC50) values of constructs 1 and 2 were 2.8 nM and 3.6 nM, respectively, again very close

to the 3.0 nM value measured for Arixtra. Finally, the pharmacokinetic (anti-Xa) property of

each ULMW heparin was examined in vivo using a rabbit model (30, 31). A standard curve

for each ULMW heparin was prepared in rabbit plasma (fig. S8). After the subcutaneous

administration of 120 μg per kg of weight of each ULMW heparin to three anesthetized

rabbits, plasma samples were collected and anti-Xa activity was measured over a 24-hour

period. The pharmacokinetic profiles of Arixtra, construct 1, and construct 2 were very

similar (Fig. 3B).

Construct 1 was resynthesized at a 15-fold greater scale to demonstrate the scalability and

reproducibility of this chemoenzymatic process (table S4). In this larger-scale synthesis, the

sequential one-pot format (steps d, e, g, f, and h in Fig. 1) was divided into three steps (fig.

S9), permitting the isolation and weighing of the intermediates and their complete structural

analysis using NMR and high-resolution MS (fig. S10 and table S4). Construct 1 (49 mg)

was obtained at >95% purity based on PAGE and NMR analysis, and in an overall yield of

38% (fig. S10).

Heparin oligosaccharides are generally perceived to be difficult to synthesize by chemical

methods. Long synthetic routes—necessitated by the introduction and removal of protecting

groups—lead to low overall yield, and there is a lack of efficient methods to separate side

products from desired intermediates. The chemo-enzymatic approach demonstrated here

shows that targeted, scalable, and high-efficiency synthesis of heparin oligosaccharides is

possible. We achieved this goal by carefully selecting the substrate size and optimizing the

sequence of sulfo group installation. Careful design of target structures offers a major

advance over our previous study (20) by avoiding by-product formation. For example, the

order for installing different types of sulfo groups is critically important in synthesizing

construct 1. The optimized sequence is N-sulfation followed by epimerization/2-O-sulfation,

6-O-sulfation, and 3-O-sulfation. Reversal of the order in which epimerization/2-O-sulfation

and 6-O-sulfation (or 6-O-sulfation and 3-O-sulfation) take place results in very low yields

of products. Target size selection is also critical, as heptasaccharides and larger

oligosaccharides are highly susceptible to sulfotransferase modification and undergo nearly

quantitative conversion to the desired intermediate without side products in each

modification step. Another crucial innovation was the improvement of purification

protocols, raising the 30 to 40% yields from each purification step described in our previous

study (20) to ~90% herein by coupling column purification with ESI-MS analysis.

Dabigatran, a direct thrombin inhibitor, was recently approved by the U.S. Food and Drug

Administration, a culmination of intensified efforts for new anticoagulant drug development

(32). However, none of the currently marketed anticoagulant drugs can replace heparin

because of its unique pharmacological properties. A cost-effective approach to prepare

heparin is important not only to secure the safety of the heparin supply chain but also to
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provide the opportunity to design derivatives that eliminate side effects. Although our

chemoenzymatic approach, with appropriate optimization, provides a general method for

preparing different heparins, including ULMW heparin, and in principle LMW heparin and

UF heparin, target selection is restricted by the substrate specificities of the enzymes.

Smaller targets, such as the Arixtra pentasaccharide, are more difficult to prepare because

pmHS2 inefficiently elongates glucosamine monosaccharide. Despite this drawback, our

chemo-enzymatic approach facilitates the scalable synthesis of larger targets through a

shorter route. Further optimization will certainly be necessary to make this method amenable

to industrial-scale synthesis. We recently developed a method to reduce the cost of the

synthesis of the sulfo donor, PAPS, by a factor of more than 5000 (33), facilitating large-

scale enzyme-based synthesis. The inclusion of a cofactor recycling system for the

regeneration of PAPS (34) could further reduce cost and eliminate potential PAP-involved

sulfotransferase inhibition. Continuing efforts should provide a generic and cost-effective

approach for the large-scale preparation of antithrombotic therapeutic agents with improved

safety and pharmacological effects.
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Fig. 1.
Chemoenzymatic synthetic schemes of ULMW heparin construct 1 and 2. The synthesis

started from disaccharide 3, and it was then elongated to tetrasaccharide 4. Eight additional

steps transformed 4 to construct 1 (left column). Steps d through h were combined in

sequential one-pot reaction format. Ten additional steps transformed 4 to construct 2 (right
column). The recovery yield at each purification step was determined by parallel synthesis

of the corresponding radioactively labeled oligosaccharide. KfiA, N-acetyl glucosaminyl

transferase of E. coli K5 strain; pmHS2, heparosan synthase-2 of Pasteurella multocida;

NST, N-sulfotransferase; PAPS, 3′-phosphoadenosine 5′-phosphosulfate; C5-epi, C5-

epimerase; 2-OST, 2-O-sulfotransferase; 6-OST, 6-O-sulfotransferase; 3-OST-1, 3-O-

sulfotransferase isoform 1. More synthesis details are given in table S3.
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Fig. 2.
Structural characterization of ULMW heparin construct 1. (A) The DEAE-HPLC profile of

a 35S-labeled product. (B) The ESI-MS spectrum of construct 1. Peaks 1 to 3 represent the

desulfated signals of quadruply charged ions. Peaks 4 to 7 represent the desulfated signals of

triply charged ions. Peaks 8 to 12 represent the desulfated signals of doubly charged ions.

(C) The 1D 1H NMR spectrum of construct 1. Peaks assigned to the anomeric protons of

each hexose ring (A to F) are labeled. (D) The 2D correlation spectroscopy spectrum of

construct 1 and the corresponding peak assignments of the anomeric protons that resonate as

doublets at δ5.48 (d, J = 3.23 Hz, 2H), 5.35 (d, J = 2.94 Hz, 1H), 5.09 (broad doublet, 1H),

4.53 (d, J = 8.11 Hz, 1H), and 4.46 (d, J = 8.07 Hz, 1H) ppm. The small coupling constants

(~3 Hz) of the anomeric protons indicate an α linkage, and the large coupling constants (~8

Hz) indicate a β linkage.
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Fig. 3.
Determination of the anticoagulant activities and pharmacokinetic properties of ULMW

heparin construct 1 and 2. (A) shows the anti-Xa activity using a chromogenic substrate.

Arixtra and constructs 1 and 2 were incubated with AT (240 nM), factor Xa (5.9 nM), and

the peptide substrate (289 μM). The activity of Xa was determined by the rate of increase of

the absorbance at 405 nm. The activity without drugs was defined as 100%. Each data point

represents the average of four determinations ± SD. (B) The pharmacokinetic profiles in

rabbits. Arixtra and constructs 1 and 2 were each independently administered

subcutaneously at 120 μg/kg to three rabbits (n = 3) and plasma samples were collected

from 0 to 24 hours. The anti-Xa activity of plasma samples was measured against a standard

curve (fig. S8). The area under the curve for Arixtra, construct 1, and construct 2 were 457,

473, and 802, respectively. Error bars, mean ± SD.

Xu et al. Page 9

Science. Author manuscript; available in PMC 2012 August 22.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t


