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ABSTRACT
ABSTRACTABSTRACTABSTRACTABSTRACT
Chemokines are known to function as regulatory molecules in leukocyte maturation, traffic, homing of 

lymphocytes and in the development of lymphoid tissues. Besides these functions in the immune system, 

certain chemokines and their receptors are involved in HIV pathogenesis. In order to infect a target cell, the HIV 

envelope glycoprotein gp120 has to interact with the cellular receptor CD-4 and co-receptor, CC or CXC 

chemokine receptors. Genetic findings have yielded major insights into the in vivo roles of individual co-receptors 

and their ligands in providing resistance to HIV infection. Mutations in chemokine receptor genes are associated 

with protection against HIV infections and also involved in delayed progression to AIDS in infected individuals. 

Blocking of chemokine receptors interrupts HIV infection in vitro and this offers new options for therapeutic 

strategies. Approaches have been made to study the CCR-5 inhibitors as antiviral therapies and possibly as 

components of a topical microbicide to prevent HIV-1 sexual transmission. Immune strategies aimed at 

generating anti-CCR-5 antibodies at the level of the genital mucosa might be feasible and represent a strategy 

to induce mucosal HIV- protective immunity. It also remains to be seen how these types of agents will act in 

synergy with existing HIV-1 targeted anti viral, or those currently in developments. Beyond providing new 

perspectives in fundamental aspects of the HIV-1 transmission and pathogenesis, chemokines and their receptors 

suggest new areas for developing novel therapeutic and preventive strategies against HIV infections. Studies 

in this review were identified through a search for relevant literature in the pubmed database of the national 

library of medicine. In this review, some developments in chemokine research with particular focus on their 

roles in HIV pathogenesis, resistance and therapeutic applications have been discussed. 
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C hemokines are a superfamily of secreted proteins that 
function in leukocyte trafficking, recruiting and 

recirculation. They also play a critical role in many 
pathophysiological processes such as allergic responses, 
infectious and autoimmune diseases, angiogenesis, 
inflammation, tumor growth and hematopoietic development. 
They are secreted by a variety of cells in the immune system. 
All chemokines signal through seven transmembrane domain 
G-protein coupled receptors and many of these receptors 
exhibit promiscuous binding properties whereby several 
different chemokines can signal through the same receptor. 
To date, more than 40 distinct chemokines have been well 
characterized, some of which are listed in Table 1. Discoveries 
over the past few years have defined a close relationship 
between chemokines and HIV infection. Apart from their well 
established role in blocking viral entry by binding to their 
receptors, chemokines have additional roles in HIV 
pathogenesis. For several years, it has been known that CD 
8+ T cells secrete factors that suppress HIV-1 replication in 
CD4 + T cells.[1,2] The nature of these factors remained 
unknown until Cocchi et al in 1995 showed that the β 

chemokines MIP-lα (macrophage inflammatory protein 1α), 
MIP-Iβ (macrophage inflammatory protein 1β) and RANTES 
(regulated on activation, normal T expressed and secreted) 
contributed to the CD 8+ cell suppressive effect. [3]  A 
breakthrough in our understanding of HIV pathogenesis was 
the identification of a chemokine receptor like molecule in 
1996, called LESTR, subsequently designated as CXCR-4, as 
a necessary co-receptor for X 4 variants of HIV entry into 
cells.[4,5] In the absence of the second receptor, HIV-1 can bind 
to its target cells (via CD-4), but the fusion process is not 
initiated. The identification of the beta chemokine receptor 
(CC) CKR-5 (later renamed as CCR-5) as the primary co­
receptor for macrophage-tropic, non-syncytium inducing (NSI) 
strains of HIV-1 was also reported in 1996, almost 
simultaneously by five independent groups of researchers.[6-10] 

Chemokine receptors as co-receptors for HIV cell entry 
HIV envelope proteins gp 120 and gp 41 mediate binding of 
virus to the host cell surface through high affinity interaction 
with CD-4, the primary virus receptor. Subsequent interaction 
with the appropriate chemokine receptor CCR-5 or CXCR-4 
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Table 1: Chemokines and their receptors 

Chemokine family Chemokines Chemokine receptor Cell type 

CXC(α) IL-8, GCP-2 CXCR 1 N, NK 

Chemokines IL-8, GCP-2, GRO-α/β/γ, CXCR 2 N, NK 

ENA-78, NAP-2, LIX 

IP-10, MIG, I-TAC CXCR 3 act T, NK 

SDF-1 α/β CXCR 4 T, M 

BCL CXCR 5 B 

CXCL 16 (Sex CKine) CXCR 6 Th1 cells, 

CC(β)  MIP-1α, MCP-4, MCP-3 CCR 1 M, act T, N, Ba, E, D 

Chemokines RANTES, MIP-5, MPIF-1, HCC-1 CCR 2 M, act T, Ba, D, NK 

MCP-1, MCP-2, MCP-3, MCP-4, MCP-5 

Eotaxin, Eotaxin-2, Eotaxin-3, CCR 3 act T, E, Ba, D 

MCP-2, MCP-3, MCP-4, 

RANTES, MIP-5 

TARC, MDC, RANTES, MIP-1α, MCP-1 CCR 4 act T, Ba, D 

RANTES, MIP-1α, MIP-1β, MCP-2 CCR 5 M, act T, D 

Exodus/LARC, MIP-3β CCR 6 act T, B, imm D 

SLC/6Ckine, MIP-3β CCR 7 T- and B-cell lines, D 

I-309, TARC, MIP-3β CCR 8 Act T, NK 

TECK, MCP-1, MCP-2, MCP-4, CCR 9 D, thy 

MIP-1β, MIP-1α, RANTES, Eotaxin 

C-TACK, MCP-1 CCR 10 Skin T cells 

MCP-1, ELC, SLC, TECK CCR 11 Various organs 

CX3C Fracktalkine CX3CR 1 M, act T, NK 

C chemokine Lymphotactin/SCM1α XCR 1 act T, NK 

Abbreviations: BLC, B lymphocyte chemokine; C-TACK, cutaneous T-cell-activating chemokine; ELC (Ebl-1), EBL-1-ligand chemokine; ENA-78, 

epithelial-cell-derived neutrophil-activating protein 78; GCP-2, granulocyte chemotactic protein 2; GRO, growth-related oncogene; I-309, (a 

nameless human chemokine), IL-8, interleukin 8; ITAC, interferon-inducible T-cell alpha chemoattractant; LIX, lipopolysaccharide-induced CXC 

chemokine; LARC, liver- and activation-regulated chemokine; MCP-1, monocyte chemoattractant protein 1, MDC, macrophage-derived chemokine, 

MIG, monokine induced by interferon g, MIP, macrophage inflammatory protein, MPIF-1, myeloid progenitor inhibitory factor 1; NAP-2, 

neutrophil-activating peptide 2; RANTES, ‘regulated on activation, normal T-cell expressed and secreted’; SDF-1, stromal-cell-derived factor 1; 

SLC, secondary lymphoid tissue chemokine; TARC, thymus- and activation-regulated chemokine; TECK, thymus-expressed chemokine; act T, 

activated T cell; B, B cell; Ba, basophil; D, dendritic cell; E, eosinophil; imm D, immature dendritic cell; M, monocyte; N, neutrophil; NK, natural 

killer cell; T, T cell, Th1, T helper 1 cell; Thy, thymocyte 

Adapted from: Lucas ad and greaves Dr. Atherosclerosis: Role of chemokines and macrophages. Exp Rev. Mol. Med 2001; 5 November: http:// 

www.expertreviews.org/01003696h.htm. 

triggers the final conformational changes in env, resulting in 
fusion between the viral and cellular membrane.[11-13] The 
observation that HIV-1 isolates differ in their ability to use 
two major co-receptors (CCR-5 and CXCR-4) has provided a 
key to understand the physiological basis of the biological 
variability of HIV-1. Different HIV-1 variants use either CCR­
5 or CXCR-4 or both. According to the terminology based on 
co-receptor usage, CXCR-4 using viruses are termed X 4 and 
CCR5-using viruses, R 5. Viruses that were previously defined 
as SI which use both CXCR-4 and CCR-5 receptors are termed 
X 4 R 5 (R 3) viruses.[14,15] Using transfected cell lines other 
chemokine receptors such as CCR-3, CCR-2, CCR-8, CCR-9, 
STRL-33, Gpr 15, Gpr 1, APJ, Chem R 23 and CX 3 CR1 were 
identified and shown to be used by certain HIV strains for cell 
entry.[9,10,16-18] Recently a promiscuous CC chemokine receptor, 
D6, has been found that can function as a co-receptor for 
various primary dual-tropic isolates of HIV-1 and HIV-2.[19] 

Despite this broad spectrum of potentially available co­
receptors, CCR-5 and CXCR-4 appear to be the most relevant 
co-receptors for HIV-1 in vivo. The host’s natural ligands for 
these co-receptors are relevant because they might interfere 
with HIV entry into target cells by interfering with viral binding 
to the receptor or by down regulating the receptor. CCR-5 binds 
to RANTES, MIP-1α and MIP-1β, which are the members of 

the β chemokine family whereas CXCR4 binds to a member 
of α chemokine family, stromal cell derived factor 1 (SDF-1). 
CCR2 binds to monocyte chemotactic protein-1 (MCP-1) 
through MCP-5 and CCR-3 binds to MCP-3, MCP-4 and 
eotaxin1 and 2. CCR-5 using chemokine can block R 5 strains 
of HIV, whereas SDF-1 blocks X 4 strains. CCR 5 and CXCR­
4 receptor has been expressed on a variety of cells and tissues. 
Chemokine receptor expression in a specific cellular type might 
be constitutive or inducible.[20] 

Chemokines and HIV pathogenesis 
Immunologic or genetic alterations that affect chemokine levels 
might have an impact on the susceptibility to HIV infection 
or the rate of progression once the infection is established. 
Inhibition of HIV entry by chemokines depends on two possible 
mechanisms: a steric effect that consists of the competitive 
blockade of viral entry by direct union of ligand to its receptor, 
or through the internalization of the receptor after chemokine 
binding. Alternatively, chemokine receptor dimerization 
mediated through binding of chemokine could account for 
inhibition of HIV entry and virus replication.[21-23] An in vitro 
study by the Multicenter AIDS cohort study (MACS) showed 
that AIDS free status and higher CD 4 counts correlate with 
higher CCR-5 ligands release from peripheral blood 
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mononuclear cells after activation in vitro by HIV antigen.[24] 

In addition, cells from individuals who are exposed but 
seronegative to HIV infection release significantly higher levels 
of chemokines than seronegative controls and HIV positive 
subjects, even in the absence of an in vitro stimulus.[24] These 
studies suggest that chemokine release is a very early response 
to the exposure to HIV. It is also reported that high levels of 
CCR-5 using chemokines are associated with slower disease 
progression. [25] An in vitro study which assessed the 
susceptibility to HIV infection of CD-4 + cells from HEPS 
(highly exposed persistently seronegative) individuals in a 
discordant cohort showed that CD-4 + lymphocytes from 
HEPS individuals were less susceptible to HIV infection by R 
5 strains of HIV. In addition, CD-4 + lymphocytes of these 
HEPS subjects produced significantly higher levels of 
RANTES, MIP-1α and MIP-1β upon stimulation with 
phytohemagglutinin (PHA) and enhanced chemokine 
production was noticed against stimulation with HIV gag 
peptide.[26] Other studies have also reported increased β 
chemokine levels from serum samples in a group of Chinese 
HEPS individuals and enhanced production of MIP-1β by CD­
8 + T cells from HEPS subjects in a discordant couple 
cohort.[27,28] Other studies have shown that CD-8 + T cells 
from asymptomatic individuals produce higher levels of MIP­
1α and MIP-1β, but not RANTES, than CD-8 T cells from 
healthy donors or patients with rapid progression.[29-33] 

Some other studies have found no association between 
chemokine production and HIV resistance in HEPS individuals 
and also between long term nonprogressors and rapid 
progressors.[34-37] Others have even suggested that RANTES, 
MIP-1α and MIP-1β may upregulate replication of HIV in 
macrophages and monocytes by recruiting activated target 
cells.[38-40] Other chemokines that affect HIV replication, 
although they are not involved in viral entry, are interferon-γ­
inducible protein 10 (IP-10/CXCL-10) and monocyte 
chemotactic protein (MCP)-1.[41-43] These chemokines have 
been detected in the cerebrospinal fluid of HIV infected 
individuals. Another chemokine that may affect HIV infection 
is IL-8 (CXCL-8). Increased levels of circulating IL-8 have been 
detected in HIV infected individuals.[44] Upregulation of 
chemokine expression by cells of the immune system would 
have local and systemic effects that contribute significantly to 
the pathogenesis of HIV infection.[45,46] The exact role of 
chemokines in HIV-1 pathogenesis remains obscure, probably 
due to the fact that multiple chemokines may have different 
effects on viral replication and pathogenesis, or their effect 
might be compromised by viral factors. 

CCR-5 gene mutations 
The observation that chemokine receptors are used by HIV as 
co-receptors for cellular entry led to the discovery of genetic 
host factors that can affect susceptibility to infection with HIV 
or the rate of progression to disease once infection is 
established. In early HIV infection, a vast majority of HIV 
isolates use the CC chemokine receptor, referred to as CCR-5, 
which in blood is expressed on a variety of cells including CD­
4, CD-8, memory and activated T cells. Individuals 
homozygous for a 32 base pair deletion in their CCR-5 gene 

(referred to as CCR5-∆32), are almost completely resistant to 
HIV infection.[47] CCR5-∆32 was the best characterized genetic 
trait, identified in 1996.[50,51] The mutation is a 32 base pair 
deletion corresponding to the second extracellular loop of the 
7-transmembrane G-coupled protein receptor in the CCR-5 
gene, which causes a frame shift, leading to a premature 
termination of translation and the resulted protein encoded 
by this mutant lacks three transmembrane segment of the 
receptor. Such a truncated protein is nonfunctional.[47] In 
epidemiological studies, the allelic frequency of the CCR-5 
gene deletion was 10-20% among caucasians, particularly 
amongst those of Northern European descent with 1% 
homozygosity. This mutation is extremely rare in African and 
Asian population.[48,51] Individuals homozygous for the CCR5­
∆-32 allele do not express any of the CCR-5 receptor on their 
cell surfaces and in turn, they are largely resistant to infection 
by HIV-1. Different studies have shown that CCR-5-∆-32 
mutation is extremely protective against HIV-1 infection, 
although they can still be infected with X 4 strains of HIV, 
which use the CXCR-4 co-receptor for cell entry.[48-51] However, 
this protection is not complete, as a few individuals 
homozygous for this deletion were infected and the virus that 
was isolated from these individuals was X 4 type.[52,53] Some 
other studies have reported the presence of dual tropic R5X4 
HIV strains in two individuals homozygous for CCR-5-∆-32 
allele.[54,55] Studies of CCR-5-∆-32 mutation in exposed but 
uninfected individuals have revealed that a small proportion 
of them were homozygous for this mutation.[47,56,57,59] Some 
studies have found that CCR-5-∆-32 heterozygosity was 
associated with delayed progression to AIDS in infected 
individuals and also reported that frequency of heterozygosity 
was significantly greater in long term non-progressors than in 
progressors and rapid progressors.[47-51,57-61] The mechanism of 
protection is not clear and it is believed that CCR-5 expression 
may be altered in these individuals. In our own cohort of such 
individuals, we were unable to detect any deletion. 

A point mutation in the coding region of CCR-5 gene 
conferring in vitro and in vivo resistance to R 5 virus has been 
identified.[62] The mutation is characterized by an open reading 
frame single T to A base pair transversion at nucleotide 303 
which indicates a cysteine to stop codon change in the first 
extracellular loop of the chemokine receptor protein at amino 
acid 101.[63,64] This mutation when found in the compound 
heterozygous state with CCR5-∆-32 was associated with 
increased protection. However, this allele is very rare with an 
allelic frequency less than 1 percent.[64] 

CCR-5 promoter and regulatory gene polymorphisms 
Several genetic polymorphisms have been identified within the 
CCR5 regulatory or promoter region that might affect HIV 
transmission or disease progression, possibly through its effect 
upon levels of CCR5 expression.[58,64-67] 

CCR-5 59029 G: This is an A/G polymorphism at base pair 
59029 in the CCR-5 promoter. HIV infected persons who are 
homozygous for allele 59029 G within the CCR-5 promoter 
regulatory region progress to AIDS more slowly than those who 
are homozygous for allele 59029 A.[65] Another study shows an 

� 212 J Postgrad Med September 2006 Vol 52 Issue 3 



CMYK213

Suresh, et al.: Chemokines in HIV infection � 

association between CCR-5 promoter polymorphisms and 
long-term asymptomatic HIV-1 infection, with individuals 
lacking the CCR-5 59029A/CCR5 59353C homozygous 
genotype likely to progress more slowly towards AIDS and/or 
death.[66] Yet another point mutation at position 59402 results 
in an A/G substitution and homozygosity of this allele is 
associated with reduced perinatal transmission. This mutation 
affects the CCR-5 expression on CD 4 + T cells.[67] Other 
promoter haplotypes may lead to more rapid disease 
progression.[58] Homozygosity of another polymorphism known 
as CCR-5 59356T has been strongly associated with increased 
rate of perinatal transmission and this polymorphism occurs 
more frequently in black persons than white.[67] 

CCR-2b 64I mutation 
The chemokine receptor CCR-2b is identified as a minor HIV
1 co-receptor.[59,62] The mutation within the CCR-2 gene is a 
conservative valine to isoleucine at position 64 in the first 
transmembrane domain of the CCR-2 receptor, which is 
present at an allelic frequency of 10-25% in different 
populations.[59] The presence of this mutation in either 
heterozygote or homozygote has been associated with delayed 
progression to AIDS and death in most, although not all, 
cohorts. In contrast with CCR-5-∆-32 mutation, it provides 
protection against HIV disease progression in races other than 
the whites.[57,68,69-71] Increased frequency of CCR-2-64I 
homozygosity was observed in exposed uninfected individuals 
compared with HIV positive and HIV negative controls 
suggesting an association between CCR-2 64I homozygosity 
and resistance to heterosexual transmission.[18] However the 
mechanism of protection is not clear, since the CCR-2 is only 
rarely used as a co-receptor by HIV. It has been suggested that 
CCR-2 64I mutation tracks with another mutation through 
linkage disequilibrium, particularly in the regulatory or 
promoter region of CCR-5.[58,66,68] A polymorphism within the 
regulatory region of CCR-5 59653T is in linkage disequilibrium 
with the 64I mutation, but the functional significance of this 
finding is unclear.[68] 

SDF-1 3’ α mutation 
Another genetic trait that might affect progression to AIDS 
involves stromal cell derived factor-1 (SDF-1), the chief ligand 
of CXCR4. SDF-1 blocks infection with X-4 variant of HIV
1.[72,73] The mutation SDF-1 3’α involves a G/A transition at 
position 801 of SDF-1 3’ α untranslated region (UTR) and is 
associated with protection against HIV.[74] This mutation is 
common among all geographical regions of the world. Mutation 
may upregulate the synthesis of SDF-1, thus competitively 
inhibiting X 4 HIV from binding. Persons who are homozygous 
for this mutation have been shown to experience delayed 
progression to AIDS but do not exhibit decreased susceptibility 
to infection with HIV.[58,74,75] In contrast, other studies have 
shown that SDF-1 3’ α homozygosity was associated with 
accelerated disease progression[66,76,77] and increased viral 
replication[78] or no effect on disease progression.[60] 

Other mutations 
Two single nucleotide polymorphism (SNP) sites, a cytosine 
to guanine transversion polymorphism at position - 28 

(RANTES 28 C/G) and a guanine to adenine transition 
polymorphism at position - 403 (RANTES 403 G/A), in the 
promoter region of RANTES have been identified. RANTES 
403 A and 28 G promoter polymorphism is associated with 
increased RANTES transcription and delayed progression to 
AIDS in HIV infected individuals.[79,80] No mutation has been 
described in the CXCR-4 region that might influence HIV 
infection. 

Anti HIV-1 therapy based on chemokines and their receptors 
The discovery of chemokine receptors as co-receptors for HIV­
1 has opened the door for a number of novel antiviral 
approaches. The need for an improvement of current drug 
combination regimens, based on inhibitors of the viral reverse 
transcriptase and protease, is underscored by a series of 

- important drawbacks, including the rapid rebound after 
withdrawal, the increasing emergence and transmission of 
multidrug resistance, side effects, difficulties in schedule 
compliance and, most importantly, the lack of virus eradication 
even after long term effective treatment.[81] While all the 
currently licensed antiviral drugs except peptide T 20 block 
HIV after its penetration into the target cell, co-receptor 
inhibitors target the early interactions between virus and cell 
membrane, thereby blocking HIV outside its target cells. 
However, major hurdles in the way towards developing safe 
and effective co-receptor inhibitors is the risk of interfering 
with the physiology of the chemokine system, causing 
potentially harmful side effects.[81] Therapeutic agents that 
interfere with chemokine co-receptors might also block 
membrane fusion and viral entry. Agents that block or prevent 
CCR-5 might prove useful and safe in the prevention of and 
treatment for HIV infection. The known inhibitory effects of 
CCR-5 ligands, RANTES, MIP-1a and MIP-1b, have led to 
the consideration of their use as potential therapeutic agents 
to limit HIV entry. But this approach has its own disadvantages 
as this might recruit HIV susceptible cells through chemotaxis, 
increase X 4 virus replication and even increase infectivity of R 
5 viruses.[82,83] 

Chemokine receptor antagonists 
Another therapeutic approach is the usage of chemokine 
receptor antagonists. In this regard, a number of studies have 

- demonstrated that N-terminal modification and truncation of 
chemokines can give rise to specific receptor antagonists. This 
approach has been used to create potential chemokine 
antagonists of HIV-1 co-receptors. The advantage of this 
approach is that these molecules can block HIV without 
activating chemotaxis or proinflammatory effect and without 
increasing the level of X 4 HIV. 

CCR-5 inhibitors 
Various CCR-5 ligands with antiviral properties have been 
described, including modified chemokines and monoclonal 
antibodies and more importantly small-molecule inhibitors 
with potential for oral administration Example for such 
modified or truncated CCR-5 antagonists are 
Aminooxypentane (AOP), N-nonanoyl (NNY)-RANTES, N (n­
nonanoyl)-des-Ser (PSC) RANTES 9-68 RANTES and met 
RANTES. These compounds induce CCR-5 internalization.[84­
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87] Another study has generated a panel of recombinant 
RANTES analogues bearing natural amino acid substitution 
at the amino-terminus and two of them, L-RANTES and 
C1.C5-RANTES have anti HIV potency.[81] Another study 
reported a series of 1,3,4-trisubstituted pyrrolidine CCR-5 
receptor antagonists containing a variety of fused heterocycles 
at the 4-position of the piperidine side chain with potent anti-
HIV activity[89] A number of other small molecular weight 
compound like Tak 779, [90] Tak 220,[91] the 
spirodiketopeperazine derivative E-913,[92] monoclonal 
antibody PRO-140,[93] the small molecular weight compounds 
SHC-C and SHC-D[94] are under advanced clinical trials. 

Antiviral activity of anti CCR 5 monoclonal antibody PRO 
140 was investigated.[93] In this study, PRO 140 is tested against 
a panel of primary HIV-1 isolates and the result showed that, 
low nanomolar concentrations of PRO 140 inhibited infection 
of primary peripheral blood mononuclear cells (PBMC) by all 
CCR-5 using (R 5) viruses tested.[93] 

CXCR-4 inhibitors 
In addition to modified chemokines, a peptide inhibitor of 
CXCR4 known as T 22 was identified. It is able to inhibit 
specifically the ability of T cell tropic HIV-1 which uses CXCR­
4 co-receptor but not R5 HIV-1. In addition, T 22 also inhibits 
Ca2+ mobilization induced by SDF-1 stimulation through 
CXCR-4. Another report, describes an inhibitor of CXCR-4 
known as Allelix (ALX)-40-4C. This compound is a highly 
cationic oligopeptide containing nine arginine residues. ALX 
40-4C inhibits CXCR-4 dependent HIV-1 mediated membrane 
fusion and viral entry by T and dual tropic HIV-1 strains, but 
does not inhibit HIV-1 fusion mediated by CCR-5. In addition, 
ALX- 40-4C blocks SDF-1 mediated activation of CXCR-4 and 
binding of the CXCR-4 specific monoclonal antibodies12 G 5 
to cells expressing CXCR-4.[95,96] Several other modified ligands 
of CXCR-4 receptor that are under investigation include 
peptoids CGP-64222, arginine conjugate such as R3G and 
NeoR, the bycyclams and the recently reported AMD070 and 
KRH 1636.[97-104] The bycyclam AMD-3100 blocks HIV-1 entry 
through CXCR-4 and inhibits binding of SDF-1 and 12G5 to 
CXCR-4 but does not itself trigger cell signaling.[101] AMD­
3100 does not inhibit the binding of CC chemokine ligands to 
CCR-1, CCR-2b or CCR-5. 

Another strategy to prevent HIV-1 infection is to reduce the 
surface expression of level of HIV-1 co-receptors. This principle 
has been used by some studies to develop a device to trap the 
HIV-1 co-receptors CCR-5 and CXCR-4 in the endoplasmic 
reticulum (ER), thus preventing their transport to cell 
surface.[105] Other areas of investigations are the administration 
of CD-4 cells with decreased CCR-5 expression, gene therapy 
to prevent receptor expression through antibodies or altered 
ligands and development of pseudo viruses or vectors that 
express CD-4 and chemokine receptors and thus could target 
HIV infected cells to deliver antiviral treatment or kill HIV 
infected cells. “Short interfering RNA” (siRNA) represent a 
new molecular tool that is able to selectively inactivate target 
genes.[106] Double stranded RNA is split by the enzyme dicer-1 
into short pieces. This oligomer may complimentarily bind to 
longer RNA sequences that are subsequently degraded. The 

use of siRNA against CCR-5 can prevent the expression of 
CCR-5 in vitro.[106-108] Another approach based on a 
hammerhead ribozyme and an RNA cleaving DNA enzyme was 
used against CCR-5 and shown that when these ribozyme 
under a strong eukaryotic promoter are introduced in to a 
mammalian cell, could interfere the co-receptor function.[108} 

The in vivo effectiveness of these molecular tools needs to be 
evaluated extensively before concluding its role in interfering 
co-receptor functions. 

Chemokine as topical microbicides 
Approaches using chemokine analog as a topical microbicide 
at the site of viral entry have been investigated in animal 
models. A study reported that topical application of high doses 
of PSC-RANTES, an amino terminus–modified analog of the 
chemokine RANTES, provided potent protection against 
intravaginal challenge in rhesus macaques without detectable 
toxicity or histological changes.[109,110] 

Few studies using CMPD167, a small molecule that binds to 
CCR-5 to inhibit gp 120 association, were found to be 
protective against vaginal transmission of R 5 virus in rhesus 
macaque. These findings support the development of small 
molecule CCR-5 inhibitors as antiviral therapies and possibly 
as components of a topical microbicide to prevent HIV-1 sexual 
transmission.[111,112] 

Issues associated with the usage of chemokine and its 
antagonists in HIV therapy 
Blocking cellular receptors also presents challenges due to 
potential toxic effects from interference with their normal 
function in lymphocyte development and trafficking and 
inflammation. The following mechanisms of escape from co­
receptor inhibitors are possible: (1) the escape mutant may 
continue to use the same co-receptor in an inhibitor-insensitive 
manner; (2) co-receptor switching may occur, so that R 5 viruses 
become able to use CXCR-4, or vice versa. CXCR-4 receptor 
and its ligand SDF-1 are involved in various physiologic 
processes like B cell lymphopoesis, cardiac and cerebellar 
development in embryogenesis, bone marrow myelopoisis and 
vascularization of the gastrointestinal tract.[113-115] Therefore, 
the clinical application of CXCR-4 blockers may be limited. A 
further challenge for agents targeting viral entry is the ability 
of HIV to become resistant to the selective pressure exerted by 
the drug. Even when given in the context of other antiviral 
agents, a low level of viral replication may suffice to select viral 
variants that use alternative co-receptors or entry mechanisms. 
This possibility of viral evolution has to be considered before 
using receptor antagonists in HIV therapy.[116] It is reported 
that acquisition of CXCR-4 use is not the dominant in vitro 
escape pathway for a small molecule, CCR-5 entry inhibitor. 
Instead, HIV-1 acquires the ability to use CCR-5 despite the 
inhibitor, first by requiring lower levels of CCR-5 for entry and 
then probably by using the drug-bound form of thereceptor.[117] 

Another study has suggested that co-receptor expression levels 
also influenced sensitivity to fusion inhibitors and fusion 
kinetics. Thus, receptor expression levels and env/receptor 
affinity are cellular and viral determinants, respectively, that 
impact viral sensitivity to different classes of entry inhibitors. 
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Therefore, mutations that result in drug resistance may do so 
directly by altering inhibitor binding sites or indirectly by 
affecting the rate of membrane fusion. Individuals who express 
lower levels of CCR-5, such as CCR-5-32 heterozygotes, may 
consequently respond more favorably entry inhibitors and 
viruses that exhibit enhanced affinity for co-receptor may 
respond less well.[118] Moreover, entry inhibitors must overcome 
the obstacles such as their pharmacological toxic effects, 
bioavailability and affordability. In gene therapy, introduction 
of pseudoviruses or vectors into immunocompromised 
individuals might result in vector associated morbidity and 
mortality as these individuals might not be able to contain the 
replication and dissemination of vectors. 

Conclusion 

Research is progressing rapidly in the area of chemokines and 
their receptors in HIV pathogenesis. The coming together of 
the two major fields of research, HIV and chemokines, will 
produce significant new insights and new therapies that will 
enable us to combat HIV infection. Since the identification of 
the chemokine receptors as co-receptors for HIV entry, many 
of the mysteries of HIV pathogenesis have become clear. 
However, the mechanisms that allow interaction of HIV-1 with 
chemokine receptors and implications of virus –induced 
receptor signaling are yet to be answered. Moreover, the 
potential of this discovery for anti-HIV therapy and vaccine 
development remains to be explored further. The other areas 
like role of various chemokines in HIV pathogenesis in vivo 
and the mechanism of genetic host factors mediated protection 
need to be investigated further. 
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