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ABSTRACT

Prior knowledge of perturbation data can signifi-
cantly assist in inferring the relationship between
chemical perturbations and their specific transcrip-
tional response. However, current databases mostly
contain cancer cell lines, which are unsuitable for
the aforementioned inference in non-cancer cells,
such as cells related to non-cancer disease, im-
munology and aging. Here, we present ChemPert
(https://chempert.uni.lu/), a database consisting of
82 270 transcriptional signatures in response to 2566
unique perturbagens (drugs, small molecules and
protein ligands) across 167 non-cancer cell types, as
well as the protein targets of 57 818 perturbagens.
In addition, we develop a computational tool that
leverages the non-cancer cell datasets, which en-
ables more accurate predictions of perturbation re-
sponses and drugs in non-cancer cells compared
to those based onto cancer databases. In particu-
lar, ChemPert correctly predicted drug effects for
treating hepatitis and novel drugs for osteoarthri-
tis. The ChemPert web interface is user-friendly and
allows easy access of the entire datasets and the
computational tool, providing valuable resources for
both experimental researchers who wish to find
datasets relevant to their research and computational
researchers who need comprehensive non-cancer
perturbation transcriptomics datasets for develop-
ing novel algorithms. Overall, ChemPert will facilitate
future in silico compound screening for non-cancer
cells.

INTRODUCTION

The inference of the relationship between chemical pertur-
bations and their specific transcriptional response has wide
biological and clinical relevance, such as drug discovery.
However, the inference of such relationship using compu-
tational models of signal transduction remains a challenge,
as they require data for different molecular regulatory lay-
ers, such as phospho-proteomics data, which are not widely
available. On the other hand, the analysis of transcriptomics
changes before and after perturbations enables us to directly
map the chemical perturbations to their response genes.
However, a major limitation is that such transcriptional
changes (i.e. transcriptional signatures) are usually cell spe-
cific and need to be generated for each cell type of interest,
necessitating a large compendium of gene expression pro-
files for large-scale drug screening.

In an effort to address this important challenge, the
Connectivity Map (CMap) project and more recently, the
LINCS L1000 project, have collected gene expression pro-
files for thousands of perturbagens at different time points
and doses in different cell lines (1,2). These resources have
been successfully employed for various studies (3,4). In ad-
dition, they offer computational tools for drug prediction
based on GSEA of query genes. A similar approach has
been proposed for identifying chemical compounds for en-
hancing cellular reprogramming (5). However, the major-
ity of the gene expression profiles in these compendia con-
sist of cancer cell lines, which are known to exhibit signal
transduction pathways and gene regulatory networks that
are significantly different from those of non-cancer cells
(6). For this reason, we hypothesize that the gene expres-
sion profiles in these resources are not optimal for address-
ing the challenges related to transcriptional responses in
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non-cancer cells, such as those in non-cancer disease, im-
munology and aging.

In this study, we present ChemPert (https://chempert.uni.
lu/), the first comprehensive compendium of manually cu-
rated transcriptional signatures derived solely from non-
cancer cell perturbation datasets, combined with a tool
that allows users to predict either the transcriptional re-
sponses of perturbations or chemical compounds target-
ing desired sets of transcription factors (TFs). The chemi-
cal perturbations in ChemPert are denoted as perturbagens,
which include both chemical and biological agents such
as small molecules, drugs, cytokines and growth factors.
ChemPert consists of 82 270 transcriptional signatures
of 167 unique non-cancer cell types perturbed with 2566
unique perturbagens. Unlike the existing approaches that
predict chemical compounds directly from a database (1,2),
ChemPert first predicts signalling proteins and then iden-
tifies potential perturbagens targeting these proteins. This
approach allows for the identification of novel perturbagens
that are not contained in the collected transcriptional com-
pendium.

We show that predictions generated for non-cancer cells
when using ChemPert database were significantly more ac-
curate than those based on cancer databases, underscoring
the importance of non-cancer cell perturbation datasets col-
lected in this study. Our benchmarking also reveals that con-
sidering initial cell states in addition to perturbagen similar-
ity for TF response prediction results in significantly higher
predictive accuracy than using perturbagen similarity alone.
To further demonstrate the practical utility of ChemPert, we
applied it to the RNA-seq data of non-alcoholic steatohep-
atitis (NASH) models, which predicted the differential TF
responses to chemical drugs for NASH and these predicted
response TFs were in agreement with the functional effects
of the drugs on different stages of NASH. In another appli-
cation, ChemPert was able to predict potential novel phar-
macologic therapeutics for osteoarthritis (OA). Notably, no
effective pharmacologic treatments are currently available
for OA and the predicted perturbagens constitute potential
novel therapeutics that could be further experimentally val-
idated.

The ChemPert web interface is user-friendly and allows
easy access and download of the entire datasets. The com-
putational tool is also embedded in ChemPert as a webtool
and can easily be run by users through the web inter-
face. ChemPert will serve as valuable resources for not
only experimental researchers who wish to find previous
datasets relevant to their research, but also computational
researchers who aim to develop new algorithms that require
a large amount of non-cancer perturbation transcriptomics
data. Overall, ChemPert provides a comprehensive non-
cancer cell perturbation compendium and facilitates future
in silico predictions of perturbation response and chemical
compound discovery for inducing desired effects on non-
cancer cells.

MATERIALS AND METHODS

Construction of ChemPert database

In this study, we constructed a database depicting the rela-
tionship between chemical perturbations, protein targets of

perturbations and downstream transcriptional signatures.
We considered the responses of transcriptional regulators
including transcription factors, transcriptional co-factors
and chromatin remodelling factors as ‘response TFs’ to re-
fer to these gene products for brevity. First, we collected
transcriptome profiles of chemical perturbations (includ-
ing small molecules, growth factors, cytokines and other
protein ligands) from Gene Expression Omnibus (GEO)
(7) and ArrayExpress (8). Specifically, the keywords com-
monly used in perturbation studies, such as ‘time series’, ‘re-
sponse’, ‘treat’, ‘perturb’, ‘presence’ and ‘effect’, were used
to search for the datasets in GEO and ArrayExpress. Then,
we manually curated the datasets focusing on non-cancer
cell types/lines or tissues in human, mouse and rat (Fig-
ure 1A). The datasets were pre- processed, including back-
ground correction and normalization, either with the same
approaches from the original studies or using the limma
R package (v3.38.3) (9). In addition, we also extracted the
chemical perturbation datasets of non-cancer cells from
LINCS L1000 at Level 3, where the quantile normalization
was performed (2). The response TFs of each perturbagen
were obtained by performing differential expression analy-
sis using the limma R package. The genes with Benjamini-
Hochberg (BH) adjusted P-value ≤0.05 and absolute fold
change ≥1.5 were considered as differentially expressed
genes (DEGs) compared to unperturbed control samples
when the sample replicates were larger than two. Otherwise,
only the fold change was used as the criterion. Differen-
tially expressed TFs were considered as response TFs based
on the annotations from AnimalTFDB 3.0 (http://bioinfo.
life.hust.edu.cn/AnimalTFDB2/) (10), which contains the
information of transcription factors, transcriptional co-
factors and chromatin remodelling factors. Furthermore,
these response TFs were assigned with Boolean value 1 and
−1, which represented up-regulation and down-regulation
after perturbation, respectively. The gene symbols of mouse
and rat were converted to human orthologue gene sym-
bols with the Biomart R package (v2.38.0) (11) in order
to combine the datasets from the three species. This oper-
ation was conducted, as the publicly available mammalian
perturbation datasets mainly focus on these three species
and the distribution of datasets among them is unbalanced.
The gene expression profile of each dataset before pertur-
bation was denoted as an initial gene expression profile
(Figure 1A). In addition, the direct signalling protein tar-
gets of perturbagens were retrieved from Drug Repurpos-
ing Hub (www.broadinstitute.org/repurposing) (12), Drug-
Bank (www.drugbank.ca) (13), and STITCH v5.0 (http:
//stitch.embl.de) (14) (Figure 1A). In STITCH, only the tar-
gets with a confidence value larger than 0.4 were kept along
with the experiment and database evidence. The receptor
targets of protein ligands were identified from manually cu-
rated ligand-receptor pairs from Ramilowski et al. (15). The
effects of perturbagens on protein targets, activation, inhi-
bition and unknown, were assigned with value 1, −1 and
2, respectively. When the reported effect was inconsistent
between the databases, the effect was treated as unknown
if any two databases reported contradictory effects (e.g.one
database reported inhibition, another reported activation)
or all databases reported unknown. Otherwise, we kept the
effect as inhibition or activation if at least one database
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Figure 1. Schematic outline of ChemPert. (A) The sources and three main components of ChemPert database. (B) Illustration of built-in algorithms in
ChemPert. One option for predicting the TF responses given the perturbagen and expression profile of initial cellular state (Option 1) and the other for
predicting perturbagens that induce desired transcriptional response (Option 2).

reported so and the other two were either consistent or un-
known.

Prediction of perturbation response TFs

The ChemPert tool for the prediction of response TFs af-
ter a query perturbation consists of three major steps (Fig-
ure 1B). In short, it first identifies TF response datasets per-
turbed with similar perturbagens as the query perturbagen.
Then, it filters out the TF response datasets whose initial
cell states are not similar to the query initial cell state. Fi-
nally, TFs are ranked by their frequencies of occurrence in
the retrieved datasets. Thus, the output of this algorithm is
a consensus response across multiple reference datasets se-
lected based on the perturbagen similarity and initial cell
state similarity that does not rely on prior cell annotations.
We did not set any similarity threshold for the perturba-
tion duration and concentration since the best result was
obtained during our optimization of these parameters. The
algorithmic details are described below.

Step 1: A modified Jaccard similarity between a query
perturbagen and reference perturbagens in the ChemPert
database is computed by:

J (Q, R) = |Q ∩ R|sign known + |Q ∩ R|sign unknown

|Q ∪ R|
where Q is the target proteins of the query perturbagen and
R is the target proteins of the reference perturbagen being
considered, |Q ∩ R|sign known is the cardinality of common
protein targets (i.e. proteins that are targeted by both query
perturbagen and reference perturbagen) with the same ef-

fect (activation or inhibition) between the query and refer-
ence perturbagens, whereas |Q ∩ R|sign unknown is the same
cardinality computed among protein targets whose effects
are unknown for the query and/or reference perturbagens.
For the latter cardinality, a query protein target and a ref-
erence protein target are considered as a match regardless
of their effects (activation or inhibition). Reference per-
turbagens with the modified Jaccard similarity higher than
1.5 z-score are retained. Then, all reference datasets per-
turbed by the retained perturbagens are retrieved from the
ChemPert database.

Step 2: As perturbagen similarity between the query and
reference perturbagens alone does not take into account
the signalling state of the query cell type, which is impor-
tant for determining the response profile, the algorithm ad-
dresses this issue by identifying signalling pathways that are
likely active or permissive to perturbations. We reasoned
that if the state of molecular paths from proteins targeted
by a perturbagen to TFs is similar between the query and
reference datasets, the TF response of the query data will
also be similar to the reference response TFs. To compute
such similarity, the prior knowledge network (PKN) is con-
structed by merging ReactomeFI (16), Omnipath (17) and
DoRothEA v2 (18). Then, the short paths from one sig-
nalling protein to each downstream TF are identified as fol-
lows: first, the shortest path lengths from each signalling
protein to all downstream TFs are calculated using the un-
weighted breadth-first algorithm implemented in R pack-
age igraph. Subsequently, the path length that can reach
the largest number of downstream TFs from that signalling
protein is considered as the maximum path length. We then
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calculate all possible short paths between the signalling pro-
teins and all downstream TFs that are within this maximum
path length. This procedure is repeated for every signalling
protein in the PKN. Then, for each signalling protein–TF
pair, a path enrichment analysis is performed using Fisher’s
exact test:

p = (a + b)! (c + d)! (a + c)! (b + d)!
a!b!c!d!n!

where a is the sum of normalized gene expression values of
proteins present in all the short paths including the start-
ing signalling protein and target downstream TF, b is the
sum of normalized gene expression values of all genes in the
dataset, c is the number of proteins present in all the short
paths, d is the total number of genes in the dataset, and n is
the sum of a, b, c and d. The gene expression is normalized
by the highest expression value in the dataset. Since Fisher’s
exact test can accept only integer values, the decimal values
are rounded for b and a.The P-values are corrected by the
Benjamini–Hochberg method and paths with the adjusted
P-value ≤0.05 are considered enriched. The initial cell state
similarity between a query and a reference dataset is com-
puted by the Jaccard similarity of common enriched paths.
Reference datasets with this Jaccard similarity higher than
z-score 1.5 are retained for the next step. The z-score is de-
fined as:

Z = x − μ

σ

where x in this case is a Jaccard similarity of a reference per-
turbagen w.r.t. the query perturbagen, and � and � are the
mean and standard deviation of all reference perturbagens’
Jaccard similarities w.r.t. the query perturbagen.

Step 3: The frequency of each response TF is computed
among the reference datasets retained after Step 2. When a
TF has both directions (i.e. up- or down-regulated), the one
with the lower frequency is discarded. If this frequency is the
same, the TF is discarded due to the uncertainty of its di-
rection. Thus, the final output contains predicted response
TFs in one direction and their frequency in the retained ref-
erence datasets. The frequency was also used for determin-
ing the ranking of predicted TFs (i.e. the more frequent, the
higher). When a TF was not predicted, the 2067th rank was
assigned to that TF, which is the number of TFs considered
in ChemPert.

Prediction of perturbagens targeting query TFs

Given a set of query TFs, ChemPert is also available for
the prediction of perturbagens. The tool first identifies
the potential signalling protein targets from the ChemPert
database whose perturbation can induce a similar set of re-
sponse TFs. Then, the perturbagens whose protein targets
are enriched among the predicted signalling proteins are
further identified (Figure 1B). This two-step approach en-
ables us to predict both signalling proteins including sur-
face receptors and protein ligands, and perturbagens such
as small molecules and drugs. Moreover, this approach al-
lows us to predict novel perturbagens that do not exist in the
reference perturbation transcriptomics dataset. The similar-
ity between query TFs and response TFs of each reference

dataset in the ChemPert database is calculated by using a
modified Jaccard similarity as:

J (Q, R) =
∑|Q∩R|

i=1 I (Qi , Ri )
|Q ∪ R|

with indicator function:

I (Qi , Ri ) =
{

1, i f Qi ∗ Ri = 1
0, i f Qi ∗ Ri = −1

where Q is the set of query TFs and R is the response TFs
for each reference in the ChemPert database. In order to en-
sure the consistent effect of a TF between the query and
the reference, we modified the Jaccard similarity by adding
an indicator function. If the TF has the same effect (both
inhibition/activation), then 1 is assigned, and 0 otherwise.
The perturbagens of the reference datasets are ranked based
on the similarity in descending order. Only the highly con-
fident perturbagens with z-score of similarity larger than
3.5 are selected for the further analysis. Next, ChemPert re-
trieves the signalling protein targets of each selected per-
turbagen from the ChemPert database and order the sig-
nalling proteins based on the sum of the similarity score of
their corresponding perturbagens. The effects of signalling
proteins are reported based on the majority effect of their
perturbagens. For example, value 1 is assigned to the sig-
nalling protein when more predicted perturbagens have ac-
tivation effect on it. The signalling protein is assigned as 2
when all of its predicted perturbagens have unknown effect
on it.

Finally, the prediction of perturbagens is conducted as
follows: each perturbagen and corresponding protein tar-
gets in ChemPert database is converted into a regulon-
like class as TF-regulons in database DoRothEA v2. Then,
we carried out analytic rank-based enrichment analysis
(aREA) implemented in the VIPER R package v1.18.1
(19), which takes advantage of TF-regulon interactions for
identifying TFs that are enriched for the regulon targets.
Here, we replaced TF-regulons with our perturbagen-target
regulon-like class to predict perturbagens. By doing so, we
aim to identify the perturbagens whose protein targets were
enriched among the top ranked predicted signalling pro-
teins. We use top 500 predicted signalling proteins for this
step. The predicted perturbagens are ranked based on the
normalized enriched score (NES) and the ones with false
discovery rate less than 0.05 are kept.

Evaluation of ChemPert database

The predictive performance of the ChemPert database was
compared to a cancer database using the subset of the
LINCS L1000 database, which only contains cancer cell
datasets (2). We performed a leave-one-out validation, in
which one reference dataset in the ChemPert database was
randomly selected as a query dataset and removed from
database. This query dataset was used to compare the per-
formance between using the ChemPert database and using
the cancer database in terms of response TFs prediction and
perturbagens prediction. This validation was performed by
randomly selecting 4000 datasets and this procedure was
repeated 10 times. In addition, the difference in transcrip-
tional responses between non-cancer cells and cancer cells
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was quantified using perturbagens that are commonly used
for at least three cell types in both ChemPert and can-
cer database. The Jaccard similarity of transcriptional re-
sponses within non-cancer cells (within-ness) and that be-
tween non-cancer and cancer cells (between-ness) were cal-
culated and compared. The perturbagens whose within-ness
are significantly larger than the between-ness were identified
by using one-side Wilcoxon test with adjust P-value <0.05.

GSEA and QuaternaryProd

Reactome (20), Gene Ontology Biological Process (GOBP)
(21) and WikiPathway (22) were download from the En-
richR web site (23). QuaternaryProd (24) was run using the
causal relation engine with Quaternary Dot Product scor-
ing statistic over the human STRINGdb, as suggested by
the authors. Gene symbols for the mouse datasets are con-
verted into human homologous Entrez IDs. The default pa-
rameter values were used, but the log fold change thresh-
old log2 (1.5) was used to ensure the agreement with the
DEGs for the ChemPert database. Since QuaternaryProd
predicts only signalling proteins, the ChemPert algorithm
for the prediction of perturbagens was applied to iden-
tify perturbagens targeting the predicted signalling pro-
teins. As QuaternaryProd required datasets with at least two
replicates for both before and after perturbation samples,
datasets with less than two replicates were discarded.

Construction of ChemPert web interface

The ChemPert web interface was implemented using
Python 3.7 (https://www.python.org/) programming lan-
guage and constructed using the Django (https://www.
djangoproject.com/), a high-level Python web framework.
In the Django web framework, the front-end respon-
sive web pages were built using the HTML templates
combined with Semantic UI (https://semantic-ui.com/)
and Bootstrap (https://getbootstrap.com/) libraries. The re-
sponsive table widget with filter, search and pagination
functionalities in some web pages was implemented us-
ing django-filter (https://django-filter.readthedocs.io/) and
django-tables2 (http://django-tables2.readthedocs.io/) li-
braries. The Django framework provides data-model syn-
tax, the data is defined in the Django model and is eas-
ily mapped to the SQLite Database (https://www.sqlite.org/
index.html). Finally, this web project was hosted on a Rocky
Linux 8 (https://rockylinux.org/) server.

RESULTS

Composition of ChemPert database

In order to infer the relationship between the signalling per-
turbation and downstream transcriptional responses, we ex-
haustively collected and compiled transcriptome profiles of
chemical perturbations applied solely on non-cancer cells
from public resources (see Materials and Methods). This
resulted in a database consisting of 82 270 transcriptional
signatures derived from 2566 unique perturbagens across
167 unique normal cell types/lines/tissues (Figure 2A). The
datasets covered 2132 unique TFs, in both activation (up)

and inhibition (down) directions with no significant bias to-
wards either of them (Figure 2B). The breakdown of the
DETFs by species is shown in Supplementary Figure S1.
More than half of the perturbagens (∼65%) have frequency
not larger than 20 (Figure 2C) and majority of the per-
turbagens (∼98%) in the ChemPert database have duration
not larger than 24 h (Figure 2D). In addition, we also col-
lected and integrated the protein targets and corresponding
effects (activation, inhibition or unknown) of 57 818 chem-
ical compounds.

Benchmarking of ChemPert

The mapping between signalling perturbations and re-
sponse TFs enables in silico predictions of either the down-
stream effects of given perturbagens or the perturbagens
that can target given sets of TFs. In particular, such map-
ping for non-cancer cells will significantly reduce our efforts
for identifying perturbagens of desired effects instead of
the perturbagens killing cells in cancer therapies, which will
aid in a wide range of biological and clinical applications.
Therefore, we developed a computational tool for either
predicting downstream response TFs given a perturbagen
of known target proteins, or the perturbagens of desired TF
responses.

To evaluate the importance of using the ChemPert
database, rather than cancer cell databases, for the pre-
diction in non-cancer cell types, we conducted a bench-
mark analysis on the ChemPert database and on the cancer
database solely consisting of cancer perturbation datasets
(see Materials and Methods). The results show a sig-
nificantly higher performance (measured as the area un-
der precision-recall curve (AUPRC)) with the ChemPert
database than with the cancer database in the prediction
of response TFs (Figure 2E, ‘ChemPert’ and ‘Cancer’). In
fact, the performance of the latter was similar to the ran-
dom selection of reference datasets (Figure 2E, ‘Random-
ization’). We also investigated if a similar predictive per-
formance could be achieved without taking into account
the initial cell states (i.e. based only on perturbagen tar-
get similarities). This result shows a significant decrease
in the performance (Supplementary Figure S2A), indicat-
ing that perturbagen similarity alone is not sufficient for
mapping cell-specific response TFs. In accordance with this,
the rank of TF hits was also significantly worse when the
initial cell states were not considered (Supplementary Fig-
ure S2B). As for the prediction of perturbagens from re-
sponse TFs, the AUPRC of signalling protein targets was
significantly, albeit slightly, better when using the ChemPert
database compared to using the cancer database (Figure
2F, ‘ChemPert’, ‘Cancer’). Moreover, using the ChemPert
database significantly increased the number of datasets with
true perturbagen prediction (Figure 2G, ‘ChemPert’, ‘Can-
cer’) and the rank of true perturbagens was significantly
lower (Supplementary Figure S2B, ‘ChemPert’, ‘Cancer’).

Next, we wondered whether the observed increase in
the predictive performance was due to the higher number
of unique perturbagens in the non-cancer database (2551)
than the cancer database (2198) rather to the unsuitabil-
ity of cancer cells for making predictions for non-cancer
cells. To this end, first the number of signalling pathways
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Figure 2. The compositions and evaluation of ChemPert database. (A) Distribution of datasets across different cell types/lines/tissues in the ChemPert
database. Y-axis scale is log2(number + 1) for each cell type/line/tissue. (B) Frequency of TFs in the ChemPert database, including inhibited and activated
ones. X-axis represents the frequency of TFs and y-axis presents the number of TFs with corresponding frequency. (C) Distribution of perturbagen
frequency in the ChemPert database. X-axis represents the frequency of perturbagen, and y-axis represents the number of perturbagen with corresponding
frequency. (D) Distribution of datasets for different perturbation durations. (E) AURPC for response TF prediction given perturbagens. (F) AURPC
for protein target prediction given response TFs. (G) Number of datasets with correct perturbagen prediction, data are mean ± MSE. E–G used the
benchmarking datasets to compare the performance of ChemPert tool using the ChemPert database, cancer database or randomization. Significance
was calculated by using one-sided Wilcoxon test. ***: P-value < 2.22e−16. (H) Fraction of perturbagens whose within-ness are significantly larger than
between-ness.
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targeted by these perturbagens was examined using the Re-
actome database. Of the 1530 Reactome signalling path-
ways, 1461 are targeted at least once by the perturbagens
in the non-cancer database, whereas 1425 are targeted at
least once by the perturbagens in the cancer database, which
leaves only 36 pathways that are not covered by the can-
cer database. Then, in order to assess the significance of
the reference database, we applied our algorithm to make
predictions for the cancer datasets using either the non-
cancer database or the cancer database. The result showed
that the performance significantly dropped when the non-
cancer database was used in comparison to when the can-
cer database was used (Figure 2E-G, Supplementary Figure
S2B, ‘Cancer on ChemPert’ and ‘Cancer on Cancer’, respec-
tively). Furthermore, the performance was also significantly
worse than that for the non-cancer predictions (Figure
2E-G, Supplementary Figure S2B, ‘Cancer on ChemPert’
and ‘ChemPert’, respectively), indicating that the cancer
database can give better predictions for cancer cells than the
non-cancer database and that the increased performance for
non-cancer cells based on the non-cancer database is not
due to the higher number of unique perturbagens in the
database but rather due to the higher similarity in response
TF profiles. To further investigate the effect of the cancer
database on predictions for non-cancer cells, we performed
the same benchmarking to examine whether combining the
non-cancer database and the cancer database could im-
prove the predictive accuracy for non-cancer cells. However,
this operation slightly but significantly decreased the overall
performance in both response TF prediction and signalling
protein or perturbagen prediction (Supplementary Figure
S3A–E). Indeed, a closer examination of the cases where
the performance significantly decreased when the cancer
database was added revealed that the response TF profiles
of non-cancer and cancer cells largely formed two distinct
clusters (Supplementary Figure S4) even when the origin of
cells was the same (e.g. healthy hepatocyte and HEPG2 cell
line). Overall, the clustering of response TF profiles between
normal and cancer cells upon 1569 unique perturbations
in the database indicated that the fraction of cells correctly
clustered to their respective class (i.e. non-cancer or cancer)
was significantly higher than mis-clustered ones (one-sided
Wilcoxon test, P-value < 2.22e−16) (Figure 2H). These re-
sults indicate that the cancer database will add noise to re-
ponse TF prediction of a query perturbagen, giving an ex-
planation for why using the cancer database is detrimental
for the response TF prediction in non-cancer cells. A signifi-
cant decrease in signalling protein / perturbagen prediction
can also be explained by the confounding effect of cancer
datasets. For example, tranylcypromine, a commonly used
drug for the treatment of depression, was predicted for neu-
ral progenitor cells (NPC.TAK) by using the non-cancer
database while not predicted by using both non-cancer and
cancer databases. The hierarchical clustering revealed that
the response TF profile of this cell type had a higher simi-
larity to those of other non-cancer cell types than to those
of cancer cell types (Supplementary Figure S5A). How-
ever, the response TF profile of NPC.TAK cells to tranyl-
cypromine also had high similarities to cancer cells that
were perturbed with different perturbagens (Supplementary

Figure S5B). This confounding effect of cancer cells led to
the failure of the algorithm to find the correct perturbagen.

Taken together, our benchmarking results highlight the
importance of use of non-cancer cell perturbation database
for mapping between signalling perturbations and response
TFs in non-cancer cells. The results also support our no-
tion that cancer cells are not optimal for this objective due
presumably to their significantly altered signalling and tran-
scriptional logics that result in distinct TF responses.

Benchmarking with GSEA-based approaches

We compared our algorithm to more widely employed
GSEA-based signalling pathway inference approaches. The
most common input gene set for GSEA is DEGs, however,
they are not available for response TF prediction. There-
fore, we first performed GSEA for signalling pathways that
are enriched in the initial cell state using the same approach
described in Step 2 of our response TF prediction algo-
rithm and then further identified pathways that are target-
ted by the query perturbagen. Reactome, Gene Ontology
Biological Process (GOBP) and WikiPathway were used for
this analysis since these are most widely used for pathway
GSEA. Finally, the presence of correct response TFs in
these signalling pathways was counted and the algorithmic
performance was quantified by the AUPRC. For the pre-
diction of signalling proteins/perturbagens, we used DEGs
between before- and after perturbations as input to GSEA
using the EnrichR R package for the same three path-
way databases. In addition, QuaternaryProd was also used,
which, given a set of DEGs, identifies upstream signalling
proteins by performing causal reasoning with a statistical
test based on networks. Then, we ranked signalling proteins
by their frequencies of appearance in the enriched pathways.
Finally, perturbagen prediction was carried out based on
these predicted signalling pathways using our algorithm.
The result showed that GSEA is not as accurate as our
algorithm in predicting both response TFs and signalling
proteins regardless of the used pathway database (Supple-
mentary Figure S6A, B). Accordingly, the perturbagen pre-
diction was also significantly better for our algorithm than
the other approaches (Supplementary Figure S6C). In sum-
mary, ChemPert outperforms GSEA-based pathway infer-
ence approaches in both response TF prediction and per-
turbagen prediction.

Description of ChemPert web interface

The ChemPert web interface mainly includes two sections
(Figure 3A): the database (Figure 3B) and the webtool (Fig-
ure 3C). The database section allows users to browse, search
and download any datasets in ChemPert without creating
an account and login. The home page of the database sec-
tion provides a summary of the database and allows users
to get access to one of the three main resources of the
databases, the targets of perturbagens, the gene expression
profiles of initial cellular states and the TF responses after
perturbations (Figure 3B). For example, when users click
the button ‘Transcriptional responses’, a table listing the
major meta information on each dataset will be returned,
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Figure 3. Illustration of ChemPert web interface. (A) The home page of web interface. ChemPert mainly consists of two sections: database and webtool.
(B) The home page of the ChemPert database. The database is composed of three parts: targets of perturbagens, gene expression of initial cell types and
transcriptional response. Clicking the button can switch to corresponding part. (C) The webtool page. Users can predict either the response TFs of given
perturbagen or the perturbagens targeting desired query TFs. (D) The transcriptional response table listing the meta information of datasets. (E) Detailed
transcriptional response for one dataset. (F) Information about targets of perturbagens.

including the perturbagen, data accession number, cell type,
perturbation duration and concentration (Figure 3D). The
search area allows users to search for the datasets of inter-
est based on the perturbagens, cell types or species (Fig-
ure 3D). In particular, users can click the ‘Response ID’ to
browse the response TFs of corresponding dataset (Figure
3E). Clicking the ‘Perturbagen’ button enables the users to
browse the protein targets of this chemical compound (Fig-
ure 3F). In addition, users can download the datasets of in-
terest or download all datasets from ‘Download’ page.

The webtool section provides an intuitive interface for
users to predict either response TFs or perturbagens (Figure

3C). To predict response TFs of a query perturbagen, users
can search for the targets of perturbagen in the ChemPert
database as input. If a query perturbagen is not available
in the database for the prediction of response TFs, users
can still run the tool by providing the protein targets of the
query perturbagen as input. Users will be informed by email
and subsequently download the results through the link in
the email when the job is done. The response TF prediction
tool takes between 2.5–3 hours with four CPUs depend-
ing on users internet connection speed. Currently, the web
server has only four CPUs and the tool can be run once
at a time. The perturbagen prediction tool takes roughly
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2–5 min with four CPUs. The detailed usage of ChemPert
web interface is described in ‘Documentation’ page.

Use case - ChemPert predicts cell state-specific responses to
drugs in non-alcoholic steatohepatitis (NASH)

NASH is an advanced form of non-alcoholic fatty liver dis-
ease (NAFLD) that not only causes the accumulation of fat
in the liver but also inflammation and damage to liver cells.
This can cause scarring, cirrhosis and even liver cancer and
can be lethal, but currently no FDA-approved medications
exist (25,26). We applied ChemPert to the RNA-seq data
of two models of diet-induced NASH to predict the TF re-
sponses of perturbagens that could enable us to find opti-
mal treatments. The first model consists of mice fed with
a high-fat diet rich in fructose, palmitate, and cholesterol
(FPC diet) for 20 weeks (27). The second model consists
of mice fed with a choline-deficient, methionine-reduced
(CDA) high-fat diet for seven weeks (28). In addition, both
models were stratified into two groups based on the severity
of the liver disease phenotype: mild NASH and advanced
NASH. Mice with advanced NASH had significantly more
inflammatory foci and collagen fiber formation compared
to mice with mild NASH (29). The use of both diet models
and their two disease severity phenotypes allows us to take
advantage of the heterogeneous NASH states and make
more reliable assessment of predicted response TFs, as an
effective drug for the treatment of NAFLD must be effec-
tive at different stages. ChemPert was run for three per-
turbagens: obeticholic acid (OCA) known to significantly
improve fibrosis in adult patients with definite NASH (30);
pioglitazone and vitamin E, associated with reductions in
hepatic steatosis and lobular inflammation, but with no im-
provement in fibrosis score (31).

In the case of OCA, 209 TFs were predicted to be
upregulated in the CDA model, 135 of which were pre-
dicted to be overexpressed in both mild and severe mod-
els (Figure 4A). In the FPC model, upregulation of 203
TFs in response to OCA was predicted regardless of dis-
ease severity. Among all these TFs, 40 were common in
both NASH models. Due to the low number of common
TFs, the GSEA analysis did not identify any enriched path-
way. However, consistent with the recognized therapeutic
effect of OCA, these common TFs are related not only to
hepatic steatosis and steatohepatitis improvements (ATF6,
HBP1, BTG1, SAP18, PPARD, PPARG, BIRC2), but also
to anti-fibrotic effects (FOXO1, INSR, KLF6) and block-
ing of disease progression (DACH1, RYBP, ZFP36L1).
Similarly, the 42 common downregulated TFs (Figure 4B)
include both signatures of steatosis and obesity (CNOT3,
CREB3L3, REPIN1, STAT1), and signatures of fibro-
sis (CCNE1, ETS1, HDAC6, HDAC9, HLF, PLAGL1,
SOX4, TRIM16, TRIM29) and hepatocellular carcinoma
(HCC) (BCL3, MYCBP, SMARCA4). The detailed ex-
planation for each TF can be found in Supplementary
Note.

The pioglitazone perturbation predicted 421 and 449 to-
tal up-regulated TFs in the CDA and FPC models, respec-
tively, 398 of which are common to both disease models
and disease states (Figure 4C). The GSEA of these 398
TFs (Supplementary Table S1) contained Nuclear Receptor

transcription pathway including PPARD and PPARG, as
expected, since the thiazolidinediones, such as pioglitazone,
are synthetic agonists for these receptors, that play a key
role in lipid metabolism. However, the GSEA also produced
TGF-b signalling which is a well-known profibrogenic cy-
tokine due to its role in hepatic stellate cell (HSC) activation
and extracellular matrix production. This pathway has been
described to contribute to all stages of liver disease pro-
gression, from initial liver injury through inflammation and
fibrosis to cirrhosis and hepatocellular carcinoma (HCC)
(32–34). Moreover, TRAF6 Mediated Induction of proin-
flammatory cytokines is a key driving force of proinflam-
matory and profibrogenic responses in NASH (35) and has
been described as a possible contributor to progression to
HCC (36). TLR4 signalling repertoire is involved in a vari-
ety of liver injury including that induced by NASH, which
has been shown to play a key role during fibrogenesis in
preclinical models of NAFLD (37), as wells as to enhance
TGF-� signalling (38). Stabilization of p53 has also been
involved in the pathogenesis of fatty liver disease (39). On
the other hand, the GSEA of 376 common down-regulated
TFs (Figure 4D, Supplementary Table S2) included the In-
terferon gamma (IFN-� ) signalling, which has previously
shown promising results in terms of fibrosis scores in pa-
tients with chronic HBV infection, most likely by antago-
nizing profibrogenic transforming TFG-� effects (40); and
in accordance with these data, a preclinical IFN-� deficient
model showed a rapid development of liver fibrosis when
fed a fatty diet (41).

Finally, the vitamin E perturbation obtained 581 and
768 total upregulated TFs for the CDA and FPC mod-
els, respectively, 42 of which are common to both dis-
ease models and disease states (Figure 4E). The GSEA of
these TFs (Supplementary Table S3) identified, as in Pi-
oglitazone, the Nuclear Receptor transcription pathway,
but also the Regulation of Lipid Metabolism by Peroxi-
some proliferator-activated receptor alpha (PPAR- a). Fur-
thermore, the Toll Like Receptor 3 (TLR3) Cascade and
TRIF mediated TLR3 signalling were enriched. Activation
of TLR3 in HSCs has been demonstrated to exacerbate liver
fibrosis (42). The GSEA of 29 common down-regulated
TFs (Figure 4F) did not result in any enrichment. How-
ever, these TFs include FOXO1 and KLF6, which identi-
fied as anti-fibrotic (43–45) that were predicted to be up-
regulated in the OCA perturbation. Others are ID2, which
reduces differentiation of HSCs and thus inhibits liver fi-
brosis (46), RUNX1, which regulates the expression of an-
giogenic and adhesion molecules, enhancing inflammation
and disease severity in NASH (47), and KLF2, which has
been reported to be elevated in livers from obese mice, and
to induce triglycerides accumulation (48).

Overall, the analysis with OCA predicted the up-
regulation of TFs related to the inhibition of HSC activa-
tion responsible for the collagen deposition in liver tissue
during fibrogenesis (49), along with TFs described as pro-
tective against inflammatory response and hepatic fat de-
position, and down-regulation of TF signatures of steato-
sis, fibrosis and HCC. Although the common TFs of pi-
oglitazone and vitamin E perturbations appeared to be vi-
able for treating hepatic steatosis and inflammation, none of
these were associated with improvement of fibrosis. Thus,
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Figure 4. Application of ChemPert. (A–F) Venn diagrams showing overlaps of predicted TFs among different diets and disease states of NASH models. Up-
regulated TFs (A) and down-regulated TFs (B) after OCA perturbation, up-regulated TFs (C) and down-regulated TFs (D) after pioglitazone perturbation,
up-regulated TFs (E) and down-regulated TFs (F) after vitamin E perturbation. (G) The representative of predicted perturbagens with literatures support
for the treatment of OA. Details are shown in Supplementary Table S4.

this analysis demonstrates that ChemPert is valid for pre-
dicting the transcriptional effects of different drugs at dif-
ferent stages of NAFLD and could be a useful tool for pre-
screening a wide range of chemical treatments prior to the
pre-clinical or clinical studies.

Use case––ChemPert predicts novel perturbagens for the
treatment of osteoarthritis (OA) and NASH

OA is a complex degenerative disease leading to disabil-
ity and characterized by cartilage degradation, synovial in-

flammation, and bone remodelling (50). Currently, effec-
tive pharmacologic therapies for OA are still not avail-
able and more specific approaches are desirable (51). Thus,
ChemPert was applied to OA to investigate potential ther-
apeutic treatments. The differentially expressed TFs in hu-
man osteoarthritis cartilage compared to non-osteoarthritis
individuals were identified as input (GSE169077). A con-
siderable number of known clinical or pre-clinical chemi-
cal compounds for the treatment of OA were recapitulated
by ChemPert (Figure 4G, Supplementary Table S4). The
nuclear factor-kappaB (NF-�B) signalling pathway is re-
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garded as potential targets for the therapeutic treatment
of OA, since NF-�B is aberrantly upregulated in OA pa-
tients and NF-�B is included in many OA-associated events,
including chondrocyte catabolism, chondrocyte survival,
and synovial inflammation (52,53). In agreement with this,
several perturbagens targeting NF-kB were predicted by
ChemPert, including oroxylin A (54), alantolactone (55)
and decursin (56), which all have been shown to amelio-
rate OA. These perturbagens attenuate OA progression by
inhibition of inflammatory response, hypertrophy, cartilage
degeneration or impaired autophagy triggered by IL-1�.
Moreover, ChemPert also predicted the perturbagen, nime-
sulide, a cyclo-oxygenase (COX)-2-selective inhibitor that
attenuates the pain associated with walking for OA patients
(57). The prediction 6-shogaol has been shown to signif-
icantly reduce the hypertrophic markers in cartilage and
prevent synovial inflammation and cartilage degradation in
OA (58). Celastrol was also predicted, which is known to
target SDF-1/CXCR4 signalling pathway is able to attenu-
ate pain and cartilage damage in OA (59) and has the poten-
tial to prevent OA by inhibiting the ERs-mediated apopto-
sis (57). Studies also revealed that the PI3K/AKT/mTOR
pathway plays a crucial role in cartilage degradation and
can be used as a therapeutic target for the clinical inter-
vention of OA (60,61). Consistently, we identified the sig-
nalling proteins that are enriched in PI3K/AKT pathway
(Supplementary Figure S7) and the perturbagens that in-
hibit the PI3K/AKT signalling pathway, including orox-
ylin A (62), KU-0063794 (63), and other novel perturbagens
such as NVP-BEZ235 and TG100-115 (Supplementary Ta-
ble S4). In addition, previous reports have indicated that
VEGF can be a biomarker for patients with OA, which is
highly expressed in articular cartilage, synovium, subchon-
dral bone and serum of OA patients (64). Indeed, we iden-
tified the signalling proteins that are enriched in VEGF
pathway and predicted corresponding inhibitors, like WHI-
P180 and PP-121. Furthermore, another novel prediction
is 1,5-isoquinolinediol, a PARP-1 inhibitor. In accordance
with our prediction, a previous study also reported that
PARP-1 inhibitors are able to decrease the inflammatory
response in the cartilage of OA rat model (65). Finally, we
applied the algorithm also to the sane four mouse mod-
els of NASH used in the previous section (i.e. FPC Mild,
FPC Adv, CDA Mild and CDA Adv) to predict novel per-
turbagens for NASH treatment using the DETFs between
the control and each of the four models. This analysis pre-
dicted 93 perturbagens common to all the four models and
59 common to both advanced NASH models (Supplemen-
tary Figure S8), many of which have been implicated in the
amelioration of the progression of steatohepatitis, fibrosis
and hepatocarcinoma. The detailed discussion of individ-
ual predicted perturbagens can be found in Supplementary
Note.

To summarize, ChemPert not only recapitulated the
known perturbagens, but also provided novel predictions
as potential therapies for the treatment of OA. These re-
sults demonstrate the usability of ChemPert for in silico
chemical screening and drug discovery, and can be gener-
ally applicable to different diseases to prioritize the per-
turbagens that reverse the disease phenotypes to the healthy
counterparts.

DISCUSSION

ChemPert is the first comprehensive compendium of man-
ually curated perturbation transcriptomics exclusively for
non-cancer cells, providing a valuable resource for both ex-
perimental researchers who wish to find datasets relevant
to their research, but also computational researchers who
need a non-cancer perturbation transcriptomics dataset for
developing novel algorithms. In addition, ChemPert pro-
vides a computational tool that leverages the non-cancer
cell data to predict either TF responses after perturba-
tions, or perturbagens that target desired sets of TFs. Im-
portantly, predictions generated for non-cancer cells when
using ChemPert database were significantly more accurate
than those based on cancer databases. Due to the scarcity
of available combinatorial perturbation datasets, we focus
on transcriptional signatures of single-agent perturbations
in the current version of ChemPert. However, our future
plan is to continue adding new non-cancer combinatorial
perturbation datasets to address the important challenge of
in silico combinatorial drug screening. In addition, we will
regularly collect and compile new single-agent perturbation
datasets to maintain the state-of-the-art of the database.
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