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Abstract Molecular motors are considered that convert the chemical energy released from
the hydrolysis of adenosine triphosphate (ATP) into mechanical work. Such a motor rep-
resents a small system that is coupled to a heat reservoir, a work reservoir, and particle
reservoirs for ATP, adenosine diphosphate (ADP), and inorganic phosphate (P). The dis-
crete state space of the motor is defined in terms of the chemical composition of its cat-
alytic domains. Each motor state represents an ensemble of molecular conformations that
are thermally equilibrated. The motor states together with the possible transitions between
neighboring states define a network representation of the motor. The motor dynamics is
described by a continuous-time Markov process (or master equation) on this network. The
consistency between thermodynamics and network dynamics implies (i) local and nonlo-
cal balance conditions for the transition rates of the motor and (ii) an underlying landscape
of internal energies for the motor states. The local balance conditions can be interpreted
in terms of constrained equilibria between neighboring motor states; the nonlocal balance
conditions pinpoint chemical and/or mechanical nonequilibrium.

Keywords Energy transduction · Cytoskeletal motors · Stochastic processes ·
Entropy production

1 Introduction

Many molecular motors that one encounters in biological cells are powered by the hydrolysis
of adenosine triphosphate. These motors represent ATPases, i.e., catalysts or enzymes for the
hydrolysis of ATP. For the concentrations which prevail in living cells, the ATP hydrolysis
is strongly exergonic or ‘downhill’ but it is also quite slow in the absence of any enzymatic
activity. The motors act as enzymes for this chemical reaction and dramatically increase its
reaction rate. In addition, these motors are also able to convert the chemical energy released
from the ATP hydrolysis into useful work. In fact, this energy conversion occurs at the level
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Fig. 1 Stepping motors that walk along cytoskeletal filaments, which are polar and have two different ends,
a plus and a minus end: (a) Kinesin and dynein motor that move to the plus and minus end, respectively, of
a microtubule; and (b) Myosin V and myosin VI that move to the plus (or barbed) and minus (or pointed)
end, respectively, of an actin filament. The diameter of the microtubule and the actin filament are 25 nm and
8 nm, respectively. For simplicity, the cargo binding domains of the motors have been omitted. All four types
of molecular motors are dimers consisting of two identical protein chains and use ATP hydrolysis in order to
move in a directed manner. Kinesin and the two myosin motors walk in a ‘hand-over-hand’ fashion

of single hydrolysis events which implies that one should use a theoretical description that
incorporates the discrete nature of these events.

In this article, we will consider molecular motors that are powered by ATP hydrolysis and
have a certain fixed number of catalytic motor domains. Prominent examples are cytoskele-
tal motors such as kinesin, see Fig. 1(a), that are essential for intracellular transport, cell
division, and cell locomotion [1, 2]. Three superfamilies of cytoskeletal motors have been
identified: kinesins, dyneins and myosins [2, 3]. Kinesins and dyneins bind to microtubuli
as shown in Fig. 1(a) whereas myosins bind to actin filaments as in Fig. 1(b).

Kinesin has two identical motor heads, each of which has a single catalytic domain for
ATP hydrolysis. The same overall structure applies to processive myosins. Dyneins, on the
other hand, have a more complex structure: they also have two motor heads as indicated in
Fig. 1(a) but each head contains four ATP binding domains. One of these ATP binding do-
mains appears to be the primary site for ATP hydrolysis, even though there is some evidence
that the three other binding domains may also have some catalytic activity [4].

Kinesin and the other stepping motors transduce the chemical energy released from ATP
hydrolysis into mechanical steps or displacements along the filament. Kinesin walks in a
‘hand-over-hand’ fashion, i.e., by alternating steps in which one head moves forward while
the other one remains bound to the filament [5, 6]. Each step corresponds to a motor dis-
placement of 8 nm corresponding to the lattice constant of the microtubule. It has also been
found that these mechanical steps of kinesin are fast and completed within 15 microsec-
onds [7]. This implies that there are no mechanical substeps on the time scales of the chem-
ical transitions which take several milliseconds.

Kinesin exhibits tight coupling, i.e., it hydrolyzes one ATP molecule per mechanical
step [8]. After ATP has been hydrolyzed by one of the catalytic motor domains, the inor-
ganic phosphate is released rather fast, and both transitions together take of the order of 10
milliseconds to be completed [9]. ADP is subsequently released from the catalytic domain,
and this release process is also completed during about 10 milliseconds [10]. When the cat-
alytic domain of the motor head is occupied by ADP, this head is only loosely bound to
the microtubule [11, 12] and most likely to unbind from it. Various motor properties such
as motor velocity [7, 13], bound state diffusion coefficient (or randomness parameter) [13],
ratio of forward to backward steps [7], and run length [14] were measured as a function of
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ATP concentration and load force. Furthermore, the motor velocity was also determined as
a function of P and ADP concentration [15].

We have recently developed a network theory for kinesin [16–18] that describes all of
these experimental observations in a quantitative manner. The present article extends this
previous work and has two related objectives: (i) To clarify the basic assumptions and the
logical coherence of our theory; and (ii) To compare and contrast our approach with other
theoretical studies.

Our theory has three basic ingredients: thermodynamics, network representations, and
balance conditions. As far as thermodynamics is concerned, we explicitly consider all four
thermodynamic control parameters, which govern a molecular motor at fixed temperature:
the three chemical potentials of ATP, ADP, and P as well as the load force acting on the motor
parallel to the filament. In this way, we avoid the limitations of previous studies [19–32] that
explored only a certain subspace of this 4-dimensional space of thermodynamic control
parameters.

In general, the external force as applied in single molecule experiments is a 3-dimensional
vector with one component parallel to the filament, which defines the load force, and ad-
ditional components, which act perpendicular to this filament. Since the motor does not
perform mechanical work against the perpendicular force components, the latter compo-
nents do not represent thermodynamic control parameters, even though they can affect the
motor dynamics.

The second basic ingredient of our theory are network representations for molecular mo-
tors with M catalytic ATPase domains. These representations correspond to discrete state
spaces in which the motor states are distinguished by the chemical composition of the cat-
alytic domains. For M = 1, the state space has three motor states and corresponds to a
reduced version of the ATPase model as previously considered by T.L. Hill [19] in the ab-
sence of mechanical work. For a motor with M domains, the state space consists of 3M

motor states. Starting from a certain state i, the motor can reach a number of neighboring
states j via chemical or mechanical transitions |ij 〉. The number of chemical transitions
follows directly from the construction of the state space: each motor state is connected to
2M neighboring states via chemical transitions that correspond to the binding or unbinding
of one of the chemical species. Kinesin has M = 2 catalytic domains and its basic network
representation consists of 9 states and 36 chemical transitions. The number of mechanical
transitions depends on the motor species. As mentioned, recent experiments on kinesin pro-
vide strong evidence [7] that this motor is governed by a single forward and backward step
along the filament without any substeps.

For a single catalytic motor domain (M = 1), the network consists of a single dissipative
cycle that transforms chemical energy into heat. This provides one example for a slip cycle
that does not couple ATP hydrolysis to mechanical work. For M ≥ 2, the networks contain
many cycles including chemomechanical ones that convert chemical energy into work. As
shown in [17], three different chemomechanical cycles have to be taken into account in order
to understand the single molecule data on kinesin. In this way, our network theory differs
from previous theories as described in [21–23, 26, 30–32] which were all based on a single
chemomechanical motor cycle.

The third basic ingredient of our theory are balance conditions for the transitions be-
tween motor states which follow from the conservation of energy during these transitions.
As in classical transition-state theory [33, 34] and in Kramers theory [35] for chemical ki-
netics [36, 37], we assume that each state of the motor molecule is internally equilibrated
at a certain, fixed temperature. The same assumption was used in previous studies of en-
ergy transduction by molecular motors, see, e.g., [21, 38, 39]. However, in contrast to these
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previous studies, we then focus on the internal energies of these states rather than on their
free energies. Indeed, in our approach, the internal energy, Ui , is the most natural choice for
the thermodynamic potential of the motor state i since its change is directly related to the
first law of thermodynamics. Furthermore, within our theory, we can determine the internal
energies of the motor states in terms of experimentally accessible quantities.

In order to proceed any further, we need to consider a specific model for the motor
dynamics. The presumably simplest dynamics is provided by a continuous-time Markov
process (or master equation) which depends on the rates ωij for the transitions |ij〉. For
these Markov processes, one can calculate the entropies produced by the motor and, in this
way, express the heat released by it in terms of the transition rates ωij . As a result, we obtain
local and nonlocal energy balance relations which we reinterpret as balance conditions for
the transition rates ωij .

The nonlocal conditions, which we first derived in [16], relate the transition rate ratios
ωij /ωji for all transitions |ij〉 of a directed cycle (or dicycle) to the chemical energy change
�μ per ATP hydrolysis and to the load force F . The local conditions, which are consistent
with the proposal of U. Seifert et al. [40, 41] about the entropy produced during a single
transition, determine the dependence of the transition rates on the concentrations of ATP,
ADP and P and strongly constrain the force dependence of these rates.

Our article is organized as follows. We start in Sect. 2 with the thermodynamics of the
motor and the different reservoirs to which it is coupled. We then introduce our network
representations in Sect. 3 where we start with the unicycle model of a single catalytic mo-
tor domain, describe the multi-cycle models for two-headed motors with two catalytic do-
mains, and distinguish chemomechanical cycles from dissipative, mechanical, and thermal
slip cycles. The elementary form of the energy balance relations is discussed in Sect. 4. The
dynamics of the motor is then specified in Sect. 5 and the produced entropies are calculated
in Sect. 6. If these entropies are identified with the heat released by the motor, the general
energy balance relations of Sect. 4 lead to local and nonlocal balance conditions for the
transition rates ωij , see Sect. 7. Finally, we calculate the landscape of internal energies in
Sect. 8 and reinterpret the local and nonlocal balance conditions in Sect. 9.

2 Thermodynamics of Motor Plus Reservoirs

The molecular motor is taken to be embedded in a large amount of water and will be treated
as a small system that is coupled to several reservoirs: (i) A heat reservoir at temperature T ;
(ii) A work reservoir characterized by the load force F ; and (iii) Particle reservoirs for
the chemical species X = ATP, ADP, and inorganic phosphate P. These different types of
reservoirs are displayed in Fig. 2.

We will always assume that the motor is in thermal equilibrium with its environment, i.e.,
the motor is always characterized by the same temperature T as the surrounding solution.
Indeed, its internal vibrational modes are equilibrated by frequent, nonreactive collisions
with a huge number of water molecules. Furthermore, the single motor is unlikely to per-
turb the Maxwell-Boltzmann velocity distribution of the water molecules in any substantial
way. The same assumption of internal or local thermal equilibration underlies both classical
transition-rate theory [33, 34] and Kramers theory [35] for chemical kinetics, as reviewed,
e.g., in [36, 37].

Interaction of the molecular motor with the work reservoir is governed by the load
force F . This force acts parallel to the filament and is taken to have a constant value in-
dependent of the spatial position of the motor. We use the convention that F is positive if it
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Fig. 2 Thermodynamic view of a molecular motor that is coupled to several reservoirs: A heat reservoir at
temperature T ; particle exchange reservoirs for ATP, ADP, and P with chemical potentials μ(ATP), μ(ADP),
and μ(P); and a work reservoir governed by load force F . The motor is always taken to be in thermal
equilibrium at temperature T but can be in chemical equilibrium or nonequilibrium depending on the size of
the three chemical potentials. Mechanical equilibrium corresponds to F = 0

acts against the prefered movement of the motor. If the motor moves by the distance � in its
prefered direction along the filament, it performs the mechanical work

Wme = �F > 0 for F > 0. (2.1)

Mechanical equilibrium between motor and work reservoir corresponds to F = 0. As men-
tioned in the introduction, the externally applied force is a 3-dimensional vector, which may
have additional components that act perpendicular to the filament. It is convenient to choose
Cartesian coordinates, (x, y, z), in such a way that the x-axis is parallel to the filament. The
external force �Fex then has the general form

�Fex = (F,F⊥) with F⊥ ≡ (F⊥y,F⊥z), (2.2)

i.e., its x-component is equal to the load force F , and its y- and z-components define the
2-dimensional perpendicular force F⊥. The perpendicular force components do not represent
thermodynamic control parameters, however, since the running motor bound to the filament
does not perform mechanical work against F⊥. The possible influence of F⊥ on the motor
dynamics will be considered in Sect. 7 below.

The exchange equilibria between the motor and the reservoirs for the chemical species
X = ATP, ADP, and P are governed by the corresponding chemical potentials, μ(X). The
activity of X will be denoted by [X] and is equal to the molar concentration in the limit of
dilute solutions. In the following, we will use the term ‘concentration’ to be a synonym for
‘activity’. For each activity [X], we choose the activity scale [X]∗ in such a way that the
chemical potential μ(X) has the simple form

μ(X) = kBT ln([X]/[X]∗). (2.3)

The activity scale [X]∗ can be determined theoretically using the grand-canonical ensem-
ble. One then has to consider a large volume V of aqueous solution and calculate the
partition functions Z0 and Z1 which correspond to the volume V containing either no
or a single molecule of species X, respectively. The activity scale [X]∗ is then given by
[X]∗ = Z1/Z0V NAv with the Avogadro number NAv.

When the motor hydrolyzes a single ATP molecule, it binds one such molecule and re-
leases one inorganic phosphate P and one ADP molecule. According to the Gibbs funda-
mental form of thermodynamics, the corresponding change in internal energy of the motor
is given by

�μ = μ(ATP) − μ(P) − μ(ADP) (2.4)
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which also represents the chemical energy input from the aqueous solution to the motor
molecule. Using the expression (2.3) for the three chemical potentials, we then obtain

�μ = ln

( [ATP]
[ADP][P]K

eq

)
with Keq ≡ [ADP]∗[P]∗

[ATP]∗ (2.5)

which defines the equilibrium (dissociation) constant Keq. Chemical equilibrium between
ATP hydrolysis and ATP synthesis corresponds to �μ = 0 which implies

Keq = [ADP][P]
[ATP]

∣∣∣∣
eq

. (2.6)

For dilute solutions, the activities of the three chemical species are equal to their mo-
lar concentrations and can be directly measured (after the system has relaxed into chemical
equilibrium). For ATP hydrolysis, the precise value of the equilibrium constant Keq de-
pends on the ionic conditions but a typical value is given by Keq = 4.9 × 1011 µM [15, 42].
Thus, in thermal equilibrium at temperature T , a single molecular motor is governed by the
4-dimensional space of thermodynamic parameters, which can be defined in terms of the
three activities or concentrations [X] with X = ATP, ADP, and P as well as the load force F

or, equivalently, in terms of the three chemical potentials μ(X) and F .
Previous theoretical studies have explored certain subspaces of this 4-dimensional space

of thermodynamic parameters. In his study of a generic ATPase, T.L. Hill [19] took all
three concentrations into account but did not consider a load force. Hill emphasized that
the chemical energy change �μ per ATP hydrolysis as given by (2.4) acts as a ‘thermody-
namic force’ that moves the system out of equilibrium. Several authors have subsequently
focused on the 2-dimensional subspace as defined by this chemical energy change �μ and
the load force F [21, 22, 27, 31, 32]. A different 2-dimensional su bspace has been pursued
in [20, 24, 25, 28, 29] in which the motor behavior was studied as a function of ATP con-
centration and load force. Furthermore, the theoretical studies in [23, 26, 30] focussed on
the load force F and did not include the chemical coordinates involved in ATP hydrolysis.
In contrast to these previous studies, our theory as introduced in [16, 17] and elucidated here
explores the complete 4-dimensional space of thermodynamic control parameters.

3 Network Representations

For a given position at the filament, the molecular motor can attain many molecular confor-
mations which differ in the chemical composition of their catalytic domains and in thermally
excited vibrational modes. Since we want to describe the hydrolysis of single ATP mole-
cules, we will use a discrete state space and focus on the different chemical compositions of
the catalytic domains. From a mathematical point of view, the chemical composition of the
catalytic domains provides an equivalence relation which divides the molecular configura-
tions of the motor into equivalence classes.

3.1 State Space for Single Catalytic Motor Domain

We start with a single catalytic domain as shown in Fig. 3. Such a catalytic domain can be
occupied by a single ATP molecule, by the combination ADP/P, by a single ADP molecule,
or can be empty. In this way, each catalytic domain can attain 4 different states, as shown
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Fig. 3 Network representations for a single catalytic motor domain acting as an ATPase: (a) Network with
4 states corresponding to the catalytic domain being empty (E), occupied by ATP (T), by ADP/P (�), and
by ADP (D); and (b) Reduced network with 3 states in which the hydrolysis transition and the P release
transition have been combined into the single transition |TD〉. As a result, each transition is now associated
with the binding or release of a chemical species

in Fig. 3(a) where these states are represented as vertices in a network graph. Such a rep-
resentation was previously used by T.L. Hill for a generic ATPase [19], see Appendix. The
edges between the different chemical states in Fig. 3(a) represent forward and backward
transitions. The edge between state i and state j will be denoted by 〈ij〉. It consists of two
directed edges or di-edges, |ij〉 and |ji〉, corresponding to the forward transition from i to
j and to the backward transition from j to i, respectively. Thus, the di-edge or transition
|ET〉 corresponds to ATP binding to the catalytic domain whereas the transition |TE〉 repre-
sents ATP release from this domain. Likewise, the transitions |�D〉, |D�〉, |DE〉, and |ED〉
describe P release, P binding, ADP release, and ADP binding, respectively. Finally, the tran-
sition |T�〉, corresponds to ATP hydrolysis proper and the transition |�T〉 to ATP synthesis
from ADP and P.

The three edges 〈ET〉, 〈�D〉, and 〈DE〉 involve the binding and release of a certain mole-
cular species from the aqueous solution. In contrast, the edge 〈T�〉 in the 4-state network
does not involve such an interaction of the catalytic domain with the particle reservoir, see
Fig. 3(a). Therefore, one may combine the two edges 〈T�〉 and 〈�D〉 of the 4-state network
into the edge 〈TD〉 as shown in Fig. 3(b). The latter representation involves only 3 states:
the motor head is occupied by ADP in state D, empty in state E, and occupied by ATP in
state T. This reduced representation is useful since it eliminates some parameters and can be
defined in such a way that 3-state and 4-state network describe the same energy transduction
process, see Appendix.

3.2 Two-Headed Motor with Two Catalytic Domains

Next, we consider a two-headed motor such as kinesin or myosin V with two identical
catalytic motor domains. If each motor domain can attain three different chemical states as
in Fig. 3(b), the two-headed motor can attain 32 = 9 different states as in Fig. 4(a). In all of
these states, the motor is bound to the filament. We use the convention that the right head
is the leading head whereas the left head is the trailing head with respect to the prefered
direction of the motor movement.

If the motor walks via the ‘hand-over-hand’ mechanism, the leading and the trailing head
interchange their positions during each mechanical step. If one assumes that this step is fast
on the timescale of the chemical transitions, one has, in general, three possible mechanical
steps: from state (E, D) to state (D, E), from state (E, T) to state (T, E), and from state (D, T)
to state (T, D). These possible mechanical transitions are shown in Fig. 4(a) as broken edges.
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Fig. 4 Network representations for a molecular motor with two motor heads containing the same catalytic
domain: Each head can be empty (E), occupied by ATP (T), or occupied by ADP (D): (a) State space with
32 = 9 chemical states, each of which is connected to four neighboring states via solid edges (or lines). Each
solid edge represents both the forward and backward chemical transition as in Fig. 3. Each broken edge (or
line) represents both the forward and backward mechanical step transition in which the two heads interchange
their relative position. We use the convention that the right and the left head correspond to the leading and
trailing head, respectively; and (b), (c) Reduced state space with 6 chemical states, 6 solid edges representing
chemical transitions, and one broken edge corresponding to the forward mechanical step from state 2 to state 5
and to the backward mechanical step from state 5 to state 2

Recent experiments by Carter and Cross [7] provide strong evidence that such a separation
of time scales does indeed apply to the cytoskeletal motor kinesin.

Inspection of Fig. 4(a) shows that each state of the two-headed motor is connected to four
other states via four solid edges. As in Fig. 3, each solid edge between two states i and j

represents both the forward chemical transition |ij〉 and the backward transition |ji〉. Thus,
each vertex of the 9-state network in Fig. 4(a) has ‘chemical degree’ four, and the whole
network contains 18 solid edges corresponding to 36 chemical transitions. In addition, the
9-state network contains three possible mechanical transitions as indicated by the broken
lines in Fig. 4(a).

As shown in [16, 17], the processive motion of kinesin is governed, to a large extent, by
those motor states for which the two heads differ in their chemical composition. In addition,
only one mechanical transition, namely from (D, T) to (T, D), is compatible with single mo-
tor data. The resulting 6-state network is shown in Fig. 4(b) and (c). The latter representation
reveals that the six states form a cycle consisting of six (forward and backward) chemical
transitions. The broken edge corresponds again to the mechanical step transition; according
to our convention, the mechanical forward step is given by |25〉, the mechanical backward
step by |52〉.

As shown in Fig. 4(c), the cycle of chemical transitions consists (i) of the two ATP
binding transitions |12〉 and |45〉, (ii) of the two transitions |61〉 and |34〉, which both rep-
resent ATP hydrolysis and P release, as well as (iii) of the two ADP release transitions |23〉
and |56〉. The ‘chemical degree’ of all vertices in Fig. 4(c) is again equal to two, but the
total vertex degree of the states i = 2 and i = 5 is equal to three because of the mechanical
transition.

It is straightforward to generalize these considerations to a molecular motor with M cat-
alytic domains. In this case, the different chemical compositions of the motor domains define
3M motor states which are represented by 3M vertices. Each of these vertices is connected to
2M other vertices via chemical transitions, i.e., each vertex has ‘chemical degree’ 2M . As
a result, one obtains a network with M3M chemical edges, each of which represents both a
forward and a backward chemical transition.
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3.3 Cycles and Dicycles

The two previous subsections provided two specific examples for the description of mole-
cular motors in terms of a discrete state space. These states are represented as the vertices
of a network graph, G, and are labeled by i = 1,2, . . . , |G|. Two neighboring states i and j

are connected by an edge 〈ij〉 which represents the two di-edges or transitions |ij〉 and |ji〉.
Inspection of Figs. 3 and 4 shows that these edges may form cycles. These cycles are par-
ticularly important in the present context since they are intimately related to fluxes and
nonequilibrium states [19].

In order to be precise, we will distinguish (undirected) cycles from directed cycles or
dicycles. The smallest dicycle consists of three states and three di-edges. An (undirected)
cycle Cν is given by a closed sequence of neighboring vertices together with connecting
edges, in which each vertex and each edge occurs only once. The notation Cν = 〈i1i2 . . . ini1〉
implies that the cycle Cν contains the edges 〈i1i2〉, 〈i2i3〉, . . . , and 〈ini1〉. Each cycle Cν leads
to two dicycles Cd

ν with d = ±. First, we choose a certain arbitrary but fixed orientation of
cycle Cν to correspond to the positive direction d = +, which defines the dicycle C+

ν . When
we pass through Cν in the opposite direction d = −, we obtain the dicycle C−

ν . These two
dicycles will be denoted by C+

ν = |i1i2 . . . ini1〉 and C−
ν = |i1in . . . i2i1〉.

The network description of a single motor head, see Fig. 3, involves only a single cycle.
Analogous unicycle models have also been frequently used for two-headed motors, see,
e.g., [26, 30]. Inspection of Fig. 4 shows, however, that these two-headed motors will, in
general, exhibit several motor cycles. The 9-state network in Fig. 4(a) involves a rather large
number of cycles (more than 200). In contrast, the 6-state network in Fig. 4(c) contains
only three cycles: the forward cycle F = 〈25612〉, the backward cycle B = 〈52345〉, and the
dissipative slip cycle D = 〈1234561〉.

In order to distinguish different types of cycles, we will use the following terminology:
(i) Chemomechanical cycles couple overall hydrolysis of ATP to a mechanical displacement
of the motor and, in this way, are responsible for the energy transduction of the motor. Ex-
amples are given by the forward cycle F = 〈25612〉 and the backward cycle B = 〈52345〉 in
the 6-state model, see Fig. 4(c); (ii) Dissipative slip cycles contain hydrolysis transitions but
no mechanical step transition. Examples are provided by the cycles in the 4-state and 3-state
networks of a single catalytic domain as shown in Fig. 3(a), and by the cycle D = 〈1234561〉
of the 6-state model, see Fig. 4(c); (iii) Mechanical slip cycles contain mechanical step tran-
sitions but no net hydrolysis of ATP. Examples without any hydrolysis transitions are the cy-
cles 〈(E,E)(E,D)(D,E)(E,E)〉 and 〈(E,T)(D,T)(T,D)(T,E)(E,T)〉 of the 9-state model,
see Fig. 4(a). An example for a mechanical slip cycle with one ATP hydrolysis and one ATP
synthesis transition is provided by the cycle 〈(T,D)(D,D)(D,T)(T,D)〉; and (iv) Thermal
slip cycles that involve neither a mechanical step nor a hydrolysis transition. Examples are
provided by 〈(E,E)(E,D)(D,D)(D,E)(E,E)〉 and 〈(E,E)(E,T)(D,T)(D,E)(E,E)〉. It is in-
teresting to note that the reduction of the 9-state model to the 6-state model eliminates all
mechanical and thermal slip cycles from the network.

4 Internal Energies and Energy Transduction

We now assume that all vibrational modes or internal substates of motor state i are thermally
equilibrated at temperature T . This assumption is based on a separation of time scales:
thermal equilibration of single motor states is taken to be fast compared to the time that the
motor needs to undergo the transitions between neighboring states. This separation of time
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scales, which underlies both classical transition-rate theory and Kramers theory for chemical
kinetics [33–37], is rather plausible for chemical reactions in liquids and has been previously
emphasized in the context of discrete state models for molecular motors by T.L. Hill [38],
and in the context of ratchet models by F. Jülicher et al. [21, 39].

4.1 Equilibration of Internal Substates

The substates of motor state i will be denoted by (i, k), the corresponding energies by Ei,k .
The (conditional) probability Pi,k to find the motor molecule in substate (i, k) then has the
form

Pi,k = 1

Zi

e−Ei,k/kBT with Zi ≡
∑

k

e−Ei,k/kBT . (4.1)

The Helmholtz free energy, Hi , of the molecular motor state i is given by

Hi = −kBT ln(Zi). (4.2)

In his studies on biomolecules [19, 38, 43], T.L. Hill has considered this Helmholtz free
energy Hi to be the ‘basic free energy level’ of such a biomolecular system. In contrast,
we will focus here on the internal energy Ui of the motor state i since this thermodynamic
potential enters the first law of thermodynamics. Thus, we will characterize each motor
state i by its internal energy

Ui ≡ 〈Ei,k〉 = 1

Zi

∑
k

Ei,ke
−Ei,k/kBT . (4.3)

In general, we do not know the underlying energy spectrum Ei,k and, thus, cannot calculate
Ui via (4.3). However, we can express the internal energies Ui in terms of experimentally
accessible quantities, see Sect. 8 below.

4.2 Energy Balance for Single Transitions

During the transition |ij 〉 from state i to state j , the internal energy can change because
of (i) chemical energy �μij arising from the coupling to the reservoirs for ATP, ADP,
and P (ii) mechanical work Wme,ij , which the motor performs against the load force F ,
and (iii) heat Qij , which the motor releases into the surrounding medium. We use the con-
vention that Qij > 0 if it increases the internal energy of the heat reservoir. Conservation of
energy then implies the local energy balance relation [16]

�Uij ≡ Uj − Ui = �μij − Wme,ij − Qij (4.4)

for the transition |ij 〉. If the chemical energy change �μij is positive, it may be partially
stored in the motor molecule after the transition |ij 〉, which implies �Uij > 0, and this
stored energy may be transformed into work and/or heat during a later transition |i ′j ′〉,
which implies �Ui′j ′ < 0.

The chemical energy change �μij during the transition |ij〉 depends on the chemical
potentials of the three chemical species X = ATP, ADP, and P and is given by

�μij =
{0 for no exchange during |ij〉,

+μ(X) for binding of X during |ij〉,
−μ(X) for release of X during |ij〉

(4.5)

which implies �μji = −�μij .
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The mechanical work Wme,ij in the energy balance (4.4) depends on the mechanical dis-
placement �ij during the transition |ij 〉. Since the motor states i and j represent ensembles
of molecular conformations, the quantity �ij should be viewed as a structural parameter of
the system, the size of which is determined by the interaction between the motor and the
filament. The corresponding mechanical work is given by

Wme,ij = �ijF (4.6)

where the load force F > 0 if it acts against the prefered direction of the motor (“resisting
load”). Our sign convention for the load force and for the mechanical work Wme as given by
(2.1) implies that �ij > 0 and �ij < 0 if the motor makes a mechanical forward and backward
displacement, respectively.

4.3 Energy Balance for Dicycles

The energy balance relations simplify if we consider dicycles instead of single transitions.
Indeed, if we sum the local energy balance as given by (4.4) over any dicycle Cd

ν , we obtain
the dicycle relations

∑
|ij 〉

ν,d [Uj − Ui] =
∑
|ij 〉

ν,d [�μij − �ijF − Qij ] = 0 (4.7)

where the superscript ν, d at the summation sign indicates that we sum over all di-edges or
transitions |ij 〉 of the dicycle Cd

ν .
The first term on the right hand side of the dicycle relation (4.7) can be expressed in terms

of the overall chemical potential difference �μ = μ(ATP) − μ(ADP) − μ(P) as defined
in (2.4). Indeed, inspection of the network models in Figs. 3 and 4 shows that each dicycle Cd

ν

can contain nh(Cd
ν ) ≥ 0 transitions that involve ATP hydrolysis and/or ns(Cd

ν ) ≥ 0 transitions
that correspond to ATP synthesis. The chemical energy change per completed dicycle then
has the explicit form

�μ(Cd
ν ) ≡

∑
|ij 〉

ν,d

�μij = [nh(Cd
ν ) − ns(Cd

ν )]�μ (4.8)

where �μ can be expressed in terms of the activities [X] and the equilibrium constant Keq

via (2.5). The quantity �μ(Cd
ν ) satisfies �μ(C−

ν ) = −�μ(C+
ν ) and can be used to define

chemical equilibrium and nonequilibrium for each cycle of the network: a certain cycle Cn

is in chemical equilibrium and nonequilibrium if �μ(Cd
n ) = 0 and �μ(Cd

n ) 
= 0, respectively.
Furthermore, the second term on the right hand side of the dicycle energy balance (4.7)

can be rewritten as

Wme(Cd
ν ) ≡

∑
|ij 〉

ν,d

�ijF ≡ �(Cd
ν )F (4.9)

which defines the mechanical displacement �(Cd
ν ) during the completed dicycle Cd

ν . For ki-
nesin, which makes no mechanical substeps [7], �(Cd

ν ) is equal to 8 nm, the lattice parameter
of microtubules. The quantity Wme(Cd

ν ) satisfies Wme(C−
ν ) = −Wme(C+

ν ) and can be used to
define mechanical equilibrium and nonequilibrium for each cycle of the network: a certain
cycle Cn is in mechanical equilibrium and nonequilibrium if Wme(Cd

n ) = 0 and Wme(Cd
n ) 
= 0,

respectively.
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Inserting the expressions (4.8) and (4.9) into the relation (4.7), we arrive at the dicycle
balance relation [16]

Q(Cd
ν ) ≡

∑
|ij 〉

ν,d

Qij = [nh(Cd
ν ) − ns(Cd

ν )]�μ − �(Cd
ν )F (4.10)

for the heat exchange Q(Cd
ν ) per completed dicycle Cd

ν .

5 Motor Dynamics

In order to proceed any further, we must now consider a specific model for the motor dynam-
ics. The presumably simplest dynamics is provided by a continuous-time Markov process
[37, 44] on the network graph G. Such a process involves two stochastic ingredients, the
sojourn (or dwell) times and the transition probabilities. When the system arrives in state i,
it occupies this state for a certain sojourn (or dwell) time τi . This time is a random variable
governed by the exponential probability distribution

P (τi) = 1

〈τi〉e
−τi /〈τi 〉 (5.1)

where 〈τi〉 denotes the average sojourn time [44]. When the motor leaves the state i, it
jumps to state j with transition probability πij . By definition, one has πii ≡ 0 for all i

and
∑

j πij = 1. From the mathematical point of view, the latter transitions occur instanta-
neously; from the physical point of view, they occur on a time scale that is small compared
to all average sojourn times 〈τi〉.

The probability Pi(t) to find the motor in state i at time t is then governed by the loss-
and-gain equation

d

dt
Pi = −

∑
j

(Piωij − Pjωji) (5.2)

with the transition rates

ωij = πij /〈τi〉 and
∑

j

ωij = 1/〈τi〉. (5.3)

In the physical literature, this equation is known as the master equation [37]; in the
mathematical literature, it is called the forward equation of the continuous-time Markov
process [44]. It is convenient to define the local fluxes (or currents) Jij ≡ Piωij and the local
excess fluxes

�Jij ≡ Piωij − Pjωji = −�Jji (5.4)

from state i to state j . The master equation (5.2) can then be rewritten in the compact form
d
dt

Pi = −∑
j �Jij .

If the motor system is in full equilibrium, i.e., in thermal, chemical, and mechanical
equilibrium, it is characterized by time-independent probabilities Pi = P

eq
i and local excess

fluxes �J
eq
ij = 0 for all transitions |ij 〉. In such a situation, the transition rates ωij must

satisfy the detailed balance conditions

P
eq
i ωij = P

eq
j ωji (5.5)
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for all edges 〈ij 〉 of the network graph.
The detailed balance conditions (5.5) can be expressed in terms of the transition rates ωij

alone. In order to do so, it is convenient to define, for each dicycle Cd
ν , the dicycle ratio

	(Cd
ν ) ≡

∏
|ij 〉∈Cd

ν

ωij

/ ∏
|ij 〉∈C−d

ν

ωij =
∏
|ij 〉

ν,d

(ωij /ωji) (5.6)

where the superscript ν, d at the product sign indicates a product over all di-edges |ij〉 of
the dicycle Cd

ν . This definition implies 	(C−
ν ) = 1/	(C+

ν ). The detailed balance conditions
as given by (5.5) are equivalent to the dicycle ratios

	eq(Cd
ν ) =

∏
|ij 〉

ν,d

(ωij /ωji) = 1 for all dicycles Cd
ν , (5.7)

as shown, e.g., in [29].
In general, the steady state of the motor system corresponds to dPi/dt = 0 and leads to

time-independent probabilities Pi = P st
i which satisfy

∑
j

(P st
i ωij − P st

j ωji) =
∑

j

�J st
ij =

∑
j

(J st
ij − J st

j i) = 0. (5.8)

These relations represent Ns linear equations for the probabilities P st
i which can be solved

by linear algebra, see, e.g., [25, 28] or, more conveniently, by a graph-theoretic method
[29, 45–48]. In the steady state, the motor undergoes the transition |ij〉 with the transition
frequency


st
ij ≡ P st

i ωij . (5.9)

Likewise, one may define the dicycle frequency 
st(Cd
ν ), i.e., the number of completed di-

cycles Cd
ν per unit time in the steady state. As shown in [16, 49, 50], for a given cycle Cν , the

dicycle frequencies satisfy


st(C+
ν )/
st(C−

ν ) =
∏
|ij 〉

ν,d

(ωij /ωji) = 	(C+
ν ) (5.10)

which provides an intuitive interpretation of the dicycle ratio 	(C+
ν ).

6 Entropy Production and Heat Exchange

We will now use the dynamics defined in the previous section in order to determine the en-
tropy produced by the motor. The produced entropy will then be identified with the released
heat which leads to energy balance equations between the transition rates ωij of the motor
model and the thermodynamic control parameters.

6.1 Time Evolution of Statistical Entropy

We start from the statistical or Shannon entropy

S{Pi} ≡ −kB

∑
i

Pi ln(Pi) (6.1)
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which one may define for any probability distribution {Pi} on a discrete state space G. This
entropy provides a well-defined measure by which one can compare different probability
distributions. If the probability distribution changes with time t , so does the statistical en-
tropy S{Pi}. Its time derivative can be written in the form [48, 51–53]

d

dt
S{Pi} = σpr{Pi} + σfl{Pi} (6.2)

with the entropy production rate

σpr{Pi} ≡ 1

2
kB

∑
i

∑
j

′
(Piωij − Pjωji) ln

(
Piωij

Pjωji

)
(6.3)

and the entropy flux term

σfl{Pi} ≡ −1

2
kB

∑
i

∑
j

′
(Piωij − Pjωji) ln

(
ωij

ωji

)
(6.4)

where the prime at the summation sign indicates that there are no terms with j = i. Thus,
the double sum represents a summation over all di-edges or transitions |ij〉 of the network.

Each term in the expression (6.3) for the entropy production rate has the form
(x − y) ln(x/y) with (x − y) ln(x/y) > 0 for x 
= y and (x − y) ln(x/y) = 0 for x = y.
This implies that the entropy production rate σpr as given by (6.3) satisfies σpr{Pi} ≥ 0 for
any distribution {Pi} and vanishes if and only if {Pi} = {P eq

i }. These two properties charac-
terize the entropy production rate in general, see, e.g., [54].

In the steady state, the system’s entropy does not change and d
dt

S{Pi} = 0, which implies

σ st
pr ≡ σpr{P st

i } = −σfl{P st
i } (6.5)

or

σ st
pr = 1

2

∑
i

∑
j

′
(P st

i ωij − P st
j ωji)kB ln(ωij /ωji). (6.6)

6.2 Entropy Production during Dicycle Completion

The expression (6.6) for the entropy production rate can be rewritten in the form [16]

σ st
pr =

∑
ν

∑
d=±


st(Cd
ν )�S(Cd

ν ) (6.7)

where the sum includes all dicycles of the network, 
st(Cd
ν ) denotes the dicycle frequency,

i.e., the number of times this dicycle is completed per unit time, compare (5.10), and �S(Cd
ν )

the entropy produced during completion of dicycle Cd
ν . The latter quantity is given by [16]

�S(Cd
ν ) = kB ln(	(Cd

ν )) = kB ln

(∏
|ij 〉

ν,d

(ωij /ωji)

)
(6.8)

where the definition (5.6) of the dicycle ratio 	(Cd
ν ) has been used. Since 	(C−

ν ) =
1/	(C+

ν ), the entropies of the two dicycles C+
ν and C−

ν are related via �S(C−
ν ) = −�S(C+

ν )

which reflects the fact that the dicycle C−
ν corresponds to the time-reversed dicycle C+

ν .
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T.L. Hill and coworkers [19, 43] have previously discussed the quantity kBT times
ln(	(Cd

ν )), which they viewed as the ‘thermodynamic force’ that drives the system out of
equilibrium. Our work shows that this thermodynamic force is, in fact, equal to temperature
T times dicycle entropy �S(Cd

ν ).
Since the motor is in thermal equilibrium with the heat reservoir at temperature T , we

identify T times the entropy �S(Cd
ν ) produced during the dicycle Cd

ν with the heat Q(Cd
ν )

released during this dicycle. The energy balance relation (4.10) then becomes

kBT ln[	(Cd
ν )] = Q(Cd

ν ) = [nh(Cd
ν ) − ns(Cd

ν )]�μ − �(Cd
ν )F (6.9)

or

kBT
∑
|ij 〉

ν,d

ln

(
ωij

ωji

)
= [nh(Cd

ν ) − ns(Cd
ν )]�μ − �(Cd

ν )F (6.10)

which provides a relation between the transition rates ωij and the thermodynamic parameters
of the motor system. In full equilibrium, one has �μ = 0 and F = 0, and we recover the
detailed balance conditions with the dicycle ratio 	(Cd

ν ) = 1 as in (5.7).
It is interesting to note that one may combine the relations (5.10) and (6.8) in order to

express the dicycle frequency ratio 
st(C+
ν )/
st(C−

ν ) in terms of the dicycle entropies via


st(C+
ν )


st(C−
ν )

= e�S(C+
ν )/kB = e−�S(C−

ν )/kB (6.11)

which is reminiscent of the various relations that have been derived in the context of entropy
fluctuations [40, 55–57]. The entropies �S(Cd

ν ) as considered here do not fluctuate, however,
but have a certain, fixed value for each dicycle of the network.

6.3 Entropy Production during Single Transition

The entropy production rate as given by (6.6) and (6.7) can also be rewritten in the form

σ st
pr =

∑
|ij 〉

P st
i ωij�Sij =

∑
|ij 〉


st
ij�Sij (6.12)

with the transition frequencies 
st
ij as in (5.9) where the summation runs over all di-edges

or transitions |ij〉 of the network. The transition entropies �Sij are defined by [40]

�Sij ≡ kB ln(ωij /ωji) = −�Sji. (6.13)

This definition of the transition entropies is consistent with the dicycle entropies as given by
(6.8) since

∑
|ij 〉

ν,d

�Sij = �S(Cd
ν ) (6.14)

for any dicycle Cd
ν of the network.

If we now identify the transition entropy �Sij times temperature T with the heat ex-
change Qij , the local energy balance relation (4.4) becomes

�Uij = Uj − Ui = �μij − �ijF − kBT ln(ωij /ωji). (6.15)

This relation will be used further below in order to calculate the internal energies Ui and the
equilibrium distribution P

eq
i for full equilibrium.
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7 Local and Nonlocal Balance Conditions

We will now change our point of view and interpret the relations (6.10) and (6.15) as balance
conditions that one has to impose on the transition rates ωij in order to obtain a dynamic or
kinetic model that is consistent with thermodynamics. Since these conditions must apply, in
particular, to the steady state of the system, we called them ‘steady state balance conditions’
in our previous work [16, 17].

7.1 Nonlocal Balance Conditions for Dicycles

First, we will show that the energy balance relations (6.10) and (6.15) strongly affect the
functional dependence of the transition rates ωij on the activities [X] and on the load
force F . As explained in Sect. 2, the load force F acts parallel to the filament, and the ex-
ternally applied force has the general form �Fex = (F,F⊥) as in (2.2) with the 2-dimensional
force F⊥ ≡ (F⊥y,F⊥z) acting perpendicular to the filament. This perpendicular force may
affect the transition rates ωij if the strain arising from F⊥ is sufficiently strong to deform the
motor’s molecular structure.

We now consider transition rates ωij = ωij (F,F⊥) with arbitrary F - and F⊥-dependen-
cies and decompose these rates according to

ωij (F,F⊥) ≡ ωij,0�ij (F )ζij (F,F⊥) (7.1)

with the zero-force factor

ωij,0 ≡ ωij (F = 0,F⊥ = 0), (7.2)

the load-dependent factor

�ij (F ) ≡ ωij (F,F⊥ = 0)/ωij,0 with �ij (0) = 1, (7.3)

and the additional factor

ζij (F,F⊥) ≡ ωij (F,F⊥)/ωij (F,F⊥ = 0) with ζij (F,0) = 1 (7.4)

which depends on the perpendicular force F⊥. This parametrization generalizes the one used
in [16, 17] where we ignored possible perpendicular force components.

When we insert the parametrization (7.1) of the transition rates into the dicycle ratio
	(Cd

ν ) as defined by (5.6), the dicycle ratio factorizes according to

	(Cd
ν ) = 	0(Cd

ν )	F (Cd
ν )	⊥(Cd

ν ) (7.5)

with the zero-force dicycle ratio

	0(Cd
ν ) ≡

∏
|ij 〉

ν,d

ωij,0/ωji,0, (7.6)

the load-dependent factor

	F (Cd
ν ) ≡

∏
|ij 〉

ν,d

�ij (F )/�ji(F ), (7.7)
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and

	⊥(Cd
ν ) ≡

∏
|ij 〉

ν,d

ζij (F,F⊥)/ζji(F,F⊥). (7.8)

Furthermore, when this factorized form of the dicycle ratio is inserted into the dicycle bal-
ance relation (6.10), this relation is decomposed into three parts. For F = 0 and F⊥ = 0, we
obtain [16]

kBT ln[	0(Cd
ν )] = �μ(Cd

ν ) = [nh(Cd
ν ) − ns(Cd

ν )]�μ (7.9)

which represents a balance condition for the zero-force transition rates ωij,0 in terms of
the chemical energy change �μ per hydrolyzed ATP molecule. For F 
= 0 but F⊥ = 0, the
dicycle balance relation leads to the load-dependent balance condition [16]

kBT ln[	F (Cd
ν )] = −Wme(Cd

ν ) = −�(Cd
ν )F (7.10)

which constrains the transition rate factors �ij (F ) in terms of the load force F . Finally,
for F⊥ 
= 0, the dicycle balance condition (6.10) implies

kBT ln[	⊥(Cd
ν )] = 0 (7.11)

which represents a constraint on the additional force-dependent factors ζij (F,F⊥).

7.2 Local Balance Conditions for Single Transitions

Using the transition rate parametrization (7.1), the local energy balance relation (6.15) be-
comes

Uj − Ui = �μij − kBT ln

(
ωij,0

ωji,0

)
− �ijF − kBT ln

(
�ij ζij

�jiζji

)
. (7.12)

We now request that the internal energies Ui (i) must not depend on the activities [X] and
(ii) must be independent of both the load force F and the perpendicular force component F⊥.
The latter requirement implies

�ij (F )/�ji(F ) = e−�ij F/kBT (7.13)

and

ζij (F,F⊥) = ζji(F,F⊥). (7.14)

For the network models shown in Figs. 3 and 4, most of the transitions |ij〉 correspond to
chemical transitions without any mechanical step which implies �ij = 0. In this case, the
balance condition (7.13) for the load-dependent factors further simplifies and becomes

�ij (F ) = �ji(F ) for �ij = 0. (7.15)

This relation provides a direct justification for the load-dependent transition rate factors
�ij (F ) as chosen in our previous study about kinesin [17]. In this latter case, we imposed
the dicycle condition (7.10) on the transition rates and made the choice (7.15) since it was
the simplest one that is compatible with this dicycle condition.

It is important to note that the absence of a partial mechanical step during the transi-
tion |ij〉, i.e., �ij = 0, does not imply that the transition rate ωij is independent of force.
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It only implies that the load-dependent factor �ij (F ) and the additional factor ζij (F,F⊥) of
the transition rate ωij are equal to the corresponding factors �ji(F ) and ζji(F,F⊥) of the
rate ωji for the reverse transition.

The requirement (i) that the internal energies must not depend on any activity [X] implies
that the combination exp[�μij/kBT ]ωji,0/ωij,0 is independent of [X]. The definition (4.5)
of �μij together with the chemical potentials μ(X) = kBT ln([X]/[X]∗) as in (2.3) then
leads to the conclusion that

ωij,0 ∝
{ [X]ωji,0 for binding of X during |ij〉,

ωji,0/[X] for release of X during |ij〉, (7.16)

and that ωij,0 is independent of all [X] if the transition |ij〉 does not involve the binding
or release of any chemical species. Since the release of species X during |ij〉 implies the
binding of X during |ji〉, the two relations in (7.16) are, in fact, equivalent.

The release of species X from a catalytic motor domain is a thermally activated process
and should not depend on the activity [X] in the particle reservoir (provided the binding of
the chemical species X to one catalytic motor domain does not induce the release of X from
another catalytic domain). Therefore, the zero-force transition rate ωij,0 for the release of X

should be independent of [X]. Together with the balance relation (7.16), we then obtain the
simple parametrizations

ωij,0 =
{

κij for release of X during |ij〉,
κij [X] for binding of X during |ij〉 (7.17)

which defines the [X]-independent transition rate constants κij . The [X]-dependence of the
zero-rate transition rates ωij,0 as given by (7.17) is precisely what one would have chosen
for physical adsorption of species [X] to the molecular motor without use of the local energy
balance conditions [17].

8 Energy Landscape of Internal Energies

We will now express the internal energies Ui in terms of the other model parameters. First,
the balance conditions (7.13) and (7.14) for the force-dependent factors of the transition
rates imply that the local energy balance condition (7.12) attains the simpler form

Uj − Ui = �μij − kBT ln

(
ωij,0

ωji,0

)
. (8.1)

Second, using the definition (4.5) of �μij and the parametrization (7.17) of the zero-force
transition rates ωij,0, we finally obtain the internal energy differences

�Uij = Uj − Ui = −kBT ln

( [X]∗κij

κji

)
(8.2)

for binding of the chemical species X during the transition |ij〉,

�Uij = Uj − Ui = −kBT ln

(
κij

[X]∗κji

)
(8.3)
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for release of the chemical species X during the transition |ij〉, and

�Uij = Uj − Ui = −kBT ln

(
κij

κji

)
(8.4)

if the transition |ij 〉 does not involve any exchange with the particle reservoirs where [X]∗
is again the activity scale as in (2.3). The internal energy differences �Uij as given by
(8.2–8.4) determine the internal energies Ui of all motor states i up to an additive constant,
say Uo. It is convenient to choose this constant Uo in such a way that the internal energy of
a certain reference state i = a is identically zero. In this way, we obtain the complete energy
landscape underlying the Markovian motor dynamics. As a consistency check, we will now
consider the special case of full equilibrium, i.e., of chemical and mechanical equilibrium
in addition to thermal equilibrium.

In chemical equilibrium with �μ = 0, the expression (4.8) for the chemical energy
change �μ(Cd

ν ) during the completion of dicycle Cd
ν becomes

�μ(Cd
ν ) =

∑
|ij 〉

ν,d

�μij = 0 (8.5)

for any dicycle Cd
ν of the network. We can then introduce chemical potentials μi for each

state i which satisfy

μj − μi = �μij (8.6)

with �μij = 0, +μ(X), or −μ(X) as given by relation (4.5). For �μ = μ(ATP) −
μ(P) − μ(ADP) = 0, this set of linear equations determines the chemical potentials μi up
to an additive constant, say μo. Using the chemical potentials μi , we can now calculate
the equilibrium distribution P st

i = P
eq
i which applies to full equilibrium with �μ = 0 and

F = 0. In this situation, the energy balance relations (6.10) reduce to the detailed balance
conditions P

eq
i ωij,0 = P

eq
j ωji,0 as given by (5.5). If we insert this relation into the energy

balance relation (6.15) for the transition |ij 〉 together with �μij = μj − μi and F = 0, we
obtain

P
eq
i

P
eq
j

= exp[−(Ui − μi)/kBT ]
exp[−(Uj − μj)/kBT ] . (8.7)

Thus, the equilibrium distribution has the form

P
eq
i = 1

Z
P̂

eq
i (8.8)

with the unnormalized probabilities or Gibbs factors

P̂
eq
i ≡ exp[−(Ui − μi)/kBT ] (8.9)

and the partition function

Z ≡
∑

i

P̂
eq
i =

∑
i

exp[−(Ui − μi)/kBT ]. (8.10)

This equilibrium distribution is precisely what we would have obtained from a (restricted)
grand canonical ensemble for the motor system which provides a nontrivial consistency
check of the theory. The grand-canonical ensemble is restricted since each catalytic domain
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can bind at most a single ATP or ADP or the combination � = ADP/P. Note that the dis-
tribution {P eq

i } as given by (8.8) is independent of the additive constants Uo and μo for the
internal energies and chemical potentials. Indeed, if we added such constants in the expo-
nent of the Gibbs factors P̂

eq
i , they would be cancelled by the normalization via the partition

function Z.

9 Constrained Equilibrium and Nonequilibrium

In this final section, we will reinterpret the local energy balance conditions in terms of
constrained equilibria between neighboring motor states. In general, these constrained equi-
libria can be extended towards trees of the network but not towards all of its cycles. As we
try to extend the constrained equilibria to different cycles, we again encounter the nonlocal
balance conditions that pinpoint chemical and/or mechanical nonequilibrium.

For each edge 〈ij 〉 of the network representation, the local energy balance relation as
given by (6.15) can be rewritten in the form

ωji

ωij

= exp[−Ui/kBT ]
exp[−Uj/kBT ]e

(−�μij +�ij F )/kBT . (9.1)

In full equilibrium with �μij = μj − μi and F = 0, the motor system is characterized by
transition rates ωij = ωij,0 that satisfy the detailed balance condition

ωji

ωij

= exp[−(Ui − μi)/kBT ]
exp[−(Uj − μj)/kBT ] = P

eq
i

P
eq
j

(9.2)

as follows from (5.5) and (8.7). It is interesting to note that the relation ωji/ωij ∼
exp[(Uj − Ui)/kBT ] agrees with both classical transition-state theory and Kramers
theory. Indeed, both theories lead to ωij ∼ exp[−(Uba,ij − Ui)/kBT ] and ωji ∼
exp[−(Uba,ij − Uj)/kBT ] with the energy barrier Uba,ij but this latter barrier drops out
from the ratio ωji/ωij .

Let us now use the local energy balance as given by (9.1) in order to define two probabil-
ities P ce

a and P ce
b for two neighboring states i = a and j = b in close analogy to the detailed

balance relation (9.2). The superscript ‘ce’ stands for ‘constrained equilibrium’ as will be
explained in the next paragraph. Thus, for a given edge 〈ab〉, the probabilities P ce

a and P ce
b

will be defined via

ωba

ωab

= exp[−Ua/kBT ]
exp[−Ub/kBT ] e

(−�μab+�abF )/kBT ≡ P ce
a

P ce
b

. (9.3)

We have used the indices a and b rather than the indices i and j in order to emphasize that
this definition applies to an arbitrary but fixed edge 〈ab〉.

For a given edge 〈ab〉, the two probabilities P ce
a and P ce

b defined by (9.3) have a rather
intuitive interpretation in terms of a constrained equilibrium between the neighboring states
a and b. Indeed, let us consider the subsystem �ab� consisting of the motor states a and b

together with the transitions |ab〉 and |ba〉. This subsystem is taken to be in thermal equilib-
rium with the heat reservoir at temperature T . If the chemical energy change �μab during
the transition |ab〉 is zero, see relation (4.5), we do not couple the subsystem �ab� to any
particle reservoir. On the other hand, if �μab = ±μ(X), we couple �ab� only to the par-
ticle reservoir for the chemical species X. Likewise, we couple the subsystem to the work
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reservoir only if the mechanical displacement �ab 
= 0. This constrained equilibrium of the
subsystem �ab� is governed by the probabilities P ce

a and P ce
b which satisfy relation (9.3).

Thus, the latter relation corresponds to the detailed balance condition for the constrained
equilibrium of subsystem �ab�.

The concept of a constrained equilibrium between two neighboring states has been pre-
viously discussed by T.L. Hill in [19, 43] (who called it a ‘hypothetical equilibrium’). His
relations differ from ours in two ways. First, his constrained equilibrium relations are re-
stricted to F = 0 since he did not include a work reservoir. Second, in our notation, his
relations have the form

ωba

ωab

= exp[−Ha/kBT ]
exp[−Hb/kBT ] e

−�μab/kBT (9.4)

where Ha and Hb are the Helmholtz free energies of the states a and b as defined in (4.2).
A similar relation has been proposed more recently in [58] where the Helmholtz free energy
was replaced by the grand-canonical potential. In contrast, our theory leads to constrained
equilibrium relations which depend on the internal energies Ua and Ub as in (9.3) rather
than on the Helmholtz or grand-canonical free energies. Our result (9.3) for the constrained
equilibria is equivalent to energy conservation during the transition |ij〉 together with the
expression Qij = T �Sij = kBT ln(ωij /ωji) for the heat exchange Qij during the transi-
tion |ij 〉. The consistency of our scheme is confirmed by our explicit expressions for the
internal energies as given by (8.2–8.4).

There is one important difference between the relation (9.2) for full equilibrium and the
relation (9.3) for constrained equilibrium. For full equilibrium, the probability ratio P

eq
i /P

eq
j

depends only on the internal energy Ui and the chemical potential μi , i.e., on quantities that
characterize the individual motor states i. In contrast, the probability ratio P ce

a /P ce
b for the

constrained equilibrium of subsystem �ab� also involves the chemical energy change �μab

and the mechanical work Wme,ab = �abF , two quantities that characterize the transition |ab〉
rather than the individual states a and b. As long as we consider a single subsystem �ab�,
this difference is not crucial since we can then introduce chemical potentials μa and μb and
load force potentials Va and Vb via

�μab ≡ μb − μa and �abF ≡ Vb − Va. (9.5)

In fact, it is possible to extend this latter definition to all edges of a spanning tree of the
network graph G. Such a tree consists of all Ns motor states (or vertices) together with
Ns − 1 edges, which form a subgraph without any cycle, see, e.g., [59].

However, as soon as we add another edge to such a spanning tree and close one cycle of
the network, say Cn, the chemical potentials μa can only be defined on the whole subgraph
if

�μ(Cd
n ) =

∑
|ab〉

n,+
�μab = 0, (9.6)

i.e., if the cycle Cn is in chemical equilibrium. Likewise, the load force potentials Va can
only be defined for the subgraph including Cn if

Wme(Cd
n ) =

∑
|ab〉

n,+
�abF = 0, (9.7)

i.e., if the cycle Cn is in mechanical equilibrium.
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The conditions (9.6) and (9.7) for chemical and mechanical equilibrium of single cycles
were previously introduced in Sect. 4.3 and are directly related to the cycle classification
in Sect. 3.3. A thermal slip cycle Cn is both in chemical and in mechanical equilibrium.
A mechanical slip cycle Cn is in chemical equilibrium but in mechanical nonequilibrium,
i.e., Wme(Cd

n ) 
= 0. A dissipative slip cycle Cn is in mechanical equilibrium but in chemical
nonequilibrium, i.e., �μ(Cd

n ) 
= 0. Finally, a chemomechanical cycle is both in mechanical
and in chemical nonequilibrium.

In order to discuss the global situation corresponding to the whole network, let us recall
some additional terminology as used in graph theory, see, e.g., [59]. We decompose the
network graph G into a certain spanning tree T and its cotree T c, which consists of all edges
of G not contained in T . If the network has Ne edges, the cotree T c has N c

e = Ne − Ns + 1
edges denoted by εc

n with n = 1,2, . . . ,N c
e . When we add the edge εc

n to the spanning tree T ,
we obtain a subgraph of G which contains the cycle Cn but no other cycle. The set of cycles
Cn with n = 1,2, . . . ,N c

e forms a so-called fundamental set of cycles; all other cycles of the
network can be obtained by cycle addition which corresponds to the operation of symmetric
difference applied to the edge sets of these cycles. In general, the symmetric difference of
two sets A and B is defined by A + B ≡ (A ∪ B) \ (A ∩ B).

If the constrained chemical equilibrium (9.6) holds for all cycles Cn of a certain funda-
mental set of cycles, it holds for all cycles of the network which implies that the motor is
in chemical equilibrium and �μ = 0. Likewise, if the constrained mechanical equilibrium
(9.7) holds for all cycles Cn of the fundamental set, it holds for all cycles of the network
which implies that the motor is in mechanical equilibrium and F = 0. Finally, if constrained
chemical as well as mechanical equilibrium holds for all cycles Cn of the fundamental set,
the motor is in full equilibrium and we can extend the constrained equilibrium condition
(9.3) for the subsystem �ab� to the whole network with equilibrium probabilities P ce

a = P
eq
a

and P ce
b = P

eq
b for all edges 〈ab〉 and dicycle ratios 	(Cd

ν ) = 1 for all dicycles Cd
ν as in (5.7).

On the other hand, as soon as we encounter any cycle Cn for which the constrained chem-
ical equilibrium (9.6) and/or the constrained mechanical equilibrium (9.7) does not hold, we
can no longer extend the definitions (9.5) for the chemical potentials μa and/or the load force
potentials Va to the whole subgraph. This break-down of constrained equilibrium, which im-
plies dicycle ratios 	(Cd

n ) 
= 1, is precisely revealed by the nonlocal balance conditions as
given by (6.9) and (6.10).

10 Summary and Outlook

In summary, our theoretical framework has three basic ingredients as discussed in
Sects. 2–4: (i) The thermodynamic description of the motor and its reservoirs; (ii) Network
representations of the motor based on the motor states i and the transitions |ij〉 from state i

to state j ; and (iii) The energy balance relations (4.4) and (4.10) for single transitions and
dicycles of the network, respectively. The basic ingredients (i)–(iii) are rather general and
do not involve any assumptions about the motor dynamics. In order to proceed any further,
one has to consider a specific dynamics of the motor molecule.

In Sect. 5, we considered the presumably simplest motor dynamics in terms of a
continuous-time Markov process on the network of motor states. This dynamics allows us to
calculate various steady state properties such as the entropy produced by the motor during
a completed dicycle and during a single transition as given by (6.8) and (6.13), respectively.
When we identify the entropy produced during a completed dicycle with the heat exchange
during this dicycle, we obtain the energy balance relation (6.10) between the dicycle ratio
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	(Cd
ν ) of the transition rates and the thermodynamic control parameters. When we identify

the transition entropy with the heat exchange during the transition |ij〉, we obtain the local
energy balance relation (6.15) between the internal energy difference Uj − Ui , the chemical
energy change �μij , the mechanical work �ijF , and the transition rate ratio ωij /ωji .

In Sect. 7, we viewed the energy balance relations (6.10) and (6.15) as balance conditions
that have to be satisfied by the transition rates ωij in order to obtain a dynamic model that
is consistent with thermodynamics. These conditions have several important consequences.
First, the nonlocal balance conditions (7.9) and (7.10) relate (i) the zero-force transition
rates ωij,0 of a dicycle to the overall energy change �μ per ATP hydrolyis and (ii) the load-
dependent factors �ij to the load force F . Thus, using these balance conditions, one can
estimate unknown transition rates of the motor in terms of known ones as we have previ-
ously shown for kinesin [17]. Second, the local balance conditions (7.12) and the obvious
requirement that the internal energies Ui must be independent of the concentrations or activ-
ities [X] and of the load force F lead to rather strong constraints on the dependence of the
transition rates ωij on these thermodynamic parameters: (i) to the parametrization (7.17) for
the zero-force transition rates ωij,0, (ii) to the condition �ij/�ji = exp[−�ijF/kBT ] for the
load-dependent factors �ij = �ij (F ) as in (7.13), and (iii) to the simple relation ζij = ζji

for the additional force-dependent factors ζij (F,F⊥) as in (7.14). Third, the local balance
condition (7.12) allows us to determine the internal energies Ui of the motor, see (8.2–8.4),
and the equilibrium distribution as given by (8.8).

Finally, we have reinterpreted the local balance conditions in terms of constrained equi-
libria between neighboring motor states, see relation (9.3). When we combine these con-
strained equilibria and try to extend them to the whole network, we detect chemical and/or
mechanical nonequilibrium as soon as we encounter cycles Cn with �μ(Cd

n ) 
= 0 and/or
Wme(Cd

n ) 
= 0, compare the relations (9.6) and (9.7). These relations are equivalent to the
nonlocal balance conditions as given by (7.9) and (7.10).

The theoretical framework presented here is very economical and incorporates the “prin-
ciple of Occam’s razor”. It involves only two types of parameters: (i) thermodynamic para-
meters that characterize the different reservoirs and (ii) the transition rates ωij that govern
the motor dynamics. Both types of parameters can be measured, at least in principle, and
all other quantities that appear in our theory can be expressed in terms of these parameters.
In particular, these two types of parameters also determine the landscape of internal ener-
gies Ui : Indeed, inspection of (8.2–8.4) shows that the internal energies Ui can be expressed
in terms of the rate constants κij and the activity scales [X]∗. Thus, the energy landscape
{Ui} must not be considered as an independent set of parameters. The latter remark also
applies to ratchet models with spatially localized transitions since these latter models are
equivalent to the network models considered here as shown in [28, 29].

As mentioned in the introduction, our theoretical approach has already been successfully
applied to the molecular motor kinesin [16–18]. Most of the experimental results on kinesin
can be understood in terms of the 6-state network as in Fig. 4(c) which we display in a
slightly different way in Fig. 5(a). In order to understand the strong decrease of the motor
velocity with increasing ADP concentration [15], we found it necessary to enlarge the state
space and to include another motor state in which both motor domains are occupied by ADP;
the resulting 7-state model is shown in Fig. 5(b). Both the 6-state and the 7-state model have
the simplifying feature that they involve only a single mechanical step represented by the
broken edge 〈25〉. Using these network representations, one can calculate all motor proper-
ties that have been observed in single molecule experiments [17] and determine additional
properties such as ATP hydrolysis rate and motor efficiency [60] as well as the sojourn (or
waiting) time distribution for the effective stochastic process that consists of the mechanical
steps alone [61].



62 J Stat Phys (2008) 130: 39–67

Fig. 5 Network models for kinesin: (a) 6-state network as in Fig. 4(c) with two chemomechanical cy-
cles, the forward cycle F = 〈12561〉 and the backward cycle B = 〈23452〉. The direction of the forward
mechanical step is now indicated by the black arrow and the direction of the ATP hydrolysis by white
double-arrows; and (b) 7-state network with two additional chemomechanical cycles, the additional forward
cycle FDD = 〈12712〉 and the additional backward cycle BDD = 〈27452〉. In the limit of small ADP concen-
tration, the observed dependence of the motor properties on the load force arises from the competition of the
forward cycle F and the backward cycle B. In the limit of small load force, on the other hand, the available
experimental data on the ADP dependence of the motor velocity can be understood from the concerted action
of the two forward cycles F and FDD [17]. The unbinding (UB) of the motor from the filament is most likely
to occur from the weakly bound state (D, D)

It would also be interesting to abandon the assumption of a continuous-time Markov
process, which is governed by the exponential distribution P (τi) = (1/〈τi〉) exp[−τi/〈τi〉]
for the sojourn (or dwell) time τi of motor state i as in (5.1), and to consider more general,
nonexponential distributions P (τi) = P ne(τi). Indeed, for real motor molecules, the distribu-
tions P (τi) must vanish for small τi in contrast to the exponential distribution of the Markov
process as given by (5.1). In addition, since each motor state i contains many substates (i, k),
see Sect. 4.1, the sojourn time distribution P (τi) might be governed by more than one time
scale. The theoretical framework described here strongly suggests that the corresponding
non-Markov process will again be characterized by local and nonlocal balance relations as
in (6.10) and (6.15) provided the transition rates ωij are replaced by πij /〈τi〉 as in (5.3) and
the average values 〈τi〉 of the sojourn times are calculated using the distributions P ne(τi).

Other two-headed motors could be modelled in a rather similar fashion as kinesin.
Myosin V, for example, has two catalytic domains as well and, thus, would be described
by the same network of chemical transitions as in Fig. 4(a). Dynein, on the other hand, has
several ATP binding domains per head and, thus, may have M > 2 catalytically active do-
mains. In the latter case, one would have to consider a more complex state space with 3M

states. Likewise, one might apply our approach to motors that couple ATP hydrolysis with
work against a concentration gradient. A prominent example is provided by FoF1-ATPase
which has been studied in some detail using the framework of ratchet or Fokker-Planck
models [62]. Finally, it would be desirable to extend the theoretical framework presented
here to the growth of cytoskeletal filaments, for which the number M of catalytic domains
is not fixed but grows with the filament length.
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Appendix: Single Catalytic Motor Domain

In this appendix, we will discuss the simple example of a single catalytic motor domain as
shown in Fig. 3. The 4-state network in Fig. 3(a) was previously used by T.L. Hill [19] to
model a generic ATPase that does not perform any mechanical work. We will first review
the energy balance relation for the 4-state network and then show that the reduction of the
4-state to the 3-state network does not change the energy transduction of the ATPase cycle.

11.1 Energy Transduction in 4-State Network

For the 4-state network in Fig. 3(a), the dissipative slip dicycle D+
4s = |ET�DE〉 is governed

by the energy balance relation

Q(D+
4s) = T �S(D+

4s) = kBT ln

(
ωETωT�ω�DωDE

ωTEω�TωD�ωED

)
= �μ. (11.1)

This relation is intuitively obvious. The catalytic domain obtains the chemical energy �μ by
hydrolyzing one ATP molecule during one completed dicycle D+

4s, and this chemical energy
is completely converted into heat in the absence of any mechanical work.

The last equality in the energy balance relation (11.1) has been previously derived by
T.L. Hill in [19] using the following line of reasoning. First, he assumed that all transitions
|ij 〉, which involve the binding of one of the chemical species X = ATP, ADP or P, have
transition rates ωij that are proportional to the activity or molar concentration [X] whereas
all other rates ωij are independent of [X]. Second, using this parametrization of the transition
rates in the detailed balance condition kBT ln[	(D+

4s)] = 1 as in (5.7), Hill obtained

κETκT�κ�DκDE

κTEκ�TκD�κET
= [ADP][P]

[ATP]
∣∣∣∣
eq

= Keq (11.2)

where the last equality follows from the relation (2.6) for the equilibrium constant Keq.
Finally, combining this relation between the rate constants and the equilibrium constant
with the thermodynamic relation (2.5), Hill concludes that the relation (11.1) holds for any
state of the system. This line of reasoning was extended to general biochemical networks
in [63, 64]. Obviously, our derivation of (11.1) is different and relies on the energy balance
during the completion of dicycle D+

4s together with the identity Q(D+
4s) = T �S(D+

4s).

11.2 Reduction to 3-State Network

Now, let us assume that we have determined the transition rates ωij of the 4-state network in
Fig. 3(a) in such a way that they satisfy the energy (or steady state) balance condition (11.1).
We now reduce this 4-state network and eliminate the state � which leads to the 3-state
network in Fig. 3(b). How do we have to choose the transition rates of the reduced 3-state
network in order to preserve the thermodynamic consistency of the 4-state network?

For the 3-state network in Fig. 3(b), the dissipative slip dicycle D+
3s ≡ |ETDE〉 is governed

by the energy balance relation

Q(D+
3s) = T �S(D+

3s) = kBT ln

(
ωETωTDωDE

ωTEωDTωED

)
= �μ. (11.3)
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We now require that both networks describe the same energy transduction for the same value
of �μ. Comparison of the two steady state balance conditions (11.1) and (11.3) then implies
the constraint

ωTD

ωDT
= ωT�ω�D

ω�TωD�

(11.4)

for the transition rates ωTD and ωDT of the 3-state network in terms of the transition rates
ωT�, ω�T, ω�D and ωD� of the 4-state network.

The relation (11.4) may also be expressed in terms of the transition entropies �Sij =
kB ln(ωij /ωji) or the corresponding heat exchanges Qij = T �Sij which leads to

�STD = �ST� + �S�D or QTD = QT� + Q�D. (11.5)

This gives a direct physical interpretation of the constraint (11.4): When we combine the
hydrolysis transition |T�〉 with the P release transition |�D〉 into the new, effective transi-
tion |TD〉, we want the heat QTD exchanged during the transition |TD〉 to be equal to the
sum of the two heats exchanged during the transitions |T�〉 and |�D〉.

Furthermore, using the local balance conditions (6.15), we also find that the constraint
(11.4) implies the relation

�UTD = −μ(P) − kBT ln

(
ωTD

ωDT

)
= �UT� + �U�D (11.6)

between the internal energy differences �UT� and �U�D in the 4-state model and the in-
ternal energy difference �UTD in the 3-state model. Thus, the constraint (11.4) ensures that
the energy landscape of the remaining states E, T, and D is not affected by the elimination
of the state �.

Glossary of Mathematical Symbols

ADP adenosine diphosphate.
ATP adenosine triphosphate.
B chemomechanical backward cycle in Figs. 4 and 5.
Cν cycle of network graph labeled by index ν.
Cd

ν directed cycle or dicycle of network graph with direction d .
d direction of dicycle with d = ±.
D dissipative slip cycle.
Ei,k energies of substates (i, k) of motor state i.
G graph of network; the vertices of G are the motor states i, the

edges 〈ij 〉 of G represent the two transitions |ij〉 and |ji〉.
�Jij local excess flux of transition |ij〉 with �Jij = Jij − Jji .
�μ chemical energy change per ATP hydrolysis as defined in (2.4).
�μij chemical energy change during transition |ij〉.
�μ(Cd

ν ) chemical energy change during dicycle Cd
ν .

�Sij entropy produced during transition |ij 〉.
�S(Cd

ν ) entropy produced during the completion of dicycle Cd
ν .

�Uij internal energy change during transition |ij 〉 with �Uij = Uj − Ui .
F load force acting on the motor parallel to the filament; F > 0 for resisting load.
�Fex 3-dimensional vector of externally applied force with �Fex = (F,F⊥) as in (2.2).
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F⊥ 2-dimensional force acting on the motor perpendicular to the filament.
F chemomechanical forward cycle in Figs. 4 and 5.
Hi Helmholtz free energy of motor state i.
i and j discrete motor states.
|ij 〉 transition or directed edge (di-edge) from motor state i to state j .
〈ij〉 edge between states i and j .
(i, k) substates of motor state i.
Jij probability flux from motor state i to state j with Jij = Piωij .
κij rate constant for transition from state i to state j .
kB Boltzmann constant.
Keq equilibrium constant for ATP hydrolysis as defined in (2.6).
� mechanical displacement of motor.
�ij mechanical motor displacement during transition |ij〉.
�(Cd

ν ) mechanical motor displacement during completion of dicycle Cd
ν .

M number of catalytic domains.
μ chemical potential.
μ(X) chemical potential for chemical species X as given by (2.5).
μi chemical potential for motor state i in chemical equilibrium.
ν label for all cycles in the network.
ωij transition rate for transition from motor state i to state j .
ωij,0 transition rates for zero external force as defined in (7.2).

st

ij frequency of transition |ij 〉 in the steady state.

st(Cd

ν ) frequency of completion of dicycle Cd
ν in the steady state.

P inorganic phosphate.
Pi probability to find the motor in state i.
P st

i probability for motor state i if the system is in its steady state.
P

eq
i probability for motor state i if the system is in its equilibrium state.

πij transition probability for transition from state i to state j .
�ij load-dependent factor of transition rate ωij as defined in (7.3).
Qij heat released by the motor during transition |ij〉.
Q(Cd

ν ) heat released by the motor during completion of dicycle Cd
ν .

σfl entropy flux of motor system as defined in (6.4).
σpr entropy production rate of motor system as defined in (6.3).
σ st

pr entropy production rate in the steady state of the motor system.
t time.
T temperature.
T spanning tree of network graph.
T c cotree of spanning tree T .
τi sojourn or dwell time in motor state i.
Ui internal energy of motor state i.
Va load force potential for motor state a.
Wme mechanical work performed by the motor.
Wme,ij mechanical work performed by the motor during transition |ij〉.
X chemical species ATP, ADP or P.
[X] activity or molar concentration of chemical species X.
[X]∗ activity scale for chemical species X as given by (2.3).
ζij force-dependent factor of the transition rate ωij as defined in (7.4).
	(Cd

ν ) dicycle ratio for dicycle Cd
ν as defined in (5.6).

	0(Cd
ν ) zero-force dicycle ratio for dicycle Cd

ν as defined in (7.6).
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	F (Cd
ν ) load-dependent factor of dicycle ratio 	(Cd

ν ) as defined in (7.7).
	⊥(Cd

ν ) F⊥-dependent factor of dicycle ratio 	(Cd
ν ) as defined in (7.8).

Z grand-canonical partition function of motor states, see (8.10).
Zi canonical partition function of substates for motor state i, see (4.1).
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The derivation of (6.15) contains an implicit assumption that restricts its general validity and
led to a wrong conclusion about the two relations (9.3) and (9.4).

As explained in Sect. 4.1, each motor state i corresponds to an ensemble of substates,
which is characterized by the Helmholtz free energy Hi and the internal energy Ui , see (4.2)
and (4.3). These two quantities define the entropy Si = (Ui − Hi)/T of state i at temper-
ature T . During a transition |ij〉 from state i to state j , the motor produces, on average,
the entropy �Sij = kB ln(ωij /ωji), see (6.13). We then identified T �Sij with the average
heat Qij that the motor releases during the transition |ij〉 into the heat reservoir. The latter
identification is, however, restricted to motor states i and j with Si = Sj .

For the more general case with Si �= Sj , the average produced entropy during the transi-
tion |ij 〉 satisfies the relation

�Sij = kB ln(ωij /ωji) = Sj − Si + Qij/T (1)

where Sj −Si and Qij/T represent the entropy change of the motor molecule and of the heat
bath, respectively. The entropy differences Sj −Si cancel out from the entropies �S(Cd

ν ) for
the dicycles Cd

ν , see (6.8), as well as from the entropy production rates (6.7) and (6.6). In-
deed, the general expression (6.6) for the entropy production rate in the steady state remains
unchanged if we substitute ln(ωij /ωji) by ln(ωij /ωji) + Aj − Ai with any state function
Ai as follows from flux conservation at each state (or vertex) i. Therefore, the decomposi-
tion (1) is not directly imposed by the form of (6.6) but is consistent with the corresponding
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R. Lipowsky (�) · S. Liepelt
Max-Planck-Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
e-mail: Reinhard.Lipowsky@mpikg.mpg.de

http://dx.doi.org/10.1007/s10955-007-9425-7
http://dx.doi.org/10.1007/s10955-007-9425-7
mailto:Reinhard.Lipowsky@mpikg.mpg.de


778 R. Lipowsky, S. Liepelt

decomposition of macroscopic systems [1] and can be checked directly for a system con-
sisting of only two states i and j not coupled to any other reservoir apart from the heat
bath.

When the relation (1) is inserted into the local energy balance relation (4.4), one obtains
the free energy differences

Hj − Hi = Uj − Ui − T (Sj − Si) = �μij − �ijF − kBT ln(ωij /ωji), (2)

which generalizes (6.15) to the case Si �= Sj .
All relations of our article that follow after equation (6.15) and involve the internal en-

ergies can now be generalized by simply replacing the internal energies Ui by the free en-
ergies Hi . When this substitution is made in equations (8.1)–(8.4), for example, one obtains
explicit expressions for the landscape of the free energies Hi . Likewise, the constrained
equilibrium relation (9.3) now attains the more general form

ωba

ωab

= exp[−Ha/kBT ]
exp[−Hb/kBT ] e

(−�μab+�abF )/kBT ≡ P ce
a

P ce
b

. (3)

For F = 0, i.e., in the absence of a work reservoir, (3) reduces to relation (9.4) as obtained
by Hill and Simmons [2].

We thank Thomas Weikl for stimulating discussions about protein folding.
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