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The aim of this issue is to present an updated view of present
knowledge and questions raised in the rapidly expanding field of
chemosensory (taste and olfactory) learning. Taste is a powerful
primary (unlearned) reinforcer, and topics such as olfactory-taste
and visual taste association learning are covered in this issue. But
the reinforcing properties of taste can themselves be modified,
for example, by post-ingestive consequences, for example, in taste
aversion learning, and this type of learning is also covered in this
issue.

In fact, research on the chemosensory systems has played an
important role in advancing knowledge of the brain mechanisms
of learning and memory. A well-known example is conditioned
taste aversion (CTA). Since the time it was discovered (García
et al., 1955), the unique nature of CTA presented a challenge
to the contemporary learning theory, and CTA contributed to
present theoretical views of learning. CTA learning also became
a useful tool for researchers on the neural mechanisms of learn-
ing and memory. Jan Bures was a leader in research on the brain
mechanisms of CTA in Europe for several decades. We would
like to dedicate this special issue to Jan Bures, who passed away
on August 24, 2012, in Prague. The field of chemosensory learn-
ing is greatly saddened by the news (http://www.ctalearning.com/
announcements.asp). He, together with his wife Olga Buresova,
was a pioneer during the seventies in applying reversible brain
inactivation techniques in order to identify the specific role of
the areas forming the CTA circuits. Among other findings, he dis-
covered the critical role of the parabrachial area in taste-visceral
signal association, and the relevance of cortico-pontine connec-
tions in taste processing (Bures et al., 1998). In addition to his
outstanding scientific contributions, Jan was a wonderful col-
league and mentor for us and many of the contributors to the
present issue and we will never forget him.

The papers forming this issue are representative of the long
history and great development of the field thanks to the use
of different species and a variety of technical and theoretical
approaches. The widely ranging review by Yamamoto and Ueji
(2011) of flavor learning including both learned food prefer-
ences and aversions, and the paper by Scott (2011) reviewing
classic knowledge on the brain mechanisms of CTA, highlight the

advances in the field during the last decades. Wider and more
complex brain systems than previously thought contribute to
flavor learning, with age-dependent interactions between areas
such as the insular cortex, amygdala, hippocampal, thalamic,
and reward systems (Gámiz and Gallo, 2011). The evidence
reported by Neseliler et al. (2011) using an in vivo genetically
modified rodent model of hypercholinergic innervation is an
example of the value of new approaches to support the hypoth-
esis linking acetylcholine and CTA. As Guzmán-Ramos and
Bermúdez-Rattoni (2011) describe, major research advances have
been made on the cascade of molecular changes involved in the
consolidation of CTA taking place during the post-acquisition
period.

Remarkable progress has also been made in the field of food
preferences. de Araujo (2011) provides a review that includes
data obtained both in rodents and Drosophila on the role of
taste and energy-sensing systems receiving gastrointestinal and
post-absorptive signals in the formation of long-lasting prefer-
ences mediated by dopamine release. The elegant experimental
work using a variety of techniques reported by Oliveira-Maia
et al. (2012) adds evidence on this topic demonstrating the role of
the insular cortex in detecting the postingestive effects of sucrose
intake.

Closely linked to taste learning in detecting chemical
molecules is olfactory learning. As Sandoz (2011) shows in his
review, the honeybee has been a model for applying behavioral,
neurophysiological and neuroanatomical techniques to research
on olfactory learning. Two separate models of the role in olfac-
tory learning of the rat olfactory bulb (Auffarth et al., 2011)
and the human glomerulus (Schaefer and Margrie, 2012) are
presented.

Finally, Rolls (2011) reviews evidence from primates includ-
ing humans on the value of taste as a primary reinforcer and
the role of the orbitofrontal cortex in building olfactory-taste,
and visual-taste associations. He also shows how top–down cog-
nition and attention influence taste and olfactory processing in
ways that must involve learning, and also considers the cortical
mechanisms involved in taking decisions about olfactory and taste
stimuli.
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