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Abstract

The mammalian airways are sensitive to inhaled stimuli, and airway
diseases are characterized by hypersensitivity to volatile stimuli, such
as perfumes, industrial solvents, and others. However, the identity
and functionof the cells in the airway that can sense volatile chemicals
remainuncertain, particularly in humans.Here, we show that solitary
pulmonary neuroendocrine cells (PNECs), which are
morphologically distinct and physiologically undefined, might serve
as chemosensory cells in human airways. This conclusion is based on
our finding that some human PNECs expressed members of the
olfactory receptor (OR) family in vivo and in primary cell culture, and
are anatomically positioned in the airway epithelium to respond to
inhaled volatile chemicals. Furthermore, apical exposure of primary-
culture human airway epithelial cells to volatile chemicals decreased
levels of serotonin in PNECs, and the led to the release of the
neuropeptide calcitonin gene-related peptide (CGRP) to the basal
medium. These data suggest that volatile stimulation of PNECs can
lead to the secretion of factors that are capable of stimulating the
corresponding receptors in the lung epithelium. We also found that
the distribution of serotonin and neuropeptide receptorsmay change

in chronic obstructive pulmonary disease, suggesting that increased
PNEC-dependent chemoresponsiveness might contribute to the
altered sensitivity to volatile stimuli in this disease. Together, these
data indicate that humanairway epithelia harbor specialized cells that
respond to volatile chemical stimuli, and may help to explain clinical
observations of odorant-induced airway reactions.

Keywords: olfactory receptor; serotonin; neuropeptide; asthma;
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Clinical Relevance

Chronic obstructive pulmonary disease and other diseases of
the lung are often associated with increased sensitivity to
environmental chemical stimuli. Our study indicates that some
pulmonary neuroendocrine cells can directly sense and
mediate the physiological response of airways to volatiles, and
may represent a key molecular and cellular target for the
development of future treatment of airway hypersensitivity.

The airway epithelium presents one of the
largest surface areas in the body of mammals
(1). In contrast to the skin, the airway
epithelium is highly permeable and,
therefore, highly sensitive to various
inhaled and pathogen-borne particles, small

molecules, and volatile irritants (2).
Consequently, the mammalian airway must
have evolved mechanisms to protect itself
from inhaled, harmful compounds and
particles. Evidence for such protective
sensory mechanisms is apparent in the

cough reflex, as well as the induction of
bronchial constriction by diverse chemical
and mechanical stimuli (3). Furthermore,
hypersensitivity syndromes related to
sensory activation of respiratory airways
can also lead to chronic cough and
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inflammation, presenting as asthma or
chronic obstructive pulmonary disease
(COPD). In spite of the importance of
sensory pathways in airways in both health
and disease, how various sensory stimuli
are detected and processed at the cellular
and molecular levels in airways is still not
entirely understood (3).

As a step toward understanding
chemosensation in the lung, we and others
have recently shown that ciliated human
airway epithelial cells express members
of the bitter taste receptor family, and can
respond to inhaled chemicals that are
classified as “bitter” compounds (4–6).
Other cells with chemosensory functions
in mammalian airways are the cholinergic
“brush cells” (7–10). These cells are present
in the upper and lower airways in
mammals, where they play roles such as
controlling of breathing in rodents (11)
and the epithelial response to bacterial
compounds and other harmful chemical
stimuli (12). Furthermore, human genetic
variations in the bitter receptor, TAS2R38,
are associated with detection of bacterial
products and the susceptibility to upper
airway infections (6). Although some bitter
receptors can also detect certain volatile
irritants at high concentrations (13), the
airway sensitivity to a wide range of volatile
substances indicates that additional classes
of chemososensory receptors might also be
involved in the physiological response of
airways to inhaled chemical agents.

Mammals use specialized sensory
neurons in the nasal epithelium to sense
volatile odors via dedicated receptors of
the olfactory receptors (ORs) family. ORs
represent the largest protein family in all
mammalian genomes sequenced to date,
and are part of the G protein–coupled
receptor superfamily (14). Although OR
genes were originally thought to be
expressed solely in sensory neurons
that reside in the main olfactory nasal
epithelium of the respiratory tract, later
studies indicated that at least some family
members function outside the olfactory
system (15), including in human sperm
(16), mouse kidney (17, 18), and other
epithelial tissues (19). The physiological
and behavioral roles of many of the
OR proteins are still unknown, and
noncanonical expression or functions for
OR genes in lung tissues have not been
described. In this study, we examined
whether the sensitivity of human airways
to certain volatile chemicals could be

mediated via direct activation of ORs that
are expressed in the epithelium of the
human airway.

Materials and Methods

Detailed MATERIALS AND METHODS are
provided in the online supplement.

Airway Epithelial Cell Culture

Primary culture airway epithelial cell
preparations were established by the
University of Iowa In Vitro Models and
Cell Culture Core using cells isolated
from trachea and bronchi of lungs that
were removed for donation. Additional
preparations were obtained from the
Washington University Airway Epithelial
Cell Core using cells from trachea and main
stem bronchi of transplant donor lungs.
Samples were collected with approval of the
institutional review boards of the
University of Iowa and the Washington
University School of Medicine. Airway
epithelial cells were isolated and cultured
on collagen-coated Transwell membranes
(Corning, Corning, NY) under air–liquid
interface (ALI) conditions, as previously
described (20, 21).

Gene Expression Analysis

Microarray expression data were from
preparations of well differentiated primary
normal human airway epithelia from 10
independent donors, grown at ALI as
previously reported (22). Briefly, each
cRNA preparation was labeled and
incubated with human U133A GeneChip
arrays (Affymetrix, Santa Clara, CA).
Data were analyzed with the Affymetrix
Microarray Analysis Suite version 5.0
software, as we previously described (5, 22)
according to current standards in the field.
Gene-specific Affymetrix probes that
were identified conservatively as “present”
by the analysis package were interpreted as
“positively expressed” (P , 0.04). Data
were normalized using the global scaling
adjustment technique with a target
intensity of 1,500, according to the
manufacturer instructions.

Cell Stimulation by

Volatile Substances

To test for olfactory activation of pulmonary
neuroendocrine cells (PNECs), we used live,
well differentiated (more than 3 wk at
ALI) human airway epithelial cell
preparations grown in 12-mm Transwell
inserts (1.2 cm2 membrane) from a single

donor. Each odorant was applied to four
independent inserts. Pure odorants (Sigma,
St. Louis, MO) were first diluted 1:100 in
ultrapure dimethyl sulfoxide (DMSO) (with
the exception of hexadecanal), followed by
a further dilution (1:1,000) in PBS (final
dilution, 1 3 105). To solubilize the waxy
compound, hexadecanal, the chemical
was heated to 608C until completely melted,
then diluted 1:100 in DMSO. After a
secondary dilution (1:1,000) in PBS,
hexadecanal appeared to come out of
solution. Thus, it was impossible for us to
calculate the precise final concentration of
this compound. Each insert was stimulated
apically with 100 ml of the final diluted
compound. A sample of the basal medium
was collected from each insert 15 minutes
after stimulation, followed by fixation
and processing of the cell preparations for
immunostaining, as described in the online
supplement. CGRP levels in basal media
were measured using an ELISA kit
(Cayman Chemical, Ann Arbor, MI)
according to manufacturer instructions.
Ligand concentrations used were in the
physiological range of their respective
receptors, in accord with previous
publications (see Table E2 in the online
supplement).

Results

To determine whether OR genes are
expressed in human airway epithelial
cells, we analyzed data from whole-genome
expression microarrays that were
obtained from primary-culture human
tracheobronchial epithelial cells (hTECs)
(22, 23). This analysis revealed that several
canonical OR genes are expressed in
hTEC cultures (Figure 1A). Screening for
human OR gene expression using
commercially available antibodies identified
three distinct receptors (Figures 1B–1D). In
contrast to human bitter taste receptors
that are enriched in ciliated airway
epithelial cells (5), each of these OR gene
products was localized to a distinct
cell population characterized by an
interdigitating morphology (Figures 1B and
1C). Furthermore, unlike olfactory sensory
neurons, which express only one member
of the OR family (24), at least some of
the cells within hTEC preparations
expressed more than one type of OR per
cell (Figure 1C) (25). These data suggest
that OR-expressing airway cells are more
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broadly tuned to chemical stimuli than
previously described for olfactory sensory
neurons (24). The expression of OR2F1 and
OR2W1 in hTEC cultures was verified by
protein (Western) blot analysis of hTEC
culture lysates that originated from four
different tissue donors. The protein
analyses data indicate possible variability
in expression levels of OR2F1, but not
OR2W1, among the four studied donors
(Figure 1D; see also Figure E1). In situ
hybridization also confirmed the presence
of OR2W1 mRNA in human airway
epithelium in vivo (Figure 1E).

A previous study in human lung tissues
identified cells with a morphology similar

to the OR-expressing cells as PNECs (26).
To confirm this, we also stained hTECs with
5-HT, which identified epithelial cells with
morphology identical to the OR-expressing
cells, further supporting the possibility
that OR-expressing cells in cultured
preparations were PNECs (Figure 1F).
These identified cells also expressed the
enzyme, tryptophan hydroxylase 1 (Figure
E2), but not the serotonin transporter
(data not shown). The data are consistent
with a phenotype of OR-expressing
neuroendocrine cells. Furthermore, because
the PNECs are a major source of 5-HT in
the human airway epithelium, it is possible
that they contribute to the lung serotonin

levels that are implicated in the
pathogenesis of asthma and other airway
diseases (27, 28). In agreement with
a possible sensory function, many of the
identified OR-expressing PNECs projected
cellular digits toward the apical surface
of the differentiated hTEC cultures (5-
hydroxytryptamine [5-HT] staining in
Figure 1F, arrowheads in lower panels).
These morphological and biochemical
features could enable these cells to detect
chemicals that enter the lumen of the
airways. Primary airway cultures also
expressed several other key olfactory system
components, including olfactory G a,
adenylate cyclase III, odorant-binding

Figure 1. Olfactory receptors (ORs) expressed in cultured preparations of human airway epithelial cells. (A) OR gene expression by microarray analysis of

mRNAs isolated from primary airway cell preparations. Shown is the mean (6 SEM) from 10 independent donors. (B) Representative photomicrograph

of immunostaining for the OR, OR2H3 (green), in primary-culture human airway cells demonstrating an interdigitating morphology. Cilia are labeled in

red (acetylated a-tubulin, open arrowhead). Images are confocal z-stacks. (C) Colocalization of odor receptors, OR2W1 (green) and OR2F1 (red), in

human airway preparations. Images are confocal z-stacks. (D) Protein blot analyses. OR2F1 and OR2W1 are expressed in human primary-culture

airway cells. Each lane represents a sample from a single donor. The expected size of the corresponding ORs is indicated (z 45 kD; closed arrows). (E)

In situ hybridization of human airway tissue sections using an OR2W1-specific riboprobe. (E1) antisense probe; (E2) enlargement of box in (E1); (E3)

sense control riboprobe. Dotted lines represent the basal aspect of the stratified epithelium. Both sense and antisense probes were hybridized to

sequential sections of the same tissue. (F) Cultured cells immunostained for 5-HT show extensive interdigitating morphology. Upper panel is a confocal

x,y section. Lower panel is a z,y section (“stack”) of the upper panel. Note that some of the cellular extensions show projections to the apical side (white

arrowheads). Nuclei are labeled with 49,6-diamidino-2-phenylindole (blue). Scale bars, 50 mm.
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proteins, and olfactory marker protein, but
not any of the cyclic nucleotide gated
channels, including the olfactory-specific
subunits, cyclic nucleotide gated channel
alpha 2 (CNGA2) and CNGA4 (Figure
E3A). Our attempts to localize other
components of the olfactory signal
transduction pathway at the protein level
by using commercially available antibodies
did not yield specific signals in primary
cultures or tissue sections (data not shown).

To further test if the OR-expressing
cells in airways are PNECs, we examined
whether other neuroendocrine markers
were localized with ORs. In hTEC
preparations, we found that OR2W1
colocalized with both 5-HT (Figure 2A) and
carboxypeptidase E (CPE; Figure 2B),

confirming the identity of OR-expressing
cells as solitary PNECs (26). However, not
all CPE-positive cells also expressed ORW1,
which suggests that either some subset
of PNECs do not have chemosensory
functions or express receptors for other
volatile ligands. Nonetheless, OR-expressing
cells in hTEC preparations expressed other
conventional markers of neuroendocrine
cells, including CGRP, CPE, chromogranin
A, Dopa decarboxylase, monoamine oxidase
A, and monoamine oxidase B (Figure E3B)
and stained positive for the CGRP and
chromogranin A, further confirming their
identity as PNECs (Figure E4).

The presence of OR-expressing PNECs
was also observed in human lung tissue
sections, indicating that their presence was

not restricted to cultured cell preparations
(Figures 2C and 2D). Staining for two
different receptors in hTEC cultures from
independent tissue donors reveled that
only about 30 and 60% of PNECs were
positive for the receptors OR2F1 and
OR2W1, respectively (Figures 2E and E1).
These data indicate that either not
all PNECs in human airway tissues act
as chemosensory cells, or that different
populations of cells express different
receptor assemblies, which cannot yet be
detected with the available reagents. These
results are in agreement with our protein
blot analyses, which indicated that OR2W1
is more abundant and less variable than
OR2F1 in cultures from different
individuals (Figure 1D). These findings also

Figure 2. Human pulmonary olfactory cells are solitary pulmonary neuroendocrine cells (PNECs). The OR, OR2W1, is coexpressed with 5-HT (serotonin) (A)

and the enzyme, carboxipeptidase E (CPE) (B), in human primary airway epithelial cell preparations. The OR, OR2W1, is coexpressed with the neuroendocrine

markers, 5-HT (C) and proprotein convertase subtilisin/kexin type 2 (PCSK2) (D), in human lung tissue sections. (E) OR abundance in preparations from

a single donor. Single culture membranes were cut into two pieces and costained for the specified receptor and the PNEC marker, PCSK2. Mean receptor

abundance (% cells) is shown for the receptor and PCSK2 out of the total PCSK2-positive cells. Error bars denote SEM. *P , 0.05 (one-tailed t test; n = 3

independent donors). (F and G) PNECs in lung sections from the rhesus macaque. (H) Photomicrographs of the two-pore potassium channel subfamily

K member 3 (KCNK3) and the cilia marker, acetylated a-tubulin. (I) Some PNECs might be innervated. Whole-mount immunohistochemistry in the imaged

region shows that at least one cell might interact with a neuronal fiber (open arrowhead). Other cells in the imaged area do not seem to interact with

neuronal afferents (white arrowheads). PNECs were labeled with anti–chromogranin A (CHGA) antibody (green), and neuronal fibers were labeled with

anti–neurofilament H antibody (NF200; red). Scale bars, 50 mm. See Figure E6 for larger images, and Movie E1 for a three-dimensional reconstruction.
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indicate that OR-expressing PNECs were
selectively localized to the airway
epithelium, and therefore well positioned
to act as sentinels for inhaled odorants.

Next, we asked whether OR-expressing
PNECs were present in lungs from other
mammalian species. Previous studies
indicated the presence of solitary PNECs
and neuroendocrine bodies (NEBs; clusters
of neuroendocrine cells) in mammals,
especially during fetal and neonatal
development (29–31). Although CGRP-
positive cells have been described in the
adult mouse airway epithelium, they are
not serotonergic, and appear to act as
a population of stem cells that plays a role
in epithelial recovery from injuries (32).
We were not able to detect pulmonary
interdigitating PNECs in lungs of adult
mice or ferrets using 5-HT as a marker.
In contrast to mice, which, in our hands,
showed serotonergic neuroendocrine cells
in the gut epithelium, but not in the lung
(Figure E5A), adult rat lungs did contain
lung cells positive for 5-HT. However,
the identified cells were significantly larger
than human PNECs, did not have an
interdigitating morphology, and were
located in subepithelial layers of the airways
(Figures E5B and E5C). However, OR-
expressing PNECs with morphology
similar to those found in human tissues
were detected in lung tissues from rhesus
macaque monkeys (Figures 2F and 2G).
These results indicate that the identified
PNECs are not specific to lungs of humans,
because they are present in nonhuman
primates as well.

Other studies of pulmonary NEBs in
rodent models have suggested that the
primary function of these cells is to act as
oxygen sensors in the postnatal lung (30,
31). Whether adult human lungs can also
directly sense oxygen pressure in inhaled
air remains uncertain. Current models
propose that neuroregulation of breathing
in adult humans is primarily mediated via
oxygen-sensing neurons in the carotid
bodies (33, 34). When we immunostained
adult human lung tissues with an antibody
against potassium channel subfamily K
member 3 (KCNK3), a two-pore potassium
channel that has been identified as an
essential molecular component of the
oxygen-sensing receptor complex in
mammalian pulmonary NEBs (35), we
found that this channel is enriched in
epithelial motile cilia, but is not present in
PNECs (Figure 2H). However, similarly to

the rodent NEBs, whole-mount
immunostaining of human airway epithelia
revealed that some human PNECs might be
directly innervated by afferent neuronal
fibers (Figures 2I and E6, and Video E1).
Together, our data suggest that primate
adult solitary PNECs are chemosensory,
but not likely to act as oxygen sensors,
and are distinct from PNECs or NEBs
identified during early lung development
in human infants and nonprimate animal
models.

Our results suggested that PNECs serve
as chemosensory neuroendocrine sentinels
in the human airway epithelium. Therefore,
we hypothesized that specific volatile
chemical stimuli could induce the local
release of the neuroendocrine content from
stimulated PNECs. We first examined
whether the cellular contents of two
different neuroendocrine secreted factors,
5-HT and CGRP, are correlated with each
other in individual cells. We found that the
levels of 5-HT and CGRP in individual
cells were highly correlated, which suggests
that these factors are coexpressed, and are
likely coreleased on stimulation (Figure 3A).
Next, we investigated whether apical
stimulation of well differentiated hTEC
preparations is correlated with lower cell
contents of both 5-HT and CGRP
(Figure 3B). In agreement with our
hypothesis, apical stimulation of primary
culture cells with a panel of volatile
chemicals that have been shown to activate
some of the receptors expressed in hTECs
(Figure 1A and Table E2) resulted in
a significant increase of CGRP released into
the basal cell medium (Figure 3C). In
addition, staining of hTEC preparations
that were treated with the ligands, nonanal
(36) or citronellal (37), showed overall lower
5-HT signal relative to that in DMSO-treated
cells. Together, these results are
consistent with stimulation-dependent
release of CGRP and 5-HT (Figures 3D
and 3E).

Because PNECs appear to be a
significant source of 5-HT and CGRP in
human airway tissues, we next examined
which cells might express 5-HT and CGRP
receptors as possible cellular targets for
modulation by PNECs. Microarray data
from human airway cell preparations (as
demonstrated in Figure 1A) indicated that
14 out of the 17 known human 5-HT
receptors (HTRs) are expressed in hTEC
preparations (Figure 4A). We also found
that multiple independent receptors for

5-HT and CGRP were expressed at the
protein level in various airway cell types,
but not in PNECs themselves, further
supporting our hypothesis that activation
of PNECs by volatile ligands can lead to
local stimulation of other neighboring cell
types in the epithelium (Figures 4B–4D).
Each of the three identified neuroendocrine
receptors (5-HTR2B, HTR1F, and
calcitonin/CGRP receptor [CALCR])
showed enrichment in the population of
airway epithelial basal cells. The CGRP
receptor, CALCR, also showed expression
in airway smooth muscles, or possibly in
the neuronal fibers that innervate them
(Figure 4D). Thus, our data support
the model that activation of PNECs
in human airways could lead to a
localized activation of airway epithelial
cells, and a concerted response to volatile
agents (Figure 4E).

It has been proposed that airway
diseases, such as asthma or COPD,
manifest increased airway responses to
environmental factors, including volatile
agents (38). The present observations
suggest that PNECs might contribute to
this chemical hyperresponsiveness in
airway disease. In that regard, previous
studies also indicated that neuroendocrine
factors, such as 5-HT, and peptides,
such as CGRP, have potent physiological
effects on epithelial, airway smooth
muscle, and vascular smooth muscle cells
in the lung (39–41). Thus, our data
suggested the hypothesis that changes in
the activation level of PNECs or the
responsiveness of other airway cell types to
stimulation by PNEC contents could
contribute to olfactory hypersensitivity in
airway disease. We therefore determined
the levels of PNECs in lung tissues
obtained from lung transplant recipients
with severe COPD versus corresponding
tissues from lung transplant donors
without COPD (42, 43). In agreement with
our hypothesis, we found increased
numbers of OR2W1- and proprotein
convertase subtilisin/kexin type 2-
expressing PNECs in lung tissues from
subjects with COPD relative to control
subjects without COPD, without any
detectable differences in PNEC morphology
(Figures 5A–5C). Although the complex
morphology of PNECs prevented us from
studying their morphology in tissue
sections, gross observations suggested that
disease state does not affect their size or
morphology (Figure 5D).
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Another possible explanation for the
increased sensitivity of patients with COPD
to inhaled substances is an increased
level of neuroendocrine receptors and
a consequent increase in the response to
neuropeptides released by volatile-activated
OR-expressing PNECs. Consistent with
this hypothesis, we found that 5-HT and
CGRP receptor distributions appeared to be
altered in COPD versus non-COPD airway
tissues (Figure 6). In particular, we found
that HTR1F was expressed in nearly all
basal cells in subjects with COPD compared
with a subset of basal cells in those without
COPD, on the basis of the extent of
costaining with the basal cell marker, p63
(Figure 6A). In contrast, we detected
decreased staining levels of the CGRP

receptor, CALCR, in airway epithelium
in patients with COPD , but increased
localization to basal cells in subjects
without COPD (Figure 6B). Similarly,
HTR2B changed from diffuse epithelial
expression in COPD to increased basal
cell staining in subjects without COPD
(Figure 6C). Although these descriptive
data are difficult to quantify, due to the
high variability of receptor distributions
across individuals, they do raise the
possibility that neuroendocrine signals to
basal cells may be altered in patients with
COPD. Nevertheless, these data provide
a potential mechanism for several different
cell types in the airway to respond to the
neuroendocrine factors released from
volatile-activated PNECs.

Discussion

The exacerbation of airway diseases, such
as asthma or COPD, is often mediated by
exposure to environmental factors, such as
industrial solvents, various pungent odors,
and other volatiles. In recent years, several
key studies have demonstrated that specific
populations of cells in the mammalian
airway epithelia can be directly activated
by inhaled “bitter” irritants, which include
ciliated epithelial cells in lower (5) and
upper airways (6), brush cells (7, 12), and
airway smooth muscles (4). In spite of this
significant progress, the cells and receptors
that mediate the response of human
airways to the majority of volatile chemicals
in health or disease are still largely

Figure 3. PNECs release neuroendocrine factors in response to volatile apical stimuli. (A) Levels of the biogenic amine, 5-HT, and the peptide calcitonin

gene-related peptide (CGRP) in individual PNECs (R2 = 0.94; n = 27 cells from three independent donors, 7–10 cells per donor). Signals represent average

pixel intensity of cell bodies that were coimmunostained for 5-HT and CGRP. (B) An illustration of the supported membrane insert system used for

culture of primary airway epithelial cells (20, 50). Treatment experiments were accomplished by applying the various ligands apically, while measuring the

basal release of neuroendocrine factors. (C) CGRP release in basal medium after apical treatment with indicated volatile. Mean (6 SEM) of CGRP

levels measured by ELISA (P , 0.05, Kruskal-Wallis ANOVA; n = 4 inserts per treatment). (D and E) Treatments of primary cell preparations with nonanal

or citronellal followed by immunostaining for 5-HT levels relative to controls. Shown are means (6 SEM) (one-way ANOVA; P , 0.001; n = 4 inserts

from a single donor per treatment). *P , 0.05; **P , 0.01. Scale bars, 50 mm. DMSO, dimethyl sulfoxide.
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unknown. In this study, we identified
a previously unrecognized chemosensory
function for a population of solitary PNECs
in adult human airways. Although the
presence of solitary PNECs in human
airways has been described (26), no
clear physiological functions have been
attributed to these cells. Based on cell
morphology, tissue localization, and
molecular characterization, the adult
solitary PNECs may represent a cell linage
that is independent of similar PNECs that
have been previously described in rodent
models. For example, in contrast to adult
solitary PNECs and NEBs present in some
rodent lungs, human PNECs do not express
oxygen-sensing ion channels, and are found
in major trachea and bronchi, but not
alveolar tissues. However, immunostaining
of human tissues with the neuronal marker,
neurofilament H, revealed a possible
innervation of human PNECs, as has been
described for NEBs in some rodent species.
These findings further suggest that human

PNECs are not likely to be homologous to
the previously described neonatal human
PNECs and NEBs, or other types of adult
PNECs that have been described in animal
models (29, 30, 32, 35, 44). We currently
do not understand why PNECs are different
in primates relative to other mammals.
However, species-specific differences in
lung cellular and physiological functions
are consistent with the proposal that
human airways have evolved distinct
cell lineages and signaling systems for
respiratory-specific functions. Other
examples include the marked differences
in the types of airway progenitor cells that
develop after viral infection (45). Similarly,
cystic fibrosis transmembrane conductance
regulator and chloride channel accessory
1–mitogen-activated protein kinase 13 signals
exhibit markedly different function in human
versus rodent lung for control of ion
transport and mucus production (46–48).

Our study also highlights novel features
of OR function in the lung in comparison to

the olfactory system. We show that adult
PNECs express more than one OR per cell.
This arrangement contrasts with the one in
the olfactory epithelium, in which each
olfactory sensory neuron expresses a single
receptor in a cellular process that is still
not well understood (49). In contrast to
the narrowly tuned nasal olfactory sensory
neurons, these differences might also
suggest that sensing volatiles in the lung
is nonneuronal, and is broadly responsive
even within single cells. Thus, we
demonstrate that airway epithelial cells can
respond to structurally diverse classes of
volatile chemicals at least in cell culture.
Moreover, this response is likely only
a partial profile, because the majority of the
receptors that we identified in human
airways are still orphan in regard to their
ligand specificity.

Unexpectedly, we detected no
expression of cyclic nucleotide gated
channels, including the olfactory-specific
subunits, CNGA2 and CNGA4, in human

Figure 4. (A) 5-HT receptor (HTR) gene expression by microarray analysis of mRNAs isolated from primary airway cell preparations from 10 independent

donors (as in Figure 1A). (B and C) Serotonin receptors, 5-HTR 2B and HTR1F, in basal cells (open arrowheads) detected by immunostaining. White

arrowheads point to solitary PNECs. (D) The calcitonin/CGRP receptor (CALCR) is enriched in basal cells (open arrowheads) and in airway smooth

muscles or possibly the neurons that innervate them (white arrow).White arrowheads in C and D mark PNECs. Dashed white lines show the apical side of

the stratified epithelium. Scale bars, 50 mm. (E) Model for the possible local impact of olfactory stimulation of PNECs followed by neuroendocrine release of

5-HT and CGRP on various cell types in the airways (orange arrows).
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airway tissue. Because these channels seem
to play an important role in the neuronal
olfactory signal transduction pathway, these
findings suggest that stimulation of OR-
expressing PNECs does not lead to changes
in membrane potential, but rather uses
different signaling routes. Nonetheless, we
found that the apical stimulation of airway
epithelia with volatiles can lead to lower
cellular contents of neuroendocrine factors,
such as 5-HT and CGRP, which is in
agreement with a stimulus-dependent
release. Although we did not directly test
the role of OR stimulation in the volatile-
dependent release of 5-HT and CGRP, the
presence of these receptors in PNECs is
highly suggestive that these receptors are
responsible for the activation of PNECs
by environmental chemical stimuli.
Subsequently, these factors are likely to
affect the physiology of other cell types in

the epithelium, including smooth muscle
cells, neurons, and basal cells. Thus, PNECs
could represent a key cellular pathway for
sensing environmental volatile stimuli in
lungs.

Furthermore, our studies suggest that
PNECs may contribute to the chemical
hypersensitivity of lungs from patients with
airway diseases, such as COPD. This is
supported by our findings that the PNEC
cell frequency is higher in lung tissues of
patients with COPD relative to healthy
individuals (Figure 5). However, we
recognize that our method for quantifying
PNECs in tissues may not fully account for
the overall effects of inflammation, which
could influence factors such as cell size
or morphology of nuclei in tissue sections,
and potentially bias our calculations of cell
number. Thus, future studies of PNEC
distribution performed using whole-mount

tissue staining in a large number of samples
will further address this issue. In addition,
our study examined only a single
concentration of each ligand to establish
the response of PNECs to odorants. We
recognize that differences in the numbers of
PNECs in the airway might also influence
the sensitivity of these tissues to odorant
stimulation. For example, increased PNEC
levels in COPD lungs might result in
hypersensitivity to odorants, compared
with the response in healthy lungs.
Therefore, detailed dose–response
assessment will be required to fully assess
the differences in odorant responses
between COPD and non-COPD conditions.

Taken together, our study offers the
significant advance of identifying a new class
of chemosensory cells that express ORs
in adult human airways. The finding adds
to the growing understanding of the

Figure 5. PNECs are more abundant in airways from patients with chronic obstructive pulmonary disease (COPD) relative to healthy donors. (A)

Representative confocal scan of a human bronchial tissue section used to quantify PNEC frequencies. (B) Magnification of yellow box in (A); dotted line

indicates an example of the region used to normalize number of cells to epithelial length. Cells in the images shown were positive for both OR2W1

and PCSK2. (C) Box plots represent PNEC frequencies in tissue sections from lungs of subjects with and without COPD (*P , 0.05; **P , 0.01;

Mann-Whitney U Test; n = 6–7 individuals per group). (D) The morphology and size of OR-expressing PNECs in COPD and non-COPD lungs are similar.

Left panels, non-COPD; right panels, COPD. Cells were labeled with an anti-OR2W1 antibody. White arrowheads mark PNECs.
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complexity of the sensory response of the
airway epithelium to diverse classes of
sensory stimuli, and thereby impacts our
understanding of how the human lung
responds to environmental stimuli in
both health and disease. We also detect
a possible variation in PNECs and PNEC-
responsive receptors between subjects
with and without COPD that suggests a
role for this OR–neuroendocrine axis in

the pulmonary response to
environmental volatile stimuli that might
accompany chronic lung disease.
Although more work is required to
characterize the sensory functions of
PNECs, it is possible that PNEC-specific
pathways may be a therapeutic target to
manage diseases associated with airway
hypersensitivity in asthma, COPD, and
related conditions. n
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