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Chemokine CXCL12 activates dual CXCR4 and
CXCR7-mediated signaling pathways in
pancreatic cancer cells
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Abstract

Background: Previously assumed to be a select ligand for chemokine receptor CXCR4, chemokine CXCL12 is now

known to activate both CXCR4 and CXCR7. However, very little is known about the co-expression of these

receptors in cancer cells.

Methods: We used immunohistochemistry to determine the extent of co-expression in pancreatic cancer tissue

samples and immunoblotting to verify expression in pancreatic cancer cell lines. In cell culture studies, siRNA was

used to knock down expression of CXCR4, CXCR7, K-Ras and b-arrestin -2 prior to stimulating the cells with

CXCL12. Activation of the mitogen-activated protein kinase pathway (MAPK) was assessed using both a Raf-pull

down assay and western blotting. The involvement of the receptors in CXCL12-mediated increases in cell

proliferation was examined via an ATP-based proliferation assay.

Results: First, we discovered frequent CXCR4/CXCR7 co-expression in human pancreatic cancer tissues and cell

lines. Next, we observed consistent increases in ERK1/2 phosphorylation after exposure to CXCL12 or CXCL11, a

CXCR7 agonist, in pancreatic cancer cell lines co-expressing CXCR4/CXCR7. To better characterize the receptor-

mediated pathway(s), we knocked down CXCR4 or CXCR7, exposed the cells to CXCL12 and examined

subsequent effects on ERK1/2. We observed that CXCR7 mediates the CXCL12-driven increase in ERK1/2

phosphorylation. Knockdown of CXCR4 expression however, decreased levels of K-Ras activity. Conversely, KRAS

knockdown greatly reduced CXCL12-mediated increases in ERK1/2 phosphorylation. We then evaluated the role

of b-arrestin-2, a protein directly recruited by chemokine receptors. We observed that b-arrestin-2 knockdown

also inhibited increases in ERK1/2 phosphorylation mediated by both CXCR4 and CXCR7. Finally, we investigated

the mechanism for CXCL12-enhanced cell proliferation and found that either receptor can modulate cell

proliferation.

Conclusions: In summary, our data demonstrate that CXCR4 and CXCR7 are frequently co-expressed in human

pancreatic cancer tissues and cell lines. We show that b-arrestin-2 and K-Ras dependent pathways coordinate the

transduction of CXCL12 signals. Our results suggest that the development of therapies based on inhibiting CXCL12

signaling to halt the growth of pancreatic cancer should be focused at the ligand level in order to account for the

contributions of both receptors to this signaling pathway.
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Background

It is well-established that chemokines interact with G

protein-coupled receptors (GPCRs) to activate down-

stream signaling pathways that enhance cancer cell

growth, migratory behavior, and cell survival [1,2]. Pre-

vious studies have characterized the effects of chemo-

kine CXCL12 in many cancers [3-5] including its role in

promoting local invasion and distant metastasis of pan-

creatic cancer [4,6-8]. Its corresponding receptor

CXCR4 has been widely investigated initially because

reports showed it is a co-receptor for T-tropic HIV-1

and HIV-2 entry into CD4+ cells [9,10]. Since then,

CXCL12 was found to be the specific ligand for CXCR4

[11,12]. As such, the CXCL12-CXCR4 axis has been the

focus of research into therapeutic strategies for pancrea-

tic and other cancers [7,13-15]. Recent data, however,

shows that CXCL12 also binds to and activates chemo-

kine receptor CXCR7 [16-19]. Therefore, downstream

cell functions, which have been previously attributed to

CXCR4, may also result from CXCR7-mediated

signaling.

CXCR7 is expressed in many different tissues, includ-

ing neurons, immune cells, and endothelial cells; recep-

tor-mediated signaling can occur by binding one of its

two known ligands, CXCL11 or CXCL12 [17,18,20,21].

It has a dedicated role in fetal cardiac development and

B-cell localization as elucidated in CXCR7-deficient

mice [17,18,20,21]. As with many other chemokine

receptors, CXCR7 is known to induce oncogenic pheno-

types apart from its innate role in organogenesis and

immunity [17,18,20,21]. Similar to what is known about

CXCR4, recent reports have indicated that CXCR7 pro-

motes cancer cell survival through anti-apoptotic

mechanisms [17,22]. However, in contrast to the down-

stream effects of CXCR4, chemotaxis has not been

reported to be induced by CXCR7-mediated signaling

[17]. Although these data may suggest divergent func-

tions for CXCR4 and CXCR7 in cancer cells, little is

known regarding the frequency of co-expression and

therein the mechanism for propagation of CXCL12

signals.

We previously investigated CXCL12 signaling in pan-

creatic cancer cells and observed enhanced cell prolif-

eration mediated by the MAPK pathway [23,24]. Here,

our objective was to investigate the roles of CXCR4 and

CXCR7 in CXCL12-driven activation of the MAPK

pathway in human pancreatic cancer cells. We examined

b-arrestins which are recruited by GPCRs [25], as well

as K-Ras, which is known to regulate the MAPK path-

way [26]. Our results demonstrate that CXCR4 and

CXCR7 are co-expressed with high frequency in human

pancreatic cancers and that either receptor can regulate

the MAPK pathway. Our results suggest that both

CXCR4 and CXCR7 are potential targets in the develop-

ment of effective therapies to halt the growth of pan-

creatic cancer.

Materials and methods

Cell culture and reagents

Human pancreatic cancer cell lines AsPC-1, MiaPaCa-2,

PANC-1, SU.86.86, HS-766 T and BxPC-3,were obtained

from American Type Culture Collection (ATCC; Mana-

ssas, VA) within the past 5 years. FG cells, which are a

metastatic derivative of the pancreatic adenocarcinoma

cells COLO-357, were provided by Dr. A. Lowy. All

cells used for the experiments presented in this study

were immediately cryopreserved in liquid nitrogen after

they were obtained. All cell lines were assessed by DNA

extraction, polymerase chain reaction (PCR) amplifica-

tion, and sequencing for KRAS and TP53 gene muta-

tions to verify the genotype of cells (data not shown).

Cells were maintained in ATCC-recommended media at

37°C and 5% CO2. Serum-starvation lasted for 12-24 h

unless otherwise noted.

CXCL12 and epidermal growth factor (EGF) were pur-

chased from Peprotech (Rocky Hill, NJ); CXCL11and

CXCL10 from R&D Systems (Minneapolis, MN). The

following antibodies were used: rabbit polyclonal antibo-

dies against phospho-ERK1/2 and total ERK1/2 (Cell

Signaling; Beverly, MA), rabbit polyclonal antibodies

against CXCR4 (Abcam, Cambridge, MA) and CXCR7

(Abcam and R&D Systems), a goat polyclonal antibody

against b-arrestin-2 (Abcam), and a mouse monoclonal

antibody against K-Ras (Calbiochem; San Diego, CA).

Immunoblotting

Cell lysates were collected as previously described [27].

Twenty micrograms of protein were separated on 12%

SDS-polyacrylamide gels and transfered onto PVDF

membranes (Millipore; Bedford, MA). The membranes

were blocked for 1 h and probed overnight with primary

antibodies. After washing, membranes were labeled with

horseradish peroxidase (HRP)-conjugated secondary

antibodies (BioRad; Hercules, CA). Blots were developed

with a chemiluminescence substrate (Amersham Phar-

macia; Piscataway, NJ) and imaged.

Tissue staining

We assessed CXCR4 and CXCR7 expression in forma-

lin-fixed paraffin embedded (FFPE) specimens as pre-

viously described [27]. Pancreatic cancers were

obtained from patients who had undergone resection

for pancreatic adenocarcinoma with Institutional

Review Board approval. Tissue blocks were sectioned

(5 μm) and deparaffinized with xylene. After antigen

retrieval was performed, a section was incubated with
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the anti-CXCR4 antibody and the next consecutive

section from the tissue block was incubated with the

anti-CXCR7 antibody. Then, they were labeled with

secondary antibody (EnVision Plus; Dako, Carpinteria,

CA), developed, and examined under microscopy at

200× magnification.

Short interfering RNA (SiRNA)

Pancreatic cancer cells were transfected with siRNA

(100 nM) using RNAiMAX (Invitrogen; Carlsbad, CA)

according to the manufacturer’s instructions and incu-

bated for 48 h prior to application of treatments. siR-

NAs used were control, CXCR4, CXCR7, b-arrestin-2

and KRAS (Dharmacon; Lafayette, CO).

K-ras activity

K-Ras activity was measured by a Raf pull-down assay

(Millipore). In this enzyme-linked immunosorbent assay,

cells maintained in serum-free media, were exposed to

CXCL12 (100 ng/ml) or CXCL11 (200 ng/ml) for 15

min and then lysed. The cell lysate (100 μg) was incu-

bated with Raf-1 Ras Binding Domain (RBD)-agarose.

K-Ras proteins captured by Raf-1-RBD were detected

and measured by the addition of an anti-K-Ras antibody

(Millipore). An HRP-conjugated secondary antibody was

then added. After adding a chemiluminescent substrate,

signals were measured by a luminometer (Perkin-Elmer;

Shelton, CT). Baseline K-Ras activity prior to stimula-

tion with CXCL12 and CXCL11 was placed at zero; the

data presented represents the relative increases in K-Ras

activity due to stimulation. At least three independent

assays were performed for each cell line. The mean

absorbance ± one SD was plotted for each treatment

group.

Cell proliferation

Cell proliferation was assessed using a proliferation

assay (CellTiter-Glo, Promega; Madison, WI) based on

the quantification of ATP as previously described [27].

Cells were plated in 96-well plates at a density of 5 ×

103 cells per well and exposed to CXCL12 in serum-free

media for 72 h. Plates were incubated with CellTiter-

Glo reagent and luminescence was measured. At least

three independent cell proliferation assays were per-

formed. Baseline proliferation prior to stimulation with

CXCL12 and CXCL11 was placed at zero and the

results show the relative increases due to stimulation.

The mean absorbance ± one SD was plotted for each

treatment group.

Statistics

Statistical analysis of the data was performed using

unpaired Student’s t-test. P values were two-sided and

values of < 0.05 were considered statistically significant.

Results

CXCR4 and CXCR7 are co-expressed in human pancreatic

cancers

To assess the clinical frequency of CXCR4 and CXCR7

co-expression, we performed immunohistochemical

(IHC) staining in 51 FFPE human pancreatic cancer spe-

cimens. IHC demonstrated high frequency of CXCR4

and CXCR7 co-expression in these samples: 37 showed

double staining, 5 showed single staining, while 9 had

no staining. Representative IHC of CXCR4 and CXCR7

expression for three different patient samples are pre-

sented in Figure 1. For each patient sample, the section

stained with the CXCR4 antibody and the corresponding

CXCR7 section are immediately adjacent slices of the

FFPE tissue. We have previously shown the absence of

receptor staining in normal human pancreatic tissue

samples with an increase in staining intensity over

tumor stage [24].

CXCR4 and CXCR7 expression was assessed in 7 pan-

creatic cancer cell lines by immunoblotting. All cell

lines expressed both CXCR4 and CXCR7, except for

BxPC and SU.86.86 which lack CXCR4 (Figure 2). Our

results showing no CXCR7 expression in HT29 colon

cancer cells, which were utilized as a negative control,

are consistent with published reports [22,28]. We

selected PANC-1, MiaPaCa2, and FG cells for further

investigation.

CXCR4 and CXCR7 mediate the activation of the MAPK

pathway

We exposed PANC-1 and MiaPaCa2 cells to CXCL12,

which induced an increase in ERK phosphorylation in

agreement with our previous results [26]. Then, through

the use of CXCL11, we demonstrated that CXCR7-

mediated signaling alone can also increase ERK phos-

phorylation (Figure 3a). By using CXCL12 and CXCL11,

we show that both CXCR4 and CXCR7 can mediate

ERK phosphorylation in cells co-expressing these

receptors.

To further elucidate which receptor(s) mediate

CXCL12-driven ERK phosphorylation, we performed

CXCR4 or CXCR7 knockdown in PANC-1 cells (Figure

3b). Following knockdown, cells were exposed to

CXCL12 (Figure 3c). CXCR7 knockdown was required

to attenuate CXCL12-driven ERK phosphorylation. Our

results suggest that CXCR7-mediated signaling can reg-

ulate CXCL12-driven ERK phosphorylation in cells co-

expressing CXCR4/CXCR7.

CXCR4 signaling is required for the CXCL12-induced

increase in K-ras activity

We next sought to determine whether CXCR4 or

CXCR7 signaling targeted K-Ras, a known regulator of
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the MAPK pathway. Utilizing a Raf pull-down assay, we

observed increased K-Ras activity in PANC-1 cells fol-

lowing exposure to CXCL12 but not to the CXCR7

ligand CXCL11 (Figure 4a). To further validate CXCR4

as the receptor involved in the CXCL12-driven change

in K-Ras activity, we again knocked down CXCR4 and

CXCR7 expression in the cells prior to CXCL12 stimu-

lation. We observed that CXCR4 knockdown, but not

CXCR7, blocked CXCL12-induced changes in K-Ras

activity (Figrue 4b). This supports our finding in Figure

4a that stimulating CXCR7 alone does not activate K-

ras activity. We concluded that CXCL12-driven

increases in K-Ras activity are mediated by CXCR4.

To directly assess the role of K-Ras in CXCL12 signal-

ing, we knocked down KRAS using siRNA and then

exposed pancreatic cancer cell lines to CXCL12. We

observed that KRAS knockdown greatly reduced

CXCL12-driven ERK1/2 phosphorylation (Figure 5).

These results support the involvement of K-Ras in

CXCL12-driven ERK phosphorylation in pancreatic can-

cer cells. Since the reduction of ERK1/2 phosphorylation

after KRAS knockdown could be attributed to oncogene

addiction due to a dysregulated signaling pathway [29],

we tested for this condition by exposing cells to EGF

after KRAS knockdown and found that our results are

unique to CXCL12 when compared to EGF and suggest

the absence of an oncogene addiction phenotype in cells

harboring mutant KRAS (Figure 5).

Signaling through CXCR4 and CXCR7 is b-arrestin-2-

dependent

We sought to determine whether b-arrestin-2 is

required for CXCR4 and CXCR7 signaling to the MAPK

pathway. We treated cells with both CXCL12 and

Figure 1 CXCR4 and CXCR7 expression in human formalin-fixed paraffin-embedded pancreatic cancer specimens. Pancreatic cancer

tissue was obtained from patients who had undergone resection for pancreatic adenocarcinoma with Institutional Review Board approval. Tissue

blocks were sectioned (5 μm) and deparaffinized with xylene. Antigen retrieval was performed and one section was incubated with the anti-

CXCR4 antibody and the next consecutive section from the same tissue block was incubated with the anti-CXCR7 antibody.
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CXCL11. Down-regulation of b-arrestin-2 expression

using siRNA attenuated CXCL12 and CXCL11-driven

ERK phosphorylation indicating that b-arrestin-2 med-

iates CXCR4 and CXCR7 signaling to the MAPK path-

way (Figure 6).

CXCL12 drives an increase in cell proliferation

To determine if CXCL12 exposure results in changes in

pancreatic cancer cell proliferation, we exposed cells to

CXCL12 and CXCL11 for 72 h. We observed increased

cell proliferation. To ascertain which receptor(s)

mediated this increase in cell proliferation, we per-

formed CXCR4 and CXCR7 knockdown and once again

examined proliferation after 72 h. In the PANC-1 cell

line CXCR4 knockdown did not block CXCL12-

mediated changes in proliferation, but CXCR7 knock-

down did (Figrue 7). Opposite results were obtained for

the FG cell line. These results indicate that both CXCR4

and CXCR7 can mediate CXCL12-driven proliferation.

The mechanism by which this occurs still needs to be

elucidated.

Figure 2 CXCR4 and CXCR7 expression in pancreatic cancer

cell lines. Immunoblotting was performed for CXCR4 and CXCR7

protein expression in established human pancreatic cancer cell lines.

HT29 colon cancer cells were used as a negative control for CXCR7

expression. GAPDH was used as a loading control.

Figure 3 The effect of CXCL12 exposure on MAPK signaling. a) Pancreatic cancer cells PANC-1 and MiaPaCa2 were serum-starved and then

exposed to CXCL12 (100 ng/ml) and CXCL11 (200 ng/ml) over a range of time periods (5 min to 1 h). Immunoblotting was performed for

phosphorylated ERK1/2. Total ERK1/2 and GAPDH were used as loading controls. b) PANC-1 cells were transfected with control, CXCR4, or CXCR7

siRNA (100 nM) using RNAiMAX (10 μl). The immunoblots verify down-regulation of CXCR4 and CXCR7 expression. c) Following transfection, the

cells were serum-starved and then exposed to CXCL12 (100 ng/ml). Immunoblotting was performed for phospho-ERK1/2. Total ERK1/2 and

GAPDH were used as loading controls.
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Discussion

Chemokines regulate the chemotactic responses of cells

that are essential for organogenesis and immunity

through the orchestration of cell movement from one

location to another [30-32]. Cancer cells have misappro-

priated these regulatory mechanisms to stimulate their

own growth, invasion, and metastasis. Numerous studies

now implicate chemokines and their corresponding

receptors in the invasive phenotype of many cancers [1].

In particular, the CXCL12-CXCR4 axis has been well

studied in gastrointestinal malignancies, but recent

reports suggest that downstream effects once attributed

to CXCR4 may also be secondary to CXCR7, an alter-

nate or second receptor for CXCL12. As a result, we

examined CXCL12 activity in pancreatic cancer cell

lines. Among several novel discoveries in this investiga-

tion, we identified high frequency of CXCR4/CXCR7

co-expression in human pancreatic cancer tissues and

cell lines.

Chemokine CXCL12 is characteristically expressed in

select tissues,[2] but may also be expressed via an autocrine

feedback loop mechanism in pancreatic cancer cells [7]. As

such, the resources for CXCL12 to activate CXCR4 or

CXCR7-mediated signaling pathways are present. Since

our studies target pancreatic cancer, we examined CXCL12

signaling within the framework of K-Ras. The gene encod-

ing KRAS is frequently mutated in patients with pancreatic

Figure 4 K-Ras activity in response to CXCL12 exposure. a)

Pancreatic cancer cells were serum-starved and then exposed to

CXCL12 (100 ng/ml) and CXCL11 (200 ng/ml) for 15 min. Whole cell

lysates were assessed for K-Ras activity using a Raf pull-down assay.

b) Cells were transfected with control, CXCR4, or CXCR7 siRNA (100

nM). Following serum-starvation cells were treated with CXCL12

(100 ng/ml) for 15 min. K-Ras activity was normalized to each

untreated baseline level; and relative increases are depicted. The

mean absorbance ± one SD was plotted for each treatment group.

* designates p < 0.05.

Figure 5 The effects of KRAS knockdown on ERK

phosphorylation following CXCL12 treatment. Pancreatic cancer

cells, FG and PANC-1 (left and right immunoblots respectively) were

transfected with control or KRAS siRNA (100 nM). Cells were serum-

starved and then exposed to CXCL12 (100 ng/ml) or EGF (100 ng/

ml) for 15 min. Immunoblotting was performed for K-Ras and

phospho-ERK1/2. Total ERK1/2 and GAPDH were used as loading

controls.

Figure 6 b-arrestin-2’s role in CXCR4 and CXCR7-driven ERK

phosphorylation. PANC-1 cells were transfected with control or b-

arrestin-2 siRNA (100 nM) using RNAiMAX (10 μl). Cells were serum-

starved and then exposed to CXCL12 (100 ng/ml) or CXCL11 (200

ng/ml) for 15 min. The immunoblot shows b-arrestin-2 and

phospho-ERK1/2 expression with total ERK1/2 and GAPDH serving

as loading controls.
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cancer which results in a gain-of-function that may contri-

bute to the pathogenesis and progression of this cancer

[33,34]. Here, we made several novel observations regard-

ing K-Ras. First, we discovered that pancreatic cancer cells

co-expressing CXCR4/CXCR7 had increased levels of ERK

phosphorylation and K-Ras activity when exposed to

CXCL12. These CXCL12-induced increases in K-Ras activ-

ity were not observed with other ligands in endometrial

and pancreatic cancer cells harboring mutant KRAS

[35,36]. Our results, therefore, suggest that CXCL12 may

hyperactivate K-Ras activity levels even though there is

baseline mutant-derived K-Ras activity. Second, we

observed that CXCR4, rather than CXCR7, was the recep-

tor that regulated this response. GPCRs can signal through

a canonical or non-canonical pathway, activation of K-Ras

may occur via a CXCR4-mediated activation of the canoni-

cal GPCR pathway [37-39]. CXCR7 on the other hand sig-

nals through the non-canonical pathway [39], which

explains why CXCR7 activation leads to ERK1/2 phosphor-

ylation but not an increase in K-Ras activity. Β-arrestin-2 is

an important member of either pathway, and we show that

its knockdown blocks ERK phosphorylation. Third, we

determined that CXCL12-driven increases in cancer cell

proliferation can occur through either receptor and hence

either signaling pathway.

Specific inhibitors to CXCR4 and CXCR7 are cur-

rently unavailable for clinical use. AMD3100 was

believed to selectively bind and antagonize CXCR4

activity [40,41]. Derivatives of AMD3100 are also under

investigation for their effects on cancer cells [42]. A

recent study has demonstrated that AMD3100 specifi-

cally binds to and activates CXCR7 [41]. Therefore, in

contrast to its antagonism of the CXCL12-CXCR4 inter-

action, AMD3100 positively modulates CXCL12 effects

and binding to CXCR7.

Conclusion

In summary, we report that CXCR4 and CXCR7 are co-

expressed with high frequency in human pancreatic can-

cer specimens and cell lines. CXCR4 and CXCR7 signal-

ing is b-arrestin-2-dependent and controls CXCL12

signals to the MAPK pathway. CXCL12 activates both

canonical and non-canonical GPCR pathways in pan-

creatic cancer cell lines. This has functional significance

in that we show signaling through either pathway leads

to an increase in cell proliferation upon exposure to

CXCL12. Hence our study suggests that efforts to thera-

peutically target CXCL12 signaling in pancreatic cancer

should be focused at the level of the ligand to account

for both CXCR4 and CXCR7 activity.
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