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Abstract
For several decades, apoptosis has taken center stage as the principal mechanism of programmed
cell death in mammalian tissues. It also has been increasingly noted that conventional
chemotherapeutic agents not only elicit apoptosis but other forms of nonapoptotic death such as
necrosis, autophagy, mitotic catastrophe, and senescence. This review presents background on the
signaling pathways involved in the different cell death outcomes. A re-examination of what we
know about chemotherapy-induced death is vitally important in light of new understanding of
nonapoptotic cell death signaling pathways. If we can precisely activate or inhibit molecules that
mediate the diversity of cell death outcomes, perhaps we can succeed in more effective and less
toxic chemotherapeutic regimens.
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Introduction
Strategically targeted cancer therapies are emerging from enormous efforts spent
investigating basic signaling mechanisms involved in cell growth and cell death pathways.
Many of the novel small molecules and biological agents being developed target pathways
involved in apoptosis. Uncovering the molecular events that control and mediate apoptotic
death has been fascinating and encouraged by the wealth of reagents and assays that offer
specificity in detection. Examination of other modes of cell death has lagged behind, in part
because of the difficulty in their measurement. It is often stated as fact that chemotherapies
induce death solely through apoptotic mechanisms. Accumulating evidence suggests that
tumor cell response to chemotherapy is not confined to apoptosis but also includes other
modes of death [1]. In the first section of this review, we present discussions of the current
knowledge of mechanistically described cell death outcomes, with an emphasis on their role
in tumorigenesis and response to chemotherapy. In the second section, we examine the
status of novel chemotherapeutic agents that target molecules involved in signaling of
different cell death pathways.
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Types of Cell Death
Four categories of dynamic cellular activities that lead to cell death have been described:
apoptosis, autophagy, necrosis, and mitotic catastrophe [2]. Permanent growth arrest, known
as senescence, is also considered a type of cell death in the context of cancer therapy [3].
These five cell death classifications are based on distinct biochemical and morphological
characteristics present in the dying cell (Table 1). Two of these processes, apoptosis and
autophagy, have been considered to be “programmed,” which refers to their strict genetic
control [4, 5]. Programmed cell death results in the disintegration of cellular components
and their engulfment by surrounding cells. Tissue remolding events during normal
development of multicellular eukaryotic organisms rely on programmed cell death to help
form the adult species. They also operate in adult organisms to maintain normal cellular
tissue. Necrosis and mitotic catastrophe are generally considered passive responses to
massive cellular insult. However, new findings suggest that these forms of death may also
be genetically controlled [6-8]. Senescence is an essential process of aging and occurs
following a gene-directed program involving the erosion of telomeres and the activation of
tumor suppression signaling pathways [9]. Dysregulation of the signaling pathways that
control each of these forms of cell death has been implicated in tumorigenesis.

Other models of cell death have been described, including caspase-independent apoptosis,
necroptosis, paraptosis, pyroptosis, and slow cell death, whose morphologic and
biochemical characteristics vary from current definitions of the major cell death pathways
described above [10-13]. In an attempt to simplify this discussion, only the five best-
described cell death outcomes (apoptosis, necrosis, autophagy, mitotic catastrophe, and
senescence) are presented herein. It is also worth noting that a recent effort put forth by the
editors of Cell Death and Differentiation has proposed to characterize cell death strictly in
the precise terms of the parameters used to measure it and not in general terms that describe
the presumed cell death pathway involved [14].

Apoptosis
Though the phenomenon had been described for almost a century, in 1972, Kerr, Wyllie,
and Currie first coined the term “apoptosis” in order to differentiate naturally occurring
developmental cell death from necrotic cell death that results from acute tissue injury [15].
They also noted that apoptosis was responsible for maintaining tissue homeostasis by
mediating the equilibrium between cell proliferation and death. Morphologic characteristics
of apoptosis include cell membrane blebbing, cell shrinkage, chromatin condensation, and
nucleosomal fragmentation. Under normal circumstances, cells undergoing apoptosis are
recognized by macrophages, or neighboring cells that consume the cells’ fractionated
carcasses. Apoptosis has been considered a major mechanism of chemotherapy-induced cell
death, and pathways regulating apoptosis are the focus of many preclinical drug discovery
investigations.

There are two distinct molecular signaling pathways that lead to apoptotic cell death: (a) the
intrinsic, or mitochondria-mediated pathway, and (b) the extrinsic, or extracellular activated
pathway [4, 16, 17]. The intrinsic pathway is usually activated in response to intracellular
stress signals, which include DNA damage and high levels of reactive oxygen species
(ROS), as well as by viral infection and activation of oncogenes. The extrinsic pathway is
triggered by the binding of an extracellular ligand to a receptor on the plasma membrane.
Both pathways activate proteolytic enzymes called caspases that mediate the rapid
dismantling of cellular organelles and architecture. Caspases are a family of proteins
containing a nucleophilic cysteine residue that participates in the cleavage of aspartic acid–
containing motifs [18]. Caspases are expressed as inactive precursors that form active
oligomers after initiating cleavage events. There are two groups of caspases, the initiator/
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apical caspases (caspase-8, caspase-9, and caspase-10), and effector/executioner caspases
(caspase-3, caspase-6, and caspase-7). Evidence suggests that initiator caspases are capable
of autocatalytic activation while effector caspases need activation by initiator caspase
cleavage.

The Intrinsic Pathway—Bcl-2 family members act by regulating the efflux of
apoptogenic proteins from mitochondria. Bcl-2 proteins contain from one to four Bcl-2
homology (BH) domains. The number and combination of the BH domains dictate whether
the proteins are proapoptotic or antiapoptotic. Antiapoptotic Bcl-2 members contain all four
BH domains and include Bcl-2, Bcl-xL, Mcl-1, Bcl-w, and Bf1-1/A1. Proapoptotic members
lack the BH4 domain and are divided into two groups, the “BH3-only” members and the
multidomain BH1-3 proapoptotic members Bax and Bak. In mouse cells, deletion of Bax
and Bak is sufficient to prevent mitochondrial outer membrane permeabilization (MOMP)
induced by upstream apoptotic events [19, 20]. Bax and Bak normally exist as inactive
monomers. Bax resides in the cytosol or loosely attached to intracellular membranes [21],
and Bak is bound by Mcl-1, Bcl-xL, or voltage-dependent anion channel protein 2
(VDAC-2) in the mitochondrial outer membrane [22, 23].

The generalized scheme of intrinsic pathway activation is the oligomerization of Bax and
Bak in the mitochondrial outer membrane to activate MOMP, thus permitting release of
apoptogenic factors such as cytochrome c, second mitochondria–derived activator of
caspase/direct inhibitor of apoptosis (IAP) binding protein with low pI (Smac/DIA-BLO),
and Omi stress-regulated endoprotease/high temperature requirement protein A2 (Omi/
HtrA2). Once released, cytochrome c binds apoptotic protease-activating factor 1 (Apaf-1),
which recruits pro-caspase-9, promoting its self-activation. Activated caspase-9 cleaves the
downstream effectors caspase-3 and caspase-7, which rapidly cleave intracellular substrates.
Proteins of the IAP family, including X-linked IAP (XIAP), c-IAP1, and c-IAP2, can bind
and inhibit the active sites of caspase-3, caspase-7, and caspase-9. When released from
mitochondria, Smac/DIA-BLO and Omi/HtrA2 can bind these IAPs and prevent their
inhibition of the activated caspases [24-26].

Antiapoptotic Bcl-2 proteins block oligomerization of Bax and Bak, or their associations
with BH3-only proteins, thus preventing MOMP [17]. The BH3-only proteins are
universally proapoptotic, and each can act either to antagonize antiapoptotic members or
activate proapoptotic members. Members of the BH3-only family include Bid, Bad, Bim,
Puma, Noxa, Bmf, and several others. BH3-only proteins need to be activated in order to
elicit their death signal. The proapoptotic activity of BH3-only proteins appears to be kept in
check by either transcriptional control (mainly by p53) or post-translational events. For
example, cellular stresses, such as ionizing radiation (IR) or chemotherapy, activate a DNA
damage response that stabilizes the p53 tumor suppressor protein. p53 acts to either arrest
the cell division cycle by transcriptionally activating the cyclin-dependent kinase inhibitor
p21, giving the cell time to repair the damage, or else it helps to mediate apoptotic cell
death. p53 also activates proapoptotic genes, including those encoding Bax and the BH3-
only proteins Puma, Noxa, and Bid [27]. Another role for p53 has been identified showing
that p53 acts directly to increase MOMP by binding Bcl-2 family members and helping
mediate Bax and Bak dimerization [28, 29].

The Extrinsic Pathway—The extrinsic pathway is activated by members of two protein
families, the tumor necrosis factor (TNF) family and the receptors for these ligands (TNFR)
[30]. Most TNF family members bind receptors that activate signals involved in
proinflammatory responses and do not signal cell death. The TNF ligands that can induce
apoptosis are TNF-α, FasL (also known as CD95L), and TNF receptor apoptosis-inducing
ligand (TRAIL; also known as Apo2L) [31, 32]. After extracellular ligand binding, the
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cytoplasmic end of the TNFR recruits initiating caspases. TRAIL binding to its death-
inducing receptors acts in a manner similar to FasL, while TNF-mediated signaling is more
complex [33]. The ligand-bound Fas or TRAIL death receptors (DR4 and DR5) recruit the
adapter protein Fas-associating death domain-containing protein (FADD) [34]. Bound
FADD recruits initiator caspase-8 and caspase-10, and this assembly of proteins (receptor,
FADD, and caspases) is termed the death-inducing signaling complex(DISC) [35].
Recruitment of caspase-8/10 to the DISC leads to their autoproteolytic cleavage [36, 37].
Caspase-8/10 activity can be blocked by a protein with which they share high homology,
FLIP (FADD-like interleukin-1β-converting enzyme inhibitory protein). FLIP can
oligomerize with caspase-8/10 but lacks critical residues in its caspase domain, including the
catalytic cysteine, suggesting it to be a dominant-negative inhibitor. In some cells, named
type I cells, activation of effector caspases by activated caspase-8/10 alone is sufficient to
induce apoptosis [38]. In type II cells, activated caspase-8/10 stimulates the release of
factors from mitochondria. The BH3-only protein Bid connects the extrinsic pathway to
mitochondria. Bid is cleaved by caspase-8, resulting in its myristyolization of a newly-
exposed glycine residue to form tBid. tBid is then targeted to membranes where it promotes
Bax and Bak oligomerization [39, 40].

Apoptotic cell death is as a key element in maintaining immune homeostasis and preventing
the emergence of lymphomas or the development of autoimmunity [41]. Cells derived from
the hematopoietic progenitor cells (CD8+ T cells, natural killer cells [NK], dendritic cells)
have the capacity to mediate cell death through the use of the extrinsic pathway. For
example, antigen stimulation of T cells causes the induction of FasL, TNF, and TRAIL that
mediates contact-dependent destruction of their targets [42-46]. Cytotoxic immune cells can
also induce apoptosis through exocytosis of specialized granules that contain perforin and
caspase-like proteases, called granzymes [47]. Entry of these proteins into target cells
activates apoptosis, through both caspase-dependent and independent mechanisms.

Necrosis
While apoptosis is increasingly well defined at the molecular level, necrosis has been
lacking a molecular signature and has been referred to as a form of cell death that is
uncontrolled and pathological. However, recent studies suggest that necrosis is a regulated
event that may be involved in multiple developmental, physiological, and pathological
scenarios [7, 48, 49]. The fundamental features of necrosis include cellular energy depletion,
damage to membrane lipids, and loss of function of homeostatic ion pumps/channels. Unlike
apoptosis, in which the Bcl-2 family of proteins and caspases play key roles, necrosis is
induced by inhibition of cellular energy production, imbalance of intracellular calcium flux,
generation of ROS, and activation of nonapoptotic proteases. These events often potentiate
each other and synergize to cause necrosis.

Cells can generate ATP through oxidative phosphorylation or glycolysis. Glycolysis occurs
in the cytosol, while oxidative phosphorylation occurs in the mitochondrial matrix. Since
cells depend on so many ATP-dependent reactions, ATP levels can rapidly decline if the
cell’s ability to generate ATP is impaired. ATP depletion results in loss of cellular function
and necrosis. Uncoupling the electron transport chain disrupts ATP production, resulting in
the depolarization of the mitochondrial inner membrane, referred to as mPT [50, 51]. mPT
leads to the loss of the proton gradient and shutdown of ATP generation through oxidative
phosphorylation. Increased intracellular Ca2+, inorganic phosphate, alkaline pH, and ROS
also can cause mPT. Although mPT has been proposed to mediate apoptosis by inducing the
release of mitochondrial apoptogenic factors, persistent opening of the PT pore leads to
necrosis [52-54]. Cyclophilin D (CypD), a component of the PT pore, is required for mPT
and subsequent necrosis [55-58]. Highly proliferative cells are dependent on glycolysis for
energy production, and if glycolysis is inhibited, cellular ATP levels can dramatically
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decline. One method for inhibiting glycolysis is hyperactivation of poly(ADP-ribose)
polymerase (PARP) following DNA alkylating damage [59].

Cells in an aerobic environment are constantly generating ROS. While physiologic levels of
ROS can serve as signaling molecules to regulate transcription, excessive production of
ROS leads to oxidative stress, damage of intracellular molecules and organelles, and
ultimately necrosis. ROS can damage DNA by causing cleavage of DNA strands, DNA-
protein cross-linking, and oxidation of purines [60]. ROS also modify lipids at the multiple
double bonds in polyunsaturated fatty acids. Lipid oxidation can lead to the loss of integrity
of both the plasma membrane and intracellular membranes of organelles (lysosomes and the
endoplasmic reticulum [ER]) that may lead to the influx of Ca2+, or leak of noncaspase
proteases, resulting in necrosis [61].

Intracellular Ca2+ overload is also an important necrosis inducer. Necrosis can occur
following entry of extracellular Ca2+ or release of the ER Ca2+ into the cytosol. Cell death
can be initiated as a result of the activation of Ca2+-dependent proteases and mitochondrial
Ca2+ overload. Ca2+-mediated necrosis is, so far, the best example of “programmed
necrosis.” In Caenorhabditis elegans, a gain-of-function (hyperactive) mutant of the DEG/
ENaC (denegerin/epithelial Na+ channel) family members mechanosensory abnormal
(MEC)-4 and MEC-10 (MEC-4(d) and MEC-10(d)) induces necrosis of touch neurons
independent of apoptosis regulators [62-64]. In mammalian cells, intracellular Ca2+ entry
activates Ca2+-dependent proteases such as calpains that cleave the plasma membrane Ca2+

exchanger that is required for extrusion of Ca2+, leading to sustained intracellular Ca2+

increase [65]. The prolonged cytosolic Ca2+ can trigger mitochondrial Ca2+ overload,
resulting in mPT and ATP depletion, possibly by effecting CypD conformation and the
activation of Ca2+-dependent proteases.

Autophagy
Unlike apoptosis and necrosis, autophagy is not synonymous with cell death. Autophagy is
evolutionarily conserved and occurs in all eukaryotic cells, from yeast to mammals [66].
Autophagy is activated in response to nutrient starvation, differentiation, and developmental
triggers. It is an adaptive process responding to metabolic stresses that results in degradation
of intracellular proteins and organelles [5, 67]. During autophagy, portions of the cytoplasm
are encapsulated in a double-membrane structure referred to as an autophagosome.
Autophagosomes then fuse with lysosomes where the contents are delivered, resulting in
their degradation by lysosomal hydrolases. Under normal physiological conditions,
autophagy occurs at basal levels in most tissues, contributing to the routine turnover of
cytoplasmic components. It can promote cell adaptation and survival during stresses such as
starvation, but under some conditions cells undergo death by excessive autophagy.

In yeast, a cassette of autophagy-related genes (referred to as ATG) have been identified that
regulate autophagy induction, autophagosome formation and expansion, fusion with
lysosomes, and the recycling of autophagosome contents [66]. Some of the mammalian
orthologs to these genes have been identified. Studies involving Beclin 1, the mammalian
ortholog of yeast Atg6, gave the first indications linking dysfunctional autophagy with
tumorigenesis. Beclin 1 is required for autophagosome formation and has been suggested to
be a haploinsufficient tumor suppressor gene. Beclin 1 +/− mice suffer from a high
incidence of spontaneous tumors [68, 69], and Beclin 1 is monoallelically deleted in a high
percentage of sporadic human breast, ovarian, and prostate carcinomas [70].

Several lines of evidence have found that a cross-talk exists between autophagic and
apoptotic pathways. Beclin 1 was originally identified through its interaction with Bcl-2
[71]. Recent findings have shown that Bcl-2 and Bcl-xL expression can sensitize cells to
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autophagic death induced by etoposide [72], and that Bcl-2 inhibits Beclin 1-mediated
autophagy in response to starvation [73]. These contradictory findings suggest that the
outcome of the autophagic response may vary depending on the type of insult or cellular
stress.

Mitotic Catastrophe
Mitotic catastrophe is a process involving aberrant mitosis resulting from improper
segregation of chromosomes during sister chromatid separation. Generally, it is not
considered a form of death, but rather an irreversible trigger for death [74]. Eukaryotic cells
have complex surveillance mechanisms that monitor the structure of chromosomes and
activate multiple signaling pathways after detecting DNA damage. This can result in
inhibition of cell cycle progression and activation of DNA repair machinery (checkpoint). If
the damage is severe, initiation of a permanent block to the cell cycle occurs (senescence) or
the cell is eliminated through a death mechanism. Mitotic death is sometimes used to refer to
the execution of a death pathway directly from mitosis. A recently proposed definition for
mitotic catastrophe is death that occurs during mitosis, resulting from “a combination of
deficient cell-cycle checkpoints (in particular the DNA structure checkpoints and the spindle
assembly checkpoint) and cellular damage” [6]. DNA structure checkpoints refer to the
activation of cell-cycle arrest in response to DNA damage or unreplicated DNA. These
checkpoints occur following activation of kinases in the phosphatidylinositol 3′-kinase
(PI3K) family, primarily the ataxia telangiectasia mutated (ATM) and ataxia telangiectasia
and Rad3-related (ATR) proteins. These proteins phosphorylate the Chk1 and Chk2 kinases,
which phosphorylate a multitude of proteins involved in checkpoint signaling [75]. The
spindle assembly checkpoint, also known as the mitotic checkpoint, prevents anaphase
(separation of sister chromatids) until all chromosomes have obtained bipolar attachment.
The mitotic checkpoint is responsible for the production of genetically identical daughter
cells by ensuring accurate chromosome segregation. Chromosomes connect to spindle
microtubules through their kinetochores, thereby attaching them to the mitotic spindle.
Unattached kinetochores generate checkpoint signals that delay sister chromatid separation
until each kinetochore is attached. The advance to anaphase is prevented by inhibiting
activation of the anaphase-promoting complex (APC). The APC is an E3 ubiquitin ligase
that targets mitotic substrates for proteosome-mediated destruction necessary for anaphase
onset.

The mitotic checkpoint was first recognized in experiments using drugs that cause
microtubule depolymerization and cause kinetochores to detach [76, 77]. The mis-
segregation of many chromosomes results in rapid cell death. Morphologically, mitotic
catastrophe is associated with the formation of giant cells with either many micronuclei or
two nuclei. Micronucleated cells are nonviable and arise through the formation of nuclear
envelopes around clusters of chromosomes or chromosome fragments during catastrophic
mitosis. Mitotic DNA damage may also induce cytokinesis failure, leading to binucleation.
Cells containing two nuclei are arrested in G1 in a p53-dependent manner. Damage leading
to mitotic catastrophe can be induced by chemotherapeutic drugs that act as microtubule
poisons. Defects in genes that function to induce mitotic catastrophe can contribute to
tumorigenesis. Since cancer cells are frequently deficient in cell cycle checkpoints, they may
be particularly susceptible to the induction of mitotic catastrophe by such drugs.

Senescence
Replicative senescence was first described in the context of normal human cells explanted in
culture that failed to divide beyond a finite number of population doublings [78]. One
mechanism involved in the activation of replicative senescence is the DNA damage response
activated by the shortening of telomeres. Telomeres are repetitive DNA sequences that
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protect the ends of chromosomes [9]. After each cell division, telomeres in human cells
progressively shorten because of the erosion of the telomeric repeats. Most human adult
cells lack sufficient amounts of the enzyme telomerase that adds the telomeric repeats to
chromosome ends. When the telomere shortens beyond a certain limit, a DNA damage
response is triggered that results in cell cycle arrest [79, 80]. The DNA damage response
triggered by other cellular stresses, like exposure to chemotherapeutic agents or oncogenic
or mitogenic signals, also can induce senescence, often termed premature senescence, both
in vitro and in vivo [81-83]. Therefore, it has been proposed that defects in senescence
signaling contributes to tumorigenesis [3]. Indeed, the p53 and retinoblastoma (Rb) tumor
suppressor genes have been identified as two principal regulators of senescence [84].

Different classes of chemotherapeutic agents and IR induce senescence in human cancer cell
lines in vitro and in mouse tumor xenografts. The molecular signals that play critical roles in
mediating DNA damage–induced senescence include p53, Rb, p16INK4A, p21, and Bcl-2.
Knockout of p53 or p16 eliminates treatment-induced senescence in the Eμ-myc lymphoma
mouse model [82]. Senescent cells in culture are large in size, appear flattened, and are often
vacuolated. The most commonly used marker for senescence is senescence-associated β-
galactosidase, which is detected by a colorimetric assay using 5-bromo-4-chloro-3-indolyl-
beta-D-galactopyranoside (X-Gal) as a substrate at a pH of 6.0 [85]. This assay is limited in
its application, however, because molecular mechanisms that define this activity are not
understood. Accumulation of heterochromatic foci that are concentrated spots of
transcriptionally silenced DNA have also been seen in senescent cells [86]. Staining of these
foci and their microscopic determination is another detection method for senescence.

Targeted Approaches to Activating Cell Death
A basic tenet of cancer biology is that tumorigenesis occurs in part because of genetic
changes to cell death–signaling pathways. A paradox of medical oncology is that
chemotherapeutic agents work because they kill cancer cells. If cell death pathways aren’t
functional, how do these agents work? Normal (untransformed) cells respond to most
conventional chemotherapeutic agents by undergoing cell-cycle arrest and DNA repair, or if
the damage is too severe, death. This process principally depends upon intact p53 signaling.
The majority of human cancers have mutations in p53 or defects in p53 signaling [87].
Mutations in the Bcl-2 family are also commonly found. The significance of p53 and the
Bcl-2 family and other molecules that drive apoptosis have provided the most opportunities
for pharmaceutical exploitation [88, 89]. Some of these efforts have resulted in novel agents
now being tested in the clinic. These agents are discussed below as well as others designed
to target molecules that can lead not only to apoptosis, but also to alternative cell death
pathways (Table 2).

Activating Apoptosis
Bcl-2 Family—Overexpression of antiapoptotic Bcl-2 family members, such as Bcl-2, Bcl-
xL, A1, or Mcl-1, is frequently observed in many tumor types and contributes to
chemotherapeutic resistance. Several strategies are under investigation to target these
antiapoptotic proteins. These include the use of: (a) interfering oligonucleotides to
downregulate expression; (b) BH3-only peptides or controlled Bax expression to abrogate
protection; and (c) small molecules that can inhibit protective interactions. One agent that is
currently the most advanced in clinical trials is oblimersen (Genasense®; Genta Inc.,
Berekeley Heights, NJ), a nuclease-resistant antisense oligonucleotide targeting Bcl-2
mRNA. Oblimersen is in phase II and III clinical trials treating a wide variety of adult and
childhood tumors [90]. Oblimersen was not approved for treatment of melanoma because
results from phase III trials showed it did not extend survival [89]. But oblimersen showed a
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favorable outcome when combined with docetaxel in patients with hormone-refractory
prostate cancer [91].

Intracellular stress signals can activate BH3-only proteins to antagonize antiapoptotic Bcl-2
family members. An attempt to mimic the BH3-only action was the development of BH3
peptides containing the exposed BH3 domains using a chemical strategy termed
hydrocarbon stapling. These peptides, named stabilized α-helix of Bcl-2 domains (SAHBs)
proved to be protease-resistant and cell-permeable molecules that bind with high affinity to
multidomain Bcl-2 member pockets [92]. A SAHB of the BH3 domain from Bid was
effective in inhibiting growth of human leukemia xenografts in vivo in short-term assays. A
recently described small molecule BH3 mimetic, ABT-737, was identified using a structure-
based combinatorial chemical approach to target Bcl-xL, and binds Bcl-xL, Bcl-2, and Bcl-
w with very high affinity (50% inhibitory concentration ≤1 nM) [93]. ABT-737 synergized
with paclitaxel and the activated BH3-only protein tBid to cause apoptotic cell death.
Because overexpression of Bcl-2 and Bcl-xL is the key to many cancers’ resistance to
apoptotic stimuli, Bid SAHBs or ABT-737 will very likely synergize with other
chemotherapeutic agents. Two other compounds that exhibit broad-spectrum inhibition of
Bcl-2 family members are currently in phase I trials: GX15-070 and gossypol. Little
information is publicly available about GX15-070, a compound developed by GeminX, Inc.
(Montreal, Canada) Gossypol is a natural product found in cottonseed oil that historically
was investigated for its male contraceptive properties ascribed to its inhibition of adenylate
cyclase [94]. It also has been used in phase I/II clinical trials against metastatic breast cancer
[95] but showed negligible efficacy and some toxicity. Attempts are underway to improve
on gossypol’s structure to make a more tolerable compound [96].

Caspases—Another promising approach for targeting apoptosis is to disrupt IAP binding
to caspases by developing Smac/DIABLO mimics. Peptides containing the Smac/DIABLO
IAP binding motif have been developed, but their usefulness as a therapy is hindered by
their rapid degradation in vivo. A clever approach to overcome this obstacle was to create a
peptidomimetic composed of non-natural amino acid replacements [97]. One
peptidomimetic (named compound 3) has a high affinity for all three IAP proteins.
Compound 3 was shown to act synergistically with TRAIL to induce apoptosis in
glioblastoma cells in vitro. Design of small molecules that mimic the Smac/DIABLO
binding domain have been identified and show significant preclinical promise [98, 99].
These agents described above were designed to mimic Smac binding to the BIR3 domain of
XIAP. A different approach focused instead on disrupting XIAP inhibition of caspase 3 and
7 through its BIR2 domain [100]. A chemical screen identified several unique
polyphenylureas that succeeded in activating apoptosis, even in cells with Bcl-2/xL
overexpression or bax/bak deficiency [101]. A third approach, antisense to XIAP
(AEG35156/GEM640), recently began Phase I testing as a single agent and in combination
with docetaxel (trials ongoing in Canada and the UK).

Directly activating caspases has also been explored for cancer therapy. Adenoviral vectors
have been designed to mediate caspase activity in the targeted cell. One example is a
genetically modified caspase-9 (iCaspase9) put under the control of a prostate-specific,
androgen-responsive promoter and mechanically targeted to tumor xenografts [102].
Administration of an activating drug results in caspase-9 autoproteolysis followed by
apoptosis. A similar approach was taken to specifically target the vasculature using a
vascular endothelial growth factor receptor 2 promoter driving iCaspase9 in endothelial cells
[103]. Drug administration resulted in the specific killing of the tumor vasculature.

TNF—Ever since the discovery of TNF, great attention has been focused on the TNF
ligands as mediators of cancer cell death [104-106]. Despite the ability of TNF and FasL to
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induce apoptosis in cancer cells, severe toxic side effects preclude both ligands from use in
systemic anticancer therapy. Systemic administration of TNF caused an inflammatory
response resembling septic shock in humans [107]. FasL or agonistic anti-Fas antibody
caused lethal liver injuries in preclinical models [108]. Nevertheless, recombinant TNF was
approved for isolated limb perfusion therapy against sarcomas in Europe in 1998 [109]. TNF
combined with chemotherapeutic agents such as melphalan shows specificity toward
destruction of tumor vasculature and is very effective when used for localized treatment of
sarcomas and melanomas [110, 111]. TNF plus melphalan is awaiting approval following
phase III clinical trials for use in the U.S.

TRAIL—In contrast to TNF or FasL, recombinant human TRAIL showed no toxicity when
systemically administered in rodents and nonhuman primates [112-114]. Recombinant
human TRAIL has apoptosis-inducing capacity in a variety of tumor cells in culture and in
tumor implants in severe combined immunodeficient mice [115]. Recombinant TRAIL and
activating DR4 and DR5 antibodies are currently in phase I/II trials [115-117]. Like most
normal cells, many cancer cells are resistant to TRAIL-induced apoptosis. However, many
conventional and novel agents can act synergistically when combined with TRAIL.
Chemotherapy or irradiation sensitized resistant cells to TRAIL in vitro and in vivo
[118-122]. Many cytotoxic chemotherapeutic agents result in DNA damage and other
cellular stresses that cause stabilization of the p53 tumor suppressor protein. p53
transcriptionally activates DR5 and other proapoptotic proteins that synergize with TRAIL.
Therefore, combining TRAIL with such agents should prove to be a useful therapeutic
strategy in tumors harboring functional p53.

An interesting facet of death receptor signaling is that it can occur in the absence of
functional p53. Inhibitors of histone deacetylases (HDACIs) can induce apoptosis in cancer
cells and are currently in clinical trials. One action of HDA-CIs is the increased expression
of TRAIL in acute myeloid leukemia, resulting in selective apoptosis of these cells [123].
HDACIs enhance synthesis of several proteins involved in TRAIL signaling, including DR5,
and when combined with TRAIL show the ability to sensitize TRAIL-resistant cells [124,
125]. Both glucocorticoids and IFN-γ also increase DR5 expression, which may enhance
TRAIL activity [126]. There are no published reports investigating oblimersen in
combination with TRAIL preclinically, but it was shown to sensitize a Fas- and INF-γ–
resistant renal cancer cell line to INF-γ combined with a Fas-activating antibody [127].

FLIP—Whether a tumor cell is sensitive to death ligand-induced apoptosis depends on both
receptor cell surface expression and an intact apoptotic pathway. FLIP is an important
regulator of death receptor signaling, and a compound was recently discovered that reduces
FLIP expression. The synthetic oleanane triterpenoid 2-cyano-3,12-dioxooleana-1,9-
dien-28-oic acid (CDDO) was reported to have potent differentiating, antiproliferative, and
anti-inflammatory properties and reduce tumor growth in vivo [128, 129]. CDDO activates a
pathway resulting in FLIP degradation and caspase-8 cleavage [130-132]. CDDO can cause
apoptosis and cell death in a number of different human cancers, but it has shown potent
synergy when used in combination with TNF or TRAIL [133-136].

p53—Restoring wild-type p53 signaling to cancer cells is a major therapeutic strategy
currently in clinical trials. One attempt is being made to activate an immune response
against tumor cells expressing mutant forms of p53. Many trials are also assessing delivery
of adenoviral vectors containing wild-type p53 directly to tumors, alone or in combination
with IR or conventional DNA-damaging agents. These efforts have been described
elsewhere [137]. Pharmaceutical strategies have been devised to reactivate mutant p53
through small molecules or peptides that can restore DNA binding function. Mutant p53 is
often expressed at high levels in cancers, unlike wild-type p53, because they often do not
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bind to regulators such as the human homolog of mouse double minute 2 (MDM2). It is
unclear whether the first small molecules identified to restore DNA binding to p53 mutants,
CP-31398 and Prima-1, will enter clinical trials [138, 139]. Another approach has been
activation of wild-type p53 function by disrupting p53 interactions with proteins that
mediate its degradation. Several small molecules were identified (called Nutlins) that
prevent p53 degradation by MDM2, thereby activating p53 function [140].

Activating Necrosis
Noting the fact that many cancers have defective apoptosis machinery, it is reasonable to
consider whether activating other death pathways, such as necrosis, may be an effective
rationale for cancer therapy. Approaches reported to be able to induce necrotic death in
cancer cells include photodynamic treatment (PDT) and alkylating DNA damaging agents.
Several other chemicals or drugs, such as β-lapachone, apoptolidin, and honokiol, have been
demonstrated to induce cancer cell death through necrosis [141-144]. Some of these
approaches were not necessarily designed in a mechanism-based fashion but only later were
found to induce necrotic features in the dying cells.

PDT was developed to selectively target abnormal cells while preserving normal
surrounding tissues. This is achieved by the administration of exogenous photosensitizing
molecules such as porphyrins, chorines, or phthalocyanines to the target cells [145]. The
preferential accumulation of certain photosensitizing compounds in tumor cells and the
ability to treat only the defined tumor area make PDT a promising therapeutic approach.
PDT can induce necrosis at several levels. Upon excitation, the photosensitizers generate
ROS (primarily singlet oxygen) that can lead to cell death [146, 147]. When
photosensitization compounds localize to the plasma membrane, cells die by necrosis
resulting from the loss of plasma membrane integrity [148, 149]. Activation of
photosensitizers on lysosomes may disrupt the lysosomal membrane and result in the release
of lysosomal proteases leading to necrosis [150]. However, the majority of the PDT lethality
appears to result from loss of mitochondrial inner membrane potential [151]. The mPT
inhibitor cyclosporine A showed a protective effect during PDT treatment [152, 153].

DNA-damaging agents are the most widely used and effective chemotherapeutic approach to
cancer treatment [154]. One important molecule in the DNA damage response is PARP.
PARP is activated by DNA strand breaks and facilitates DNA repair enzymes access to
damaged DNA. While inhibition of PARP may lead to tumor development by inducing
genomic instability [155, 156] or contribute to cell death as an antitumor strategy in cells
lacking other components of DNA repair [155, 157, 158], hyperactivation of PARP depletes
cytosolic NAD and induces necrosis [59]. This may result in tumor-selective cell death
because highly proliferating tumor cells are dependent on cellular NAD to generate energy
through aerobic glycolysis [159].

An important feature of necrosis is that unlike apoptosis, necrosis elicits a proinflammatory
response. This inflammatory response may help recruit cytotoxic immune cells to the tumor
site, thereby increasing the efficacy of the chemotherapeutic drugs. Conversely, the
inflammatory response may damage normal tissue or induce the production of mitogenic or
prosurvival cytokines, such as high-mobility group box 1 protein (HMGB1) and hepatoma-
derived growth factor (HDGF). These molecules can function to activate signaling pathways
that promote cell outgrowth in the damaged area and also induce cell migration and
associated tumor cell metastasis [160, 161]. This may explain why bad prognoses are often
associated with tumors harboring necrotic areas.
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Disabling the Mitotic Checkpoint
The mitotic checkpoint was first recognized in experiments using drugs that cause
microtubule depolymerization and cause kinetochores to detach [76, 77]. Damage leading to
mitotic catastrophe can be induced by chemotherapeutic drugs that act as microtubule-
hyperpolymerizing agents (taxanes such as paclitaxel), by microtubule-depolymerizing
agents (vinca alkaloids such as vinblastine and vincristine), and by IR. However, since
microtubules are essential in other aspects of cellular function, these microtubule poisons
disrupt normal function of nondividing cells, resulting in significant side effects such as
peripheral neuropathy. A novel targeted approach to activating mitotic catastrophe has
focused on proteins that drive mitotic machinery. For example, kinesin spindle protein
(KSP)/Eg5 is a member of the kinesin family of microtubule-dependent motor proteins and
is required for spindle-pole separation [74]. Several KSP inhibitors have been identified, one
of which (SB-715992; ispinesib) is currently in multiple clinical trials alone and in
combination with other chemotherapies [162-164]. It is hoped that since these inhibitors
only function during mitosis, they may reduce the off-target toxicity of microtubule poisons.

Inhibiting the checkpoint kinase Chk1 also has been gaining momentum as a method for
chemosensitization. Because p53 mutations lead to G1 DNA damage checkpoint defects,
they are thought to contribute to increases in cell division and the accumulation of mutations
that drive tumor progression. G1 checkpoint–deficient cells are dependent upon their G2
checkpoint following DNA damage. Therefore, direct inhibition of the G2 checkpoint in
conjunction with DNA damage provides a possible therapeutic rationale [165]. Although
Chk2 contributes to the G2-M arrest, Chk1 is mainly responsible for the DNA damage
response, and inhibitors of Chk1 have been demonstrated to be sufficient to disrupt the
mitotic checkpoint and sensitize p53-deficient cells to DNA damaging agents. siRNA
studies confirmed the requirement for Chk1 in the G2-M checkpoint in response to IR and
some DNA damaging drugs [166, 167]. UCN-01 (7-hydroxystaurosporine), originally
identified and tested in clinical trials as a protein kinase C inhibitor, was also found to
inhibit Chk1 [168]. It is currently being tested in several phase I/II trials, alone and in
combination with different chemotherapies. Several other Chk1 inhibitors are also in
preclinical development [169-172].

Targeting Senescence
Activating senescence is an important therapeutic effect of IR and many commonly used
chemotherapies. Little direct attention has been given to targeted therapies that activate a
senescence response. Different classes of chemotherapeutic agents and IR induce senescence
in human cancer cell lines in vitro and in mouse tumor xenografts. A senescence response in
cancer cells following chemotherapy appears dependent upon functioning p53 and
p16INK4A pathways [82]. Recent evidence suggests that methylation of histone H2 lysine-9
by the enzyme Suv39h1 also is important in this response [173].

Increased telomerase activity contributes to a cancer cell’s loss of senescence controls.
Several therapeutic strategies have tried to exploit the fact that tumor cells have high levels
of telomerase activity. Telomerase-based therapies include using gene promoters of the
various components of telomerase for gene-therapy “suicide” strategies and using
telomerase peptides, proteins, or RNA as vaccines for immunotherapy [174]. Other
approaches have been examined to inhibit telomerase activity directly. Although tumor cells
express telomerase, they typically have short but stable telomere lengths, whereas normal
cells do not express telomerase and have long, slowly shortening telomeres. This difference
significantly contributes to making cancer cells more sensitive to telomerase inhibitors and
may allow for a substantial therapeutic window for telomerase inhibition. One such inhibitor
is GRN163L, a lipidated 13-mer oligonucleotide complementary to the RNA template
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region of human telomerase RNA (hTR) [175, 176]. Its mechanism of action is not that of
antisense-mediated RNase H catalyzed hydrolysis but that it acts as a template antagonist,
thus inhibiting telomerase activity. A study showed that mice treated with GRN163L for 3
weeks following tail vein injection of human non-small cell lung cancer cell line A549 had
virtually no metastases, while control mice had many [177].

Targeting Autophagy—To Activate or Inhibit?
The role of autophagy in cancer and in the response to chemotherapeutic agents is slowly
gaining attention. A number of studies have reported that autophagy, or autophagic cell
death, is activated in cancer cells derived from a variety of tissues in response to various
anticancer therapies [178, 179]. For example, tamoxifen induces autophagic cell death in
cultured breast cancer cells, in part, through a down-regulation of Akt [180]. Autophagy also
plays a role in protecting some cells from chemotherapy-induced death. Bafilomycin A1 can
inhibit autophagy by preventing the fusion of autophagosomes and lysosomes [181]. It is a
V-type ATPase inhibitor that prevents acidification of lysosomal-based compartments,
including autophagosomes [182]. Bafilomycin A1 inhibited γ-irradiation–induced autophagy
in cancer cell lines derived from different tissues, and increased the amount of IR-induced
death [183]. When apoptosis was inhibited in mouse fibroblasts by a caspase-8 inhibitor,
autophagic cell death, dependent on Atg7 and Beclin 1 activity, was induced, and autophagy
inhibitors decreased the amount of cell death [184]. One agent currently used clinically that
can specifically target the autophagy pathway is rapamycin. Rapamycin inhibits mammalian
target of rapamycin (mTOR), a kinase found to suppress autophagy. mTOR inhibitors are
being evaluated in a large number of clinical trials. mTOR functions downstream of PI3K
and Akt in growth factor signaling. When activated, mTOR phosphorylates targets that
prevent autophagy induction and permits active mRNA translation [5]. mTOR is involved in
many cellular processes, including apoptosis, and it is unclear what role autophagy plays in
mediating inhibition of mTOR’s effects.

Conclusions
Many novel strategically designed chemotherapeutic agents are now entering clinical trials
with many more to follow. They were designed to target molecules that play critical roles in
the execution of one or more cell death pathways. These new agents will provide a myriad
of more choices for rationally based chemotherapeutic combinations that have the potential
to kill even the most deadly tumors. But in order for novel combinations to succeed, a
deeper understanding of how a given chemotherapy affects all of the signaling pathways
involved in cell death is needed. Because the different death pathways involve some of the
same signaling molecules, care must be taken when designing combinations of targeted
therapies (Fig. 1). Attempts must be made to accurately predict whether drug actions will be
cooperative or interfering based on the status of the molecules and the pathways being
targeted.
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Learning Objectives
After completing this course, the reader will be able to:

1. List the multiple cell death pathways that are activated in response to
chemotherapeutic agents.

2. Identify signaling molecules involved and morphological changes that occur in
the different types of cell death pathways.

3. Describe mechanisms targeted by novel chemotherapeutic agents.
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Figure 1.
Chemotherapies activate multiple signaling pathways that can lead to different cell death
outcomes. Understanding how these pathways cooperate and interfere is essential for the
design of rationally-based chemotherapeutic combinations.
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