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Aim: Fungi are valuable resources for bioactive secondary metabolites. However, the 

chemical space of fungal secondary metabolites has been studied only on a limited 

basis. Herein, we report a comprehensive chemoinformatic analysis of a unique set of 

207 fungal metabolites isolated and characterized in a USA National Cancer Institute 

funded drug discovery project. Results: Comparison of the molecular complexity 

of the 207 fungal metabolites with approved anticancer and nonanticancer drugs, 

compounds in clinical studies, general screening compounds and molecules Generally 

Recognized as Safe revealed that fungal metabolites have high degree of complexity. 

Molecular fingerprints showed that fungal metabolites are as structurally diverse as 

other natural products and have, in general, drug-like physicochemical properties. 

Conclusion: Fungal products represent promising candidates to expand the medicinally 

relevant chemical space. This work is a significant expansion of an analysis reported 

years ago for a smaller set of compounds (less than half of the ones included in the 

present work) from filamentous fungi using different structural properties.
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Introduction
Natural products are important sources for 
new drugs and are also good lead compounds 
suitable for further optimization. The pharma-
ceutical industry has obtained many success-
ful leads from natural sources. Approximately 
45% of today’s best selling drugs are either 
natural products or, more typically, their semi-
synthetic derivatives [1]. This could be because 
natural products have some important advan-
tages over synthetic compounds: their bio-
synthesis involves repetitive interactions with 
enzymes, and for most of them, their actual 
biological function likely relies upon the abil-
ity to bind to proteins. This may explain why 
secondary metabolites exhibit advanced bind-
ing characteristics compared with synthetic 
compounds [2]. The chemical space of natural 
products (largely derived from plants), their 
synthetic derivatives and approved drugs from 
natural origin has been extensively explored. 

From such studies it has been concluded that, 
in general, natural products have larger size, 
greater 3D complexity, lower hydrophobicity, 
increased polarity and fewer aromatic rings 
than other compound libraries [3].

Most natural product-derived leads come 
from plant or microbial sources. There are also 
a few remarkable drugs from marine sources, 
such as the recently approved anticancer drug 
eribulin, a synthetic analog of halichondrin 
B isolated from the sponge Halichondria oka-
dai [4]. In the microbial area the main sources 
have been terrestrial actinomycetes and fungi. 
From the latter, the secondary metabolite 
myriocin was the base for the development of 
fingolimod as the first oral orally active drug 
for multiple sclerosis.

Out of the estimated 1.5–5.5 million 
species of fungi in the world, only approxi-
mately 75,000–100,000 species have been 
described, and yet, fungi from many dif-
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ferent sources continue to be a valuable resource of 
bioactive secondary metabolites such as antibiotics 
(cephalosporin), immunosuppressants (cyclosporine 
A), cholesterol-lowering agents (statins), antifungals 
(echinocandin B), for the treatment of multiple scle-
rosis (fingolimod), anticancer drugs (lentinan), for 
the treatment of hemorrhage (methergin) and fungi-
cides (strobilurins). Figure 1 shows remarkable exam-
ples of fungal metabolites (or synthetic analogues) 
used as drugs [5]. Since there are many unexplored 
fungal species, there is a high probability for discov-
ering new lead structures. However, the chemical 
space of secondary metabolites isolated from fungi 
has been studied only on a limited basis.

An initial effort to explore the chemical space of 
fungal isolates was reported by El-Elimat et al. [6]. In 
that work, 105 compounds isolated from filamentous 
fungi, 75 from cyanobacteria and 163 compounds from 
tropical plants were compared with each other, and 
to 96 US FDA-approved anticancer drugs, using nine 
molecular descriptors. Data visualization was conducted 
using principal component analysis. It was concluded 
that anticancer drugs cover a large fraction of biologi-
cally active chemical space, and that the set of fungal 
metabolites had a high overlap with the chemical space 
of anticancer drugs. A reasonable explanation for the 
high overlap was that 59% of the anticancer drugs were 
either natural products or compounds derived and/or 
inspired by them. However, given the limited number 
of fungal metabolites that have been tested in antican-
cer assays, this was an encouraging finding. It was also 
noted that the secondary metabolites isolated from each 
source represented different areas of chemical space, and 
therefore, the collective study of each natural source has 
cumulative benefits toward probing chemical diversity.

Based on previous studies and as part of our contin-
ued effort to quantify the chemical diversity of fungal 
isolates [6], herein we expand the analysis to a larger 
set of 207 compounds described by our group [7–23] 
that represent twice the size of the dataset analyzed in 
2012. In the current analysis, we employed molecular 
fingerprints as distinct molecular representations not 
analyzed in the previous study; also we emphasized the 
evaluation of molecular complexity that may have a sig-
nificant impact in drug discovery endeavors, since this 
feature has been associated with target selectivity (and 
potential toxicity). As part of the analysis, we imple-
mented a novel consensus measure of structural com-
plexity. The chemical space and structural diversity of 
the fungal isolates were compared with anticancer and 
nonanticancer approved drugs, other reference data-
sets of pharmaceutical interest, and a unique dataset 
of Generally Recognized as Safe (GRAS) compounds 
used in the food industry [24].

Methods
General approach

The compound datasets were analyzed using validated 
chemoinformatics methods to characterize compound 
libraries [25–27]. Chemoinformatic-based analysis of 
compound libraries is part of the preliminary charac-
terization of datasets used for drug discovery, provid-
ing key information to characterize molecular diversity 
and coverage of chemical space [28]. Of note, in the 
study published in 2012 for a smaller (105) set of com-
pounds, nine molecular descriptors commonly used 
in compound characterizations were computed [6]. 
Herein, for the 207 fungal metabolites we included a 
number of previously computed properties plus a novel 
set of descriptors that capture different aspects of the 
molecules.

Datasets

Table 1 summarizes the datasets used, including the 
number of unique compounds after data curation. In 
total, 5494 compounds were analyzed. Prior to analy-
sis, all datasets were curated using Molecular Operat-
ing Environment, version 2014.08 [29]. Molecules were 
washed using a protocol implemented in Molecular 
Operating Environment that involves removing salts 
and neutralizing the charges in the molecules. The 
largest fragments were kept, duplicates in each dataset 
were removed and all molecules with molecular weight 
(MW) over 1000 were excluded. The in-house library 
of fungal metabolites with 207 compounds (referred 
to hereafter as ‘FUNGI’) [7–23] was compared with the 
following five reference collections: 2249 compounds 
based on the Flavor and Extract Manufacturers Asso-
ciation of the United States GRAS list, updated to 
GRAS 27 (hereafter referred to as ‘GRAS’) [24,30]; 
FDA drugs obtained from DrugBank [31] containing: 
76 drugs approved to treat cancer (hereafter referred 
to as ‘FDA-ONC’) and 1399 nononcological drugs 
(hereafter referred to as ‘FDA-NONC’); 713 drugs in 
clinical trials reported by the Therapeutic Target Data-
base [32] (hereafter referred to as ‘CLINIC’); and 850 
compounds from a commercial collection focused on 
epigenetic targets, available at Selleckchem (hereafter 
referred to as ‘GENERAL’) [33]. Supplementary Table 1 
summarizes the number of duplicate molecules found 
in the initial datasets. The chemical structures of rep-
resentative fungal metabolites analyzed in study are 
shown in Supplementary Figure 1. The full dataset of 
f ungal metabolites is available upon request.

Molecular representations

To reduce the dependence of chemical space with 
structure representation, we used different representa-
tions. These can be classified into three main groups: 



Figure 1.  Representative examples of fungal metabolites as drugs.
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molecular complexity, structural fingerprints and 
physicochemical properties.

Molecular complexity

Three measures were used to compare the structural 
complexity of the datasets: fraction of sp3 carbon atoms 
(F-sp3), fraction of chiral centers (CCF) and globular-
ity (GLOB). F-sp3 and CCF are complexity metrics that 
have been used broadly to measure MC [34,35]. A higher 
value of CCF means higher stereochemical complexity 
and a larger F-sp3 value indicates that the molecule is 
more likely to have a 3D structure, in other words, a non-
planar structure. 3D structures are preferred over planar 
structures with the hypothesis that molecules with out-
of-plane substituents could adjust their molecular shape 
and increase receptor/ligand complementarity [34]. How-
ever, only considering sp3 carbons may not be enough to 

determine if a molecule has a 3D structure: F-sp3 does 
not account for 3D structures given by sp3-hybridized 
heteroatoms. However, GLOB does capture this struc-
tural feature. GLOB evaluates the resemblance of a com-
pound to a sphere, a value equal to 1 represents a spherical 
molecule while a value equal to 0 represents a structure 
that is completely flat. F-sp3 was computed with Maya 
ChemTools [36], dividing the number of sp3 hybridized 
carbons by the total carbon count; CCF was calculated 
using Molecular Operating Environment software divid-
ing the number of chiral centers (ChC) by the total car-
bon count. GLOB was calculated with Molecular Oper-
ating Environment software using the conformation 
with a low-energy conformation. The distributions of the 
F-sp3, GLOB and CCF values were analyzed using box 
plots. The statistical analysis of the distributions of F-sp3, 
GLOB and CCF was done with R Studio [37]. The statis-
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tical comparison of the complexity measures was made 
by the assessment of the homoscedasticity with a Shapiro 
test in which a normal distribution may be assumed if a 
p-value >0.05 is obtained. In order to do pairwise com-
parisons, a Kruskal–Nemenyi test was performed, for 
which a p-value <0.05 indicates that the null hypothesis 
must be accepted, meaning that there is not a statistically 
significant difference between the distributions in the 
datasets. All the statistics were generated with R Studio 
using the PMCMR package. In addition, we computed 
the mean complexity (MC) as the mean of F-sp3, GLOB 
and CCF values. MC represents a combined measure of 
MC. For each dataset, the distribution of MC values was 
obtained along with the corresponding summary sta-
tistics. In an attempt to determine whether differences 
could be observed when considering the total number of 
heavy atoms (HAs) or MW to calculate the fraction of sp3 
carbon atoms, molecular globularity and CCF, we calcu-
lated six related fractions: sp3/MW, ChC/MW, sp3/HA, 
ChC/HA, GLOB/MW and GLOB/HA. An MC of the 
fractions normalized with MW (MCMW) and an MC 
for the fractions normalized with HA (MCHA) were cal-
culated for each dataset. The statistical analysis between 
datasets was generated with R Studio as described for 
each metric of molecular complexity.

Structural fingerprints

Two structural fingerprints of different design: Molecu-
lar ACCess System (MACCS) keys (166-bits) [38] and 
extended connectivity fingerprints, ECFP4 (ECFPs) [39]. 
The distribution of the similarity values was analyzed by 
cumulative distribution functions (CDF) generated with 
MayaChem Tools and R Studio scripts.

Physicochemical properties

Six properties were calculated with Molecular Oper-
ating Environment software. Hydrogen bond donors 
(HBDs), hydrogen bond acceptors (HBAs), the 
octanol and/or water partition coefficient (SlogP) 
and MW; these physicochemical properties are asso-
ciated with solubility and permeability. Topological 
polar surface area (TPSA), an important parameter 
related to solubility, permeability and transport of a 

compound; and number of rotatable bonds, which 
is an indicator of the flexibility of the molecules. 
For each database and property, a box plot was 
generated. The statistical comparison of the prop-
erties was made with R Studio as described in the 
‘Methods’ section. To generate a visual representa-
tion of the chemical space based on physicochemi-
cal properties, a principal component analysis was 
performed with the six physicochemical properties 
using D ataWarrior, v ersion 4. 2. 2 [40].

Results & discussion
Structural complexity

Many drug discovery efforts focus on compound librar-
ies containing small molecules filtered using classical 
semi-empirical rules. Filtered molecules often interro-
gate a narrow range of medicinal chemical space but 
have failed to identify leads for many target classes [41]. 
Structural complexity is an attractive criterion for 
the drug discovery process. Indeed, previous studies 
have shown that increased structural complexity, as 
measured by simple metrics such as F-sp3 and CCF, 
is associated with increased probability to reach the 
market and 3D structures that might allow additional 
protein–ligand interactions not accessible to a flat aro-
matic ring [34]. Furthermore, preliminary experimen-
tal analyses have shown that increased structural com-
plexity is related to target selectivity [35]. Therefore, we 
measured the distribution of the structural complexity 
of the 207 fungal metabolites using Fsp3 and CCF, 
previously studied metrics. GLOB was also included 
as an approach to obtain a more accurate description 
of the molecules shape and 3D structure. A consen-
sus measure of complexity with these three descriptors 
was introduced and the results were compared with 
the reference collections. Of course, additional metrics 
to measure structural complexity could be used [42,43]. 
Figure 2 shows box plots of the distribution of CCF, 
GLOB and F-sp3 along with summary statistics. 
Supplementary Table 3 shows the Kruskal–Nemenyi 
test results for the complexity analysis.

The CCF and F-sp3 values for the FDA-NONC com-
pounds (that represent a larger fraction of all the FDA-

Table 1. Compound datasets considered in this work.

Dataset Initial size Unique compounds

Fungal isolates (FUNGI) 224 207

Approved anticancer drugs (FDA-ONC) 82 76

Approved nonanticancer drugs (FDA-NONC) 1536 1399

Drugs in clinical trials (CLINIC) 832 713

General screening collection (GENERAL) 1094 850

Generally Recognized as Safe (GRAS) 2295 2249
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approved compounds) are larger and statistically different 
from the CLINIC set (Figure 2 & Supplementary Table 2). 
In general, considering Fsp3 and CCF, the FDA-approved 
drugs and CLINIC are more complex than the GEN-
ERAL screening collection. Indeed, considering the 
FDA-approved drugs as a single compound set, the rela-
tive order of structural complexity decreases in the order 
Drugs (both FDA categories) > CLINIC > GENERAL 
which is in good agreement with previously reported 
data [34]. Interestingly, 3D measured with GLOB shows 
that FDA-ONC, GENERAL and CLINIC are not 
s tatistically different.

Impressively, FUNGI showed larger and statisti-
cally different CCF values than all reference datas-
ets, including FDA-approved drugs and in particular 
FDA-ONC. FUNGI had similar F-sp3 and GLOB 
values as FDA-NONC, and both datasets exhibited 
higher values than FDA-ONC. Compared with GEN-
ERAL, FUNGI showed larger values of F-sp3, GLOB 
and CCF, demonstrating their increased structural 
complexity as compared with molecules typically used 
in high-throughput screening.

Interestingly, GRAS compounds had the largest struc-
tural complexity as measured by the distribution of F-sp3 
values (Figure 2). This intriguing result and the inher-
ent safety of GRAS chemicals for human consumption 
(at given doses) is in agreement with the general notion 
that large structure complexity can be associated with 
selectivity, and possibly, less toxicity [34]. The hypoth-
esis of a putative correlation between compound safety 
and structural complexity is being fully evaluated in our 
group and will be reported in a separate work (see the 
‘Future perspective’ section). An unexpected finding was 
that, even though GRAS has the highest F-sp3 values, it 
also has one of the lowest GLOB values. This is in agree-
ment with the hypothesis that sp3-hybridized heteroat-
oms should be considered to study the c omplexity and 
3D structure of molecules.

Combined measure of complexity

A simple aggregated measure of MC was 
obtained by computing the mean of F-sp3, 
GLOB and CCF (see the ‘Methods’ section). 
Figure 3 shows the distribution of the MC values 
for each dataset. Supplementary Table 2 summa-
rizes the Kruskal–Nemenyi test results. According 
to this aggregated measure of complexity, FUNGI 
were statistically more complex than CLINIC, 
GENERAL and FDA-approved drugs, in particu-
lar FDA-ONC. Interestingly, according to MC, 
GRAS was not statistically different from FUNGI 
(Supplementary Table 2). Consistent with other 
metrics, the GENERAL set was the least complex. 
Finally, on average, the FDA-NONC and the FDA-

ONC datasets showed a different degree of complex-
ity as captured by MC values. This suggests that 
complexity among approved drugs can be signifi-
cantly different depending on the therapeutic indi-
cation.

Figure 4 shows the mean of Fsp3 and FCC values 
mapped on a visual representation of the chemical 
space generated with principal component analy-
sis of six physicochemical properties: HBA, HBD, 
SlogP, TPSA, MW and RB (see the ‘Profile of physi-
cochemical properties’ section). A color scale was 
implemented to highlight each data point using MC 
in which the most complex compounds were marked 
red, the moderately complex compounds yellow and 
the less complex compounds were marked green. 
Based on the colors, the GRAS database contains 
more yellow-to-red colored molecules when com-
pared with GENERAL where most of the molecules 
are green. This visualization was in line with the MC 
metric (in Figure 3) in which GENERAL was the 
least complex collection. The FUNGI dataset con-
tained fewer molecules than GENERAL (Table 1), 
but based on the color scale, most of the molecules 
were orange-to-red indicating high complexity. The 
distribution of each dataset in the chemical space 
based on the physicochemical properties is discussed 
in the ‘Profile of physicochemical properties’ section.

FUNGI and the reference sets were compared using the 
MCHA and MCMW metrics (see the ‘Methods’ section). 
The goal was to explore the effects of different approaches 
to normalize the number of sp3 carbon atoms and ChC on 
the relative order of MC of the datasets. The correspond-
ing box plots and summary statistics of the distributions 
of MCHA and MCMW are in Supplementary Figure 2. 
Overall, considering the different normalization meth-
ods, similar conclusions were obtained regarding the rela-
tive MC of FUNGI compared with the reference datas-
ets. GRAS showed an increased MC, and was statistically 
more complex than the other datasets.

The analysis of MC supported the hypothesis 
that fungal metabolites are remarkable candidates to 
expand the medicinally relevant chemical space [41]. 
The profile of stereochemical complexity and 3D 
character (nonflat structures) makes fungal metab-
olites attractive compounds as drug sources with 
the potential to be selective and likely to succeed 
as future drugs [34]. Of note this is the first study 
that quantifies directly the structural complexity of 
f ungal metabolites.

Structural diversity using molecular fingerprints

As discussed in the ‘Introduction’ section, this is the first 
report that addresses in a quantitative manner the struc-
tural diversity of fungal metabolites using molecular 



Figure 2.  Molecular complexity of fungal isolates. Box plots of the distributions of CCF, F-sp3 and globularity for the fungal isolates, 

molecules Generally Recognized as Safe, US FDA-approved drugs to treat cancer, FDA-approved drugs, drugs in clinical trials and 

compounds from a screening collection. Summary statistics are shown below each box plot. See text for details.  

1st Q: First quartile; 3rd Q: Third quartile; CCF: Fraction of chiral centers; CLINIC: Drugs in clinical trials; FDA-NONC: FDA-

approved drugs; FDA-ONC: FDA-approved drugs to treat cancer; FUNGI: Fungal isolates; F-sp3: Fraction of sp3 carbon atoms; 

GENERAL: Compounds from a screening collection; GLOB: Fraction of globularity; GRAS: Generally Recognized as Safe.
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fingerprints. The structural diversity of each dataset was 
also measured computing all possible pair-wise compari-
sons with the Tanimoto coefficient [44,45] and two fin-

gerprint-based structure representations: MACCS keys 
and ECFPs, previously described in the ‘Methods’ sec-
tion. The Tanimoto coefficient measures the ratio of the 



Figure 3.  Box plot and summary statistics of the mean of F-sp3, fraction of chiral centers and globularity or mean 

complexity. See text for details.  

1st Q: First quartile; 3rd Q: Third quartile; CCF: Fraction of chiral centers; F-sp3: Fraction of sp3 carbon atoms; 

GLOB: Fraction of globularity.
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set of structural features that two compounds have in 
common with respect to the total structural features of 
both compounds (as codified by the corresponding fin-
gerprint representation). Figure 5 shows the CDF curves 
(along with summary statistics) of the pair-wise similar-
ity values for each dataset using MACCS keys. The CDF 
curves of ECFPs are shown in Supplementary Figure 3.

Analysis of the CDF indicated that the FUNGI set 
was diverse with, for instance, median MACCS/Tani-
moto similarity of 0.52 (and median of 0.143 with 
ECFP). Despite the fact that the FUNGI set showed 
the lowest structural diversity as compared with the 
other collections studied in this work (e.g., the intra-
library similarity was higher, Figure 5), their diversity 
was comparable (calculated using the same metrics) 

to other natural products such as molecules from tra-
ditional Chinese medicine or a dataset of commer-
cially available natural products for high-throughput 
s creening [41,46].

Out of the datasets compared in this work, FDA-
NONC was the most diverse followed by GRAS and 
compounds in the GENERAL and CLINIC data-
sets. Overall, the similarity values for the reference 
datasets were consistent with the values reported in 
the literature. The FDA-ONC set had higher simi-
larity values compared with the values reported for 
approved drugs [41]. This result can be explained 
because FDA anticancer drugs are focused on fewer 
molecular targets and occupy a narrower (focused) 
region of the drug-like chemical space.



Figure 4.  Visualization of the molecular complexity mapped on a representation of the chemical space generated 

with principal component analysis of six physicochemical properties. The first two principal components recover 

85% of the variance. Data points are colored by the mean of Fsp3 and FCC using a continuous color scale from 

green (less complex) to red (more complex). Each panel corresponds to the visualization of single datasets. 

CLINIC: Drugs in clinical trials; FCC: Fraction of chiral centers; FDA-NONC: FDA-approved drugs; FDA-ONC: FDA-

approved drugs to treat cancer; FUNGI: Fungal isolates; F-sp3: Fraction of sp3 carbon atoms; GENERAL: Compounds 

from a screening collection; GLOB: Fraction of globularity; GRAS: Generally Recognized as Safe; PC: Principal 

component.
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Profile of physicochemical properties

In addition to measuring structural complexity and 
molecular diversity using structural fingerprints, 
we also obtained the physiochemical profile of the 

FUNGI set. This is because in library selection and 
design it is important to have a balance between the 
structural diversity and physicochemical drug like-
ness [47]. As mentioned in the ‘methods’ section, six 



Figure 5.  Molecular diversity of the fungal metabolite dataset and reference collections. This figure shows the 

cumulative distribution functions of all pair-wise similarity comparisons using the Tanimoto coefficient using 

MACCS keys. The table summarizes the summary statistics of the cumulative distribution functions. The FUNGI 

set was less diverse than GRAS, US FDA, CLINIC and GENERAL but is as diverse as other natural product datasets 

reported in the literature [41,46].  

1st Q: First quartile; 3rd Q: Third quartile; CLINIC: Drugs in clinical trials; FDA-NONC: FDA-approved drugs; 

FDA-ONC: FDA-approved drugs to treat cancer; FUNGI: Fungal isolates; F-sp3: Fraction of sp3 carbon atoms; 

GENERAL: Compounds from a screening collection; GLOB: Fraction of globularity; GRAS: Generally Recognized as 

Safe; MACCS: Molecular ACCess System.
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FUNGI 0.13 0.43 0.52 0.52 0.63 1 0.14

GRAS 0.00 0.26 0.38 0.39 0.50 1 0.18

FDA-ONC 0.07 0.33 0.47 0.46 0.56 1 0.14

FDA-NONC 0.00 0.28 0.37 0.37 0.46 1 0.13

CLINIC 0.00 0.35 0.44 0.43 0.52 1 0.13

GENERAL 0.05 0.34 0.43 0.43 0.52 1 0.12
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Figure 6.  3D and 2D visual representation of the chemical space of 207 fungal isolates considered in this work (cont. from facing page). 

The visual representation was generated with a principal component analysis of six physicochemical properties: molecular weight, 

hydrogen bond donors, hydrogen bond acceptors, the octanol and/or water partition coefficient, topological polar surface area and 

number of rotatable bonds. The first two principal components capture 85.2% of the variance and the first three principal components 

capture 93.9% of the variance. FUNGI: purple; GRAS: yellow; FDA-ONC: green; FDA-NONC: red; CLINIC: blue; GENERAL: turquoise.
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physicochemical properties of pharmaceutical relevance 
were analyzed for the 207 fungal metabolites and the 
reference datasets. Box plots and summary statistics 
of the six properties for all collections are shown in 
Supplementary Figure 4 & Supplementary Table 4.

TPSA is an important parameter for the perme-
ability, solubility and transport of compounds [48]. The 
FUNGI set had comparable values of TPSA with FDA-
ONC. Indeed, it has been suggested that TPSA is one 
of the key physicochemical properties that confer the 
drug-likeness character to natural products [49].

Regarding molecular flexibility as measured by RB, 
the FUNGI set was similar to GRAS, and both sets were 
less flexible than FDA-approved drugs, CLINIC and 
GENERAL datasets. The fungal metabolites analyzed 
in this work were not statistically different from FDA-
ONC in terms of HBA, HBD and MW. This result is in 
line with the conclusions obtained in the previous work 
for a smaller set of fungal metabolites, described in the 
‘Introduction’ section [6].

It is noteworthy that there was a statistical differ-
ence between the datasets with FDA-approved drugs; 
on average FDA-ONC drugs had higher values than 
FDA-NONC for most of the computed properties. 
In other words, there is a considerable difference in 
the physicochemical properties of drugs used to treat 
cancer and drugs approved for other indications.

2D and 3D visual representations of the chemi-
cal space based on the six properties are shown in 
Figure 6. The first two principal components retrieved 
85.2% of the variance, whereas 93.9% was recov-
ered by using the first three principal components. 
Supplementary Table 5 summarizes the loadings for 
the six properties. Supplementary Table 5 indicates that 
HBA and HBD had the highest contributions to the 
first principal component, SlogP had the highest con-
tribution to the second principal component and RB 

had the highest contribution to the third principal com-
ponent. Figure 6 shows that fungal metabolites cover 
similar regions of the property space of FDA-approved 
drugs, CLINIC and GENERAL, particularly FDA-
ONC. This result was consistent with the conclusions 
obtained in our previous work [6]. Interestingly, most 
of the outliers were either molecules with many ChC, 
or highly saturated molecules. As expected, most of the 
molecules in FDA-ONC, GENERAL and CLINIC 
occupy similar regions of the chemical space, indicat-
ing that these sets have, in general, comparable physi-
cochemical properties (as quantitatively captured by the 
box plots in Supplementary Figure 4).

FDA-NONC compounds showed a broader cover-
age of the property space. Interestingly, GRAS mol-
ecules occupy a well-defined and distinct area of the 
space that was associated with the smallest molecules. 
In fact, based on the distribution of the physicochemi-
cal properties and visual representation of the chemical 
space, GRAS molecules were, overall, smaller molecules 
than the other reference collections. However, GRAS 
compounds have comparable SlogP values. Of note, the 
octanol/water partition coefficient is one of the most 
important drug-like physicochemical properties [49]. 
Fungal metabolites share pharmaceutical important 
physicochemical properties with the approved drugs. 
Even though natural products do not necessarily fol-
low all Lipinski’s Rule of Five [49], in general, the fungal 
i solates studied in this work fulfilled those rules.

Conclusion
In this work, we quantified for the first time the struc-
tural complexity of 207 fungal natural products previ-
ously isolated and characterized during our investiga-
tion into cytotoxic fungal metabolites conducted over 
the past decade. It was concluded that the chemical 
structures of fungal metabolites are more complex than 
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FDA-approved drugs, compounds undergoing clinical 
trials and general screening molecules. This distinct 
feature of fungal metabolites, combined with simi-
lar structural diversity compared with other natural 
products datasets, quantified using several molecular 
fingerprints and drug-like physicochemical properties 
make fungal metabolites an attractive source to cover 
novel regions of the medicinally relevant chemical 
space. During the course of this study, differences in 
the structural complexity and physicochemical profile 
of FDA-approved anticancer and nonanticancer drugs 
were evaluated. Interestingly, GRAS compounds had 
the highest MC profile as measured by the fraction 
of sp3 carbon atoms. This result led to the hypothesis 
that MC could be related to compound safety, in other 
words, low toxicity. However, considering the mean of 
F-sp3, GLOB and CCF as a simple measure of complex-
ity, a similar profile of MC of fungal metabolites and 
GRAS molecules was observed. This result suggested 
that both types of structures have the potential to pres-
ent similar target selectivity profiles. Taking all results 
together, it can be concluded that the fungal metabo-
lites are attractive sources of leads, likely because they 
combine high complexity and structural diversity with 
drug-like physicochemical properties.

Future perspective
The long-term goal of this study is to contribute 
to the systematic identification of bioactive com-
pounds from fungi. This plan is in agreement with 
an effort to synergize natural product-based and 
computer-aided drug discovery [50]. One of the first 
steps to systematically identify active molecules in 
compound libraries is to characterize the chemical 
space. However, only few reports of efforts to char-
acterize the chemical space of fungal metabolites 
have been published. To our knowledge, this is the 
second computational study that expands the find-
ings of our work published 4 years ago for a smaller 
set of fungal metabolites (with half of the molecules 
reported) using different metrics and structure rep-
resentations. Therefore, it is expected that this study 

will continue to stimulate the research community, 
including our own groups, by expanding our knowl-
edge of the chemical space of fungal metabolites. 
Moreover, the findings of this Short Communication 
led to hypotheses that warrant further computational 
and experimental exploration. At least three follow-
up studies can be envisioned: experimental testing of 
fungal metabolites across different molecular targets. 
In addition to uncovering new bioactive leads, results 
of the screening will test the hypothesis that the large 
structural complexity of fungal metabolites is asso-
ciated with target selectivity. Computational and 
experimental assessment of the putative association 
between compound toxicity with MC, and target 
fishing, in other words, computational prediction of 
molecular targets of fungal metabolites followed by 
rigorous experimental validation.
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Executive summary

• Fungal metabolites have high structural complexity, large structural diversity (comparable to other natural 

products) and drug-like physicochemical properties. Therefore, they are attractive compounds to expand the 

medicinally relevant chemical space.

• Findings of this work led to the hypothesis that fungal metabolites have, in general, a promising potential to 

be selective if tested across diverse molecular targets. Future systematic experimental screening will test this 

hypothesis.

• Generally Recognized as Safe compounds had larger structural complexity than approved drugs and fungal 

metabolites. Hence, it is hypothesized that molecular complexity can be associated with compound safety, in 

other words, low toxicity. This hypothesis is currently being tested by our group.

• Notable differences were found between the chemical space of approved oncological and nononcological drugs.

www.future-science.com/doi/full/10.4155/fmc-2016-0079
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