
Chemometric classification and quantification of olive oil in blends with
any edible vegetable oils using FTIR-ATR and Raman spectroscopy

Jiménez-Carvelo, A. M., Osorio, M. T., Koidis, A., González-Casado, A., & Cuadros-Rodríguez, L. (2017).
Chemometric classification and quantification of olive oil in blends with any edible vegetable oils using FTIR-ATR
and Raman spectroscopy. LEBENSMITTEL-WISSENSCHAFT UND-TECHNOLOGIE-FOOD SCIENCE AND
TECHNOLOGY, 86, 174-184. https://doi.org/10.1016/j.lwt.2017.07.050

Published in:
LEBENSMITTEL-WISSENSCHAFT UND-TECHNOLOGIE-FOOD SCIENCE AND TECHNOLOGY

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2017 Elsevier.
This manuscript is distributed under a Creative Commons Attribution-NonCommercial-NoDerivs License
(https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits distribution and reproduction for non-commercial purposes, provided the
author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:26. Aug. 2022

https://doi.org/10.1016/j.lwt.2017.07.050
https://pure.qub.ac.uk/en/publications/7b128736-c279-41fd-a4e0-1d05db120675


1 / 38 

CHEMOMETRIC CLASSIFICATION AND QUANTIFICATION OF OLIVE OIL 1 

IN BLENDS WITH ANY EDIBLE VEGETABLE OILS USING FTIR-ATR AND 2 

RAMAN SPECTROSCOPY 3 

 4 

Ana M. JIMÉNEZ-CARVELO1 , María Teresa OSORIO2, Anastasios KOIDIS2, 5 

Antonio1 GONZÁLEZ-CASADO , Luis CUADROS-RODRÍGUEZ 1   6 

1 Department of Analytical Chemistry, University of Granada, c/ Fuentenueva, s.n. E-7 

18071 Granada, Spain.  8 

2 Institute for Global Food Security, Queen’s University, 18-30 Malone Road, Belfast 9 

BT9 5BN, Northern Ireland, UK 10 

 11 

 12 

 13 

Keywords : vegetable oils, discrimination, fingerprinting, pattern recognition, 14 

spectroscopic techniques 15 

 16 

 17 

 18 

 Corresponding author: phone: +34 958240797; fax: +34 958243328; email: 19 

amariajc@ugr.es 20 

 21 

  22 



2 / 38 

Abstract  23 

Samples of olive oils (n=67) from different qualities and samples of other vegetable 24 

edible oils (including soybean, sunflower, rapeseed, corn oil etc; n=79) were used in 25 

this study as pure oils. Previous to spectroscopy analysis, a transesterification step 26 

was applied to the pure vegetable oil samples and all the different oil blends were then 27 

prepared to create in-house blended samples. Spectral acquisition was performed with 28 

typical parameters to collect the FTIR and Raman fingerprints. For the olive/non-olive 29 

classification model, three classification strategies have been applied: (i) one input-30 

class (1iC) classification; (ii) two input-class (2iC) classification; and (iii) one input-class 31 

plus one 'dummy' class classification (or pseudo two input-class (p2iC) classification). 32 

The multivariate classification methods used were k-nearest neighbours (kNN), partial 33 

least squared-discriminant analysis (PLS-DA), one-class partial least squares 34 

(OCPLS), support vector machine classification (SVM-C), and soft independent 35 

modelling of class analogies (SIMCA). The multivariate quantification method used was 36 

partial least square-regression (PLS-R). FTIR fingerprints showed excellent 37 

classification ability to distinguish pure olive from non-olive oil. When PLS-DA or SVM-38 

C techniques are applied, 100% of olive oil samples and 92% of other vegetable edible 39 

oils are correctly classified. In general FTIR fingerprints were more discriminative than 40 

Raman’s in both classification and regression scenarios.   41 

  42 
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1.  INTRODUCTION  43 

As a natural product that is produced using ‘only mechanical means’ from olive drupes, 44 

olive oil is protected by various regulations and institutions such as the EU Regulations 45 

(Regulation UE, 2016; Regulation UE, 2011; Commission Regulation EEC, 2016) and 46 

Codex Alimentarius (Codex Stan, 2015). Due to its increasing popularity, it has always 47 

been the target for fraudulent practises such as substitution fraud with cheaper oils 48 

(blends). To prevent that, authenticity of olive oil is described adequately in the 49 

legislation. The top two qualities of olive oil that exist are the extra-virgin and the virgin 50 

olive oil and both of them must comply to certain well defined physical, chemical and 51 

sensorial parameters. There are several standard methods that are used to determine 52 

these parameters. For example, with the use of chromatographic techniques detection 53 

of several major and minor constituents of olive oil (fatty acids, tocopherols, 54 

carotenoids etc.) is achieved. Nowadays rapid and novel methods are continuously 55 

developed (such as those based on spectroscopy), as alternatives to the standard 56 

methods offering speed, efficiency (less resources required) and accuracy in 57 

authenticity testing.  58 

Actually, studies about authentication of olive oil using spectroscopic techniques are 59 

based on the application of chemometric tools to develop multivariate models that are 60 

able to differentiate pure olive oils from adulterated olive oil with other vegetable edible 61 

oil. Then, the proportion of olive oil in these blends is quantified; therefore, although 62 

blends of olive oil with other vegetable oils are allowed by the legislation, there is a 63 

restriction of labelling them as “olive oils” if the olive oil in the blend does not exceed 64 

50% (Regulation UE, 2016). Consequently, a proper method of control must be 65 

established.  Sun, Lin, Li, Shen and   Luo (2015) reported: (i) a principal component 66 

analysis (PCA) model to discriminate extra virgin olive oil from binary blends of olive oil 67 

with camellia oil, soybean oil, sunflower oil and corn oil; and (ii) a quantification model 68 

using partial least squares (PLS) to quantify the olive oil in binary blends. López-Díez  69 
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and Goodacre (2003) described a PCA model to differentiate pure extra virgin olive oil 70 

from adulterated olive oil with hazelnut oil, and a PLS model to quantify the amount of 71 

olive oil in the mixtures. Similar studies to the above mentioned ones are shown in 72 

Table 1. This table shows five papers using FTIR to detect adulteration of olive oil with 73 

other vegetable oil in blends binary, only Gurdeniz and Ozen (2009) develop a model 74 

to quantify olive oil in ternary blends.  For Raman spectroscopy five works are reported, 75 

as in FTIR all the authors detect and quantify olive oil in blends binary, except Rohman 76 

and Che Man (2012) which quantifies olive oil in quaternary blends.  77 

 78 

Table 1 

 79 

The main disadvantage of the reported models to authenticate olive oil using 80 

spectroscopic techniques, such as FTIR and Raman, is the low number of different 81 

botanical species used to build the blends of olive oil with other edible vegetable oils. 82 

Most authors employ a small set of oils to elaborate the blends, and sometimes using a 83 

single olive oil or a limited number of vegetable edible oil (non-olive oil) in the different 84 

mixtures prepared. For example, Tay, Singh, Krishnan and Gore (2002) reported a 85 

method to authenticate olive oil using only thirty two olive oil and seven vegetable 86 

edible oils (non-olive oil) to build the different blends (Tay et al.,2002). Thus, the 87 

resulting models cannot be considered as global methods to detect adulteration of olive 88 

oil (independently of the cultivars) with any edible vegetable oil. Moreover, some 89 

authors erroneously apply PCA as discriminant analysis technique to develop and 90 

validate classification models of olive oil (Sun et al.,2015). PCA is an unsupervised 91 

data analysis technique used to explore the variability in the dataset and to evaluate if 92 

there are different groups of samples when the dimensionality of the data decreases. 93 

This exercise should not be used for classification purposes. In the literature there is 94 

only one published study where it is developed a classification model to distinguish 95 
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pure olive oil from other pure vegetable oil using FTIR or Raman spectroscopy. De la 96 

Mata et al. (2012) reported a partial least squares discriminant analysis (PLS-DA) 97 

aiming to distinguishing between olive oil and binary mixture of non-olive samples 98 

applying ATR-FTIR.   99 

The aims of this study are: (i) discrimination of pure olive oil/non-pure olive oil, (ii) 100 

detection of adulterated olive oil and (iii) quantification of olive oil in blends (from binary 101 

to heptenary mixtures) with other vegetable edible oils using a number of chemometric 102 

techniques. For this purpose, we have developed a global and comprehensive 103 

analytical method to differentiate, detect and quantify olive oil in blends with any edible 104 

oils. The number of oils used in this work is wide, and spread worldwide. Although, in 105 

the "real world" the usual blends of olive oil with other seed oil are binary, a quality 106 

control laboratory does not know which was and/or how many were the seed oils used 107 

in adulteration, if any. For this reason, the proposed method aims at covering binary 108 

and higher-order blends which could be found.  109 

 110 

2.   MATERIALS AND METHODS  111 

 112 

2.1.  Chemicals  113 

Isopropanol, n-hexane, methanol and tert-butyl methyl ether (TBME) were purchased 114 

from VWR International Eurolab, S.L. (Barcelona, Spain) and all of them were of HPLC 115 

grade. Other reagents, such as sodium methoxide, citric acid monohydrate, and 116 

anhydrous sodium sulphate were purchased from Merck (Darmstadt, Germany). The 117 

nitrogen (99.9999 %) used was provided by Air Liquid (Madrid, Spain). 118 

 119 

2.2.  Instrumentation  120 
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FT-IR spectra were obtained on a NICOLET iS5 spectrometer (Thermo Scientific, 121 

Waltham, Massachusetts, USA) equipped with a DTGS detector and KBr beam splitter. 122 

Spectra were obtained in the range of 4000 cm–1 to 550 cm–1 with a resolution of 2 cm–1 123 

using a monolithic diamond attenuated total reflectance (ATR iD7) accessory. All the 124 

spectra were recorded at room temperature with 32 scans.  125 

Raman measurements were carried out using IDRAMAN Reader (Ocean Optics, 126 

Oxford, UK) with 785 nm emission of a laser (23.4 mW at sample) for excitation. The 127 

laser was focused on the sample contained in 2 mL vial. For signal detection, a 2048-128 

element NIR-enhanced CCD array with thermoelectric cooling to 10 °C was employed. 129 

An averaged spectrum for each sample was recorded in the range of 200 to 3200 cm–1, 130 

using an integration time of 10 s each 3 scans.  131 

NIR spectra were obtained using Antaris II (Thermo Electron Corporation, Waltham, 132 

Massachusetts, USA) FT-NIR analyzer, equipped with a diffuse reflection fibre optic 133 

and InGaAs detector. All the spectra, in the range of 4000 to 10000 cm–1, were 134 

recorded at room temperature with 32 scans. 135 

In all cases, each sample was analysed in triplicate.  136 

 137 

2.3.  Samples 138 

Pure vegetable edible oils used to the classification models 139 

67 samples of olive oils and 79 samples of other vegetable edible oils were used in this 140 

study. The samples of olive oils were constituted by 52 extra virgin olive oils (EVOO) 141 

samples, including 41 samples from 10 different monovarietals ("Arbequina", 142 

"Hojiblanca", "Picual", "Royal", "Manzanilla", "Cornicabra", "Empeltre", "Frantoio", 143 

"Verdial" and "Blanqueta") and 26 samples of varietal mixtures, 4 virgin olive oil 144 

samples (VOO), 5 olive oils, blend of virgin and refined (OO) and 6 pomace olive oil 145 

samples (POO). Vegetable edible oil samples (non-olive oils) consisted of 8 hazelnut 146 
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oils, 5 peanut oils, 10 canola oils, 2 safflower oils, 12 sunflower oils, 2 flax oils, 5 corn 147 

oils, 9 palm oils, 8 seeds oils (marketing mixture of unidentified seeds), 4 sesame oils, 148 

8 soybean oils, 1 wheat oil and 4 grapeseed oils. In addition, a speciality olive oil 149 

extracted from previously dehydrated olive fruits was also added in this group. All 150 

samples were collected from marketed edible oils, purchased in food stores and 151 

sourced from respective partners from multiple geographical locations. 152 

 153 

Blends of olive oil with other vegetable edible oils 154 

To build the blends were used 27 olive oil samples, of which 22 EVOO (including 16 155 

monovarietal oils), 3 VOO and 2 OO. In addition, 52 edible oils samples of 8 botanical 156 

origins, obtained each one from different suppliers, were used: 8 soybean oils, 11 157 

sunflower oils, 10 rapeseed (canola) oils, 5 corn oils, 5 seeds oils (commercial blends 158 

of unknown seed oils), 5 peanut oils, 4 sesame oils and 4 grapeseed oils. Table 2 159 

shows details on the composition of the different blends.  160 

 161 

Table 2  

 162 

All the oil samples were stored at 4 ºC until the sample preparation in order to provide 163 

realistic testing conditions.  164 

 165 

2.4. Sample preparation  166 

Previous to the spectrometric analysis, a transesterification reaction was applied to the 167 

pure vegetable oil samples and all the different oil blends prepared. This reaction was 168 

carried out using 0.1 g/mL sodium methoxide in a methanol/TBME mixture, 4:6 169 

(mL:mL), and then the extraction was performed with n-hexane. In this alkaline 170 
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medium, the free fatty acids presents in the oil are not methylated (Li & Watkins, 2001). 171 

A modification of the original procedure described by Biedermann et al. was applied 172 

(Bierdermann et al., 1993). A detailed description of the procedure followed is 173 

described elsewhere (Jímenez-Carvelo, Pérez-Castaño, González-Casado & Cuadros-174 

Rodríguez, 2017). The subsequent solution was stored at –25º C until analysis with 175 

less than 5% headspace under nitrogen.  176 

 177 

2.5.  Chemometrics 178 

The FTIR and FT-NIR raw data files were exported to MATLAB (Mathworks, 179 

Massachusetts, USA, version R2013a).  In order to reduce the variability associated to 180 

the intensity and derived from baseline, or other sources such as scattering effects, 181 

source or detector variations, or other general instrumental sensitivity effects, standard 182 

normal variate (SNV) and smoothing applying the Savitzky-Golay algorithm (second 183 

order polynomial filter with a 9-point window and  first derivative) were used. Different 184 

chemometric tools have been applied for classification, including k-nearest neighbours 185 

(kNN), partial least squares discriminant analysis (PLS-DA), support vector machine-186 

classification (SVM-C), one-class partial least squares (OCPLS) and soft independent 187 

modelling of class analogies (SIMCA). The classification results from each method 188 

have been evaluated on the basis of several quality metrics, such as: (i) sensitivity, (ii) 189 

specificity, (iii) positive (or precision) and negative predictive values, (iv) efficiency (or 190 

accuracy), (v) AUC (area under the receiver operating curve), (vi) Matthews correlation 191 

coefficient and (vii) Kappa coefficient.  The meaning and way to calculate these metrics 192 

was recently reviewed [(Cuadros-Rodríguez, Pérez-Castaño & Ruiz-Samblás, 2016)].   193 

Partial least squares regression (PLS-R) has been applied for quantification. Root 194 

Mean Square Error of Validation (RMSEV), Mean Absolute Error of Validation (MAEV) 195 

and Median Absolute Error of Validation (MdAEV) were used for accuracy assessment 196 

of the quantification methods.  197 
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 198 

Olive/non-olive classification models  199 

Three classification strategies have been applied: (i) one input-class (1iC) 200 

classification; (ii) two input-class (2iC) classification; and (iii) one input-class plus one 201 

'dummy' class classification (or pseudo two input-class (p2iC) classification).  202 

The main difference between the strategies pursued is the number of class used to 203 

build the classification model. More detailed information can be found at the references 204 

Jímenez-Carvelo, Pérez-Castaño, González-Casado and Cuadros-Rodríguez (2017) 205 

and Jímenez-Carvelo, González-Casado, Pérez-Castaño and Cuadros-Rodríguez 206 

(2017).  207 

For each strategy applied (2iC, p2iC and 1iC) the original vector data set of pure 208 

vegetable oil was divided into different groups to perform the classification model. The 209 

selection was carried out using the Kennard-Stone (KS) algorithm [(Kennard & Stone, 210 

1969)]. For 2iC, the training set was made up of 98 samples (44 olive oils and 54 non-211 

olive oils), and the remaining oil samples (23 olive oils and 25 non-olive oils) composed 212 

the validation set. For p2iC, the training set which was made up of 61 samples (44 olive 213 

oils and 17 analytical blanks), and the validation set composed by 102 samples (23 214 

olive oils and 79 non-olive oils). For 1iC, the training set was composed by 44 olive oils 215 

samples and the validation set by 102 samples (23 olive oils and 79 non-olive oils). 216 

Once it was done, the classification models were developed. PLS_Toolbox (version 217 

8.02, Eigenvector Research, Wenatchee, WA) for MATLAB environment was applied 218 

for reducing of variables and classification methods: principal component analysis 219 

(PCA) (Bro, 2014), k-nearest neighbours (kNN) (Steinbach & Tan, 2009), partial least 220 

squares-discriminant analysis (PLS-DA) (Ballabio & Consonni, 2013) soft independent 221 

modelling of class analogies (SIMCA) (Bylesjö et al., 2006), and support vector 222 

machine-classification (SVM-C) (Luts et al., 2010). Moreover, one-class partial least 223 



10 / 38 

squares classification (OCPLS) (Xu, Yan, Cai & Yu, 2013) was performed applying the 224 

three variants of the function: (i) conventional ordinary linear OCPLS, (ii) nonlinear 225 

radial basis function (RBF) OCPLS, and (iii) partial robust M-regression (PMR) OCPLS, 226 

using the software provided by Xu et al.,(2013). All the options offered by the software 227 

were tested.  228 

 229 

Adulterated olive oils detection models 230 

Classification models to detect adulterations of olive oil with other vegetable edible oils 231 

were developed in order to apply a screening classification method previous to carry 232 

out the quantification. In this case, it was only applied the 2iC strategy. The training set 233 

was composed by 56 samples (44 pure olive oils and 12 adulterated olive oils) and 234 

validation set was made up of 35 samples (23 pure olive oils and 12 adulterated olive 235 

oils). As in the olive/non-olive classification models, PCA was used to reduce the 236 

variables, kNN, PLS-DA, SIMCA, SVM-C and OCPLS techniques were applied to 237 

developed the different classification models.  238 

 239 

Olive oil quantification model 240 

The original analytical data were divided in different groups to perform the statistical 241 

analysis. The calibration data set was made up of 18 samples whose adulteration 242 

levels were from 20 to 80 ( g olive oil/100 g blend oil). The validation set for olive oil 243 

quantification was composed of 12 samples. The composition of the different samples 244 

is shown in Table 2. Partial least squares-regression (PLS-R) was used to build the 245 

model of quantitative prediction using standard parameters.  246 

 247 

3.  RESULTS AND DISCUSSION 248 
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Figure 1 shows a spectral fingerprint of the transesterified fraction of an EVOO sample 249 

with the three different spectroscopic techniques used. The FTIR and Raman 250 

fingerprints of EVOO show strong molecular vibrations and good variability between 251 

samples, the NIR fingerprints appear non selective. Therefore, classification and 252 

quantification models in FT-NIR were not developed due to the low specificity of the 253 

spectra of the transesterified fraction from the different vegetable edible oil samples. 254 

 255 

Figure 1 

 256 

3.1.  Selection of variables 257 

In order to reduce the number of variables and visualise the data a PCA model was 258 

obtained using FTIR and Raman fingerprints. In both spectroscopic techniques the 259 

selection of variable was performed examining the PCA loading plot. For that purpose, 260 

the regions of the spectra where the intensity of the loading was high were selected. 261 

Although the initial region of the Raman spectrum (2900-2800 cm–1) shows a high 262 

value of the loadings, it was not finally selected since it did not improve the 263 

performance of the classification and quantification models.  264 

The PCA model from FTIR data was developed with four principal components (PCs) 265 

which explain 98.87% of the variance. Figure 2 shows both the plot for FTIR spectrum 266 

and PCA loading plot with the three regions selected. The frequencies of the regions 1, 267 

2 and 3 were 3100-2700 cm–1, 1800-1600 cm–1 and 1205-1080 cm–1 respectively.  268 

 269 

Figure 2 

 270 
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The Raman spectra of all 146 samples were recorded. For the PCA model, four PCs 271 

were enough to explain 99.84% of the variance. Only the 950-650 cm–1 range, as 272 

shown in Figure 3, was chosen for analysis.   273 

 274 

Figure 3 

 275 

3.2.  Olive/non-olive classification models  276 

 277 

FTIR 278 

In order to differentiate pure olive oils from other pure vegetable edible oils, different 279 

models were tested using the three regions selected; however, the best performance 280 

statistics were obtained for the models generated using the region 2.  281 

The two-input class (2iC) strategy was used to develop the model applying the 282 

chemometric methods: kNN, PLS-DA, SVM-C and SIMCA. One-input class (1iC) 283 

strategy was applied when OCPLS and SIMCA models were performed and lastly, 284 

pseudo two-input class (p2iC) strategy was only applied to SIMCA model. 285 

The target class was "olive oil" and the non-target class was "non-olive". In kNN, 286 

PLS-DA and SVM-C the olive class was assigned to samples with a predicted 287 

probability value equal to 1 and the non-olive class was defined by samples with a 288 

probability of 0.  K=3 was enough to decide the neighbour distance in the kNN model. 289 

Classification of the samples of the validation set was performed directly by the 290 

software. There were only five samples misclassified, two olive oils samples and three 291 

non-olive oils samples (canola, peanut and hazelnut oils).  292 

The PLS-DA model was built using six latent variables (LV), with 75.68% of the 293 

variance explained. Only one sample was not well classified corresponding to non-olive 294 
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oil (canola oil). The efficiency, area under the receiver operating curve (AUC) and 295 

Matthews's correlation coefficient were 0.98, 0.98 and 0.96 respectively. Figure 4 296 

shows the classification plot obtained from the PLS-DA method. 297 

 298 

Figure 4 

 299 

The SVM-C model was developed optimizing the "C" and "nu" operational parameters. 300 

There are two commonly used versions of SVM classification, 'C-SVC' and 'nu-SVC'. 301 

“C” represents the penalty associated with errors. “Nu” is an alternative parameter for 302 

specifying the penalty associated with errors. It indicates a lower bound on the number 303 

of support vectors to use, given as a fraction of total calibration samples, and an upper 304 

bound on the fraction of training samples which are errors (misclassified) (SVM 305 

Function Settings, Eigenvector Documentation wiki. URL 306 

http://wiki.eigenvector.com/index.php?title=Svmda. Accessed 13.06.17). The results 307 

obtained in all the cases were similar. Moreover, all the models were tested with and 308 

without variable reduction using PCA and PLS. This variable reduction is named X-309 

block compression by PLS_Toolbox software. The best results were obtained when an 310 

X-block compression with PLS was applied. The samples were directly classified by the 311 

software.   312 

The 2iC, p2iC and 1iC strategies were tested to generate the SIMCA models. 313 

Classification of samples was performed using means of the normalised (also called, 314 

reduced) statistics values of residual-Qr and Hotelling-T2
r (Marini, 2010). The samples 315 

with values lower than 1 for both statistics were classified as olive oil.  Firstly, a 2iC 316 

SIMCA classification was carried out. PCA model was built with 4 PCs and 5 PCs for 317 

olive and non-olive oil classes, respectively. Secondly, a p2iC SIMCA model was 318 

developed. In this case, 4 PCs and 3 PCs were chosen for olive oil and 'dummy' 319 
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classes respectively. At last, a 1iC SIMCA was performed with a 4 PCs for olive oil 320 

model.  321 

An OCPLS class-model was also developed. Conventional OCPLS was built with 4 322 

LVs, RBF OCPLS with 5 LVs and PMR OCPLS with 6 LVs. The regions for the 323 

samples classification were pre-established by the software.  324 

To sum up, the 2iC strategy gave good results for all the discriminant methods. PLS-325 

DA and SVM with reduction of variable using PLS were the best models; yielding the 326 

same classification results. The sensibility and specificity of all models were 1.00 and 327 

0.96 respectively. In contrast, to SIMCA model lead to better classification results when 328 

1iC strategy was used. The results for each model are shown in Table 3.  329 

 330 

Table 3 

 331 

Raman 332 

In a similar way to FTIR, the 2iC strategy was applied with all the chemometric 333 

methods, p2iC strategy only with SIMCA and 1iC strategy with SIMCA and OCPLS. 334 

The classification criteria were the same as for FTIR with the different chemometric 335 

methods.   336 

kNN classification model was built with k=3. Seven oil samples were misclassified (4 337 

olive oils and 3 non-olive oils). The values of the quality performance metrics were 338 

similar with those obtained from FTIR models. Four LVs explaining 99.99% of the 339 

variance were enough to develop the PLS-DA model. This model was less efficient 340 

than PLS-DA model from FTIR.  341 

As in the previous case of FT-IR spectra, SVM-C classification models were developed 342 

and tested with and without X-Block compression (reduction of variables). The results 343 

of all the models were the same excepting the (nu)-SVM-C model with reducing the 344 
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variable by PLS. In this model all the samples were classified in both classes (olive and 345 

non-olive oil classes) and the values of the quality performance metrics were not 346 

satisfactory.  347 

The SIMCA classification model was built with 3 PCs and 4 PCs for olive and non-olive 348 

oil classes applying the 2iC strategy. On the contrary to FTIR model, this SIMCA model 349 

classified better the samples of the validation set. 3 PCs for each class were enough to 350 

develop the p2iC SIMCA model. This model classified all the oil samples in the class of 351 

non-olive oils. At last, the 1iC SIMCA model was built with 4 PCs for olive oil model.  352 

OCPLS classification models were developed. In this case partial robust M-regression 353 

(PMR) OCPLS was the best model.  354 

As in the case of FT-IR, the discriminant analysis methods gave good classification 355 

results; PLS-DA model was the best model. In contrast with the results for FTIR, 356 

SIMCA provided better results when the 2iC strategy was applied. Table 4 shows the 357 

results for each model.  358 

  359 

Table 4 

 360 

3.3.  Adulterated olive oils detection models 361 

Discriminant analysis and class-modelling methods were used for the discrimination of 362 

pure EVOO and EVOO adulterated with several vegetable edible oils. The 363 

chemometric techniques used and the criteria for classification were the same that to 364 

olive/non-olive classification models. Table 5 and 6 show the classification results of 365 

the different models tested from FTIR and Raman techniques. From FTIR, the best 366 

results were obtained when PLS-DA was applied. On the contrary, from Raman, the 367 

best models were obtained when SVM-C (optimizing with 'nu' operational parameter) 368 
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without and with X-Block compression by PLS was used. Only four EVOO adulterated 369 

samples were misclassified.  370 

 371 

Table 5 

 372 

Table 6 

 373 

3.4.  Olive oil quantification model 374 

Quantitative analysis of blends of olive oil with other vegetable edible oils was 375 

performed building a specific PLS-R model from FTIR and Raman fingerprints on the 376 

regions previously selected (see section 3.1). In order to achieve more realistic 377 

conditions of the composition of olive oil, the proportion of olive oil in the blends of the 378 

training and validation set is different, in contrast to some research work about 379 

quantification of olive oil using spectroscopic techniques in which the composition is 380 

similar in both set. 381 

The reliability of the different models was established on the basis of: (i) the 382 

determination coefficient (R2) and (ii) the errors of quantification (validation errors) were 383 

evaluated with the Root Mean Square Error of Validation (RMSEV), Mean Absolute 384 

Error of Validation (MAEV) and Median Absolute Error of Validation (MdAEV) 385 

(Hyndman & Koehler, 2006; ASTM E1655-05, 2012). The results obtained (g 386 

EVOO/100 g blend) in terms of R2, RMSEV, MAEV and MdAEV were 0.86, 17.6, 14.6 387 

and 16.0 respectively from FTIR and 0.93, 34.2, 27.8 and 29.6 respectively from 388 

Raman. Figure 5 shows the concentration values obtained from the PLS model vs. the 389 

actual concentration of any vegetable edible oil in olive oil samples using FTIR-ATR. 390 

 391 



17 / 38 

Figure 5 

 392 

 Although the R2 obtained from FTIR is not sufficiently good, the validation errors 393 

(about 15-17%) are better than the validation errors obtained from Raman (about 28-394 

34%).  395 

 396 

4.  CONCLUSION 397 

Methyl-transesterified provides the information needed to authenticate of olive oil. The 398 

method developed could be named “global method” of detection, discrimination and 399 

quantification of olive oil in blends with other vegetable edible oils. Moreover, due to a 400 

transesterification step prior to spectroscopic analysis the problem of the low selectivity 401 

of these techniques has been resolved.  Using FTIR and applying PLS-DA is 402 

performed without the need of any resource intensive chromatographic analysis. 403 

Discriminant analysis classified well the 100% olive oils samples and in addition, the 404 

proportion of olive oil in blends with other vegetable edible oils has been successively 405 

quantified using PLS-R.  406 
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ABBREVIATIONS AND ACRONYMS 407 

 408 

1iC, one input-class classification  

2iC, two input-class classification  

ATR, attenuated total reflectance 

AUC, area under the receiver operating curve 

Bay-LS-SVM, Bayesian-least squares-support vector machine 

BOM, bean with omega 

CAM, camellia oil 

CAN, canola oil 

COG, corn germ oil 

COR, corn oil 

COT, cottonseed oil 

EVOO, extra virgin olive oil 

FLA, flaxseed oil 

FT-IR, Fourier transform-infrared spectroscopy 

FT-NIR. Fourier transform-near infrared spectroscopy 

GAR, garlic oil 

GSO, Grapeseed oil 

HAZ, hazelnut oil 

kNN, k-nearest neighbors 

KS, Kennard-Stone 

LDA, linear discriminant analysis 

LS-SVM, least squares-support vector machine  

LV, latent variables 

MAE, Mean absolute error 

MAEV, mean absolute error of validation 

MdAEV, median absolute error of validation 
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MDVO, mixture of different vegetable edible oils (non-olive oil) 

MLR, multiple linear regression 

OCPLS, one class partial least squares classification 

OO, olive oil 

p2iC, pseudo two input-class classification 

PC, principal component 

PCA, principal component analysis   

PCR, principal component regression   

PLS-DA, partial least squares-discriminant analysis 

PLS-R, partial least squares regression   

PLS-R, partial least squares regression   

PMR, partial robust M-regression 

POO, pomace olive oil 

R2, determination coefficient 

RBF, radial basis function 

RBO, rice bran oil  

RMSE, Root mean square error 

RMSEV, root mean square error of validation 

RPS, rapeseed oil 

SAF, safflower oil 

SES, sesame oil 

SIMCA, soft independent modelling of class analogy   

SNV, standard normal variate 

SOY, soybean oil 

SUN, sunflower oil 

SVM-C, support vector machine classification   

TBME, tert-butyl methyl ether  

VOO, virgin olive oil 
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WGE, wheat germ oil 

WO, walnut oil 

 409 

  410 
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Table 1. Chemometric methods using FTIR or  Raman  for the authentication of olive oil found in the literature 

 

Nº 
Analytical 

technique 

Amount and types 

of edible oils 
Blends Aims  

Chemo-

metrics 

Results  

(Quality Features) 
Ref. 

1 FTIR 

(4000-650 cm-1) 

EVOOt (40), CAMa 
(5), SOYb (5), SUNc 
(5) and CORd(5) oils 

EVOO-CAM, 
EVOO- SOY, 
EVOO-SUN, 
EVOO-COR 

Classification model of 
EVOO and binary blends 
of EVOO with edible oil 

Quantification of EVOO 
in binary blends 

PCA and 
PLS 

R2 : 0.98 - 0.99 

RMSE: 1.9 % (EVOO-SUN); 9.5% 
(EVOO-CA); 1.72 % (EVOO-
SOY); 2.2% (EVOO-COR) 

[(Sun,Lin, Li, Shen 
& Luo, 2015)] 

2 FTIR 

(1200-900 and 
2949-2885 cm-1) 

EVOO (1), GSOe (1), 
RBOf (1), WOg (1) oils 

GSO-WO,     
EVOO-RBO,   
EVOO-RBO-
GSO-WO 

Quantification of EVOO 
in quaternary mixture 

PLS R2 : 0.99 ; RMSE : 3.7% 

 

[(Rohman & Che 
Man, 2011)] 

3 FTIR 

(1207-1018, 1517-
1222 and 3050-
2927 cm-1) 

GC 

EVOO, CANh, COR, 
GSO, SOY, SESi, 
SUN and WO oils 

EVOO-SES Classification model of 
EVOO and other pure 
edible oil based on their 
fatty acids profiles. 

Quantification of EVOO 
in blends of EVOO-SES 

PLS and 
PCR 

R2 : 1.00 ; RMSE : 7.0% (PLS) 

R2 : 0.997; RMSE: 1.1% (PCR) 

[(Rohman & Che 
Man, 2012)] 

4 FTIR 

(4000-1000 cm-1) 

EVOO (6), HAZj (6), 
SUN (6), COR (3), 
COGk (2) and SOY 
(6) oils 

EVOO-HAZ,  
EVOO-SUN, 
EVOO-CORN, 
EVOO-SOY 

Classification of 
vegetable oils using LDA 

Determination of EVOO 
adulteration  

LDA and 
MLR 

R2 : 0.91; MAE: 2.0 (EVOO-HAZ)  

R2 : 0.99; MAE: 1.7 (EVOO-SUN) 

R2 : 0.99; MAE: 1.5 (EVOO-
CORN) 

R2 : 0.98; MAE: 1.9  (EVOO-SOY) 

[(Lerma-García, 
Ramis-Ramos, 
Herrero-Martínez 
& Simó-Alfonso, 
2010)] 
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a Camellia; b Soybean; c Sunflower; d Corn; e Grapeseed; f Rice bran; g Walnut; h Canola; I Sesame; j Hazelnut; k Corn germ; l Rape seed; m Garlic; n Bean with Omega 3; o Safflower; p Wheat germ; r 414 
flaxseed; scottonseed, t Extra virgin olive oil, u Pomace olive oil 415 

RMSE: Root mean square error; MAE: Mean absolute error 416 

5 FTIR  

(3080-2800 cm-1) 

EVOO (25), COR, 
SUN, RPS and COTs 
oils 

EVOO-SUN-COR, 
EVOO-COT, 
EVOO-RPS 

Classification model of 
EVOO and adulterated 
EVOO 

Quantification of EVOO 
in the mixtures 

SIMCA 
and PLS 

R2 : 0.99; RMSE: 10.4% (EVOO-
SUN-COR) 

R2 : 0.95; RMSE: 14.0% (EVOO-
COT) 

R2 : 0.93; RMSE: 13.2% (EVOO-
RPS) 

[(Gurdeniz & 
Ozen, 2009)] 

6 Raman  

(1000-3000 cm-1) 

EVOO (31) and HAZ 
(10) oils 

EVOO-HAZ Quantification of EVOO 
in blends with hazelnut oil 

PCA and 
PLS 

R2 = 0.98 

RMSE 10.94% 

[(López-Diez , 
Bianchi & 
Goodacre, 2003)] 

7 Raman  

(800-1800 and 
2850-3020 cm-1) 

EVOO (18), RPSl, 
SES, GARm, BOMn, 
SUN (3), WO, SAFo 
(2), SOY, WGEp, and 
FLAr oils  

EVOO-SUN#1, 
EVOO-SUN#2, 
EVOO-SUN#3 

Discrimination model of 
EVOO and adulterated 
EVOO. 

Estimation of the SUN  oil 
content in EVOO 

PCA and 
PLS 

R2 : 0.99; RMSE(cross-valid): 
9.81% 

R2 : 0.99; RMSE(cross-valid): 
9.88% 

R2 : 0.98; RMSE (cross-valid): 
9.71% 

[(El-Abassy, 
Donfack & 
Materny, 2009)] 

8 Raman  

(1000-1800 cm-1) 

EVOO (6), POOu (1), 
SOY (3), SUN (3), 
RPS (2) and COR (2) 
oils  

EVOO-SOY, 
EVOO-SUN, 
EVOO-RPS, 
EVOO-COR 

Model to detect 
adulterated EVOO 

PCA Intensity ratio [(Zhou et al., 
2009)] 

9 Raman  

(800-1800 cm-1) 

EVOO (5), SOY (3), 
corn (3) and SUN (3) 
oils 

EVOO-SUN, 
EVOO-SOY,  
EVOO-COR 

Quantification of EVOO 
in binary blends 

Bay-LS-
SVM, LS-
SVM and 
PLS 

R2 : 0.99;  RMSE: 5.1% (Bay-LS-
SVM) 

R2 : 0.99;  RMSE:  6.9% (LS-SVM) 

R2 : 0.99;  RMSE:  8.4% (PLS) 

[(Dong, Zhang, 
Zhang & Wang, 
2012)] 

10 Raman  

(1000-1800 cm-1) 

EVOO and SOY oil  EVOO-SOY Quantification of SOY 
adulteration in EVOO 

PLS R2 = 0.99;  RMSE: 1.3% [(Tiryaki & Ayvaz, 
2016)] 
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Table 2. Percentage and composition of the olive oil and other vegetable edible oil in the oil blend 

samples. 

 

Nº  Composition 

      (a) Calibration set   

1 100% MDVOa 20% seed#1 oil, 20% peanut#1 oil, 20% sunflower#1 oil, 20% canola#1 oil 

and 20% corn#1 oil 

2 100% MDVO 20% soybean#1 oil, 20% soybean#2 oil, 20% sunflower#2 oil, 20% canola#2 

oil and 20% grapeseed#1 oil 

3 100% MDVO 20% seed#2 oil, 20% sesame#1 oil, 20% peanut#2 oil, 20% corn#2 oil and 

20% grapeseed#2 oil  

4 20% EVOOb + 80% 

MDVO 

10% EVOO#1,  5% EVOO#2, 5% EVOO#3, 13% soybean#3 oil, 13% 

canola#3 oil, 13% corn#1 oil, 13% seed#3 oil, 13% grapeseed#3 oil  and 

13% peanut#2 oil 

5 15% EVOO + 5% OOc 

+ 80% MDVO 

5% OO#4, 5% EVOO#5, 5% EVOO#6 , 5% EVOO#7, 8% sunflower#3 oil, 

8% sunflower#4 oil, 8% canola#1 oil, 8% canola#4 oil, 16% corn#3 oil, 16% 

sesame#2 oil and 16% peanut#3 oil  

6 15% EVOO + 5%VOOd 

+ 80% MDVO 

5% EVOO#8, 5% EVOO#9, 5% EVOO#11, 5% VOO#10, 13% sunflower#5 

oil, 13% sunflower#2, 26% corn#2 oil and 26% grapeseed#2 oil  

7 30% EVOO + 10% OO 

+ 60% MDVO 

10% OO#12, 10% EVOO#5, 10% EVOO#7, 10% EVOO#14, 15% 

soybean#4 oil, 15% canola#5 oil, 15% seed#3 oil and 15% peanut#4 oil  

8 30% EVOO + 10% OO 

+ 60% MDVO 

10% EVOO#6, 10% EVOO#13, 10% EVOO#8, 10% OO#4, 15% 

sunflower#6 oil, 15% canola#5 oil, 15% corn#4 oil and 15% grapeseed#2 oil  

9 30% EVOO + 10% 

VOO + 60% MDVO 

10% EVOO#1, 10% EVOO#3, 10% EVOO#2, 10% VOO#15, 15% 

sunflower#7 oil, 15% corn#1 oil, 15% sesame#1 oil and 15% peanut#4 oil 

10 60% EVOO + 40% 

MDVO 

15% EVOO#6, 15% EVOO#7, 15% EVOO#13, 15% EVOO#14, 5% 

soybean#1 oil, 5% soybean#5 oil, 10% canola#6 oil, 10% sesame#3 oil and 

10% grapeseed#4 oil 

11 36% EVOO + 12% OO 

+ 12% VOO + 40% 

MDVO 

12% EVOO#6,  12% EVOO#2, 12% EVOO#5,12% OO#12, 12% VOO#15,  

8% canola#7 oil, 8% corn#5 oil, 8% seed#4 oil, 8% grapeseed#8 oil and 8% 

peanut#3 oil 

12 40% EVOO + 10% 

VOO + 10% OO +  

40% MDVO 

10% EVOO#9, 10% EVOO#11, 10% EVOO#1, 10% EVOO#8, 10% 

VOO#10, 10% OO#12,  7% sunflower#8 oil, 6.6% canola#8 oil, 6.6% corn#2 

oil, 6.6% sesame#2 oil, 6.6% seed#2 oil and 6.6% peanut#5 oil  

13 40% EVOO + 20% 

VOO + 20% OO +  

20% MDVO 

20% EVOO#5, 20% EVOO#2,  20% VOO#15, 20% OO#12, 5% sunflower#9 

oil, 5% corn#3 oil, 5% seed#1 oil and 5% grapeseed#3 oil  

14 80% EVOO + 20% 

MDVO 

30% EVOO#6, 25% EVOO#7, 25% EVOO#9, 5% seed#5 oil, 5% peanut#1 

oil, 5% canola#9 oil and 5% canola#2 oil  

15 60% EVOO + 20% OO 

+ 20% MDVO 

20% EVOO#11, 20% EVOO#1, 20%EVOO#13, 20% OO#12, 5% 

soybean#6 oil, 5% corn#1 oil, 5% sesame#4 oil and 5% grapeseed#1 oil  
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16 100% EVOO 100% EVOO#16 

17 100% EVOO 100% EVOO#17 

18 100% VOO 100% VOO#18 

      (b) Validation set   

1 68% EVOO + 32% 

MDVO* 
68% EVOO#6, 25% corn#5 oil, 3% peanut#3 oil and 4% grapeseed#4 oil  

2 17.50% VOO + 

82.50% MDVO 

17.50% VOO#15, 17% sunflower#8, 11% soybean#4 oil, 28% canola#6 oil, 

26% peanut#1 oil and 0.5% seed#5 oil  

3 93% VOO + 7% 

MDVO 
93% VOO#19, 2% corn#3 oil and 5% sesame#4 oil  

4 44% EVOO + 56% 

MDVO 
44% EVOO#20, 13% peanut#3 oil, 8% canola#5 oil and 35% canola#4 oil  

5 5% EVOO + 95% 

MDVO 

5% EVOO#27, 40% canola#9 oil, 23% soybean#2 oil, 7% grapeseed#2 oil, 

15% canola#4 oil and 10% sunflower#3 oil  

6 68% EVOO + 32% 

MDVO 
68% EVOO#21, 10% sesame#4 oil, 7% soybean#7 oil and 15% seed#3 oil  

7 70% VOO + 30% 

MDVO 

70% VOO#10, 1% sunflower#2 oil, 9% sesame#1 oil, 17% corn#1 oil and 3% 

sunflower#1  

8 31% EVOO + 69 

MDVO 

31% EVOO#22, 24% sunflower#3 oil, 13% sesame#4 oil, 20% soybean#7 

oil, 2% peanut#5 oil and 10% grapeseed#2  

9 52% EVOO + 48% 

MDVO 

52% EVOO#23, 28% canola#7, 13% soybean#6 oil, 5% grapeseed#1 oil and 

2% sesame#4 oil  

10 25% EVOO + 75% 

MDVO 
25% EVOO#24, 25% corn#1 oil, 25% sunflower#2 oil and 25% peanut#3 oil  

11 90% EVOO + 10% 

MDVO 
90% EVOO#25, 5% canola#2 oil and 5% soybean#2 oil   

12 40% EVOO + 60% 

MDVO 
40% EVOO#26, 30% peanut#1 oil and 30% canola#6  

a MDVO: Mixture of different vegetable edible oils (non-olive oils) 417 
b EVOO: Extra virgin olive oil 418 
c OO: Olive oil 419 
d VOO: Virgin olive oil 420 

 421 
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Table 3. Values of the quality performance metrics from the different  FTIR olive/non-olive classification methods  

 

Performance features  

Region 2 (1680-1800 cm-1)  

kNN PLS-DA 

(nu)SVM-C (c)SVM-C SIMCA OCPLS 

None PCA PLS None PCA PLS 

2iC p2iC 1iC 

Ordinar

y linear 
RBF PRM 

2iC 2iC 2iC 2iC 2iC 2iC 2iC 2iC 1iC 1iC 1iC 

Sensibility (Recall)  0.91 1.00 1.00 0.83 1.00 1.00 0.87 1.00 0.91 0.87 0.96 0.74 0.87 0.57 

Specificity  0.88 0.96 0.88 0.88 0.96 0.92 0.84 0.96 0.32 0.76 0.71 0.80 0.20 0.94 

Positive predictive value (Precision) 0.88 0.96 0.88 0.86 0.96 0.92 0.83 0.96 0.55 0.51 0.49 0.52 0.24 0.72 

Negative predictive value  0.92 1.00 1.00 0.85 1.00 1.00 0.88 1.00 0.80 0.95 0.98 0.91 0.84 0.88 

Efficiency (Accuracy)  0.90 0.98 0.94 0.85 0.98 0.96 0.85 0.98 0.60 0.78 0.76 0.78 0.35 0.85 

AUC (Correctly classified rate)  0.90 0.98 0.94 0.85 0.98 0.96 0.85 0.98 0.62 0.81 0.83 0.77 0.54 0.75 

Matthews correlation coefficient  0.79 0.96 0.88 0.71 0.96 0.92 0.71 0.96 0.29 0.54 0.56 0.48 0.08 0.55 

Kappa coefficient 0.79 0.96 0.88 0.71 0.96 0.92 0.71 0.96 0.23 0.50 0.50 0.46 0.04 0.54 

 422 

  423 
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Table 4. Values of the quality performance metrics from the different  Raman olive/non-olive classification methods  

 

Performance features  

(650-950 cm-1)  

kNN PLS-DA 

(nu)SVM-C (c)SVM-C SIMCA OCPLS 

None PCA PLS None PCA PLS 2iC p2iC 1iC 

Ordinar

y linear 
RBF PRM 

2iC 2iC 2iC 2iC 2iC 2iC 2iC 2iC 1iC 1iC 1iC 

Sensibility (Recall)  0.83 0.88 0.83 0.83 1.00 0.83 0.83 0.83 0.67 0.00 0.50 0.42 0.46 0.33 

Specificity  0.88 0.88 0.88 0.88 0.00 0.88 0.88 0.88 0.88 1.00 0.94 0.29 0.23 0.95 

Positive predictive value (Precision) 0.87 0.88 0.87 0.87 0.49 0.87 0.87 0.87 0.84 - 0.71 0.15 0.15 0.67 

Negative predictive value  0.85 0.88 0.85 0.85 - 0.85 0.85 0.85 0.73 0.76 0.86 0.62 0.58 0.82 

Efficiency (Accuracy)  0.86 0.88 0.86 0.86 0.49 0.86 0.86 0.86 0.78 0.76 0.83 0.32 0.28 0.80 

AUC (Correctly classified rate)  0.86 0.88 0.86 0.86 0.50 0.86 0.86 0.86 0.77 0.50 0.72 0.36 0.34 0.64 

Matthews correlation coefficient  0.71 0.76 0.71 0.71 - 0.71 0.71 0.71 0.56 - 0.50 -0.25 -0.29 0.37 

Kappa coefficient 0.71 0.76 0.71 0.71 0.00 0.71 0.71 0.71 0.55 0.00 0.48 0.24 -0.19 0.34 

       The hyphen "-" is signifying that the performance feature cannot be determined 424 

  425 
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Table 5 Values of the quality performance metrics from the different  FTIR adulterated olive oils detection models 

 

Performance features  

Region 2 (1680-1800 cm-1)  

kNN PLS-DA SIMCA 
(nu)SVM-C (c)SVM-C 

None PCA PLS None PCA PLS 

2iC 2iC 2iC 2iC 2iC 2iC 2iC 2iC 2iC 

Sensibility (Recall)  0.83 0.70 0.70 1.00 1.00 1.00 1.00 1.00 0.87 

Specificity  0.50 0.92 0.58 0.00 0.00 0.00 0.00 0.00 0.67 

Positive predictive value (Precision) 0.76 0.94 0.76 0.66 0.66 0.66 0.66 0.66 0.83 

Negative predictive value  0.60 0.61 0.50 - - - - - 0.73 

Efficiency (Accuracy)  0.71 0.77 0.66 0.66 0.66 0.66 0.66 0.66 0.80 

AUC (Correctly classified rate)  0.66 0.81 0.64 0.50 0.50 0.50 0.50 0.50 0.77 

Matthews correlation coefficient  0.34 0.58 0.27 - - - - - 0.55 

Kappa coefficient -0.11 0.55 0.27 0.00 0.00 0.00 0.00 0.00 0.55 

                                 The hyphen "-" is signifying that the performance feature cannot be determined 426 

 427 

  428 
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Table 6. Values of the quality performance metrics from the different  Raman adulterated olive oils detection models 

 

Performance features  

(650-950 cm-1)  

kNN PLS-DA SIMCA 
(nu)SVM-C (c)SVM-C 

None PCA PLS None PCA PLS 

2iC 2iC 2iC 2iC 2iC 2iC 2iC 2iC 2iC 

Sensibility (Recall)  0.83 0.92 0.46 1.00 1.00 1.00 0.88 0.71 0.83 

Specificity  0.08 0.67 0.33 0.67 0.00 0.67 0.67 0.00 0.67 

Positive predictive value (Precision) 0.65 0.85 0.58 0.86 0.67 0.86 0.84 0.59 0.83 

Negative predictive value  0.20 0.80 0.24 1.00 - 1.00 0.73 0.00 0.67 

Efficiency (Accuracy)  0.58 0.83 0.42 0.89 0.67 0.89 0.81 0.47 0.78 

AUC (Correctly classified rate)  0.46 0.79 0.40 0.83 0.50 0.83 0.77 0.35 0.75 

Matthews correlation coefficient  -0.11 0.61 -0.20 0.76 - 0.76 0.55 -0.35 0.50 

Kappa coefficient -0.10 0.61 -0.19 0.73 0.00 0.73 0.55 -0.33 0.50 

              The hyphen "-" is signifying that the performance feature cannot be determined   429 
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FIGURE CAPTIONS  430 

 431 

Figure 1. Examples of vibrational spectra of extra virgin olive oil (EVOO) acquired from: 432 

(a) FTIR (b) Raman and (c) FT-NIR 433 

 434 

Figure 2. (a) Superposed FTIR spectra and (b) loading plot of the 146 vegetable oil 435 

samples showing the three regions selected.  436 

 437 

Figure 3. Plot of (a) superposed Raman spectra and (b) loading plot of all the vegetable 438 

edible oil samples showing the region selected.  439 

 440 

Figure 4. Classification plot from FTIR applying two input-class (2iC) classification 441 

strategy on PLS-DA. The green squares () and the red triangles () represent the 442 

olive and non-olive class, respectively.   443 

 444 

Figure 5. Concentration values for adulteration obtained from the PLS model vs. the 445 

actual concentration of olive oil using FTIR-ATR.   446 
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