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Breast cancer is the most common malignant tumor in females worldwide. Chemotherapy

is the standard breast cancer treatment; however, chemoresistance is often seen in

patients with metastatic breast cancer. Owing to high heterogeneity, the mechanisms of

breast cancer chemoresistance and metastasis have not been fully investigated. The

possible molecular mechanisms of chemoresistance in breast cancer include efflux

transporters, signaling pathways, non-coding RNAs, and cancer stem cells. However,

to overcome this hurdle, the use of novel clinical strategies such as drug carriers,

immunotherapy, and autophagy regulation, are being investigated. The goal of this

review is to summarize the current data about the molecular mechanisms of breast

cancer chemoresistance and the novel clinical strategies; thus, providing a useful clinical

tool to explore optimal treatment for breast cancer.
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INTRODUCTION

Breast cancer (BRCA) is the most common malignancy and the most frequent cause of cancer-
related deaths among women worldwide (1). BRCA is a complex heterogeneous disease classified

into three basic types based on the presence or absence of molecular biomarkers for estrogen or

progesterone receptors and human epidermal growth factor 2 (ERBB2; formerly HER2). These

molecular biomarkers are hormone receptor positive/ERBB2 negative (HR+/ERBB2-; 70% of

patients), ERBB2 positive (ERBB2+; 15%-20%), and triple-negative (tumors lacking all 3

standard molecular markers; 15%) (2, 3).
Clinically, the main treatment methods for BRCA include surgery, radiotherapy, chemotherapy,

endocrine therapy and targeted therapy (2). Despite that, BRCA is curable in 70%-80% of patients in

early stage, non-metastatic disease. The chemoresistance and metastasis in some BRCAs, especially
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in triple-negative breast cancer (TNBC), are still inevitable and

lead to poor prognosis. Chemoresistance is the insensitivity of

cancer cells to therapy, which is a key factor resulting in reduced

efficacy of anti-BRCA chemotherapy (4). Although various

attempts have been made to restore the sensitivity of existing

chemotherapeutic drugs and to overcome drug resistance in
BRCA, the effects are still unsatisfactory.

This review will summarize the current understanding of

chemoresistance mechanisms in BRCA and further discuss the

potential of novel clinical strategies to overcome chemoresistance.

CHEMORESISTANCE MECHANISMS
IN BRCA

Chemotherapy is currently the major systemic treatment for

BRCA, but unfortunately, patients often develop resistance. The
mechanisms of chemoresistance in BRCA urgently need

better understanding.

Efflux Transporters
Many cancer cells are resistant to a broad spectrum of anticancer

drugs through a phenomenon called multidrug resistance

(MDR). The major mechanism of MDR is the expression of a

class of ATP binding cassette (ABC) transporters. ABC
transporters use ATP to pump chemotherapeutic drugs out of

cancer cells and decrease intracellular accumulation of

anticancer drugs (5) (Figure 1). Ample evidence shows that

the expression of ABC transporters is strongly implicated in the

chemoresistance of numerous solid tumors, including BRCA (5).

In the past three decades, at least 15 human ABC transporters

have been showed to efflux cancer drugs in some context (5–10)
(Table 1). In this review, we focus on the subset of ABC

transporters that were first reported as multidrug efflux pumps,

including ABCB1 [P-glycoprotein/P-gp/MDR1), ABCG2 (BRCA

Resistance Protein/BCRP), and ABCC1 (multidrug resistance

protein 1(MRP1)] (5, 6).

P-gp is the first identified and the most well-investigated
protein, which is encoded by a single polypeptide chain with two

homologous nucleotide binding domains (NBDs) and two

homologous transmembrane domains. A plethora of clinically

indispensable chemotherapeutic drugs such as taxol, vincristine,

etoposide, and daunorubicin, are susceptible to P-gp-mediated

efflux (11, 15–17). Thus, P-gp has been recognized as a

promising strategy to overcome MDR and effectively treat

cancer (15, 18). In the past 30 years, several P-gp inhibitors or

modulators have been investigated in clinical trials in the hope of
circumventing MDR, with only limited success (15, 19, 20).

Presently, many drug development programs focus on the

discovery of new compounds or strategies to bypass the

activity of P-gp.

BRCP is the second member of subfamily G within the large

human ABC transporter superfamily, which is strongly
implicated in the chemoresistance of stem cells in TNBC. As

an efflux pump showing a broad substrate specificity localized on

the cellular plasma membrane, BCRP excretes a variety of

chemotherapeutic agents, such as mitoxantrone, doxorubicin,

SN-38, and several TKIs (12, 21). In contrast to the extensive

clinical development of P-gp inhibitors, few small-molecule
inhibitors specific to BCRP have been tested in clinical trials to

date. Zhang et al. (22) found that regorafenib significantly

sensitized BCRP-mediated MDR by increasing their

intracellular accumulation.

MRP1 is distributed on the membrane of tumor cells. This

induces drug resistance by mediating intracellular drug excretion

and altering intracellular drug redistribution. Despite the limited
sequence identity with P-gp, MRP1 and P-gp have significant

substrate overlap. Nevertheless, MRP1 has been shown to

transport various neutral and anionic hydrophobic compounds

and products of phase II drug metabolism, including many

glutathione and glucuronide conjugates (5, 23, 24). In addition,

multidrug 88 resistant protein-8 (ABCC11/MRP8) was
overexpressed in TNBC and conferred resistance to 5-

Fluorouracil and methotrexate (25, 26). Lin et al. (27) reported

that histone methyltransferase KDM5c [Lysine(K)-specific

demethylase 5C] might downregulate ABCC1 expression by

demethylating ABCC1 H3K4me3 in colon cancer.

To date, clinical data about ABC transporter inhibitors in

BRCA are still limited. However, the known data support the
idea that further research on ABC transporters will be essential in

overcoming cancer MDR and in designing strategies against

TNBC chemoresistance.

FIGURE 1 | The substrate binds to the binding pocket in TMDs and ATP binds to the two binding sites in the NBDs. This is followed by the hydrolysis of ATP that

generates a conformational change, allowing the substrate to be released from the protein. The second molecule of ATP is hydrolyzed, allowing for a conformational

reset, where substrate and ATP can bind again so the process can repeat.
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Signaling Pathway
An intricate network of signaling pathways governs the survival,

growth, and invasion of BRCA. PTEN/PI3K/AKT/mTOR, NF-

kB, and JAK/STAT are implicated in chemotherapy resistance to

BRCAs (11, 16) (Figure 2).

PI3K-AKT-mTOR (PAM) pathway is one of the critical
mechanisms of cells control survival, growth, proliferation, and

motility. Phosphoinositide 3-kinase (PI3K) is a heterodimeric

molecule from a larger family of lipid kinases that phosphorylate

3-hydroxyl group of phosphoinositides, which can activate AKT

kinase by regulating phosphatidylinositol-3,4,5-triphosphate

(PIP3) (28). The activation of AKT shows an important

indirect effect on the phosphorylation of mammalian target of
rapamycin (mTOR), which will in turn enhance protein

synthesis and cell growth, giving malignant cells a significant

advantage (16, 28). PAM activity is negatively regulated by tumor

suppressor phosphatase and tensin homolog (PTEN). Because of

PTEN loss and high AKT expression, PAM pathway is often

associated with aggressive tumors, poor prognosis, and
chemoresistance in BRCA (16, 28, 29). Several drugs targeting

PI3K/ATK/mTOR are currently in clinical trials, in combination

with endocrine therapy and anti-HER2 therapy (28, 30).

The activation of nuclear factor-kappa B (NF-kB), a

proinflammatory transcription factor, is a commonly observed

phenomenon in BRCA. NF-kB family consists of five members,

namely, RelA (p65), c-Rel, RelB, NFkB1 (p50), and NFkB2 (p52),
which form homo- and heterodimers to activate the
transcription of target genes regulating host inflammatory and

immune responses as well as cellular growth and survival (16,

31). Moreover, it is well established that NF-kB signaling

pathway is a crucial regulator of TNBC and is associated with

chemoresistance and metastasis in BRCA (16, 32, 33).

Ekambaram et al. (34) showed that NF-kB activation promotes

the aggressiveness of BRCA. Kastrati at al. (35) reported that NF-
kB pathway promotes tamoxifen tolerance and disease

metastasis in estrogen receptor-positive BRCAs.

JAK/STAT pathway was originally discovered as an

evolutionarily conserved cellular mechanism mediating the

actions of cytokines, interferons, and growth factors and as

well control their gene expression (36). The activation of JAK/
STAT pathway in tumor cells is known to contribute to tumor

growth and progression. Both STAT3 and STAT5 have been

shown to promote BRCA growth and progression, and JAK/

STAT pathway has been found to be a potential therapeutic

target in BRCA patients (37, 38).

Additionally, some signaling pathways, which play essential

roles in cancer stem cell self-renewal, represent a promising
approach to control chemoresistance and metastasis of BRCAs.

Wnt/b-catenin pathway is an important regulator of normal

breast development and abnormal tumorigenesis. Wnt signaling

TABLE 1 | ABC transporters and MDR.

Gene Tissue Localization Chemotherapeutic Drugs Efflux by Transporter Clinical significance Reference

ABCA1 Nervous and hematopoietic system as well as

kidney, liver and the blood brain barrier

Cisplatin, doxorubicin Glioma, lung, testis, liver,

colorectal, pancreatic, breast, renal

cancer, Tangier disease

(8–10)

ABCA2 Nervous system Mitoxantrone, estramustine, methotrexate Alzheimer's disease, melanoma,

breast, breast, liver, colon cancer,

leukaemia

(8–10)

ABCB1 Small intestine, liver, kidney placenta, blood

brain barrier

Anthracyclines, actinomycin D, methotrexate, etoposide,

mitomycin C, mitoxantrone, vincristine, vinblastine,

taxanes, imatinib, nilotinib, EGFR TKI

Ovarian, breast, colorectal, kidney,

adrenocortical cancer, AML

(6, 7, 9,

11, 12)

ABCB4 Liver Daunorubicin, digoxin, paclitaxel, vinblastine Liver, lung, pancreatic, renal

cancer, melanoma, soft tissue

sarcoma

(8, 9)

ABCB5 CD133+ expressing progenitor cells among

human epidermal melanocytes

Doxorubicin, 5-fluorouracil, camptothecin, mitoxantrone, Renal cancer, melanoma (8, 9, 13)

ABCC1 Lung, testes, peripheral blood monocellular

cells

Anthracyclines, etoposide, camptothecins, methotrexate,

mitoxantrone, vincristine, vinblastine, irinotecan, TKI as

imatinib

Breast, lung, ovarian or prostate

cancer, neuroblastoma

(6, 7, 9,

12,14)

ABCC2 canalicular membrane of liver cells, kidney

proximal tubule epithelial cells, enterocytes of

the small and large intestine

Vinblastine, cisplatin, doxorubicin, methotrexate, paclitaxel Colorectal, liver, lung, gastric

cancer, Dubin-Johnson syndrome

(8, 9, 13)

ABCC3 Liver, intestine, colon, prostate, testes, brain,

kidney

Cisplatin, doxorubicin Methotrexate, etoposide, vincristine Pancreatic, liver, lung, colorectal,

stomach, renal, breast cancer

(8, 9)

ABCC4 Widely-expressed 6-mercaptopurine, 6-thioguanine, methotrexate,

topotecan

Prostate, renal,liver, lung, breast,

ovarian, stomach cancer,

neuroblastoma

(8, 9)

ABCC10 Pancreas, liver, placenta, lungs, kidneys,

brain, ovaries, spleen, heart

Paclitaxel, docetaxel, vincristine, vinblastine, vinorelbine,

cytarabine, gemcitabine

breast, lung, colon, ovarian, and

pancreatic cancer

(7, 9)

ABCG1 Pancreas, liver, colon, kidney, brain, lung,

lymph nodes, testis

Doxorubicin Lung, renal, breast, endometrial,

prostate, colorectal, cervical,

pancreatic cancer, glioma

(9)

ABCG2 Placenta, intestine, liver, colon, breast Methotrexate, mitoxantrone, topotecan, anthracyclines,

irinotecan, methotrexate, paclitaxel, TKI

Liver, testis, prostate, renal, non-

small-cell lung cancer, glioma,

Alzheimer's disease

(7, 8)
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proteins interact with the frizzled family of cell-surface receptors

and activate the proteins of the disheveled family, which in turn
results in the inhibition of proteolytic degradation of b-catenin.
Subsequently, stabilized b-catenin is translocated into the

nucleus, leading to the transcription of target genes such as C-

Myc and Cyclin D1, which are involved in determining cell

migration, cytoskeletal activity, cell polarity, and cellular

differentiation (39, 40). Recently, the overexpression of Wnt
pathway has been observed in breast, lung, and hematopoietic

malignancies and contributes to tumor recurrence (41). Multiple

Wnt/b-catenin targeted inhibitors were designed in the wake of

these studies (42). Hence, the inhibition of Wnt signaling

pathway has been proposed as a potential therapeutic strategy

to target BRCA.

Notch signaling pathway plays an essential role in normal
stem cell maintenance and differentiation, a dysfunction which

has been linked to the development of BRCA and is believed to

be upregulated in a variety of cancers (43). Canonical notch

signaling pathway has four cell surface receptors (Notch 1–4)

and five transmembrane ligands (Delta-like 1,3,4 and JAGGED-

1,2). These notch cell surface receptors can be activated by
membrane-tethered ligands on neighboring cells. The

activation of cell surface receptors induces successive cleavages

by ADAM proteases and g-secretase, resulting in the release of

intracellular domain (NICD) of the receptor, which is in turn

translocated to the nucleus and regulates context-specific

patterns of cancer-related gene expression (44, 45).

Therapeutic resistance in BRCA is also believed to be
associated with the notch signaling pathway. Previous studies

have confirmed that notch signaling is crucial in chemoresistance

and have demonstrated the ability of notch inhibitors to sensitize
cells, including BRCA and cytotoxic agents (46, 47). Further

investigation on notch inhibitors has been an area of strong

interest in cancer research.

Hedgehog (Hh) signaling pathway plays a crucial role in

embryonic development, tissue regeneration, and stem cell

renewal. Hh pathway consists of three secreted ligands (Sonic-
SHH, Indian 159 IHH, and Desert-DHH), which bind

transmembrane receptor/co-receptors Patched (PTCH) and

Smoothened (SMO). Three glioma-associated oncogene

transcription factors (GLI1–3) are the main effectors that

regulate the expression of many target genes, such as ABCG2

and VEGF (48, 49). In mouse models of TNBC, hedgehog ligand

produced by neoplastic cells reprograms cancer-associated
fibroblasts (CAFs) to provide a supportive niche for the

acquisit ion of chemoresistance (50). Moreover, the

combination of hedgehog pathway inhibitors and itraconazole

was observed to improve the prognosis of BRCA (51).

Hippo signaling pathway is important in regulating tissue

homeostasis, organ size, and tumorigenesis. Hippo signaling is
modulated via two pairs of kinases, Mst1/2 and Lats1/2. Upon the

phosphorylation of downstream Yes-associated protein 1 (YAP1)

or Lats1/2-induced TAZ, transcription is inactivated and leads to

cellular degradation, whereas dephosphorylation leads to YAP/

TAZ nuclear translocation and subsequent activation of

transcription (52). Dysregulation of hippo pathway leading to

the overexpression of YAP1 or TAZ has been seen in many types
of cancer (53, 54). Furthermore, some studies have provided

A B D E F G HC

FIGURE 2 | Schematic diagram of the BC signaling pathways. (A) PI3K/Akt/mTOR signaling pathway; (B) NF-kB signaling pathway; (C) JAK/STAT signaling

pathway; (D) Wnt/Frizzled/b-catenin signaling pathway; (E) Notch signaling pathway; (F) Hedgehog (Hh) signaling pathway; (G) Hippo signaling pathway; (H) TGF-b

signaling pathway.
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evidence that YAP acts as a promoter of focal adhesion and tumor

invasiveness by regulating FAK phosphorylation in BRCA (55).

Transforming growth factor-b (TGF-b) is a member of a large

cytokine superfamily that consists of over 30 related growth

factors, including three TGF-b isoforms (TGF-b1–3) (16).

TGF-b exerts its cellular effects via TGF-b type I and type II
cell surface receptors (TbRI/II). TGF-b initially engages in

TbRII, which subsequently drives the recruitment of TbRI and
the formation of a heterotetrameric complex. The activation of

TbRI, causes the recruitment and phosphorylation of the main

effectors of this pathway, Smad2 and Smad3, which interact with

Smad4 to form a heteromeric complex that is transported into
the nucleus to regulate a series of genes, such as ANGPTL4,

CTGF, IL11, S100A4, and PTHrP, and further facilitates cancer

cell migration and invasion (56, 57). In oncology, TGF-b appears

to have a dual function, where it represses early tumor growth

but promotes metastasis in advanced stages. However, the

mechanism by which TGF‐b switches its role from a tumor
inhibitor to a cancer promoter remains unclear (58).

In conclusion, the crucial role of the developmental pathways

in BRCA initiation, progression, metastasis, and chemoresistance

is undeniable. Because of the considerable crosstalk and

collaboration existing in this signaling network, successful

targeted medicines still need further research.

Non-Coding RNAs (ncRNAs)
Non-coding RNAs (ncRNAs) are the regulators of intracellular

and intercellular signaling in BRCA (59). Owing to the

development of next-generation sequencing technologies,

ncRNAs, including long non-coding RNAs (lncRNAs),
microRNAs (miRNAs), and circular RNAs (circRNAs), play

essential roles in chemoresistance in BRCA.

miRNAs are the major class of endogenous, small ncRNA

molecules of 18–25 nucleotides in length. Recent studies have

shown that dysregulated miRNAs often cause the development

of metastasis and chemoresistance in BRCA. Li et al. (60)
demonstrated that the overexpression of miR-770 inhibited

doxorubicin resistance and metastasis in vivo. Further

experiments confirmed that miR-770 regulates chemoresistance

and metastasis by targeting STMN1 in BRCA. Rodriguez et al.

(61) found that loss of miR-424(322)/503 promotes

chemoresistance in BRCA via the overexpression of two of its

targets: BCL-2 and insulin-like growth factor-1 receptor
(IGF1R). In addition, a novel miR-20a/MAPK1/c-Myc

feedback loop was reported to significantly regulate BRCA

growth and chemoresistance (62). Based on these findings,

some researchers proposed that the combined use of miRNAs

and chemotherapeutic agents might be a promising therapeutic

strategy to increase long-term drug responses in BRCAs,
especially for chemo-resistant patients (62–64).

lncRNAs are greater than 200 nucleotides and sometimes are

100 kb long. Recent research verified the involvement of

lncRNA-small nucleolar RNA host gene 14 (SNHG14) in the

mediation of trastuzumab responses via tumor cell extracellular

exosomes. The expression level of serum exosomal lncR-

SNHG14 was upregulated in patients who showed resistance to

trastuzumab and the knockdown of lncR-SNHG14 potently

promoted trastuzumab-induced cytotoxicity (65). In another

study, Dong et al. (66) confirmed that lncRNA AGAP2-AS1

could promote BRCA growth and trastuzumab resistance by

activating NF-kB signaling pathway and upregulating MyD88
expression. High expression of lncRNA AGAP2-AS1 was

associated with poor clinical response to trastuzumab therapy

in BRCA patients. Furthermore, Yao et al. (67) reported that

novel lncRNA NONHSAT101069 was s ignificant ly

overexpressed in BC specimens and promoted epirubicin

resistance. lncRNA cancer susceptibility candidate 2 (CASC2)
and lncRNA ferritin heavy chain 1 pseudogene 3 (FTH1P3) were

found to activate paclitaxel resistance in BRCA through the

regulation of miRNA (68, 69).

circRNAs are a group of ncRNAs formed by covalently closed

loops through back-splicing. The latest study reported that

circRNAs are key regulators in the development and
progression of human cancers (70). In vitro loss-of-function

experiments showed that circ-ABCB10 knockdown suppressed

the proliferation and increased the apoptosis of BRCA cells by

sponging miR-1271 (71). Circ 222 ANKS1B was significantly

overexpressed in TNBC tissues compared to normal BRCA

tissues, which promoted BRCA invasion and metastasis by

inducing epithelial-to-mesenchymal transition (EMT) (72). Du
et al. (73) reported that circ-Dnmt1-mediated autophagy is

essential in enhancing BRCA progression. High expression of

circular RNA circ-Dnmt1 could bind to and regulate oncogenic

proteins in BRCA cells.

Cancer Stem Cells (CSCs)
There is substantial evidence that BRCAs are driven by a

population of cells that display stem cell properties. This small

subset of tumorigenic cells termed cancer stem cells (CSCs), not

only enable tumor formation and progression but also mediate

tumor metastasis and therapeutic resistance (13, 74). Previous
studies have shown that BRCA stem cells (BCSCs) overexpress

various ABC transporters such as P-gp, ABCG2, ABCC1, and

ABCB5 (11, 14). Studies have shown that these transporters can

help BCSCs to pump out chemotherapeutic agents and enhance

the key processes involved in cancer progression (75,

76) (Figure 3).

In addition, a series of BCSC surface biomarkers such as
CD10, CD24, CD44, CD133, GPR77, ALDH1, EpCAM, and

ABCG2 have been confirmed, and their overexpression is an

important cause of BCSC chemoresistance (11). Su et al. (77)

demonstrated that two cell-surface molecules, CD10 and GPR77,

can promote tumor formation and chemoresistance by providing

a survival niche for BCSCs. Moreover, Li et al. (78) found that
both high CD44/CD24 ratio and ALDH1+ were conserved

during metastasis. These results confirmed the potential of

these BCSC biomarkers in monitoring tumor progression,

metastasis, and even in cancer therapeutics.

These therapeutic targets, which can modulate EMT and CSC

properties, may be utilized in clinical therapeutics.
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NOVEL CLINICAL STRATEGIES

Novel Drug Delivery System
Presently, endocrine therapy is the main therapy for hormone-
responsive or receptor-positive BRCA. However, poor solubility

and bioavailability, lack of intracellular transport within cancer

cells, and development of chemoresistance are the problems

associated with conventional therapies for BRCA, especially

TNBC (11, 29). Hence, novel drug delivery systems are being

explored to fight this lethal disease.

Nanocarriers, including nanoparticles, nanoscale, and
liposomes, have been shown to have the advantages of targeted

drug release, prolonged blood circulation, enhanced synergies,

and superior biocompatibility (79). Zhang et al. (80) developed a

core-shell nanocarrier coated with cationic albumin to

simultaneously deliver miRNA-34a and docetaxel (DTX) into

BRCA cells. The co-delivery nanocarriers prolonged the blood
circulation of DTX, enhanced tumor accumulation of cargo, and

significantly inhibited tumor growth and metastasis both in vivo

and in vitro. Bose et al. (81) investigated a tumor cell-derived

extracellular vesicle-based nanoplatform for multimodal miRNA

delivery and phototherapy treatments, which attenuated

doxorubicin (DOX) resistance in BRCA cells with a 3-fold

higher cell killing efficiency than in cells treated with DOX
alone. Gong et al. (82) developed a strategy to produce

nanoscale target-specific Exo to co-deliver cholesterol-modified

miRNA and chemotherapeutic drugs to TNBC cells, which

showed improved anticancer effects, without adverse effects.

Furthermore, some researchers explored the natural ability of

macrophages to target cancer cells through extracellular vesicles
(EVs) as drug delivery vehicles. Haney et al. (83) reported that

drug loaded EVs can target TNBC in vivo and abolish tumor

growth. In another study, Tang et al. (84) assessed the feasibility

of liposomal drug delivery system combining bevacizumab and

chemotherapy for the treatment of HER2/MDR double-positive

BRCA cells. In HER2 positive and multidrug resistant BRCA cell
mouse model, tumor size decreased steadily within 60 days.

Nanomedicine helps in in bringing major advances in the

chemoresistance and metastasis in BRCAs. Looking into the

future, the use of nanomedicine, combining anticancer targeted

therapy and multifunctional nanocarriers that contain

therapeutic and imaging agents, might become promising

cancer treatments to achieve the goal of personalized medicine
based on the needs of an individual patient or cell subpopulation

and overcome the chemoresistance.

Novel Anticancer Drugs
Immune Checkpoint Inhibitors (ICIs)
Immunotherapy is a promising treatment for multiple solid
tumors using the patient’s own immune system directly to

target and eradicate neoplastic cells. Early data have revealed

the clinical activity of immune checkpoint inhibitors (ICIs),

which mainly target programmed cell death protein 1(PD-1)

and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) in

small number of metastatic BRCA patients (85, 86).

PD-1 is an inhibitory immune checkpoint inhibitor that
limits T-cell effector function within the tissues and is

expressed on the surfaces of immune effector cells. Adams et

al. (87) assessed the safety and antitumor activity of PD-1

inhibitor pembrolizumab in patients with PD-L1-positive

advanced TNBC. The median duration of response was 10.4

months. The median PFS was 2.1 months (95% CI 2.0-2.2), and
the median overall survival was 18.0 months (95% CI 12.9-23.0).

Emens et al. (88) evaluated the clinical activity and safety

associated with the use of single-agent atezolizumab (anti

programmed cell death ligand 1 (PD-L1)) in patients with

metastatic TNBC. The result showed that median PFS was 1.4

months (95% CI, 1.3-1.6 months) and median OS was 17.6

FIGURE 3 | Schematic representation of cancer stem cells (CSCs) and their role in chemoresistance. The cancer stem cells (CSCs), not only enable tumor formation

and progression but also mediate tumor metastasis and therapeutic resistance. On the one hand, the CSCs survived from chemotherapy will gain the

chemoresistance and enhance the key processes involved in cancer progression. On the other hand, the cancer therapeutics targeted to CSCs biomarkers which

can modulate EMT and CSC properties, can lead to the tumor shrinkage in clinical therapeutics.
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months (95% CI, 10.2 months and above). Based on these results,

PD-1 antagonists have a manageable safety profile and show

durable antitumor activity as first-line therapy for patients with

PD-L1-positive BRCA.

CTLA-4 is a T-cell inhibitory receptor that is expressed on

activated CD8+ T cells and CD4+regulatory T cells that express
CD25 and FOXP3. Therefore, CTLA-4 inhibitors induce anti-

tumor immunity by blocking FOXP3+ Treg cells, resulting in

enhanced inhibition of tumor cells (89). Currently, ipilimumab

and tremelimumab (two promising anti-CTLA-4 antibodies)

have been used in clinical trials related to TNBC (90).

Nanoparticle-based mRNA vaccine and CTLA-4 inhibitor for
TNBC have also been demonstrated as a potential strategy (91).

Moreover, Pai et al. (92) developed a dual variable domain

immunoglobulin of anti-CTLA4 antibody that can help deplete

tumor-infiltration, but not tissue-resident Tregs, preserving

antitumor effects while minimizing toxicity.

Cyclin-Dependent Kinase 4/6 (CDK4/6) Inhibitors
The cyclin D/cyclin-dependent kinases 4 and 6 (CDK4/6)–
retinoblastoma protein pathway plays a key role in the

proliferation of both normal breast epithelium and BRCA cells

(93). Abemaciclib is the most potent inhibitor of CDK4 and

CDK6 and shows promising clinical activity in metastatic BRCA.

In a phase II study, Dickler et al. (94) evaluated the single-agent

activity and safety of abemaciclib in women with HR+/HER2−

metastatic BRCA. The result showed the objective response rate

was 19.7%, clinical benefit rate of 42.4%, median PFS of 6.0

months, and median OS of 17.7 months, which confirmed the

striking activity of abemaciclib as a single agent. In a neoadjuvant

phase II study, Palbociclib, another CDK4/6 Inhibitor, was found

to overcome intrinsic endocrine resistance in primary BRCA

(95). Moreover, the combination of Palbociclib and Letrozole
resulted in significantly longer PFS than monotherapy among

patients with advanced BRCA (96).

Combination Therapy
Compared to single-agent therapy, combination treatment

regimens may provide a more efficacious solution to BRCA

resistance. The combination of abemaciclib, fulvestrant, and
trastuzumab has been found to improve PFS and prognosis in

patients with advanced BRCA (97). Teo et al. (98) reported that

combined PI3Ka and CDK4/6 inhibition is synergistically

effective against multiple TNBC models by increasing

apoptosis, cell-cycle arrest, and tumor immunogenicity and

generating immunogenic cell death. In a Phase I trial, Clark

et al. (99) enrolled cohorts of patients to sequentially ingest oral
doses of Palbociclib intermittently between days 1 and 19 of a 28-

day cycle alternating with weekly paclitaxel. The result showed

that the combination of paclitaxel and palbociclib is feasible and

safe, without evidence of additive toxicity in patients with

advanced BRCA. In addition, atezolizumab and nab-paclitaxel

have been confirmed to prolong PFS among patients with
metastatic TNBC (100). The combination of tucatinib,

trastuzumab, and capecitabine has also been reported to

improve PFS and OS outcomes in HER2- positive metastatic

BRCA patients (101).

Overall, it is obvious that immunotherapy is emerging as a

novel promising option for TNBC. However, further

investigations are required to completely determine the safety

and effectiveness of these immunotherapies and eventually define

the most effective combination regimens for the treatment

of TNBC.

Autophagy Regulation
Autophagy is a tightly regulated catabolic process that facilitates

nutrient recycling from damaged organelles and other cellular

components through lysosomal degradation and provides energy

and macromolecular precursors (102) (Figure 4). Substantial

evidence has indicated that autophagy plays a dual role in the
regulation of chemoresistance in cancer patients by either

promoting drug resistance or increasing drug sensitivity (103,

104). Hydroxychloroquine (HCQ) is the only clinically approved

autophagy inhibitor that increases tumor cell death alone or in

combination with targeted agents or cytotoxic chemotherapy

(103, 104). In a recent study, Cook et al. (105) demonstrated that

HCQ can increase antiestrogen responsiveness in ER+ BRCA
through the inhibition of autophagy and the combination of

HCQ and tamoxifen showed a positive outcome for ongoing

neoadjuvant clinical trials. Furthermore, with the development of

nanotechnology, nanomaterials can modulate autophagy and

have been exploited as therapeutic agents against cancer (106).

Although, autophagy inhibition has been suggested as a
promising approach for chemoresistance in BRCAs, due to the

lack of organ-specificity, the utilization of autophagy-related

kinase inhibitors/activators may also lead to uncontrolled side

effects. Whether these agents of autophagy regulation will

eventually be used in the clinic still requires further study.

BCSC-Directed Therapy
Increasing evidence shows the existence of tumor initiating or
cancer stem cells within tumors that are responsible for drug

resistance, cancer recurrence, and cancer metastasis. Currently,

novel anti-BCSCs drugs, targeting the Wnt/Frizzled/b-catenin,
notch and hedgehog pathways have reached clinical trials for

BRCA patients (14). The most clinically evolved approach is the

inhibition of notch signaling using g-secretase inhibitors (GSIs).
At present, researchers have shown that GSIs can inhibit BRCA

growth in a process that is coupled with IL6 induction and thus

might serve as a novel therapeutic strategy for treating patients

with BRCAs (107, 108). Other inhibitors of Notch signaling, such

as CB-103, are also currently in phase I/II clinical trials for

advanced or metastatic BRCA (14). In addition, the Wnt/

Frizzled/b-catenin pathway is overactivated in TNBC and
several other cancers. Wnt inhibitors work to eradicate the

tumor resistant stem cell and thus may overcome resistance to

conventional therapy (39). Ahmed et al. (109) reported that an

anti-leprotic drug clofazimine is effective against TNBC by

specifically inhibiting canonical Wnt signaling. Inhibitors of

hedgehog pathway have also been explored in vitro and in
vivo, but their efficacy in BRCA has been disappointing (49).

In summary, accumulating evidence has shown the potential

efficacy of targeting BCSCs in reversing drug resistance in vitro

and in vivo. However, the majority of studies are still in the early
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stages. Thus, continuing effort in establishing clinically relevant

biomarkers of BCSC is urgently needed for translating the

knowledge from laboratory to clinical practice.

CONCLUSION

With the rapid development of molecular biology, great progress

has been achieved in breast cancer treatment; however, some

groups of BRCA, such as TNBC, display significant problems of

chemoresistance and metastasis. Owing to the complexity of

BRCAs, completely understanding the molecular mechanisms

of BRCA remains a significant challenge, however, is vital for the

identification of new treatment targets. Currently, novel
treatment regimens have been proven as a more efficient

solution to BRCA resistance than conventional therapy. The

exploration of novel delivery systems has provided a potential

approach to improve the effectiveness of anti-cancer agents in

cancers with chemoresistance. Moreover, the progress of

immunotherapy offers a promising alternative for drug-
resistant tumors, and further research is needed to explain the

complex mechanisms of tumors. Although the regulation of

autophagy and cancer stem cells has not been widely used

clinically it is hopeful to improve the prognosis of BRCA with

chemoresistance and metastasis. In conclusion, future clinical

studies on BRCA are needed, with a focus on molecular

mechanisms. Novel clinical strategies are expected to improve
the survival of BRCA patients.
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