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Chemogenomic profiling: Identifying the functional
interactions of small molecules in yeast
Guri Giaever, Patrick Flaherty, Jochen Kumm, Michael Proctor, Corey Nislow, Daniel F. Jaramillo, Angela 
M. Chu, Michael I. Jordan, Adam P. Arkin, and Ronald W. Davis

We demonstrate the efficacy of a genome-wide protocol in yeast
that allows the identification of those gene products that func-
tionally interact with small molecules and result in the inhibition of
cellular proliferation. Here we present results from screening 10
diverse compounds in 80 genome-wide experiments against the
complete collection of heterozygous yeast deletion strains. These
compounds include anticancer and antifungal agents, statins, al-
verine citrate, and dyclonine. In several cases, we identified pre-
viously known interactions; furthermore, in each case, our analysis
revealed novel cellular interactions, even when the relationship
between a compound and its cellular target had been well estab-
lished. In addition, we identified a chemical core structure shared
among three therapeutically distinct compounds that inhibit the
ERG24 heterozygous deletion strain, demonstrating that cells may
respond similarly to compounds of related structure. The ability to
identify on-and-off target effects in vivo is fundamental to under-
standing the cellular response to small-molecule perturbants.

The interaction of an organism with its environment is essen-
tial to its survival. The currency of this interaction is pre-

dominantly small molecules. On a molecular level, small mole-
cules both promote, as in nutrients, and challenge, as in toxins,
cell viability. Those gene products that interact with small
molecules underlie the organism’s ability to adapt to environ-
mental changes and include those that bind, transport, and
metabolize small molecules. Specific small molecule–protein
interactions are often identified genetically followed by in vitro
characterization. Such experiments cannot, however, capture
potential interactions with other proteins in the cell. Our exper-
imental protocol allows the identification of all gene products
that functionally interact with a small molecule of interest and
result in inhibition of cellular proliferation. This chemical
genomics assay, haploinsufficiency profiling (HIP), is predicated
on our observation that lowering gene dosage from two copies
(in a diploid yeast strain) to one copy (in a heterozygous deletion
strain) results in a strain that is sensitized to compounds that
inhibit the product of the heterozygous locus (1). Functional
interactions are then identified genome-wide by competitive
growth of a complete collection of molecularly bar-coded het-
erozygous deletion strains in a single culture, allowing screening
of all strains in parallel. Subsequent quantification of relative
sensitivities is achieved by using high-density oligonucleotide
arrays carrying the bar-code complements (2, 3). Here we
highlight the effects of 10 diverse compounds of general interest
in 80 genome-wide screens. These compounds include antican-
cer and antifungal agents, statins, alverine citrate, and dyclonine.
For several of the well characterized compounds, we found that
some of the most sensitive heterozygous strains often carry a
deletion in the gene whose product is known to interact directly
with the test molecule; typically, this is the established drug
target. A likely explanation for this observation is that the
compound inhibits cellular proliferation by reducing the activity
of the remaining gene product of the heterozygous locus, thereby

mimicking a complete deletion. Thus, in the assay we should
primarily identify gene products that are either essential or, when
deleted in a homozygous strain, exhibit a slow-growth pheno-
type. A second class of sensitive heterozygous strains reports
nonessential genes that are dosage-limiting for growth only in the
presence of compound. These include strains deleted for genes
involved in compound transport and�or metabolism. We found
that, although most compounds interact primarily with one or a
few gene products across the genome, other unexpected effects
revealed insights into compound mechanism. These results
provide a comprehensive in vivo snapshot of the genome-wide
cellular response to small-molecule perturbants.

Materials and Methods
Reagents. Alverine citrate, atorvastatin, methotrexate, 5-
f luorouracil (5-FU), miconazole, and amphotericin B were from
MicroSource Discovery Systems (Gaylordsville, CT). Lovastatin
was the gift of J. Rine (University of California, Berkeley).
Cisplatin, itraconazole, and fluconazole were obtained from the
Stanford University Pharmacy (Stanford, CA). Dyclonine and
fenpropimorph were from Sigma–Aldrich.

Media and Growth Conditions. YPD (yeast extract�peptone�
dextrose) was prepared as described (4).

Overexpression Studies. A plasmid overexpressing ERG24 was the
gift of C. Mo and M. Bard (Indiana University School of Science,
Indianapolis) (5). A plasmid overexpressing the human LBR was
the gift of G. Loison (Sanofi-Synthelabo Recherche, Labège,
France) (6).

Deletion Pool Construction, Growth, and Chip Experiments. Deletion
pool construction and pool growth were as described (3) with the
following modifications of growth conditions. After overnight
recovery of frozen aliquots of the pools for 10 generations,
logarithmically growing cells were diluted in YPD plus com-
pound to an OD600 of 0.0625, and 0.7 ml was pipetted into a well
of a 48-well microplate. Cells were grown in a Tecan GENios
microplate reader (Tecan U.S., Durham, NC) and every five
generations cells were automatically pipetted into 0.7 ml of fresh
YPD medium containing the appropriate compound by using a
Packard Multiprobe II 4-probe liquid handling system (Perkin–
Elmer Life Sciences) controlled by custom LABVIEW software
(National Instruments, Austin, TX). After 20 generations of
growth, cells were saved and frozen at �20°C for subsequent
preparation of genomic DNA. Concentrations of compounds
screened were based on prescreens against a wild-type strain.

The optimal concentration of compound screened was deter-
mined empirically. For these concentrations, at least one repli-
cate was generated.



Genomic DNA Preparation, PCR, and Chip Hybridization. Genomic
DNA preparation, PCR, and chip hybridization were as de-
scribed (3).

Data Analysis. Preprocessing of data. Each deletion strain is associ-
ated with four hybridization signals on the high-density oligo-
nucleotide array (3). To classify the tags that do not hybridize
well enough to the array to yield usable measurements, we
estimated the average background intensity from control arrays
(for description of control arrays, see Identification of Signifi-
cantly Sensitive Strains) using a set of 17,964 tags on the chip not
represented in any strain. All tags associated with strains that
had a measured intensity �3 SD above the mean background
intensity in control arrays were eliminated from the analysis.
Strains in which all four tags hybridized below this cutoff were
therefore removed from the analysis. Lists of these heterozygous
deletion strains and homozygous deletion strains that were
removed from the analysis can be found in Tables 2 and 3,
respectively, which are published as supporting information on
the PNAS web site.
Identification of significantly sensitive strains. To best estimate the
relative amount of each strain in the population, we used a
mixture factor analysis model (7) that combines the intensities of
the four tags associated with each strain in each experiment. This
factor analysis estimate is a measure of strain abundance. To
identify sensitive strains a set of control arrays were used that
consists of 36 arrays for the heterozygous analysis and 21 arrays
for the homozygous analysis. The control hybridizations are
collected from experiments in the standard condition as defined
by 20 generations of growth in YPD. Each array was normalized
by taking the base 10 logarithm of the intensity values for each
position in the array and subtracting the average array intensity.
For each strain we fit a Gaussian distribution based on the mean
and standard deviation of the factor analysis estimate in the
control chips. To quantify the fitness defect (FD) of a strain in
question, we calculated the log-likelihood of seeing the experi-
mental factor analysis estimate under the Gaussian for the
control chips. The fitness defect score is proportional to the
log-likelihood of observing the experimental value given the set
of control chips. For convenience we multiply the score by �1,
so that large values for scores represent large fitness defects. This
definition of fitness defect score quantifies the difference be-
tween the abundance of strain in the population in a given
experiment to that expected in the standard condition. Strains
whose tag intensities fall lower than the mean (implying they
were diminishing from the population) are classified as sensitive
to treatment, whereas those strains whose tag intensities fall
higher than the mean are classified as refractory to treatment.
Experimentally, many of the strains that turn up as significantly
refractory are slow growers in the standard condition. These
strain measurements have tag intensity distributions that are not
much above background and are therefore unreliable. Although
true resistant strains exist in these lists, they are only a small
percentage of the total number of refractory strains. For this
analysis, we focus on the sensitive strains and have set the fitness
defect score of the refractory strains to zero.

To determine significantly sensitive strains in each experi-
ment, we scored all control chips by using the algorithm de-
scribed above. For each scored control chip we determined the
mean FD score and its standard deviation across all genes. An
ANOVA accepts the hypothesis that all control chips come from
the same distribution. We next computed the mean and standard
deviation of the FD scores in the control chips (mean � 15.6,
SD � 0.21). When examining FD scores from experiments, only

those strains whose FD score is 3 SD above the mean score of
controls was considered significantly sensitive. When replicates
for a compound at a particular concentration existed, we com-
puted the average rank for each of the strains that scored
significantly sensitive. All raw and analyzed data are presented
in Supporting Information, which is published as supporting
information on the PNAS web site.
Postprocessing. When a sensitive strain’s abundance in the pool is
so low that all tags hybridize at background level, it has reached
its maximum detectable FD score. Because the actual value of
the maximum FD score for each strain depends on the hybrid-
ization characteristics of its tags and its relative fitness, we have
flagged strains for each experiment that have reached this
maximal FD score. The heterozygous strains and the homozy-
gous strains with this maximal FD score are listed in Tables 4 and
5, respectively, which are published as supporting information on
the PNAS web site.

Results
Our earlier work demonstrated that drug targets in yeast (en-
coded by essential or nonessential genes) can be identified by
their ability to confer sensitivity when the gene dosage is reduced
from two copies in a wild-type strain to one copy in a heterozy-
gous deletion strain (1). We have now scaled the HIP assay to a
comprehensive, genome-wide level, taking advantage of the
complete collection of molecularly bar-coded heterozygous de-
letion strains (2, 3). In the assay, pools of �6,000 heterozygous
deletion strains are grown in the presence of small molecules and
cells are collected at specified generation times by using custom
robotics. To quantitate the relative abundance of each strain,
amplification of the molecular bar codes from resultant genomic
DNA is followed by hybridization to high-density oligonucleo-
tide arrays carrying the bar-code complements. Statistical treat-
ment of the resulting signal intensity data allows strain fitness to
be quantitatively assessed and ranked in order of sensitivity on
a gene-by-gene basis. In this way, each experiment generates a
genome-wide profile of functional interactions. The findings of
several experiments are confirmed genetically in follow-up as-
says. Results from 80 experiments profiled at several concen-
trations of 10 diverse compounds are presented, grouped ac-
cording to their therapeutic class.

Anticancer Compounds. Because of the extensive homology be-
tween yeast and human biochemical pathways and, in particular,
that of the cell cycle, we tested the hypothesis that our chemo-
genomic assay could reveal the mechanism of action of antican-
cer compounds. We profiled three such compounds: methotrex-
ate, 5-FU, and cisplatin.
Methotrexate. Dihydrofolate reductase (encoded by DFR1) is the
known target of methotrexate (8) and was identified in the HIP
assay as a highly sensitive strain at the optimal concentration of
250 �M methotrexate (Fig. 1). Four other strains were identified
as significantly sensitive in eight of nine replicate experiments.
Two of these strains were heterozygous for the genes FOL1 and
FOL2, which act upstream of DFR1 and are required for
biosynthesis of folic acid in yeast. Because the readout of the HIP
assay is based on growth inhibition, we expect that the only
essential gene products identified in our assay will be those that
interact directly with compounds and are dosage-limiting for
growth. An exception to this may be gene products that are
rate-limiting in the drug target pathway. For example, the FOL2
product catalyzes the known rate-limiting step in the biosynthesis
of a variety of pterins (9). Although the FOL1 product is not
known to be rate-limiting in this pathway, it is possible that under
these conditions it may be. Because the HIP assay does not
distinguish between gene products that directly interact with a
compound from those that become rate-limiting in the presence
of a compound, however, it is also possible that FOL1 and FOL2
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gene products bind directly to methotrexate. Whatever the case,
because FOL1 and FOL2 strains are haploinsufficient in the
presence of methotrexate, they are potential candidates for drug
targets, because small perturbations in their protein levels lead
to growth inhibition. In this case, the human ortholog of FOL2
may be a human therapeutic target because of the high degree
of conservation between yeast and humans (BLAST E value 5 �
10�62). Conversely, FOL1 may be a good antifungal target
candidate because it shares significant protein homology to
fungal pathogens (Candida albicans BLAST E value 10�152), but
no human homolog exists.

The methotrexate results also reveal what became a recurring
theme: genes involved in compound availability are often iden-
tified by the assay. The YBT1 and YOR072w heterozygous
deletion strains are highly sensitive to methotrexate, and both
nonessential gene products may be involved in small molecule
transport. The human homolog of YBT1 encodes the known
methotrexate transporter and up-regulation of this gene in
human cancer cells causes methotrexate resistance (10). Al-
though the function of the nonessential gene YOR072w is
unknown, homozygous deletants are hypersensitive to wortman-
nin (11), and the gene encodes a predicted transmembrane
domain, indicating that it may play a role in methotrexate
transport (12).
5-FU. 5-FU is an antimetabolite used to treat a wide variety of
cancers (8). The cytotoxicity of 5-FU is attributed to inhibition
of thymidylate synthase and to misincorporation of fluoronucle-
otides into RNA and DNA (8). Surprisingly, neither the strain
carrying the deletion of the yeast thymidylate synthase gene nor
any strains deleted for genes involved in DNA-related processes
appeared significantly sensitive within a 16-fold concentration
range. A functional analysis using the Gene Ontology (GO) term
finder [Dolinski, K., Balakrishnan, R., Christie, K. R., Costanzo,
M. C., Dwight, S. S., et al. Saccharomyces Genome Database,
available at www.yeastgenome.org (accessed September 1,
2003)] revealed that those genes that confer sensitivity to 5-FU
when heterozygous are enriched in categories that involve
essential RNA processes, notably ribosome biogenesis and
assembly (P value 3.9 � 10�9) and rRNA processing (P value
3.6 � 10�9) (Fig. 2 and Table 1). Because the genetic strain
background of the deletion library is deleted for URA3, we
addressed the possibility that this genotype is responsible for the
observed phenotype. Introduction of URA3 on a plasmid into the

10 most sensitive strains confirmed that the auxotrophy was not
the cause for their sensitivity (data not shown). Although these
results do not rule out inhibition of thymidylate synthase and�or
misincorporation into the DNA, they do suggest that the primary
mechanism of 5-FU inhibition of yeast cell growth is misincor-
poration into the RNA leading to the impairment of essential
RNA processing functions. Misincorporation into the RNA has
also been suggested as the major mechanism of action in human
tumor cell lines (13).
Cisplatin. Cisplatin is an antineoplastic agent that acts to inhibit
cell proliferation by covalently binding to the N-7 position of
purines (8). Its antineoplastic activity is thought to result pri-
marily from intrastrand DNA crosslinking. Because cisplatin has
no protein target, we expected that the HIP assay would reveal
few, if any, sensitive heterozygous strains. In fact, in seven
experiments covering a 4-fold concentration range of cisplatin,
no strains were consistently sensitive. When (as is the case here)
a small molecule has no protein target, it can be more informa-
tive to screen the homozygous collection of strains to uncover the
compound’s mechanism of action. In this case, genes important
for cell survival in the presence of compound should be identi-
fied, rather than the specific gene products that interact with the
small molecule. Indeed, profiling the homozygous pool of strains
with cisplatin revealed that the majority of the sensitive strains
have homozygous deletions of genes involved in DNA repair
(Fig. 3). As expected, these results confirm that the cells cannot
survive without repairing their DNA, and, thus, that the DNA
itself is likely the primary target of cisplatin.

Statin Compounds. Atorvastatin and lovastatin are two commonly
used, effective anticholesterol drugs. The target of these drugs
is 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase (14).
Yeast has two isozymes of HMG-CoA reductase encoded by
HMG1 and HMG2. HMG1 contributes the majority (83%) of the

Fig. 1. A genome-wide readout of heterozygous strain sensitivity profiled at
250 �M methotrexate. The FD score is plotted along the y axis as a function of
the 5,918 heterozygous yeast deletion strains ordered by ORF name. The
greater the FD score, the more sensitive the strain. Essential ORFs are red and
nonessential ORFs are blue. Strains above the dashed line are considered
significantly sensitive (see Materials and Methods). Only those genes that
scored significantly sensitive in eight of nine replicate experiments are la-
beled.

Fig. 2. Distribution of gene ontology (GO) biological process terms for a list
of 22 genes that, when heterozygous, confer significant sensitivity in at least
two independent experiments in 5-FU at 19.2, 38.5, or 76.9 �M. The percent
of genes sensitive to 5-FU is plotted along the y axis in each category relative
to that of the whole genome. Only the GO terms with a P value �2.5E-06 are
shown.
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enzyme activity in the cell based on in vitro activity assays from
extracts of HMG1 and HMG2 homozygous deletion strains (15).
Consistent with this observation, only HMG1 heterozygous
deletants exhibit sensitivity to atorvastatin and lovastatin in the
HIP assay. Individual analysis of the heterozygous and homozy-
gous HMG1 and HMG2 deletion strains confirmed this obser-
vation (Fig. 4). As expected, at the concentrations used in the
HIP assays, only the HMG1 heterozygous deletion strain exhibits
drug-induced haploinsufficiency (Fig. 4B). However, the sensi-

tivity of the HMG1 homozygous deletion strain indicates that a
second cellular target must contribute to growth inhibition.
Based on predictions from the literature, this target is most likely
the gene product of HMG2. Consistent with this observation, we
see that only at high concentrations of atorvastatin is HMG2
haploinsufficiency detected (Fig. 4D). This is in agreement with
the in vitro activity data and suggests that HMG1 is responsible
for the majority of the reductase function in vivo as well. Other
strains sensitive to statins include PDR5 (a pleiotropic drug
pump) and ERG13. ERG13 encodes HMG-CoA synthase and
acts directly upstream of HMG1. The sensitivity of the ERG13
strain to the statins suggests it may be a regulatory step in the
mevalonate pathway. Indeed, in cells deprived of ergosterol, the
product of ERG13 increases (16).

Antifungal Compounds. Azoles. Antifungals of the azole class pri-
marily target the ERG11 gene product, a cytochrome P450 that
catalyzes 14-�-demethylation of lanosterol (17, 18). Data from
the HIP assay in the presence of miconazole identify the ERG11
heterozygous strain as one of the most sensitive strains (data are
published as supporting information on the PNAS web site).
Several other strains likely involved in compound availability,
however, do exhibit greater sensitivity than ERG11. We profiled
an 8-fold range in concentration. At all concentrations of
miconazole, the SET6 heterozygous deletion strain is extremely
sensitive. We have observed that the SET6 heterozygote is
generally sensitive to compounds that target ergosterol biosyn-
thesis, including fenpropimorph, dyclonine, and alverine citrate
(see results below). Because deletion of SET6 in the absence of
tested compounds does not have an effect on growth, the
function of this gene is more likely to be involved in compound
availability. Further experiments are needed to determine if
there is a mechanistic link of SET6 to the ergosterol pathway. At
0.05 and 0.1 �M miconazole, the ERG11 deletion strain is
significantly sensitive, but the PDR5 strain heterozygous for the
known azole pump dominates the profile. At the highest con-
centration of miconazole tested, 0.2 �M (a dose that inhibits the
cells �70% with respect to wild type), the ERG11 strain exhibits
no significant sensitivity and the profile is composed of dozens
of sensitive strains. This loss of target specificity at high con-
centrations was generally observed for most of the compounds
tested.

Although our results with fluconazole (a triazole) across an
8-fold range in concentration were similar to miconazole (an
imidazole), the ERG11 target scored as a significantly sensitive
strain at only a single concentration (32.6 �M). These results
indicate that fluconazole may be less specific for its target, an
effect that has also been observed in a previous study (19).
Fenpropimorph. Fenpropimorph is a member of the class of
agricultural antifungals known as the morpholines. Fenpropi-
morph is thought to target both C-8 sterol isomerase (encoded
by the ERG2 gene) and C-14 sterol reductase (encoded by the
ERG24 gene) based on sterol analysis and in vivo data (5, 20, 21).
In the optimal concentration window of 2.3 �M fenpropimorph,
the HIP assay detects ERG24 but not ERG2 sensitivity (Fig. 5A).
The evidence that the Erg2 protein is the target of fenpropi-
morph is conflicting; in vitro binding (22) and sterol analysis
following compound exposure (20, 21) support Erg2 as a target,
whereas the fact that in vivo overexpression of Erg2 does not
confer resistance to fenpropimorph [whereas overexpression of
Erg24 does (ref. 5 and data not shown)] argues against it. In
addition, because the ERG2 homozygous deletion strain is
extremely sensitive to fenpropimorph (data not shown) another
target in the cell must be causing the observed growth inhibition.
One scenario that is consistent with the published data is that
Erg2 does indeed interact with fenpropimorph in vivo, but that
the interaction with the essential ERG24 gene product is pri-

Table 1. Gene list used to generate the gene ontology
distribution shown in Fig. 2 by using the GO Term Finder*

Gene Viability Biological process

YPR143W Essential Biological process unknown
NOP4 Essential rRNA processing
YPL044C Essential Biological process unknown

(overlaps NOP4)
GLC7 Essential Meiosis
FUII Nonessential Uridine transport
MAK5 Essential rRNA processing
YPR142C Essential Biological process unknown

(overlaps YPR143W)
MAS2 Essential Mitochondrial processing
MTR4 Essential 35S primary transcript processing
ITR1 Nonessential myo-Inositol transport
MAK21 Essential Ribosomal large subunit

assembly and maintenance
DBP7 Nonessential 35S primary transcript processing
RRP12 Essential Processing of 20S pre-rRNA
YOR309C Nonessential Biological process unknown

(overlaps NOP58)
MKS1 Nonessential Regulation of nitrogen utilization
ATP3 Nonessential ATP synthesis coupled proton

transport
PUS7 Nonessential Pseudouridine synthesis
DIS3 Essential 35S primary transcript processing
RRP6 Nonessential 35S primary transcript processing
WHI3 Nonessential Regulation of cell size
RLR1 Nonessential mRNA-nucleus export
NOP58 Essential rRNA modification

Genes listed in bold are involved in RNA processing. Two hypothetical ORFs
(YPL044c and YOR309c) are also listed in bold because their phenotype is likely
due to the disruption of the overlapping ORF.
*Dolinski, K., Balakrishnan, R., Christie, K. R., Constanzo, M. C., Dwight, S. S.,
et al. Saccharomyces Genome Database, available at www.yeastgenome.
org.

Fig. 3. A genome-wide profile of homozygous strain sensitivity to 125 �M
cisplatin. Axes shown are equivalent to those in Fig. 1. Only the strains that
were scored as significantly sensitive are labeled.
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marily responsible for the observed fungistatic activity of this
compound.

Comparison of Compound Structure May Predict Cellular Responses.
Alverine citrate, an antispasmodic muscle relaxant, is used to
treat irritable bowel syndrome. It is an anticholinergic and binds
to the serotonin A1a receptor in cultured human colon cells (23).

In the HIP assay, the ERG24 heterozygous strain is most
sensitive to this drug, and the profile is very similar to that of
fenpropimorph (Fig. 5B). In addition, wild-type yeast carrying a
plasmid overexpressing either Erg24 or the human homolog
LBR (BLAST E value � 10�78) shown to complement yeast
ERG24 (6) confers resistance to alverine citrate (as is also true
for fenpropimorph and dyclonine; data not shown). A third
compound with a HIP profile similar to fenpropimorph and
alverine citrate is the anesthetic dyclonine (Fig. 5C).

Because the profiles of dyclonine, fenpropimorph, and alver-
ine citrate are very similar (Fig. 5), we compared their chemical
structures. The structures revealed a common core structure
shared between them (Fig. 5). It is noteworthy that both fen-
propimorph and alverine citrate target Erg24 more strongly than
dyclonine (Fig. 5) as the dyclonine core structure differs from
that of fenpropimorph and alverine citrate. Dyclonine contains
a ketone at one of the carbon chain positions. This double-
bonded oxygen should limit dyclonine’s conformational degrees
of freedom and may account for the decreased sensitivity of the
ERG24 heterozygous deletion strain to dyclonine compared with
either alverine citrate or fenpropimorph. The finding that three
such therapeutically distinct compounds with similar profiles
share a chemical core structure suggests that the HIP assay may
aid in the understanding of structure–activity relationships.

Discussion
Genome-wide profiling of diverse compounds demonstrates that
this chemogenomic assay is specific in its ability to identify gene
products that functionally interact with small molecules. Based
on our results, we primarily identify gene products that (i)
interact directly with small molecules and are dosage-limiting for
growth and (ii) are involved in bioavailability of small molecules
to cells. A key feature of the assay is its ability to assess the
consequence of reducing the amount of gene product. Because
the HIP assay interrogates heterozygous strains, it differs from
most genetic screens that examine the phenotypic consequence
of a complete gene deletion in the homozygous (or haploid)
condition. By examining only complete deletions, it is difficult
to discern the primary effect of compound and impossible
to discern the effect of any essential gene. The heterozygous
deletion strains allow the study of all �1,000 essential gene
products simultaneously. Our results support the known small
molecule interactions in several cases (methotrexate, azoles, and
statins) and revealed previously unknown interactions in each
study. For both methotrexate and the statins, pathway-related
genes were uncovered that may identify novel drug discovery
targets. Our study on 5-FU suggests that the primary mechanism
of action is direct incorporation into the RNA. These studies also

Fig. 4. Individual growth analysis of the HMG1 and HMG2 heterozygous and homozygous deletion strains in the presence of atorvastatin. Atorvastatin was
0 �M (A), 62.5 �M (B), 125 �M (C), or 250 �M (D). At the concentrations used in the HIP screens (62.5 and 125 �M), only the HMG1 heterozygous strain is sensitive,
not the HMG2 heterozygous strain. At the highest concentration of atorvastatin (250 �M) both heterozygous strains are sensitive, as would be expected if both
genes contribute to the HMG-CoA reductase activity of the cell. Comparable analysis in the presence of lovastatin yielded similar results (data not shown).

Fig. 5. A comparison of the HIP profiles of fenpropimorph (2.3 �M; A),
alverine citrate (500 �M; B), and dyclonine (C; 500 �M). Axes shown are
equivalent to those in Fig. 1. In each case, the five most significant strains are
labeled. (Insets) Illustration of the compound structure. The chemical core
structure shared between the three compounds is shown in red.
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suggest a previously unknown interaction in one case (alverine
citrate). The ability of the HIP assay to uncover subtleties of drug
action was evidenced in the statins, where the effect of dupli-
cated genes (HMG1 and HMG2) was realized because one of the
genes (HMG1) is responsible for most of the activity in the cell.
We also identified several genes involved in transport of small
molecules. This set of genes varied widely from compound to
compound, suggesting that there is no ‘‘best’’ gene to delete to
increase the general drug sensitivity of yeast. Genes involved in
transport are important to identify because they may provide
clues to mechanisms of drug resistance. As is common in
genome-wide experiments, we also identified genes of unknown
function in every experiment, providing a rich resource for
follow-up experiments. Unlike many genome-wide experiments,
where it is difficult to judge which changes in gene activity have
biological consequence, the readout of the HIP assay provides a
ranking of the relative significance of each gene in the presence
of a given compound.

Our results may have a positive impact on the drug discovery
process. In the current paradigm, after a lead compound has
been identified (typically) in vitro, it is a significant challenge to

determine or predict the in vivo effects of such compounds once
in the context of all protein targets in a cell. In general, the
experimental options to determine in vivo effects are limited to
studies involving animal models. A cost-effective, predictive
screen such as the HIP assay may be a valuable tool for filtering
and prioritizing compounds for further development.

The highly multiplexed nature of our assay permits simulta-
neous screening of all �6,000 gene products for small molecule
interactions in a single experiment. By expanding the scope of
our chemical libraries and taking advantage of more extensive
automation, this in vivo assay may allow the identification of a
small molecule inhibitor for every essential gene product in
yeast. Because such chemical probes act as reversible conditional
‘‘mutants,’’ their identification would provide powerful chemical
genetic tools for functional studies.

G.G. thanks M. Bard for many helpful discussions. This work was
primarily supported by a grant from the National Cancer Institute�
National Institute of Biomedical Imaging and Bioengineering and by a
National Institutes of Health Alliance for Cellular Signaling GLUE grant
(to A.P.A.).
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