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ABSTRACT Resact, a peptide of known sequence isolated from the jelly layer of Arbacia 
punctulata eggs, is a potent chemoattractant for A. punctulata spermatozoa. The chemotactic 
response is concentration dependent, is abolished by pretreatment of the spermatozoa with 
resact, and shows an absolute requirement for millimolar external calcium. A. punctulata 
spermatozoa do not respond to speract, a peptide isolated from the jelly layer of Strongylo- 
centrotus purpuratus eggs. This is the first report of animal sperm chemotaxis in response to a 
defined egg-derived molecule. 

The sea urchin egg is surrounded by an extracellular invest- 
ment known as the jelly layer. The major macromolecular 
component of the jelly layer is a high molecular weight fucose- 
sulfate-rich glycoconjugate that induces the sperm acrosome 
reaction (1-4). Several small peptides also have been isolated 
from the jelly layer. The best characterized of these peptides 
is speract or sperm activating peptide H2, isolated from the 
jelly layer of Strongylocentrotus purpuratus and Hemicentro- 
tus pulcherrimus eggs (5-7). The sequence ofsperact has been 
determined (Gly-Phe-Asp-Leu-Asn-Gly-Gly-Gly-Val-Gly; 
references 7 and 8), analogues have been synthesized (8, 9), 
and a 77,000-D (77-kD) speract receptor on the sperm surface 
has been identified (10). Treatment of S. purpuratus sperma- 
tozoa with speract increases sperm respiration and motility 
when assayed at pH 6.6-6.8 (5-7, l 1). Speract has only a 
minimal effect on respiration and motility at pH 7.8-8.0 (5, 
11). Speract also causes a transient increase in sperm guano- 
sine 3',5'-cyclic monophosphate (cGMP) ~ levels (5, 6, 8). 

A different peptide, resact, has been isolated from the jelly 
layer of Arbacia punctulata eggs ( 12, 13). Its sequence is Cys- 
Val-Thr-Gly-Ala-Pro-Gly-Cys-Val-Gly-Gly-Gly-Arg-Leu- 
NH2 (13). Like speract, resact increases the cGMP levels, 
respiration, and motility ofA. punctulata spermatozoa at pH 
6.6, but has little effect on respiration or motility at pH 7.8- 
8.0 (13). Both resact and speract are species specific; neither 

~ Abbrevialions used in this paper. ASW, artificial seawater; OCaSW, 
calcium-free seawater; cGMP, guanosine 3',5'-cyclic monophos- 
phate. 

peptide will induce changes in motility or respiration at pH 
6.6 in the heterospecific spermatozoa (12, 13). Since neither 
peptide markedly stimulates sperm respiration or motility at 
pH 7.8 (the pH of normal seawater), the biological function 
of these peptides remains unknown (12, 14). 

We have shown that exposing A. punctulata spermatozoa 
to resact at pH 7.9 results in a change in the electrophoretic 
mobility (from 160 kD to 150 kD) of an abundant sperm 
membrane protein (13, 15). Several lines of evidence suggest 
that the mobility shift is due to a receptor-mediated 05-17) 
dephosphorylation of the protein (15, 16). We have identified 
the sperm phosphoprotein as guanylate cyclase (18). Corre- 
lated with the change in electrophoretic mobility is a 38-fold 
decrease in the specific activity of the enzyme (18). It is not 
clear why the activity of the enzyme (measured in vitro) 
decreases under conditions in which cGMP levels transiently 
increase in the intact cell; various possibilities have been 
discussed (16). Regardless of how this question is resolved, 
these results show that the egg possesses a mechanism to alter 
the cGMP metabolism of the spermatozoon. 

Here we demonstrate that resact is a potent chemoattractant 
for A. punctulata spermatozoa. This is the first demonstration 
of animal sperm chemotaxis in response to a precisely defined, 
egg-derived molecule. 

MATERIALS AND METHODS 

Reagents: Artificial seawater (ASW) was formulated as follows: 454 
mM NaCI, 9.7 mM KCI, 24.9 mM MgCI2, 27.1 mM MgSO4, 4.4 mM NaHCO3, 
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l0 mM CaCl2, 10 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid, 
0.5% (wt/vol) polyvinylpyrrolidone, pH 7.9. Calcium-free seawater (OCaSW) 
was ASW from which the 10 mM CaCI~ had been omitted. Acid-solubilized 
whole A. punctulata egg jelly was prepared as described (15). Resact and speract 
were synthesized as described (8, 12, 13). Sodium dodecyl sulfate (SDS, L- 
5750) was from Sigma Chemical Co. (St. Louis, MO), and 6-carboxyfiuorescein 
was from Eastman Kodak Co. (Rochester, NY). 

Gametes: Arbacia punctulata were spawned by intracoelomic injection 
of 0.2 ml of 0.5 M KCI. Spermatozoa were collected from the gonopores with 
a pipette, diluted with 2 vol of ASW (or OCaSW), and stored on ice. Immedi- 
ately before observation, the spermatozoa were diluted to a final concentration 
of 1.5 x 106 cells/ml with ASW (or OCaSW). 

Microscopy: Sperm swimming behavior was observed using a 2.5x 
objective lens under dark field conditions. Illumination was provided by a 
LXI50F lamp (ILC Technology Inc., Sunnyvale, CA), a Chadwick-Helmuth 
model 136 flash power supply (Chadwick-Helmuth Co., Inc., El Monte, CA), 
and a General Radio model 1310B audio oscillator (GENRAD, INC., Concord, 
MA) generating trigger pulses at 70 Hz. The stage temperature was maintained 
at 18"C, and spermatozoa swimming at the upper and lower surfaces of an 
open drop were photographed (l-s exposures) on Kodak Plus-X film. 

A microinjection apparatus (19) was used to introduce test solutions into 
the sperm suspension. Typically, 1 nl of test material was injected into a 20-/~1 
drop of sperm suspension (using a micropipette of 50-#m bore diameter). In 
some experiments, a tracer dye (6-carboxyfluorescein) was co-injected with 
peptide. Immediately after injection (1 nl, 100 nM resact, 0.5 mM 6-carboxy- 
fluorescein), visible fluorescence was confined to a circle of ~250/~m at the tip 
of the pipette. The diameter of the injected drop increased to 500 #m by 1 min 
postinjection. In all experiments shown the micropipette was withdrawn after 
injection, as reflections from the glass obscured the photographic image. 

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophore- 
sis (SDS PAGE): To prepare samples for SDS PAGE, spermatozoa were 
pelleted from a suspension of 1.5 x 106 cells/ml by 8-min centrifugation at 

2,000 g (2"C), resuspended to a final dilution of 107 cells/ml in ASW (or 
OCaSW) from which the polyvinylpyrrolidone had been omitted, and extracted 
with 10% (wt/vol) trichloroacetic acid. Processing of trichloroacetic acid- 
insoluble material for SDS PAGE was as described (15). Gels were silver-stained 
by the method of Morrissey (20)~ 

RESULTS 

Response of Spermatozoa to Resact 
The normal swimming behavior of A. punctulata sperma- 

tozoa in an open drop of ASW is shown in Fig. 1 a. Sperma- 
tozoa thigmotactically trapped on the upper and lower sur- 
faces of the drop (21, 22) were found to swim in circles of 
50-60-~m diam. The typical response of spermatozoa to 10 
nM resact delivered into the drop by microinjection is shown 
in Fig. 1, b-e. Within seconds after injection of resact, many 
spermatozoa in the area of the injected material were swim- 
ming in straighter trajectories, and a slight accumulation of 
spermatozoa appeared to be forming (Fig. 1 b). By 40 s, the 
cluster had grown and a sperm-depleted zone surrounding the 
cluster was evident (Fig. 1 c). As resact diffused from the area 
of injection, both the number of spermatozoa recruited into 
the cluster and the size of the duster continued to grow (Fig. 
1, d and e). Eventually (90 s) the accumulated spermatozoa 
started to disperse, although the difference in track shape was 
still clearly evident (Fig. l f ) .  At all times spermatozoa outside 
the zone of influence of the injected resact continued to swim, 

FJGU RE 1 Effect of 10 nM resact on A. punctulata spermatozoa. A micropipette was inserted into a 20-~1 drop of sperm suspension 
(position of the micropipette is indicated in a). 1 nt of 10 nM resact was injected into the drop and 5 s later the micropipette was 
removed. Photographs (1-s exposures) were taken (a) 5 s before insertion of the micropipette, and (b) 20 s, (c) 40 s, (d) 50 s, (e) 
70 s, (f) 90 s postinjection. Bar, 200 #m. x 34. 
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FIGURE 2 Comparison of the effects of (a) 100 nM resact and (b) 10/~m speract on A. punctulata spermatozoa. Sperm tracks 
were photographed 50 s after peptide injection. In both cases, peptide was injected just below the center of the field. Bar, 300 
#m, x 41. 

in place, in 50-60-gm circles. Injection of whole acid-solubi- 
lized A. punctulata egg jelly had qualitatively the same effect 
as resact (not shown). However, injection of an equivalent 
volume of speract, at concentrations as high as 10 #M, had 
no effect on either the swimming behavior or the distribution 
of the spermatozoa (Fig. 2b). 

The effects of resact on sperm swimming behavior were 
dose-dependent. Injection of 100 pM resact had no effect (Fig. 
3a). A response was first detectable at 1 nM resact, which 
elicited a definite change in swimming behavior, but no 
accumulation (Fig. 3 b). At 3.3 nM resact both a change in 
swimming pattern and an accumulation of spermatozoa were 
evident (Fig. 3 c). At increasing concentrations of resact, the 
number of spermatozoa recruited into the cluster and the 
tightness of the cluster increased (Fig. 3, d-f), as did the length 
of time for which the cluster persisted (not shown). When 
spermatozoa at the concentration used for microscopic obser- 
vation (1.5 x 106 cells/ml) were exposed to solutions ofresact, 
the electrophoretic mobility shift of the sperm guanylate 
cyclase (15) also showed a concentration-dependent response 
to resact (Fig. 3, lower panel): no effect at 10 pM, slight 
mobility shift at 100 pM, a nearly complete shift at 1 nM, 
and complete shift from 3.3 nM-I  #M. Since resact microin- 
jected into a drop of sperm suspension will diffuse away from 
the area of injection, the actual concentration of resact that 
elicited a threshold chemotactic response (Fig. 3b, upper 
panel) was probably slightly less than 1 nM. This correlates 
well with the minimum amount of resact required to induce 
the mobility shift of the guanylate cyclase (100 pM-I  nM; 
Fig. 3, b and c, lower panel). 

Pretreatment of the Spermatozoa with Resact 
Prior exposure of spermatozoa to concentrated solutions of 

resact abolished their response to resact from the micropi- 
pette. A small volume of concentrated sperm suspension (2.5 
X 10 9 cells/ml) was incubated in either 1 #M resact or ASW 
(control). After 2 min, the spermatozoa were diluted 1,000- 
fold, and resact was added to the control sample to a final 
concentration of I nM (both sperm suspensions then con- 

tained 1 nM resact). The control spermatozoa showed a good 
chemotactic response to 1 ~M resact (Fig. 4a). In contrast, 
the spermatozoa pretreated with resact showed no chemotaxis 
to 1 uM resact (Fig. 4b). 

Effect of External Calcium 
The clustering of spermatozoa in response to resact required 

millimolar concentrations of calcium in the surrounding sea- 
water. The extent of accumulation and tightness of the clusters 
decreased markedly from 10 mM Ca 2÷ (the concentration in 
normal seawater) to 3.5 mM Ca 2+ (Fig. 5, a and b). The 
response was even less evident at 1.15 mM Ca 2÷ (Fig. 5c), 
and a cluster was just barely detectable at 0.5 mM Ca 2÷ (Fig. 
5d). At calcium concentrations of 0.15 mM or lower, no 
accumulation was seen (Fig. 5e). Although the clustering 
response was blocked at these lower calcium concentrations, 
resact still induced a change in swimming behavior, manifest 
as an increase in track diameter (from 50-60 ~m to 80-100 
#m; Fig. 5, d and e). 

DISCUSSION 

The chemotaxis of animal spermatozoa to eggs or secretions 
from the female reproductive system is a widespread phenom- 
enon. Sperm chemotaxis has been demonstrated in four major 
phyla (Cnidaria, Mollusca, Echinodermata, and Urochor- 
data), and suggestive evidence exists in the Bryozoa, Annelida, 
Chaetognatha, Nematoda, and the lower vertebrates (see ref- 
erence 22 for review). Very little is known in any animal 
species about the mechanism by which the attractants influ- 
ence the direction of sperm motility or the chemical nature 
of the attractants themselves. 

Previous attempts to characterize animal sperm chemoat- 
tractants have been limited to descriptions of the chemical 
stability, electrophoretic behavior, and protease sensitivity of 
crude or partially purified attractant preparations. Using this 
approach it has been suggested that the attractants of certain 
echinoderms (22) and hydroids (23) might be peptides. A 
siphonophore sperm attractant has been partially character- 
ized electrophoretically, but the chemical nature of the sub- 
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FIGURE 3 Effects of various concentrations of resact on sperm swimming behavior and on the electrophoretic mobil i ty of 
guanylate cyclase. Upper panels, photographs were taken 40 s after the injection of 1 nl of various concentrations of resact into 
a 20-#1 drop of sperm suspension (1.5 x 106 cellsJml). Injection in each case was just below the center of the field. Bar, 300 #m. 
x 34. Lower panel, resact was added to 50 ml of sperm suspension (1.5 x 106 cells/ml) to various final concentrations. After 2 
min at 18°C the spermatozoa were processed for SDS PAGE as described in Materials and Methods. A portion of the silver- 
stained gel is shown, and the positions of the 144-kD membrane protein (15) and the 160- and 150-kD forms of the guanylate 
cyclase are indicated. In previous experiments (13, 15), it was shown that the 160- to 150-kD mobil i ty shift is induced within 5 s 
after the spermatozoa are exposed to resact. (a) 100 pM, (b) 1 nM, (c) 3.3 nM, (d) 10 riM, (e) 100 riM, (f) 1 /~M resact. 

stance is unknown (24). Our results are the first description 
of animal sperm chemoattraction in response to a defined 
molecule of egg origin. 

This work also represents the first demonstration of sperm 
chemotaxis in the sea urchin (see also references 22 and 25a). 
The chemotactic response to resact is distinctly different from 
the swarming response of sea urchin spermatozoa to solubi- 
lized egg jelly (25). The chemotactic response to resact requires 

millimolar external calcium (Fig. 5), whereas A. punctulata 
spermatozoa will swarm in response to egg jelly in OCaSW 
containing 1 mM EGTA (Ward, G., unpublished observa- 
tions). Resact induces the mobility shift of the guanylate 
cyclase under calcium-free conditions (Ward, G., unpublished 
observations), demonstrating that the spermatozoa are still 
able to bind the peptide in the absence of external calcium. 
Speract binds to S. purpuratus spermatozoa in the absence of 
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FIGURE 4 Pretreatment of spermato- 
zoa with 1 pM resact abolishes the 
abil ity of the spermatozoa to respond 
chemotactically to resact from the mi- 
cropipette. Spermatozoa were di luted 
to 2.5 x 109 cells/ml in either ASW (a) 
or 1 pM resact (b). After 2 min at 18°C, 
50 pl of each suspension was removed 
and di luted 1,000-fold with ASW. 50 pl 
of 1 #M resact was then added to the 
ASW sample, and a 20-pl drop of each 
suspension was put on a slide. 1 nl of 
1 pM resact was injected into each 
drop near the center of the field. Sperm 
tracks were photographed 40 s after 
injection. Bar, 300 pm. x 34. 

FIGURE 5 Resact acts as a chemoattractant only in the presence of mil l imolar external calcium. ASW and OCaSW were mixed 
to give final Ca 2+ concentrations of (a) 10 mM, (b) 3.5 mM, (c) 1.15 raM, (d) 0.5 mM, (e) 0.15 mM. Solutions of resact (1 pM) and 
suspensions of sperm (1.5 x 107 cells/ml) were prepared at each calcium concentration. A 20-pl drop of sperm suspension was 
put on a slide, and photographs taken 30 s after injecting 1 nl resact. In all cases, injection was in the middle lower half of the 
field. Bar, 300 #m. x 34. 

external calcium (26). 
Spermatozoa pretreated with concentrated solutions of re- 

sact do not respond to resact from the micropipette (Fig. 4). 
If  the dissociation of resact from its surface receptor (15-17) 
is relatively slow (as appears to be the case with speract and 
the speract receptor [26]), it may be that the pretreated 
spermatozoa cannot respond chemotactically to resact be- 
cause their resact receptors are already occupied. Studies of 
receptor occupancy await the synthesis of radioactive resact. 

The observation that the chemotactic response shows an 
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absolute dependence on external calcium may be significant 
in terms of understanding the basic mechanism underlying 
sperm chemotaxis. Calcium has a profound effect on the 
asymmetry of the flagellar waveform in detergent-demem- 
branated, reactivated sea urchin spermatozoa (27-29). These 
effects have been reproduced with A. punctulata spermatozoa 
(Brokaw, C. J., unpublished observations). Since directed 
turning of a spermatozoon towards a chemoattractant prob- 
ably involves changes in the symmetry of the flagellar beat 
(30, 31), levels of calcium in the axoneme may modulate the 



chemotactic response. The dependence of  sperm chemotaxis 
on external calcium has been observed in other organisms 
(24, 30, 32-34). 

Sea urchin gametes may represent a useful model system 
for studying the basic mechanisms underlying sperm chemo- 
taxis and animal cell chemoreception. We have previously 
shown that resact induces a change in the phosphorylation 
state and enzymatic activity of  sperm guanylate cyclase (13, 
15, 16, 18). Guanylate cyclase is heavily enriched in the sperm 
flagellum (15, 35, 36). The results presented here demonstrate 
a correlation between the effects of  resact on guanylate cyclase 
(as reflected by the enzyme's electrophoretic mobility) and 
the ability of  the peptide to act as a chemoattractant (Fig. 3). 
These results raise the possibility that cGMP and changes in 
cGMP metabolism may be involved in some aspect of  the 
chemotactic response. While the evidence at this point is 
strictly correlative, the fact that invertebrate spermatozoa in 
general (and sea urchin spermatozoa in particular) contain 
extremely high levels of  guanylate cyclase activity (37, 38) 
makes the possibility intriguing. 
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