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OVERVIEW 

Chemotaxis, cell motion directed by external chemical gradients, is a 
phenomenon of widespread occurrence and significance. Chemotaxis has 
been reported in the following eukaryotic cells: free-living microorganisms, 
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650 DEVREOTES & ZIGMOND 

leukocytes (inflammation), endothelial cells (angiogenesis), sperm (fer
tilization), neuronal growth cones (neurogenesis), fibroblasts (wound heal
ing), and thymocytes (embryogenesis) (Singer & Kupfer 1 986). It is perhaps 
most clearly displayed and extensively studied in cells of the immune 
system and the cellular slime molds. 

We have limited our discussion to leukocytes and Dictyostelium dis
coideum since they display strong chemotactic responses to well-defined 
stimuli. Although these two cell types are highly specialized for different 
roles, there are remarkable similarities in their chemotactic responses. 
Polymorphonuclear leukocytes (PMN) and macrophages are specialized 
to migrate to sites of inflammation and carry out cytocidal functions. 
Chemotactic factors include N-formylated peptides (NFP) such as f-Met
Leu-Phe, leukotriene B4 (LTB4), platelet activating factor (PAF), and a 
cleavage product of complement component 5 (C5a) (Sha'afi & Molski 
1 987). D. discoideum amoebae (DDA) spontaneously aggregate to form 
multicellular structures when induced to differentiate by removal of nutri
ents. Chemotactic factors include pterines, which apparently serve as cues 
for nutrient localization, and adenosine 3',5'-monophosphate (cAMP), 
which mediates the aggregation (Van Haastert & Konijn 1 982). The rapid 
rates of locomotion, the reproducible responses to chemoattractants, and 
the ease of preparation of large quantities of identical cells make these 
systems attractive for studies of chemotaxis. In addition, the small (40,000 
kb) haploid genome of DDA allows the rapid scoring and mapping of 
recessive mutations. In addition, mutation by homologous DNA insertion 
is now possible (Devreotes et a1 1 987; Van Haastert & Konijn 1 982; Nellen 
et a1 1987; Loomis 1 987; De Lozanne 1 987; Segall et aI1987). 

Eukaryotic chemotaxis is an intriguing biological phenomenon that, at 
present defies' biochemical description. This review summarizes chemo
tactic behavior and presents three simple schemes to illustrate features of 
sensing that must be explained in biochemical terms. Responses induced 
by chemoattractants are outlined and evaluated as a means to accomplish 
features of chemotaxis highlighted in the simple schemes. We then attempt 
to integrate the current knowledge (or ignorance) into a more realistic 
scheme and to identify areas where further information is needed. 

FEATURES OF CHEMOTACTIC BEHAVIOR 

DDA and PMN are amoeboid cells that move by pseudopod extension. 
Chemotaxis is achieved by orienting the direction of locomotion along a 
chemoattractant gradient. The orientation results from the preference of 
pseudopod extension toward the higher chemoattractant concentration 
(Zigmond 1 974). Efficient translocation requires coordination of motile 
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CHEMOTAXIS IN EUKARYOTIC CELLS 65 1 

activities, which is achieved by cell polarization. Pseudopod formation is 
favored at the anterior; the posterior contracts to form a uropod (Zigmond 
et al 1 98 1 ;  Swanson & Taylor 1 982). Polarity, which is more pronounced 
in PMN than DDA, develops in the absence ofa chemoattractant gradient. 
The polarity modulates the effects of chemoattractants, and chemo
attractants can compromise or modify endogenous polarity. Local appli
cation of attractant from a micropipette elicits pseudopods from the near 
side of the cell, which results in turning and moving toward the source. 
While moderate concentrations of attractant preferentially stimulate 
pseudopods from the front of a cell, a steep gradient applied at the rear 
of the cell can induce pseudopod formation from the uropod (Gerisch 
et al 1 975; Gerisch & Keller 1 98 1 ;  Claviez et al 1 986). High uniform 
concentrations of attractants induce pseudopod formation over much of 
the surface, decreasing the rate of locomotion (Zigmond & Sullivan 1979; 
Painter et al 1 984a; Shields & Haston 1985; Klein et al 1 985b). Removal 
of attractants induces pseudopod retraction (Zigmond et al 1 98 1 ); 
however, at least in DDA, simultaneous addition of even a low con
centration of a second attractant and removal of a high concentration of 
the first evokes further pseudopod extension (Van Haastert 1 983a; 
Fontana et aI1986). 

The accuracy of orientation depends on the mean concentration and 
steepness of the chemoattractant gradient. Highest sensitivity is observed 
at mean concentrations near the apparent dissociation constant, KD, of 
the receptor-attractant complex. At this concentration, a 2 %  change in 
concentration over 1 0  )lm (cell length) can be detected (Mato et al 1 975; 
Tranquillo et aI1988). Steeper gradients are required to observe orientation 
in mean concentrations several orders of magnitude above and below KD• 
These observations suggest that the accuracy of the orientation correlates 
with the difference in number of occupied receptors across the cell (Zig
mond 198 1 ). Thus, a cell orients equally well in gradients where the number 
of occupied receptors at its ends varies from 700-900 and from 1 0,700-
1 0,900. In this regard, sensing by eukaryotic cells is analogous to sensing 
in bacteria, where response is proportional to the change in receptor 
occupancy that occurs upon displacement along the gradient (Spudich & 
Koshland 1975). A cell can orient in a gradient of one chemoattractant 
when a homogeneous concentration of a second attractant is also present. 
Thus, DDA orient in a cAMP gradient in the presence of a homogeneous 
concentration of folic acid and vice versa (Van Haastert 1983b). PMN 
orient in a NFP gradient in the presence of L TB4, but in the presence 
of homogeneous NFP, orientation to L TB4 is blocked (S. H. Zigmond, 
unpublished observations). 

Both PMN and DDA can respond to stable spatial gradients established 
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652 DEVREOTES & ZIGMOND 

between a source and sink of attractant. Chemotaxis is observed at any 
point when the concentration can be considered constant [i.e. the con
centration changes only about 0.0001 %/minute (D. A. Lauffenburger, 
personal communication)]. Studies concluding that stable gradients can 
not induce chemotaxis used insufficiently steep gradients or cells that 
had previously been exposed to an attractant (Vicker et al 1984, 1986; 
Lauffenburger et al 1987). Cells can also respond to moving gradients. 
During aggregation, DDA respond to waves of cAMP that have a half
width of 100 J.lm and move at 300 J.lm/min (Tomchik & Devreotes 1981; 
Devreotes et al 1983). During a wave's approach, the average gradient 
rises; the back edge of the cell continually encounters the concentration 
that the front experienced two seconds earlier. As the wave passes, the 
gradient direction is reversed and the mean concentration falls. Cells orient 
along the rising gradient but not along the reversed, receding gradient. 
These natural, moving gradients are probably very steep (7% changes over 
10 J.lm and peak concentrations saturate receptors). 

Both PMN and DDA rapidly degrade their chemoattractants (Aswani
kumar et al 1976; Malchow & Gerisch 1974; Yuli & Snyderman 1986). 
The ability to degrade the attractants is important physiologically in order 
to steepen gradients and possibly to limit the duration and extent oj 
signaling. However, attractant degradation is not necessarily part of the 
chemotactic mechanism. In DDA, chemotaxis occurs toward non
hydrolyzable analogs of cAMP and cAMP in the presence of DTT, which 
inhibits cAMP phosphodiesterase (Van Haastert 1983b). 

HOW DO CELLS ACCOMPLISH CHEMOTAXIS? 

Critical Questions 

The behavior of DDA and PMN raises issues that must eventually be 
understood in biochemical terms. These issues include defining the mech
anisms of gradient detection and cell locomotion: 

• How is the directional response achieved? 
• What allows the response to be proportional to the difference in 

receptor occupancy? 
• What accounts for the extraordinary sensitivity of the gradient detec

tion? 
• Is there amplification between stimulus and response? 
• At what point do pathways for different chemoattractants merge? 

Hypothetical Schemes for Chemotaxis 

Figure 1 (A, B, and C) presents several hypothetical, simplified scheme� 
for chemotaxis that provide a framework for discussion of the key issues. 
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Figure 1 Hypothetical mechanisms of gradient sensing. Shown at top, in units of receptors 
occupied with ligand (RL), are two gradients of identical slope; the midpoint of the gradient 
on the right is higher. Diagrams in each column show the cell response to the corresponding 
gradient. Three independent schemes are illustrated (A, B, and C). (A) Horizontal arrows, 
extending from the vertical midline to the boundaries of the cell, represent actin filaments, 
which pull the cell in the direction of arrows. (B) Solid vertical lines delineate initial 
boundaries of cell; horizontal arrows represent pilot pseudopods. Dotted vertical lines 
represent new boundaries of the cell following response to information from pilot pseudo
pods, i.e. dCfdt < or >0. (C) Slanted or horizontal lines represent concentrations within 
cell of excitatory (E) and counteracting (C) signals. 

Although each scheme is discussed separately, they are not mutually 
exclusive. 

A. (Figure IA) Each occupied attractant receptor activates a contractile 
element that pulls the cell in that direction. The resulting tug-of-war 
produces a net mechanical force in the direction of the highest receptor 
occupancy. The force is proportional to the difference in occupancy and 
is independent of the mean occupancy. A similar scheme for polariza
tion of net electrical charge can be envisioned by linking each occupied 
receptor to generation of a charge that induces pseudopod formation. 

B. (Figure IB) A cell extends pilot pseudopods in random directions. 
Those extended up the gradient experience an increase in receptor 
occupancy and are reinforced, while those extended down the gradient 
experience a decrease in receptor occupancy and are withdrawn. 
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654 DEVREOTES & ZIGMOND 

Because each region of the cell surface responds only to changes in its 
level of receptor occupancy, the responses are independent of the mean 
level of receptor occupancy. 

C. (Figure 1 C) Receptor occupancy generates both excitatory and counter
acting signals. The excitatory signal that stimulates pseudopod exten
sion remains localized near the occupied receptor, while the counter
acting signal distributes throughout the cell. The concentration of the 
counteracting signal is specified by the mean receptor occupancy. The 
persistent excess of an excitatory signal at the high side of the gradient 
and of a counteracting signal at the low side of the gradient restricts 
pseudopod extension to the high concentration side of the cell. This 
asymmetry is independent of the mean level of receptor occupancy. 

THE DIRECTIONAL RESPONSE In scheme A, directional motile response is 
achieved by mechanical or electrical constraints; since both mechanical 
and electrical forces give a net directional force, a positive response at the 
front necessitates an inhibitory one at the rear. In scheme B, the directional 
response arises from the relative strengths of each locally evoked signal; 
there is essentially no communication between different regions of the cell. 
This scheme fails to explain the ability of cells to orient in rapidly rising 
or falling gradients since the front and back of the cell respond inde
pendently. In scheme C, communication is achieved by the distribution of 
the counteracting signal; the response is limited to regions where the. 
stimulus is above the mean level. 

An excitatory signal that induces a pseudopod must be localized. For 
instance, in scheme A, an occupied receptor may directly activate a con
tractile element. The excitatory signal would then be highly localized. In 
schemes B and C, a second messenger cascade connects occupied receptors 
to pseudopod extension. If these messengers rapidly equilibrate through
out the cell before acting, the directional information will be lost. To 
remain localized, the signal molecule must have a short space constant, 
determined by the product of its half-life and diffusion coefficient. [A freely 
diffusing molecule of Mr = 1000 (D = 10-7 cm2/sec) with a half-life of one 
second would have a space constant of about 3 J.lm (Segall et al 1 985; D. 
Lauffenburger, personal communication).] Binding to its target or other 
cytoplasmic components could alter this estimated space constant. 
Mediators, which must communicate throughout the cell, such as the 
counteracting signal in scheme C, should have large space constants. 
Activation of counteracting signals can help localize the excitatory 
response. 

DIFFERENCE IN RECEPTOR OCCUPANCY In each scheme the magnitude of 
the directional response is proportional to the absolute change in receptor 
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CHEMOTAXIS IN EUKARYOTIC CELLS 655 

occupancy and is independent of the mean level. The net directional signals 
or forces in the right- and left-hand columns of Figure 1 are equal even 
though the mean levels of occupancy differ; this is achieved by mechanisms 
that allow the mean level of occupancy to be ignored. In scheme A, this 
is achieved by linking opposing mechanical forces. In Scheme B, only 
pseudopod excursions that encounter increases in occupancy generate new 
responses. In scheme C, the counteracting signal limits responses to regions 
with receptor occupancy levels above the mean. 

Mechanisms that allow persistent stimuli to be ignored are often referred 
to as adaptation. Here, adaptation is defined as a reversible, time-depen
dent adjustment of sensitivity to the current level of receptor occupancy 
such that the evoked response ceases. Adaptation is either local (the sen
sitivity is adjusted to regional levels of receptor occupancy as in scheme 
B) or global (the sensitivity is adjusted to the mean occupancy of the 
entire cell) . The counteracting signal of scheme C could result from global 
adaptation after the transient response has declined. 

SENSITIVITY The ability of cells to detect small changes in attractant 
concentration restricts the number, affinity, and kinetic properties of 
chemoattractant receptors. In low attractant concentrations, random fluc
tuations in the number of receptors occupied within a given cell surface 
area limit the precision with which the local concentration of attractant is 
measured. The accuracy and, therefore, the sensitivity of gradient detection 
can be increased by: increasing the receptor density or the area involved 
in sampling, increasing the number of times a receptor resamples the 
medium in a given time period, or increasing the time period over which 
the cell integrates the occupancy information (Lauffenburger 1 982; Tran
quillo et al 1 988). While schemes A and C utilize a large fraction of the 
receptors, scheme B is limited by the number of receptors present on the 
test pseudopod. Schemes A and B also place time constraints on the 
integration process. In scheme A, the number of activated filaments fluc
tuates with occupancy; in scheme B, a decision must be made during the 
advance time of the pseudopod. 

AMPLIFICATION The extraordinary sensitivity of chemotaxis suggests that 
there are amplification steps in the signal transduction process. In scheme 
A, no amplification is necessary as long as the net force generated is 
sufficient to give direction to the cell movement. Schemes B and C are 
particularly suited for amplification. In these two schemes, the motile 
apparatus can be highly responsive to a specific concentration of signal 
generated by small changes in receptor occupancy since the magnitude of 
the local (scheme B) or mean whole cell (scheme C) signal is always reset 
to a basal level. 
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656 DEVREOTES & ZIGMOND 

PATHWAYS FOR DIFFERENT CHEMOATTRACTANTS All three schemes can 
account for the ability to sense a gradient of one attractant in the presence 
of a uniform concentration of another provided that the effector systems 
are not saturated. However, the ability of a second attractant to evoke 
pseudopod formation in DDA when added at the moment of removal of 
the first indicates that the site of adaptation must be early in the trans
duction pathway. This places constraints on schemes B and C, which 
utilize adaptation to ignore the current level of receptor occupancy. 

RESPONSES INDUCED BY ADDITION OF 
CHEMOATTRACTANTS 
Physiological Responses 

In order to identify components of cell physiology related to chemotaxis, 
we compare the responses induced by addition of chemoattractants to 
these evolutionarily diverse cell types. The spectrum of elicited responses, 
although complex, is surprisingly similar in both cell types. 

Attractants stimulate shape changes, locomotion, adhesion, secretion, 
and pinocytosis (Table 1). The shape changes of DDA are illustrated in 

Figure 2. Within a few seconds following a large increment in attractant 
concentration, DDA round or "cringe" for about 20- 30 seconds (Futrelle 
et a1 1982; Klein et a1 1985b; Fontana et aI 1986). In PMN, a contraction 

Table 1 Physiological responses induced by chemotactic factors' 

Response PMN DDA Kinetic type 

Orientation in a gradientb + + P 
Shape changes' + + 

Cringe N + T 
Pseudopod extention + + TIP 
Polarization + + P 

Chemokinesisd + + P 
Adhesione + + T 
Secretionf + + T 
Pinocytosis' + + TIP 

• Observed responses are indicated as +. Persistent or transient responses are 
indicated as P or T. T fP indicates a response showing both transient and persistent 
features. N indicates not detennined. Re ferences cited are in addition to those 
cited in the text. 

b See Konijn 1 970; Zigmond & Hirsch 1 973. 
C See Davis et .,1 1 982; Lewis 1 934; Painter et aJ 1984a; Yu1i & Snydennan 1984. 
d Allan & Wilkinson 1 978. 
e See Boxer et a1 1 97 9; Smith et a1 1 97 9a; Smith et al 1 97 9b. 
'See Becker et al 1974; Korchak et al 1 984a,b,c. 
'See Niedel et a11 97 9; Davis eta11 982. 
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can be seen on elongated cells. Within about 30 seconds, cells spread on 
the substrate and extend lamellae or ruffles in random directions, a 
response lasting several minutes with high concentrations of chemo
attractant. The ruffles then become localized and cells begin to translocate. 
In response to small increases in chemoattractant, cells directly form 
localized ruffles; the rounding and spreading steps are not apparent. Cells 
treated in suspension also exhibit these responses and develop a polarized 
morphology (Zigmond & Sullivan 1979; Stephens & Snyderman 1982). 
When chemoattractants are removed or diluted, pseudopods are 
withdrawn, surface blebbing occurs, the cells round, and (in DDA) then 
resume random motility (Zigmond & Sullivan 1979). In DDA, these tran
sient spreading responses can be repeatedly elicited by switching the stimu
lus between folic acid and cAMP (Fontana et aI 1 986). 

Figure 2 Cyclic AMP-elicited shape changes. NC-4 cells were starved for 5.5 hr, settled 
on glass, and perfused with phosphate buffer. Cells were prepared for scanning electron 
microscopy by rapid fixation with OS04 as described elsewhere (Condeelis et al 1988). 
Fixation was done either 30 sec before (A, B) or 25 sec (C, D) and 60 sec (E, F) after the 
perfusion buffer was abruptly switched to one containing 10--6 M cAMP. A, C, and E show 
fields of cells, while B, D, and F show representative cells at higher magnification. Before 
stimulation with cAMP cells have a morphology typical of normal motile amoebae (A, B). 
However, cells respond to cAMP in discrete morphological stages beginning with rounding 
(C, D), followed by dramatic protrusive activity and flattening (E, F), followed by the return 
to normal amoeboid morphology typical of cells before cAMP stimulation (Hall et al 1988). 
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6 58 DEVREOTES & ZIGMOND 

In both cell types, the presence of a chemoattractant stimulates the rate 
of locomotion, a response known as chemokinesis. Chemokinesis is most 
obvious in PMN, which are immobile in the absence of a stimulant. 
In PMN, the rate of locomotion is optimal when the chemoattractant 
concentration is somewhat less than KD (Becker 1980). DDA are motile 
in the absence of chemoattractant (Po tel & MacKay 1979); however, 
acceleration in response to increasing concentrations applied in vitro and 
in vivo (by approaching cAMP waves) is readily measurable (Varnum et 
a1 1985; Vicker et al 1 984, 1 986; MacKay 1978). 

A rapid and transient increase in adhesion ofPMN has been monitored 
by measuring cell-cell aggregation (O'Flaherty et al 1979). A chemo
attractant-induced increase in the number of adhesion molecules, including 
CR3 and CR1, and at the cell surface may help mediate this response 
(Anderson & Springer 1 987). Cells lacking these adhesion proteins do not 
aggregate upon addition of chemoattractant. A similar light-scattering 
response is observed in DDA (Gerisch & Hess 1974), and the cells exhibit 
increased adhesion to agar substrates during chemotaxis (P. N. Devreotes, 
unpublished observation). 

Secretion and pincoytosis are stimulated by the addition of chemo
attractants. PMN produce and secrete superoxide and L TB4 (Sha'afi & 
Molski 1 987). PMN also secrete the contents of specific and azurophilic 
granules; the release of these products is greatly enhanced by the presence 
of cytochalasin (Henson et al 1978). In DDA, the only known secretory 
product is cAMP (Dinauer et a1 1980a) although the attractant stimulates 
the appearance of numerous submembranous vesicles, some continuous 
with the plasma membrane (Maeda & Gerisch 1977). The vesicles may be 
involved in secretion of additional products or in pinocytosis, which is 
stimulated by an attractant in PMN (Table 1; Sullivan & Zigmond 
1980). 

It is intriguing that chemoattractants induce all these physiological 
responses in both DDA and PMN. It is possible that each response arose 
independently during evolution to serve the needs of the cells. Alter
natively, this array of responses may be closely related to the basic mech
anism of chemotaxis. The formation of pseudopods and the development 
of cell polarity are clearly necessary for the chemotaxis. Chemokinesis 
could result from an increased frequency or rate of pseudopod formation. 
Secretion and pinocytosis are considered essential in membrane flow 
models of cell locomotion where at the cell front fusion of vesicles provides 
membrane for lamellipodia extension and at the rear pinocytosis retrieves 
the membrane for recycling (Pfeiffer et al 1 980; Bretcher et a1 1987; Singer 
& Kupfler 1986). Increased adhesion may be characteristic of a newly 
formed pseudopod (Smith & Hollers 1 980). 
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Underlying Biochemistry 

CHEMOTAXIS IN EUKARYOTIC CELLS 659 

The biochemistry underlying the parallel physiological responses of DDA 
and PMN is also similar. Information on key molecular components and 
on the early events following binding of chemotactic factors is rapidly 
increasing and has recently been reviewed (Becker et al 1 986; Sha'afi & 
Molski 1 987; Snyderman et a1 1 987; Omann et a1 1 987a; Janssens & Van 
Haastert 1 987; Gerisch 1987). Table 2 summarizes the intra cell ular changes 
triggered by chemoattractants in PMN and DDA. Table 3 summarizes 
observations testing which events are essential for chemotaxis. 

CHEMOATTRACTANT RECEPTORS The first molecular event in chemotaxis 
is the interaction of the chemoattractant with its surface receptor. Both 
DDA and PMN express receptors for several different chemoattractants. 
These receptors all elicit a similar characteristic array of responses. Recent 
cloning of the cAMP receptor in DDA indicates that chemoattractant 
receptors share structural and functional properties with the class of hor
mone and neurotransmitter receptors linked to guanine nucleotide binding 
proteins (G proteins). 

In DDA, cell surface cAMP binding proteins have been identified by 
specific photoaffinity labeling of intact cells with 8-NrcAMP. The major 
photo labeled protein, which appears as a doublet (Mr = 40,000-43,000) 
in SDS PAGE, was purified to homogeneity, and a specific antiserum was 
raised (Juliani & Klein 1 98 1 ;  Theibert et al 1 984; Klein et alI987a,b). The 
antiserum was used to isolate the receptor cDNA. The nucleotide sequence 
predicts an open reading frame of 392 amino acids containing 7 domains 
enriched with hydrophobic residues; the seventh domain can be wound as 
an amphipathic helix. The C-terminal third of the molecule of hydrophilic; 
1 3  of the last 33 amino acids are serine and threonines, which represent 
potential phosphorylation sites (Klein et al 1 988). These features of the 
primary sequence suggest that the chemoattractant receptor traverses the 
lipid bilayer seven times in a pattern similar to other receptors that interact 
with G proteins, such as rhodopsin, f1-adrenergic, and muscarinic acetyl
choline receptors (Dohlman et al 1 987). This structure is consistent with 
the growing evidence that chemotactic signals are transduced via G 
proteins, and that phosphorylation of the receptor plays a major role in 
its function (see below). The amphipathic helix may form a portion of the 
cAMP binding site. Alternatively, it may suggest that the receptor func
tions as part of an ion channel. 

Analogs of N-formylmethionylleucylphenylalanine (FMLP) label a 
broad band of proteins (Mr = 55,000-70,000) in membranes and detergent 
extracts ofPMN (Niedel et a1 1980; Niede1 1 98 1 ;  Schmitt et a1 1983; Painter 
et al 1 982; Marasco et al 1985). Only about half of the mass of this 
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660 DEVREOTES & ZIGMOND 

Table 2 Biochemical responses induced by chemoattractants· 

Response PMN DDA Kinetic type 

Receptor alterationsb 
Insertion of new receptors + + P 
Receptor down-regulation + + P 
Receptor redistribution + + P 
Receptor modification N + P 

Alteration of second messengers levelsc 
IP3 (or other IP metabolites) + + T 
Arachidonic acid + N N 
Diacylglycerol + N T 
Phosphatidic acid + N T 
Decreased pH + N T 
Increased pH + + T 
Ca2+ + + T 
cAMP + + T 
cGMP + T 

Ion fluxesd 
Calcium influx + + T 
Calcium efflux + + P 
Sodium influx + N P 
Potassium efflux + P 
Proton efflux + + P 

Phosphorylation" 
Myosin heavy chain N + T 
Myosin light chain + + T 
80 kDa, 67-fJ9 kDa, 59-fJ0 kDa 
47-50 kDa, 45 kDa, 40 kDa, 27 kDa + N N 
18 kDa + N N 

30kDa N + N 

Enzymes activatedf 
A-cyclase + T 
G-cyclase N + T 
Phosphodiesterase + + N 
Na/K-ATPase + N N 
Phospholipase C + + T 
Phospholipase A2 + N N 
Protein kinase C + N N 
Methylation + + T 
Oxidative metabolism + N N 
Glycogen phosphorylase + N T 

Glucose transport + N P 

Changes in proteins of motile apparatus8 
Actin polymerization + + T 
Actin nucleation N + T 
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CHEMOTAXIS IN EUKARYOTIC CELLS 661 

Table 2 (continued) 

Response PMN DDA Kinetic type 

Changes in proteins of motile apparatusg (continued) 
Tyrosinylation of tubulin + N N 
Increase in micro tubules + N N 
Reactivation of gelsolin + N T 

Association with cytoskeletonh 
Actin + + T 

Myosin + T 
Protein kinase C + N N 
65-kDa protein (acumentin?) + N N 
Chemoattractant receptor + N N 

a Observed responses are indicated as +. Persistent or transient responses are indicated as P or T. TjP 
indicates a response showing both transient and persistent features. N indicates not determined. -
indicates no observable change. Re ferences cited are in addition to those cited in the text. 

bSee Weinberg et al 1981; Perez et al 1986a,b; Davis et al 1982; Sullivan et al 1984; Niedel et al 197 9; 
Jesaitis et a11982, 1985; Lubs-Haukeness & Klein 1982; P. Klein et a11985; C. Klein et a11985; Devreotes 
& Sherring 1985; Wang et al 1988. 

c See Ohta et a11985; Andersson et a11986b; Cockcroft et a11985; Serhan et a11983; Bradford & Rubin 
1987; Lew et a11986, 1987; Wynkoop et a11986; Nokoch & Gilman 1984; Simchowitz 1985a,b; Faucher 
& Naccache 1987; Sha'afi et al 1982; Naccache et al 1977; Lew et al 1986; Andersson et a11986a; Becker 
1980; Korchak et al 1984b; Sklar & Oades 1985; Prentki et al 1984; Simchowitz et a11983; Jackowski & 
Sha'afi 1979; Bokoch & Gilman 1984; Smith & Ignarro 1975; Yuli & Oplatka 1987; Dinauer et aI1980a,b,c. 

d See Naccache et al 1977; Aeckerle et al 1985; Simchowitz 1985a; Andersson et al 1986a; Naccache et 
al 1977; Gallin & Gallin 1977; Malchow et a11978, 1982; Wick et a11978; Korchak et a11984a. 

'See Painter et a11984a; White et a11984; Huang et a11984; Hayakawa et a11986; Schneider et a11981; 
Rahmsdorf & Gerisch 1978; Hirata 1981; Mato & Malchow 1978. 

fSee Grady & Thomas 1986; Naccache et al 1977; Ohta et al 1985; Hirata et al 1978; Bormann et al 
1984; White et al 1984; Schneider et al 1981; McPhail et al 1984; Huang et al 1983; Pike & Snyderman 
1981; Becker 1980; Korchak et al 1984c; Sklar et al 1985b; Slonczewski et al 1985; McCall et al 197 9; 
Mato & Marin-Cao 197 9; Van Waarde & Van Hoof 1985. 

'See Rao & Varani 1982; Sklar & Oades 1985; Yassin et al 1985; Howard 1985a; Howard & Wang 
1987; Carson et al 1986; Painter et al 1984a; Hoffstein et al 1977; Painter et al 1984b; Boxer et al 197 9; 
Hall et a11988. 

• See Yassin et a11985; Pike et a11986; Jesaitis et a11985. 

glycoprotein is the core polypeptide, which by electrophoresis displays a 
discrete band of protein (Mr = 32,000) consisting of two isoelectric forms 
(Malech et a1 1985; Heiman et aI 1986). Partially purified FMLP receptors 
have been incorporated into phospholipid vesicles with reconstitution of 
binding activity (Hoyle & Freer 1 984; Allen et al 1986). Cross-linking of 
[1251] C5a to human PMN has identified a polypeptide (Mr = 40,000) as 
the putative C5a receptor (Rollins & Springer 1985). The receptor appears 
to coisolate with a second protein (Mr = 40,000) (Rollins et al 1 988). It is 
anticipated that these polypeptides have the prototypic structure of seven 
membrane spanning domains. It will be interesting to learn whether features, 
such as the amphipathic helix, are unique to chemoattractant receptors. 
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662 DEVREOTES & ZIGMOND 

Table 3 Summary of key observations of chemotactic response 

Component Evidence Effect on chemotaxis 

G proteins Pertussus toxin (PMN) and Frigid Complete inhibition 

Actin polymerization 
Centrioles' 
Microtubules 
Myosin 

Actin binding proteins 

Cytoplasmic calciumb 

Sodium influxc 
pH elevationd 
cAMP elevation 

cGMP elevation' 

Methylationf 

A mutant (DDA) 
Cytochalasin (PMN) 
Cytoplasts (PMN) 
Colchicine and nocodazole 
Transformants lacking MHC II 

(DDA) 
Transformants lacking cx-actinin, 

severin, 120 kDa 
Calcium ionophore plus EGTA 

(PMN) 

Sodium free medium 
Inhibits Na+ -H+ exchange 
Synag 7 mutants (DDA) and 

A-cyclase inhibitor (PMN) 
Streamer F mutant (DDA) and 

cGMP analogs (PMN) 
Methylation inhibitors 

• See Keller & Bessis 1975; M al awist a & de Boisfleury 1982. 

Complete inhibition 
Normal 
Slight inhibition 
Slight inhibition 

Normal 

Normal; (TMB-8 and Quin-
2 plus EGT A do inhibit 
chemotaxis) 

Slight inhibition 
Inhibited 
Normal 

Enhanced 

Normal 

bSee M ar asco et a11980; E1ferink & Deierek au f 1985; Meshu1am et a11986; Europe-Finner et a11984; 
Zigmond et a1 1 988. 

'See Showell & Becker 1976; N acc ache 1977; Zigmond 1 977; Zigmond et a11 985. 
d See Simchowitz & Cragoe 1986. 
'See Estensen et al 1 973; Stephens & Snyderm an 1982. 
fSee G arci a-Castro et a11983. 

The functional properties shared by the chemoattractant receptors must 
be taken into account in schemes for chemotaxis. All appear to be relatively 
rare surface proteins, with rapid dissociation rates, and to interact directly 
with G proteins. 

Binding sites Both cell types widely modulate the number of displayed 
surface binding sites. Circulating (or unactivated) PMN have 3,000 exposed 
NFP sites, activation by a variety of stimuli exposes up to 100,000 sites, 
and additional sites are revealed upon cell homogenization (Tsung et al 
1980; Zimmerli et al 1 986). Sensitive DDA display about 50,000 sites for 
cAMP under physiological conditions. Additional sites (3- to 5-fold) can 
be unmasked by calcium or high ionic strength treatments (Janssens & 
Van Drie1 1 984; Van Haastert 1 98 5) .  Receptor expression increases during 
development or maturation in both cell types, as does the capacity to carry 
out chemotaxis. 
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CHEMOTAXIS IN EUKARYOTIC CELLS 663 

Dissociation rates In intact cells and isolated membranes, dissociation of 
bound attractant is multiphasic. In PMN, binding sites for NFP have 
affinities of 2-25 nM (Snyderman et a1 1984; Sha'afi & Molski 1 987). The 
majority of the sites dissociate with a t 1/2 of less than 2 min (Sklar et al 
1 984; Omann et al 1 987a). In DDA, the majority of cAMP binding sites 
dissociate rapidly (tl/2 = 1-3 sec) and interconvert within 10 sec between 
high and low affinity forms (Ko = 50 nM and 400 nM). A smaller fraction 
release ligand more slowly (tl/2 = 1 5  sec and 1 50 sec) and display a single 
affinity of 5-1 5 nM (Janssens & Van Haastert 1 987). Prolonged exposure 
of either cell type to attractant results in the association of radioactivity 
with components that dissociate extremely slowly (tl/2 = 1 00 min) (Klein 
1979; Jesaitis et al 1 984; Zigmond & Tranquillo 1 986). The multiplicity 
of receptor forms may arise from different conformations of the same 
polypeptide. 

Effects of guanine nucleotides Guanine nucleotides regulate the affinity 
of chemoattractant binding sites. In PMN and macrophage membranes, 
an initial mixture of high and low affinity sites (25% with Ko = 0. 1 -1 . 5  
nM and 7 5% with Ko = 25 nM) is converted to low affinity sites by GTP 
and GDP (Koo et a1 1 982, 1 983; Snyderman et aI 1 984). In permeabilized 
PMN, GTP accelerates the half-time for dissociation from 2 min to 10  sec 
(Sklar et al 1 987). The effect is reversible upon removal of the guanine 
nucleotides. In DDA, guanine nucleotides reduce the affinity and accelerate 
the dissociation of cAMP from all receptor forms (Van Haastert 1 984; 
Janssens et a1 1 98 5, 1 986; Van Haastert et a1 1 986; Khachatrian et aI 1987). 
The maximal effect of guanine nucleoside triphosphates is 85%, while that 
of GDP is 25- 50 %. 

SIGNAL TRANSDUCTION EVENTS FOLLOWING ATTRACTANT BINDING 

Guanine nucleotide binding proteins Several lines of evidence suggest 
that the initial event triggered by binding of attractant to the receptor is 
activation of a guanine nucleotide binding protein(s). The reduction of 
affinity of attractants caused by guanine nucleotides indicates a direct 
interaction of receptors with a G protein. Chemoattractants stimulate 
GTPase activity in isolated membranes (Hyslop et al 1984; Okajima et al 
1 98 5; Matsumoto et al 1 986; Feltner et al 1 986; Snaar-Jagalska et al 
1 988a). In vitro, occupancy of one NFP receptor stimulates hydrolysis of 
5-25 molecules of GTP per minute. The GTPase activity stimulated by a 
saturating concentration of NFP is not increased by addition of C 5a, 
which suggests that the receptors share a common pool of G protein (M. 
W. Wilde, S. H. Zigmond, manuscript in preparation). Chemoattractant
induced responses are blocked if the relevant G protein is inhibited (Becker 
et al 1 986). In PMN, G proteins can be functionally inhibited with islet 
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664 DEVREOTES & ZIGMOND 

activating protein of pertussus toxin, which ADP ribosylates IX-subunits 
of G proteins (Mr = 40,000 and 41 ,000) designated Gj-2 and Gj-3 (Table 
3). Both are expressed in the HL-60 cell line (Murphy et aI 1 987). Two IX
subunits and a p-subunit are expressed in DDA (M. Pupillo et aI, manu
script in preparation; P. Lilly & P. Devreotes, manuscript in preparation). 
In a DDA mutant, frigid A, the effects of GTP on cAMP binding are 
greatly reduced (Coukell et a1 1 983; Kesbeke et al 1 988). Although frigid 
A expresses chemoattractant receptors that undergo ligand-induced modi
fication, all other physiological responses, as well as chemotaxis, are lost 
(Table 3). Preliminary evidence suggests that the frigid A locus is one of 
the IX-subunits. It will be interesting to learn whether any of these G 
proteins are specific for chemotaxis. 

Phospholipid-induced messengers An immediate target of the receptor 
activated G protein is believed to be phospholipase C (PLC) (Smith et al 
1 98 5). Its activation results in hydrolysis of phosphotidylinositol bisphos
phate (PIP2) and liberation of inositol triphosphate (IP3) and diacylglcerol 
(DAG). IP3 releases calcium from internal storage sites while DAG acti
vates protein kinase C (PKC). This scheme is supported primarily by 
observations of leukocytes where a mix of A23 1 87 and phorbol myristyl 
acetate (PMA), which elevate cytosolic calcium and activate PKC, can 
bypass pertussis intoxication and stimulate O2 production (see Sha'afi & 
Molski 1 987). Activated DDA are reported to produce IP3 (Europe-Finner 
& Newell 1987a,b), and in saponin-permeabilized cells, IP3 can directly 
elicit several receptor-mediated responses (Europe-Finner & Newell 1 98 5, 
1 986a,b). In addition, DDA expresses a family of PKC genes (J. Williams, 
personal communication). 

Calcium levels elevated from internal stores are further increased by 
the influx of calcium from the medium. Internal calcium also opens a 
nonspecific cation channel that allows the flux of sodium and potassium 
(Von Tscharner et aI 1 986). The elevated cytoplasmic calcium is expected 
to activate calcium-calmodulin dependent protein kinases, phospholipase 
A2 (PLA2), and actin binding proteins (Lew et al 1 986a). However, the 
significance of these ion fluxes for chemotaxis is difficult to evaluate since 
cells carry out chemotaxis in sodium- and calcium-free media (Table 3) 
(Marasco et al 1 980). 

The cascade of events triggered by DAG can be partially mimicked by 
phorbol esters and soluble DAGs such as 1,2-dioctanylglycerol (DiC8). 
Although the essential kinases and substrates are unknown, both FMLP 
and PMA stimulate the parallel phosphorylation ofa series of bands (pp67, 
pp60, pp 50) (Huang et a1 1 983; Andrews & Babior 1 983) and lipomodulin, 
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CHEMOTAXIS IN EUKARYOTIC CELLS 665 

whose phosphorylation appears to reduce its inhibitory activity against 
PLA2 (Hirata 1 98 1 ). One of the consequences of the PKC-catalyzed ph os
phorylations is the activation of an ameloride sensitive Na + -H+ exchanger, 
which leads to an increase in intracellular pH (Grinstein & Furuy'a 1984; 
Simchowitz 1985b). Elevation of cytoplasmic pH is reported to correlate 
with chemotaxis (Simchowitz & Cragoe 1986). PMA is not effective in 
DDA; however, attractants stimulate numerous phosphorylations, proton 
efflux, and an increase in intracellular pH (Aerts et aI 1 987). 

The calcium and PMA mediated activation of PLA2 releases arach
idonic acid (AA), which is a substrate for endoperoxidases and lipoxy
genases. AA is converted to a number of products including LTB4. Since 
LTB4 is a chemoattractant in PMNs, its secretion could initiate a positive 
feedback loop leading to amplification of the original response. There is 
abundant evidence that cAMP receptor-adenylate cyclase coupling in 
DDA does create a feedback loop that amplifies the initial stimulus (Devre
otes & Steck 1979). The alterations of lipid metabolism extend beyond 
the release of DAG, IP3 and AA. There are also changes in lipid kinases, 
other PI complexes, hydrolysis of phospholipids in addition to PIP2, and 
changes in lipid methylation (Sha'afi & Molski 1987; Korchak & Lun
quist 1 987). 

Cyclic nucleotides Chemoattractants elicit transient (2-5 min) changes in 
cAMP, which in intact DDA are due to transient activation of adenylate 
cyclase (AC) (Roos et aI 1 977). Since attractants do not influence enzyme 
activity in membranes from either cell type, the link between chemo
attractant receptor and adenylate cyclase appears to be indirect and may 
involve calcium or other intermediates in the inositol pathway. In calcium
depleted or TMB-8 treated PMN, FMLP-stimulated increases in cAMP 
do not occur although responses to epinephrine and prostaglandin EI 
(PGE1), which bind to receptors that interact directly with Gs, are unaffected 
(Verghese et aI 1 985). Stimulation ofDDA appears to modify the pathway 
leading to adenylate cyclase; GTP-y-S activation of adenylate cyclase is 
enhanced in membranes from DDA briefly pretreated with the attractant. 
A soluble factor is also required for GTP-y-S stimulation of the enzyme and 
a mutant defective in this factor, synag 7, has been isolated (Theibert & 
Devreotes 1986; Van Haastert et aI 1 987). Increases in intracellular cAMP 
are not essential for chemotaxis since the chemotactic responses of cells 
that show little increase in cAMP, such as synag 7 and PMN treated with 
adenine analogs, are indistinguishable from wild-type responses (Table 3). 

Chemoattractants in all species of slime molds elicit rapid transient ( 10  
sec) increases in cGMP, which are difficult to  measure (Mato et  a l  1 977; 
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666 DEVREOTES & ZIGMOND 

Wurster et al 1 977). In saponin-permeabilized cells, IP3, GTP-y-S, or 
calcium are each reported to elevate cGMP (Europe-Finner & Newell 
1 985). DDA streamer F mutants lack cGMP-specific phosphodiesterase, 
and attractant-elicited cGMP levels remain persistently elevated (Ross & 
Newell 1 98 1 ;  Van Haastert et aI 1 982). In a cAMP gradient, these cells are 
able to orient themselves, but remain elongated after the gradient is 
removed (Table 3). When the concentration of cAMP is rapidly increased 
these cells maintain the "cringe" morphology for 70 sec rather than 20 sec 
(G. McNamara, personal communication). Stimulation of PMNs with 
crude attractants such as zymosan activated serum or bacterial super
natants does slowly elevate cGMP (Hatch et al 1 977). However, NFP
elicited increases in cGMP have not been observed (Simchowitz et alI980). 

ACTIVATION OF THE MOTILE RESPONSE Cell locomotion involves the co
ordination of complex processes including protrusion of lamellipodia, 
formation and breakage of attachments to substrate, and maintenance of 
cell integrity through elasticity and/or contraction. Continued locomotion 
may require a cycling of cytoskeletal and membranous components 
between the cell front and rear (Bretcher et al 1 987; Bray & White 1 988). 
None of these processes are understood in detail. It would be useful to 
identify the sites where chemoattractants stimulate and direct locomotion 
in these processes. 

Actin The chemoattractant-induced formation oflamellipodia correlates 
temporally and spatially with polymerization of actin. Peak levels of F
actin (filamentous actin) occur by 1 5 -60 sec (Wallace et al 1 984; 
Howard & Oresajo 1985a,b). Two peaks of actin polymerization are seen 
in DDA and sometimes in PMN (McRobbie & Newell 1 983; Omann et al 
1 987b). The newly formed lamellipodia are brightly fluorescent when 
stained with nitrobenzoxadiazole (NBD)-phallocidin, which binds selec
tively to F-actin (Fechheimer & Zigmond 1983; Hall et al 1988). If the 
chemoattractant is removed, the actin rapidly depolymerizes and the lamel
lipodia are withdrawn (Zigmond et al 1 98 1 ;  Sklar et a1 1 985b; Omann et 
al 1 987a). In triton-lysed cells, the polymerized actin sediments in a low 
speed centrifugation, which suggests that it is associated with the cyto
skeleton (White et al 1 982, 1 983; McRobbie & Newell 1 983; McRobbie 
1 986; Hall et aI 1 988). . 

The steady state between globular actin, G-actin, and F-actin depends 
on the concentration of G-actin available and the net affinity of the fila
ments for actin. An increase in G-actin could arise by releasing it from an 
actin-sequestering molecule such as profilin. An increase in free profilin 
has been observed after activation of platelets (Markey et al 1 98 1 ;  Lind et 
al 1 987). However, the amount of profilin present in platelets and PMN 
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does not appear sufficient to account for the observed changes in actin 
concentration (Lind et al 1 987; F. Southwick, personal communication). 

The affinity of the filament for G-achn can be altered by proteins that 
stabilize filaments, such as tropomyosin, or by proteins that change the 
ratio of available high affinity ("barbed") and low affinity ("pointed") 
filament ends. Chemoattractants rapidly increase the number of barbed
ends available for polymerization (Carson et a1 1 986; Condeelis et aI 1 988). 
Between 60 and 200 new sites for actin growth can be produced by an 
occupied receptor (M. Carson & S. H. Zigmond, unpublished obser
vations). With this modest amplification, occupancy of 2000 receptors 
could double the number of actin filaments. [The actin polymerized in a 
resting cell forms 2 x 1 05 filaments, 0.6 J.!m in length (Hartwig & Shevlin 
1 986).] Chemoattractant-induced polymerization in vivo in PMN is 
blocked by cytochalasin, which suggests that the filament growth occurs 
at the barbed end (Wallace et al 1 984). Barbed ends could arise de novo 
in nucleating filaments with molecules such as ponticulin (Wuestehube & 
Luna 1987; Schwartz & Luna 1988) by cutting existing filaments or by 
removing capping proteins, such as gelsolin or severin, from the barbed 
ends of existing filaments. The amount of activated gelsolin (i.e. able to 
cap filaments) is reduced by addition of chemoattractants to activated 
macrophages or by various stimuli to platelets (Chaponnier et al 1 987; 
Lind et aI 1 987). 

The second messengers that mediate changes in actin are largely 
unknown. Phosphatidylinositol bisphosphate micelles release actin from 
profilin and gelsolin from an actin-gels olin-calcium complex (Las sing & 
Lindberg 1 985; Jammey & Stossel 1 987). However, the presence of such 
micelles in vivo and the specificity of action of these highly charged surfaces 
has not been defined. Calcium modulates a large number of actin-associ
ated proteins in both PMN and DDA (Stossel et a1 1 985; Fukui & Yumura 
1986; McRobbie 1 986). However, elevation of the mean cytoplasmic cal
cium level does not appear necessary for actin polymerization in vivo or 
for chemoattractant stimulation of cell locomotion (Table 3; Sklar et al 
1 985b; Sheterline et al 1 985; Sha'afi et al 1 986; Carson et al 1 986; Omann 
et al1 987a). 

Recent experiments with DDA transformants have revealed that cells 
lacking severin, a DDA analog of gelsolin, a-actinin, or a l 20-kDa actin 
binding protein, or both severin and a-actinin exhibit chemotaxis (Table 
3). These surprising results necessitate a reevaluation of the identities of 
critical actin binding proteins. 

Myosin Phosphorylation of a myosin light chain is stimulated by attract
ants, apparently by activation of a myosin chain kinase (Fechheimer & 
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Zigmond 1983; Berlot et aI 1 985). A transient decrease and then an increase 
in the phosphorylation of the myosin heavy chain is observed in DDA. The 
increase in phosphorylation results from attractant-induced movement of 
myosin to the cell cortex where it interacts with a constitutively active 
membrane bound kinase (Yumura & Fukui 1 985b; Berlot et aI 1 987). The 
myosin subsequently returns to the endoplasm. Movement of myosin to a 
cytoskeletal fraction has been observed in platelets but not in PMN (Fox 
& Phillips 1 982; White et aI 1 983). Interestingly, the heavy chain of myosin 
is not essential for chemotaxis or motility. DDA transformants lacking 
the heavy chain of myosin, although unable to undergo cytokinesis, are 
motile (but slow and uncoordinated) and form the streaming patterns 
indicative of chemotaxis if extracellular calcium is present (Table 3; Knecht 
& Loomis 1987; De Lozanne & Spudich 1 987). DDA have a small form 
of myosin, whose significance for cell motility and chemotaxis is now an 
important issue. 

Localization of cytoskeletal proteins Immunofluorescence studies show 
that contractile proteins are asymmetrically distributed in a locomoting 
cell. Actin and actin-binding protein are concentrated in the advancing 
pseudopod; actin is also present in the cortex and uropod where myosin 
is concentrated (Oliver et al 1978; Valerius et al 1 98 1 ;  Fechheimer & 
Zigmond 1983; Stossel et al 1 985; Yumura & Fukui 1 985; Sawyer et al 
1 986). Addition of chemoattractants modulates this inherent polarity; F
actin is found in attractant-induced pseudopods. As noted above, in DDA, 
myosin moves transiently to the cortex. Streamer mutants ofDDA, which 
show increased polarity, display a prolonged association of myosin with 
the cortex (Liu & Newell 1 988). 

Microtubules arise from the centriolar region, which is just anterior to 
the nucleus in a moving PMN (Malech et al 1 977). Addition of chemo
attractants increases tubulin polymerization and tubulin tyrosinylation in 
PMN (Hoffstein et al 1 977; Nath et al 1 98 1 ). Microtubule inhibitors 
including colchicine and nacodazole compromise the polarity of cells; the 
cells make more frequent and larger turns. However, cells without cen
trioles and without microtubules do still exhibit chemotaxis although less 
well than control cells (Keller & Bessis 1 975; Zigmond 1977; Allan & 
Wilkinson 1978; Malawista & de Boisfleury 1 982). 

Polarity is modulated by cyclic nucleotides. Agents that increase cGMP 
and inhibit cAMP induce polarization of leukocytes (Stephens & Snyder
man 1982). Streamer F, the cGMP phosphodiesterase mutant of DDA 
with persistently elevated cGMP, moves in unusually straight paths. In 
both cases, the increased polarity correlates with better chemotaxis (Sand
ler et al 1 97S; G. McNamara, personal communication). 

A
nn

u.
 R

ev
. C

el
l. 

B
io

l. 
19

88
.4

:6
49

-6
86

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.a

nn
ua

lr
ev

ie
w

s.
or

g
by

 J
O

H
N

S 
H

O
PK

IN
S 

U
N

IV
E

R
SI

T
Y

 o
n 

04
/0

7/
11

. F
or

 p
er

so
na

l u
se

 o
nl

y.



CHEMOTAXIS IN EUKARYOTIC CELLS 669 

CHEMOATTRACTANT -INDUCED 
DESENSITIZATION 

The kinetics of the cellular responses can be divided into two classes as 
indicated in Tables 1 and 2. Some responses, such as chemokinesis, persist 
as long as the attractant is present and cease when it is removed. Most 
responses are transient even in the continued presence of the stimulus. The 
transient responses vary with respect to time to maximum response, time 
and extent of the return to baseline, responsiveness to increments in attract
ant concentration, and recovery of responsiveness after removal of the 
attractant. Mechanisms that bring about a loss of responsiveness, referred 
to collectively as desensitization, may include: decreases in receptor num
ber or down-regulation, modification of receptor function, modification 
of G protein or effector function, or depletion of messengers or their 
precursors. The loss of responsiveness can be independent of the response 
or can result from feedback inhibition. 

Receptor Alterations 
DOWN-REGULATION Pretreatment of PMN with NFP or DDA with 
cAMP leads to rapid (tl/2 = 1-10 min), dose-dependent attenuation of 
subsequent [3H] NFP or [3H] cAMP binding (Klein & J uliani 1977; Sullivan 
& Zigmond 1 980; Vitkauskas et al 1 980; Chenoweth & Hugli 1 980; Van 
Haastert 1 987a,b). Down-regulation can occur under conditions that pre
clude all other chemoattractant-elicited responses. These conditions 
include pertussus intoxication of PMN (M. W. Wilde & S. H. Zigrnond, 
unpublished observations), stimulation of DDA with the antagonist 
cAMPS(Rp), and mutation of the frigid A locus in DDA (see Table 3). In 
DDA, down-regulated receptors reappear very slowly (t 1/2 > 60 min) when 
chemoattractant is removed; in PMN the t 1/2 is between 10 and 20 min 
(Zigrnond et al 1 982; Van Haastert 1 987a,b). 

Chemoattractants induce rapid redistribution of receptors within or on 
cells. In DDA, cAMP causes cAMP receptors, visualized with fluorescent 
antibody, to move from the cell perimeter to the interior within 1 5  min 
(Wang et aI 1 988). In PMN, NFP induces translocation of receptors from 
a rapidly to a slowly sedimenting microsomal fraction (Painter et aI 1 987). 

COVALENT MODIFICATION There is strong correlative evidence in DDA 
that covalent modification of chemoattractant receptors is required for 
adaptation of certain cellular responses such as adenylate cyclase acti
vation (Theibert & Debreotes 1 983), myosin phosphorylation (Berlot et al 
1 985), and cell shape changes (Fontana et al 1 986). As noted previously, 
adaptation refers to a reversible extinction of responsiveness caused by 
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adjustment of cellular sensitivity to the current level of the stimulus. 
Adapted cells will respond further if the stimulus is increased and will 
recover when the stimulus is removed. The surface cAMP receptor exists 
in two molecular weight forms (Mr = 40,000 and 43,000) which are inter
converted by application and removal (Theibert et al 1 984) of the chemo
attractant. The chemoattractant-induced increase in molecular weight is 
associated with an increase in serine phosphorylation from 2 moles/mole 
receptor to 6 moles/mole (Klein et aI 1 985a,b,c). The modification occurs 
with a half-time of about one min and plateaus as the physiological 
responses subside. A stimulus increment triggers an additional response 
and a further increase in receptor modification. When the stimulus is 
removed, simultaneous recovery of cellular sensitivity and reversal of 
receptor modification occur with a half-time of about four min. At O°C, 
receptor modification does not reverse and cells do not regain sensitivity. 
The dose-dependence of the fraction of modified receptors at steady-state 
matches that for activation of the cellular responses (Devreotes & Sherring 
1985). Although modification of NFP receptors has not been reported, it 
is anticipated based on the similarity in kinetics and adaptation properties 
of the responses. 

In DDA, desensitization brought about by down-regulation can be 
readily distinguished from that caused by receptor modification since the 
former has a tenfold higher dose-dependence and is not readily reversible 
(Van Haastert 1 987a,b). Cells in which receptors have been down-regulated 
continue to display reversible adaptation/deadaptation and receptor modi
fication/demodification cycles. Down-regulated receptors that opera
tionally are not exposed to the chemoattractant are modified/demodified 
along with exposed receptors, which suggests that the signal for modi
fication is global (Snarr-Jagalska 1988b). 

Additional Desensitization Mechanisms 

MODIFICATION OF G PROTEIN FUNCTION In DDA, adenylate cyclase can 
be activated in vitro with GTP-y-S in the absence of ligand. Prolonged 
pretreatment of cells with chemoattractant causes a complete loss in this 
sensitivity to guanine nucleotides, but does not alter direct activation of 
the enzyme by Mn2+ (Theibert & Devreotes 1 986). GTP-y-S and Ca2+ will 
each induce cGMP accumulation in saponin-permeabilized DDA cells. In 
adapted cells, GTP-y-S is no longer effective, while Ca2+ remains effective, 
which suggests that the guanylate cyclase has not been modified (Small et 
al 1 987). These observations suggest that G protein function is altered in 
desensitized cells and may indicate direct modification of the G proteins 
involved. 
FEEDBACK INHIBITION It has been proposed that feedback inhibition could 
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account for response termination. Chemoattractant-elicited increases in A 
or C kinase could provide an attenuation signal. Treatment of leucocytes 
with cAMP-elevating drugs and cC}techolamines causes inhibition of PIP2 
hydrolysis, chlorotetracyline-monitored calcium mobilization, and depen
dent responses. Experiments with PMA also suggest that a PKC-mediated 
phosphorylation may prevent activation of phospholipase C by G protein 
(Matumoto et a1 1 986; Sha'afi & Molski 1 987; Snyderman et a1 1 987; Van 
Haastert 1 987c). In DDA, intracellular cAMP appears to perform at most 
a minor role in adaptation. In the DDA mutant, synag 7, as well as in 
caffeine-treated wild-type cells, chemoattractant-elicited increases in 
cAMP are absent yet cGMP increases, shape-change responses, and 
adenylate cyclase adaptation proceed with normal time courses (Table 3). 

ALTERATIONS OF EFFECTOR AND DEPLETION OF INTERMEDIATES In contrast 
to the strong correlation between surface cAMP receptor phosphorylation 
and adaptation of the many physiological responses, it is difficult to 
envision how the phosphorylation regulates the very rapid responses. 
For instance cGMP accumulation becomes fully committed within a few 
seconds of stimulus application and is adapted before receptor modi
fication reaches a steady-state (Van Haastert & Van der Heijden 1983). 
The temperature dependence of this desensitization response also indicates 
that it is not mediated by receptor modification (Van Haastert 1 987d). 
Depletion of messepger stores (calcium) may contribute to early ter
mination of responses. Rapid desensitization may also occur at the level 
of the effector (McRobbie & Newell 1 983; Sklar & Oades 1 985). 

INTERDEPENDENCE OF DESENSITIZATION MECHANISMS If desensitization 
occurs at the level of the receptor through either down-regulation or 
modification, the desensitization to different chemoattractants can be inde
pendent. PMN incubated with moderate concentrations ofNFP, LTB4 or 
C5a exhibit desensitization that is specific to the attractant present during 
the incubation (Henson et al 1 978; O'Flaherty et al 1 979). Incubation in 
high concentrations of chemoattractants causes ligand nonspecific desen
sitization in PMN (Nelson et aI 1 978). As noted above, in DDA that have 
been adapted to folic acid, cAMP elicits normal shape change and cGMP 
accumulation responses. If the folic acid stimulus is withdrawn when 
the cAMP stimulus is introduced, the cells deadapt to folic acid while 
responding to cAMP. A fresh response can then be evoked by reintro
duction of folic acid (Van Haastert 1 983a; Fontana et al 1 986). 

Pretreatment of PMNs with N-formyl peptides leads to an attenuation 
of chemoattractant stimulated GTPase activity monitored in vitro. This 
attenuation of signal transduction occurs in the same dose range as recep
tor down-regulation. While down-regulation is ligand specific, the attenu-
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ation of chemoattractant-stimulated GTPase activity is not ligand specific, 
which suggests a global nature to this form of desensitization. The receptor 
down-regulation in PMNs is reversible; the decrease in transduction is 
only partially reversible (M. W. Wilde & S. H. Zigmond, manuscript in 
preparation). 

CURRENT VIEW OF EUKARYOTIC CHEMOTAXIS 
Biochemical Events Essential for Chemotaxis 

A large number of chemoattractant-induced biochemical changes have 
been observed (Tables I and 2). Table 3 summarizes key observations that 
a current model of chemotaxis must incorporate. Remarkably few of the 
observed changes appear to be essential for chemotaxis. Probably other 
components are essential, i.e. the ability to adapt, but this has not yet 
been documented. The fact that a given change is not essential does not 
necessarily mean that it is not involved, but merely that there are redundant 
mechanisms for achieving a response. 

Working Model for Chemotaxis 

At the outset, three schemes were presented to illustrated requirements 
for effective chemotaxis. Biochemical mechanisms must account for a 
directional response, responses proportional to the difference in receptor 
occupancy, sensitivity, amplification, and interdependence of responses to 
different attractants. Although the biochemical data relating to chemotaxis 
is fragmentary, we can speculate on which reactions contribute to these 
features of chemotaxis. Our current working model, illustrated in Figure 
3, draws on elements present in each of the three original schemes. Figure 
3A depicts a cell (moving to the right) in a uniform concentration of 
chemoattractant. Figure 3B shows the same cell shortly after focal appli
cation of an attractant. The cell extends a pseudopod and begins to turn 
in the direction of the source. Shown within the cell are stimulus-induced 
changes in states of receptors and G proteins, actin, myosin, and micro
tubules. Changes in second messengers are not illustrated, but are discussed 
below. 

DIRECTIONAL RESPONSE A large part of coordination required for effective 
locomotion and chemotaxis is due to endogenous polarity. The cell in 
Figure 3A is polarized even though it is exposed to a uniform concentration 
of attractant. Disruption of either myosin heavy chain or microtubules 
decreases the endogenous polarity and impairs, but does not eliminate, 
chemotaxis (Table 3). These cytoskeletal proteins may polarize the cell 
by inhibiting pseudopod extension from the rear and sides. Many other 
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o 

o 

Figure 3 Diagram of chemotactically sensitive cell. (A) Cell iocomoting in a unifonn concentra
tion of chemoattractant. The leading edge of the cell and the direction of locomotion are to 
the right. (8) Same cell shortly after release of concentrated chemoattractant from the micropipet 
in the lower portion of diagram. Shown are attractant molecules ( 0); receptors (lJ!!'lll ); modified 
receptors (I!!!!!l ); G proteins (&,>; actin filaments ( :l ); myosin filaments (-); 
microtubules (=). 

components are certainly involved in the establishment of polarity. 
However, three actin-associated proteins, severin, IX-actinin and a 120-kDa 
actin binding protein can be eliminated from DDA without any apparent 
effect on locomotion or chemotaxis (Table 3). 

Chemoattractants modulate the endogenous polarity. The modulation 
may be mediated by a combination of stimulation and inhibition of 
pseudopod formation. In Figure 3D, local application of an attractant is 
envisioned to induce a pseudopod by locally stimulating actin poly
merization and weakening the cytoskeleton. When high uniform attractant 
concentrations are first applied, weakening of the cytoskeleton occurs at 
multiple points, which induces many pseudopods. The weakening at local 
sites may lead to concomitant strengthening in the remaining cortex 
depicted in Figure 3D as a rearrangement of myosin and microtubules. In 
DDA streamer F mutants, the prolonged attractant-induced association 
of myosin with the cytoskeleton is correlated with the prolonged cell 
polarization. Microtubule polymerization, increased by addition of 
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chemoattractants in PMN, may also contribute to cortical stability (Table 
2). 

The excitatory messenger that weakens the cortex and triggers actin 
polymerization must be localized. The signal that stimulates the poly
merization requires transduction through a G protein, which suggests that 
messengers such as DAG, IP3 and calcium are involved. These molecules 
could potentially localize the actin polymerization since there are means 
for limiting their space constants, i.e. rapid sequestration or degradation. 
Although elevation of cytoplasmic calcium levels does not appear to be 
essential for chemotaxis, the importance of local calcium fluxes have not 
been ruled out (Cramer & Gallin 1 979). The localization of pseudopod 
formation could, of course, also be due to the local removal of an inhibitory 
activity. 

The effects of chemoattractants on microtubules and myosin may be 
mediated by cyclic nucleotides. cGMP increases cell polarity in PMN and 
a prolonged elevation of cGMP is the basis of the streamer F phenotype in 
DDA (Table 3). Since cGMP analogs added homogeneously are effective, a 
local concentration of cGMP does not appear necessary. 

DIFFERENCE IN RECEPTOR OCCUPANCY Adaptation to chemoattractant 
results in responses that are proportional to changes in the fraction of 
occupied receptors. Adaptation has been shown in both cell types to 
involve early steps in the signaling pathway, i.e. the receptor and possibly 
the G protein. In the working model, adaptation is depicted as modified 
receptors. In Figure 3A the extent of modification is equal to the extent 
of receptor occupancy; in Figure 3B the local stimulus results in receptor 
occupancy that exceeds the current level of adaptation. ReCeptor phos
phorylation could certainly mediate local adaptation. It may also serve as 
a global adaptation mechanism. Since dephosphorylation is relatively slow, 
the level of adaptation may become averaged throughout the cell as modi
fied receptors move in the plane of the membrane. Alternatively, the 
receptor kinase may be regulated by a global signal. Attenuation of later 
steps in the transduction process may also be global in nature. 

SENSITIVITY At the outset, the extraordinary sensitivity of chemotactic 
systems was noted. Evidence was presented that chemoattractant receptors 
have high affinity and rapid dissociation rates, allowing for frequent sam
pling and time averaging of the attractant concentration. Although a 
multiplicity of receptor forms exist in both systems, only forms which have 
relatively rapid dissociation rates (t 1/2 < 2 min) and are present at the cell 
surface are depicted in Figure 3.  

Noise can also be reduced by a mechanism that integrates over time 
information from several receptors. The G proteins provide a means of 
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time-averaging since an excited receptor can activate several G proteins 
and the G protein can remain active for some time before its GTP is 
hydrolyzed. The life time of the activated G protein and its mobility are 
important questions that are as yet undefined. 

AMPLIFICATION Small changes in receptor occupancy can result in large 
cha.nges in cell physiology. Adaptation, by keeping resting levels of second 
messengers near basal levels, permits the biochemical machinery to be 
highly sensitive to a small change in the concentration of attractant. The 
relatively high concentrations of G proteins in these cells suggests ampli
fication may occur at this point. As depicted in Figure 3 a single excited 
receptor can activate numerous G proteins. Another obvious site for 
amplification of the signal due to changes in receptor occupancy is acti
vation of phospholipase C. 

PATHWAYS FOR DIFFERENT CHEMOATTRACTANTS Figure 3 depicts only a 
single class of chemoattractant receptors. Since adaptation to moderate 
concentrations of attractant appears to be ligand specific, it is depicted as 
occurring at the level of the receptor. Since receptors for different ligands 
may interact with a common pool of G proteins, integration of signals 
from different receptor types may occur at this point. 

Techniques are now available to address many cell biological questions 
concerning chemotaxis. Do chemoattractant receptors move in the plane 
of the membrane? Do they recycle rapidly? Is new membrane inserted 
in response to chemotactic stimulation? At specific points? Is receptor 
modification necessary for adaptation? Can nonadapting cells carry out 
chemotaxis? Which G proteins are required for chemotaxis? Chemo
attractant receptors are structurally similar to other G protein-linked 
receptors and stimulate similar transduction steps. Where is the specificity 
for chemotaxis? What molecular changes lead to actin polymerization? 
What localizes components of the cytoskeleton in a locomoting cell? Are 
cytoskeletal components recycled as a cell translocates across the sub
strate? The answers to these questions will give new insights to the fas
cinating process of directed cell migration. 
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