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CHEN INEQUALITIES FOR SUBMANIFOLDS OF REAL SPACE
FORMS WITH A SEMI-SYMMETRIC METRIC CONNECTION

Adela Mihai and Cihan Özgür

Abstract. In this paper we prove Chen inequalities for submanifolds of real
space forms endowed with a semi-symmetric metric connection, i.e., relations
between the mean curvature associated with the semi-symmetric metric con-
nection, scalar and sectional curvatures, Ricci curvatures and the sectional
curvature of the ambient space. The equality cases are considered.

1. INTRODUCTION

In [9], H.A. Hayden introduced the notion of a semi-symmetric metric con-
nection on a Riemannian manifold. K. Yano studied in [16] some properties of a
Riemannian manifold endowed with a semi-symmetric metric connection. In [10]
and [11], T. Imai found some properties of a Riemannian manifold and a hyper-
surface of a Riemannian manifold with a semi-symmetric metric connection. Z.
Nakao [14] studied submanifolds of a Riemannian manifold with semi-symmetric
connections.

On the other hand, one of the basic problems in submanifold theory is to find
simple relationships between the extrinsic and intrinsic invariants of a submanifold.
B. Y. Chen [4, 5, 8] established inequalities in this respect, well-known as Chen
inequalities.

Afterwards, many geometers studied similar problems for different submanifolds
in various ambient spaces, for example see [1-3, 12, 13], and [15].

2. PRELIMINARIES

Let Nn+p be an (n + p)-dimensional Riemannian manifold and ∇̃ a linear
connection on Nn+p. If the torsion tensor T̃ of ∇̃, defined by
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T̃
(
X̃, Ỹ

)
= ∇̃

X̃
Ỹ − ∇̃

Ỹ
X̃ − [X̃, Ỹ ],

for any vector fields X̃ and Ỹ on Nn+p, satisfies

T̃
(
X̃, Ỹ

)
= φ(Ỹ )X̃ − φ(X̃)Ỹ

for a 1-form φ, then the connection ∇̃ is called a semi-symmetric connection.
Let g be a Riemannian metric on Nn+p. If ∇̃g = 0, then ∇̃ is called a semi-

symmetric metric connection on N n+p.
Following [16], a semisymmetric metric connection ∇̃ on Nn+p is given by

∇̃
X̃

Ỹ =
◦
∇̃

X̃
Ỹ + φ(Ỹ )X̃ − g(X̃, Ỹ )P,

for any vector fields X̃ and Ỹ on Nn+p, where
◦
∇̃ denotes the Levi-Civita connection

with respect to the Riemannian metric g and P is a vector field defined by g(P, X̃) =
φ(X̃), for any vector field X̃.

We will consider a Riemannian manifold N n+p endowed with a semi-symmetric

metric connection ∇̃ and the Levi-Civita connection denoted by
◦
∇̃.

Let Mn be an n-dimensional submanifold of an (n+p)-dimensional Riemannian
manifold Nn+p. On the submanifold Mn we consider the induced semi-symmetric
metric connection denoted by ∇ and the induced Levi-Civita connection denoted by
◦
∇.

Let R̃ be the curvature tensor of Nn+p with respect to ∇̃ and
◦
R̃ the curvature

tensor of Nn+p with respect to
◦
∇̃. We also denote by R and

◦
R the curvature tensors

of ∇ and
◦
∇, respectively, on Mn.

The Gauss formulas with respect to ∇, respectively
◦
∇, can be written as:

∇̃XY = ∇XY + h(X, Y ), X, Y ∈ χ(Mn),
◦
∇̃XY =

◦
∇XY +

◦
h(X, Y ), X, Y ∈ χ(Mn),

where
◦
h is the second fundamental form of Mn in Nn+p and h is a (0, 2)-tensor

on Mn. According to the formula (7) from [14] h is also symmetric.
One denotes by

◦
H the mean curvature vector of Mn in Nn+p.

Let Nn+p(c) be a real space form of constant sectional curvature c endowed
with a semi-symmetric metric connection ∇̃.

The curvature tensor
◦
R̃ with respect to the Levi-Civita connection

◦
∇̃ on Nn+p(c)

is expressed by

(2.1)
◦
R̃(X, Y, Z,W ) = c {g(X, W )g(Y, Z)− g(X, Z)g(Y,W )} .
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Then the curvature tensor R̃ with respect to the semi-symmetric metric connection
∇̃ on Nn+p(c) can be written as [11]

(2.2)
R̃(X, Y, Z, W ) =

◦
R̃(X, Y, Z, W )− α(Y, Z)g(X, W )

+α(X, Z)g(Y, W )− α(X, W )g(Y, Z)

+α(Y, W )g(X, Z),

for any vector fields X, Y, Z, W ∈χ(Mn), where α is a (0, 2)-tensor field defined
by

α(X, Y ) =

( ◦
∇̃Xφ

)
Y − φ(X)φ(Y ) +

1
2
φ(P )g(X, Y ), ∀X, Y ∈ χ(Mn).

From (2.1) and (2.2) it follows that the curvature tensor R̃ can be expressed as

(2.3)

R̃(X, Y, Z,W ) = c {g(X, W )g(Y,Z)− g(X, Z)g(Y,W )}
−α(Y, Z)g(X, W ) + α(X, Z)g(Y, W )

−α(X, W )g(Y, Z) + α(Y, W )g(X, Z).

Denote by λ the trace of α.
The Gauss equation for the submanifold M n into the real space form Nn+p(c)

is

(2.4)

◦
R̃(X, Y, Z, W ) =

◦
R(X, Y, Z, W )+ g(

◦
h(X, Z),

◦
h(Y, W ))

−g(
◦
h(X, W ),

◦
h(Y, Z)).

Let π ⊂ TxM
n, x ∈ Mn, be a 2-plane section. Denote by K(π) the sectional

curvature of Mn with respect to the induced semi-symmetric metric connection
∇. For any orthonormal basis {e1, ..., em} of the tangent space TxM

n, the scalar
curvature τ at x is defined by

τ(x) =
∑

1≤i<j≤n

K(ei ∧ ej).

We recall the following algebraic Lemma:

Lemma 2.1. [4]. Let a1, a2, ..., an, b be (n + 1) (n ≥ 2) real numbers such
that (

n∑
i=1

ai

)2

= (n − 1)

(
n∑

i=1

a2
i + b

)
.

Then 2a1a2 ≥ b, with equality holding if and only if a 1 + a2 = a3 = ... = an.
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Let Mn be an n-dimensional Riemannian manifold, L a k-plane section of
TxMn, x ∈ Mn, and X a unit vector in L.

We choose an orthonormal basis {e1, ..., ek} of L such that e1 = X .
One defines [6] the Ricci curvature (or k-Ricci curvature) of L at X by

RicL(X) = K12 + K13 + ... + K1k,

where Kij denotes, as usual, the sectional curvature of the 2-plane section spanned
by ei, ej . For each integer k, 2 ≤ k ≤ n, the Riemannian invariant Θk on Mn is
defined by:

Θk(x) =
1

k − 1
inf
L,X

RicL(X), x ∈ Mn,

where L runs over all k-plane sections in TxM
n and X runs over all unit vectors

in L.

3. CHEN FIRST INEQUALITY

Recall that the Chen first invariant is given by

δM(x) = τ(x) − inf {K(π) | π ⊂ TxMn, x ∈ Mn, dimπ = 2} ,

(see for example [8]), where Mn is a Riemannian manifold, K(π) is the sectional
curvature of Mn associated with a 2-plane section, π ⊂ TxM

n, x ∈ Mn and τ is
the scalar curvature at x.

For submanifolds of real space forms endowed with a semi-symmetric metric
connection we establish the following optimal inequality, which will call Chen first
inequality:

Theorem 3.1. Let Mn, n ≥ 3, be an n-dimensional submanifold of an (n+p)-
dimensional real space form N n+p(c) of constant sectional curvature c, endowed
with a semi-symmetric metric connection ∇̃. We have:

(3.1) τ(x)−K(π) ≤ (n − 2)
[

n2

2(n − 1)
‖H‖2 + (n + 1)

c

2
− λ

]
−trace

(
α|

π⊥

)
,

where π is a 2-plane section of TxM
n, x ∈ Mn .

Proof. From [14], the Gauss equation with respect to the semi-symmetric
metric connection is

(3.2)
R̃(X, Y, Z, W ) = R(X, Y, Z,W )+ g(h(X, Z), h(Y,W ))

−g(h(Y, Z), h(X,W )).
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Let x ∈ Mn and {e1, e2, ..., en} and {en+1, ..., en+p} be orthonormal basis of
TxMn and T⊥

x Mn, respectively. For X = W = ei, Y = Z = ej , i 	= j, from the
equation (2.3) it follows that:

(3.3) R̃(ei, ej, ej, ei) = c − α(ei, ei) − α(ej , ej).

From (3.2) and (3.3) we get

c−α(ei, ei)−α(ej , ej)=R(ei, ej, ej, ei)+g(h(ei, ej), h(ei, ej))−g(h(ei, ei), h(ej, ej)).

By summation over 1 ≤ i, j ≤ n, it follows from the previous relation that

(3.4) 2τ + ‖h‖2 − n2 ‖H‖2 = −2(n − 1)λ + (n2 − n)c,

where we recall that λ is the trace of α and denote by

‖h‖2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)),

H =
1
n

traceh.

One takes

(3.5) ε = 2τ − n2(n − 2)
n − 1

‖H‖2 + 2(n − 1)λ − (n2 − n)c.

Then, from (3.4) and (3.5) we get

(3.6) n2 ‖H‖2 = (n − 1)
(
‖h‖2 + ε

)
.

Let x ∈ Mn, π ⊂ TxM
n, dim π = 2, π = sp {e1, e2}. We define en+1 = H

‖H‖
and from the relation (3.6) we obtain:(

n∑
i=1

hn+1
ii

)2

= (n − 1)

 n∑
i,j=1

n+p∑
r=n+1

(hr
ij)

2 + ε

 ,

or equivalently,

(3.7)

(
n∑

i=1

hn+1
ii

)2

= (n − 1)


n∑

i=1

(hn+1
ii )2 +

∑
i�=j

(hn+1
ij )2 +

n∑
i,j=1

n+p∑
r=n+2

(hr
ij)

2 + ε

 .
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By using Lemma 2.1 we have from (3.7):

(3.8) 2hn+1
11 hn+1

22 ≥
∑
i�=j

(hn+1
ij )2 +

n∑
i,j=1

n+p∑
r=n+2

(hr
ij)

2 + ε.

The Gauss equation for X = W = e1, Y = Z = e2 gives

K(π) = R(e1, e2, e2, e1) = c − α(e1, e1)− α(e2, e2) +
p∑

r=n+1

[hr
11h

r
22 − (hr

12)
2]

≥ c − α(e1, e1)− α(e2, e2) +
1
2
[
∑
i�=j

(hn+1
ij )2 +

n∑
i,j=1

n+p∑
r=n+2

(hr
ij)

2 + ε]

+
n+p∑

r=n+2

hr
11h

r
22 −

n+p∑
r=n+1

(hr
12)

2 = c − α(e1, e1) − α(e2, e2)

+
1
2

∑
i�=j

(hn+1
ij )2+

1
2

n∑
i,j=1

n+p∑
r=n+2

(hr
ij)

2+
1
2
ε+

n+p∑
r=n+2

hr
11h

r
22−

n+p∑
r=n+1

(hr
12)

2

= c − α(e1, e1)− α(e2, e2) +
1
2

∑
i�=j

(hn+1
ij )2 +

1
2

n+p∑
r=n+2

∑
i,j>2

(hr
ij)

2

+
1
2

n+p∑
r=n+2

(hr
11 + hr

22)
2 +

∑
j>2

[(hn+1
1j )2 + (hn+1

2j )2] +
1
2
ε

≥ c − α(e1, e1)− α(e2, e2) +
ε

2
,

which implies
K(π) ≥ c − α(e1, e1) − α(e2, e2) +

ε

2
.

We remark that

α(e1, e1) + α(e2, e2) = λ − trace
(
α|

π⊥

)
.

Using (3.5) we get

K(π) ≥ τ + (n − 2)
[
− n2

2(n − 1)
‖H‖2 − (n + 1)

c

2
+ λ

]
+ trace

(
α|

π⊥

)
,

which represents the inequality to prove.

Recall the following important result (Proposition 1.2) from [10].
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Proposition 3.2. The mean curvature H of M n with respect to the semi-
symmetric metric connection coincides with the mean curvature

◦
H of Mn with

respect to the Levi-Civita connection if and only if the vector field P is tangent to
Mn.

Remark 3.3. According to the formula (7) from [14] it follows that h =
◦
h if

P is tangent to Mn.

In this case inequality (3.1) becomes

Corollary 3.4. Under the same assumptions as in the Theorem 3.1, if the vector
field P is tangent to M n then we have

(3.9) τ(x)−K(π) ≤ (n − 2)

[
n2

2(n − 1)

∥∥∥∥ ◦
H

∥∥∥∥2

+ (n + 1)
c

2
− λ

]
−trace

(
α|

π⊥

)
.

Theorem 3.5. If the vector field P is tangent to M n, then the equality case of
inequality (3.1) holds at a point x ∈ M n if and only if there exists an orthonor-
mal basis {e1, e2, ..., en} of TxM

n and an orthonormal basis {en+1, ..., en+p} of
T⊥

x Mn such that the shape operators of M n in Nn+p(c) at x have the following
forms:

Aen+1 =


a 0 0 · · · 0
0 b 0 · · · 0
0 0 µ · · · 0
...

...
... . . . ...

0 0 0 · · · µ

 , a + b = µ,

Aen+i =


hn+i

11 hn+i
12 0 · · · 0

hn+i
12 −hn+i

11 0 · · · 0
0 0 0 · · · 0
...

...
... . . . ...

0 0 0 · · · 0

 , 2 ≤ i ≤ p,

where we denote by hr
ij = g(h(ei, ej), er), 1 ≤ i, j ≤ n and n + 1 ≤ r ≤ n + p.

Proof. The equality case holds at a point x ∈ M n if and only if it achieves
the equality in all the previous inequalities and we have the equality in the Lemma.

hn+1
ij = 0, ∀i 	= j, i, j > 2,
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hr
ij = 0, ∀i 	= j, i, j > 2, r = n + 1, ..., n + p,

hr
11 + hr

22 = 0, ∀r = n + 2, ..., n + p,

hn+1
1j = hn+1

2j = 0, ∀j > 2,

hn+1
11 + hn+1

22 = hn+1
33 = ... = hn+1

nn .

We may choose {e1, e2} such that hn+1
12 = 0 and we denote by a = hr

11, b =
hr

22, µ = hn+1
33 = ... = hn+1

nn .

It follows that the shape operators take the desired forms.

4. RICCI CURVATURE IN THE DIRECTION OF A

UNIT TANGENT VECTOR

In this section, we establish a sharp relation between the Ricci curvature in the
direction of a unit tangent vector X and the mean curvature H with respect to the
semi-symmetric metric connection ∇̃.

Denote by

N (x) = {X ∈ TxM
n | h(X, Y ) = 0, ∀Y ∈ TxM

n} .

Theorem 4.1. Let Mn, n ≥ 3, be an n-dimensional submanifold of an (n+p)-
dimensional real space form N n+p(c) of constant sectional curvature c endowed
with a semi-symmetric metric connection ∇̃. Then:

(i) For each unit vector X in TxM we have

(4.1) ‖H‖2 ≥ 4
n2

[Ric(X)− (n − 1) c + (2n− 3)λ − (n − 2)α(X, X)] .

(ii) If H(x) = 0, then a unit tangent vector X at x satisfies the equality case of
(4.1) if and only if X ∈ N (x).

Proof. (i) Let X ∈ TxM
n be a unit tangent vector at x. We choose an

orthonormal basis e1, e2, ..., en, en+1, ...en+p such that e1, e2, ..., en are tangent to
Mn at x, with e1 = X.

From (3.4) we obtain

(4.2)

n2 ‖H‖2 = 2τ +
1
2

n+p∑
r=n+1

[
(hr

11+ ... +hr
nn)2 + (hr

11−hr
22 − ...− hr

nn)2
]

+2
n+p∑

r=n+1

∑
1≤i<j≤n

(
hr

ij

)2 − 2
n+p∑

r=n+1

∑
2≤i<j≤n

(
hr

iih
r
jj

)
+2(n − 1)λ − (n2 − n)c.
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From Gauss equation (3.2) and the formula (3.3), for X = W = ei, Y = Z = ej ,
i 	= j, we get

Kij = R̃(ei, ej, ej, ei) + g(h(ei, ei), h(ej, ej))− g(h(ei, ej), h(ei, ej))

= c − α(ei, ei)− α(ej, ej) +
n+p∑

r=n+1

[
hr

iih
r
jj −

(
hr

ij

)2]
.

By summation, one obtains

(4.3)

∑
2≤i<j≤n

Kij =
n+p∑

r=n+1

∑
2≤i<j≤n

[
hr

iih
r
jj −

(
hr

ij

)2]
+

∑
2≤i<j≤n

(c− α(ei, ei) − α(ej, ej))

=
n+p∑

r=n+1

∑
2≤i<j≤n

[
hr

iih
r
jj −

(
hr

ij

)2]
+

(n − 2)(n − 1)
2

c− (n − 2) [λ − α(e1, e1)] .

After substituting (4.3) into (4.2) we find

n2 ‖H‖2 ≥ 1
2
n2 ‖H‖2 + 2

τ −
∑

2≤i<j≤n

Kij

+ 2
n+p∑

r=n+1

n∑
j=2

(
hr

1j

)2
−2(n − 1) c + 2(2n − 3)λ − 2(n− 2)α(e1, e1),

which gives us

1
2
n2 ‖H‖2 ≥ 2 Ric(X)− 2(n − 1) c + 2(2n − 3)λ − 2(n− 2)α(X, X).

This proves the inequality (4.1).
(ii) Assume H(x) = 0. Equality holds in (4.1) if and only if

hr
12 = ... = hr

1n = 0,

hr
11 = hr

22 + ... + hr
nn, r ∈ {n + 1, ..., n + p}.

Then hr
1j = 0, ∀j ∈ {1, ..., n}, r ∈ {n + 1, ..., n + p}, i.e. X ∈ N (x).
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Corollary 4.2. If the vector field P is tangent to M n, then the equality case
of inequality (4.1) holds identically for all unit tangent vectors at x if and only if
either x is a totally geodesic point, or n = 2 and x is a totally umbilical point.

Proof. The equality case of (4.1) holds for all unit tangent vectors at x if and
only if

hr
ij = 0, i 	= j, r ∈ {n + 1, ..., n+ p},

hr
11 + ... + hr

nn − 2hr
ii = 0, i ∈ {1, ..., n}, r ∈ {n + 1, ..., n+ p}.

We distinguish two cases:

(a) n 	= 2, then x is a totally geodesic point;

(b) n = 2, it follows that x is a totally umbilical point.

The converse is trivial.

5. k-RICCI CURVATURE

We first state a relationship between the sectional curvature of a submanifold M n

of a real space form Nn+p(c) of constant sectional curvature c endowed with a semi-
symmetric metric connection ∇̃ and the associated squared mean curvature ‖H‖2.
Using this inequality, we prove a relationship between the k-Ricci curvature of Mn

(intrinsic invariant) and the squared mean curvature ‖H‖2 (extrinsic invariant).
In this section we suppose that the vector field P is tangent to M n.

Theorem 5.1. Let Mn, n ≥ 3, be an n-dimensional submanifold of an (n+p)-
dimensional real space form N n+p(c) of constant sectional curvature c endowed
with a semi-symmetric metric connection ∇̃ such that the vector field P is tangent
to Mn. Then we have

(5.1) ‖H‖2 ≥ 2τ

n(n − 1)
− c +

2
n

λ.

Proof. Let x ∈ M n and {e1, e2, ..., en} and orthonormal basis of TxMn. The
relation (3.4) is equivalent with

(5.2) n2 ‖H‖2 = 2τ + ‖h‖2 + 2(n − 1)λ − n(n − 1)c.

We choose an orthonormal basis {e1, ..., en, en+1, ..., en+p} at x such that en+1

is parallel to the mean curvature vector H(x) and e1, ..., en diagonalize the shape
operator Aen+1 . Then the shape operators take the forms

(5.3) Aen+1


a1 0 . . . 0
0 a2 . . . 0
...

... . . . ...
0 0 . . . an

 ,
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(5.4) Aer = (hr
ij), i, j = 1, ..., n; r = n + 2, ..., n + p, traceAr = 0.

From (5.2), we get

n2 ‖H‖2 = 2τ +
n∑

i=1

a2
i +

n+p∑
r=n+2

n∑
i,j=1

(hr
ij)

2(5.5)

+2(n − 1)λ − n(n − 1)c.

On the other hand, since

0 ≤
∑
i<j

(ai − aj)2 = (n − 1)
∑

i

a2
i − 2

∑
i<j

aiaj ,

we obtain

(5.6) n2 ‖H‖2 = (
n∑

i=1

ai)2 =
n∑

i=1

a2
i + 2

∑
i<j

aiaj ≤ n

n∑
i=1

a2
i ,

which implies
n∑

i=1

a2
i ≥ n ‖H‖2 .

We have from (5.5)

(5.7) n2 ‖H‖2 ≥ 2τ + n ‖H‖2 + 2(n − 1)λ − n(n − 1)c

or, equivalently,

‖H‖2 ≥ 2τ

n(n − 1)
− c +

2
n

λ.

Using Theorem 5.1, we obtain the following

Theorem 5.2. Let Mn, n ≥ 3, be an n-dimensional submanifold of an (n+p)-
dimensional real space form N n+p(c) of constant sectional curvature c endowed
with a semi-symmetric metric connection ∇̃, such that the vector field P is tangent
to Mn. Then, for any integer k, 2 ≤ k ≤ n, and any point x ∈ M n, we have

(5.8) ‖H‖2 (p) ≥ Θk(p) − c +
2
n

λ.
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Proof. Let {e1, ..., en} be an orthonormal basis of TxM
n. Denote by Li1...ik

the k-plane section spanned by ei1, ..., eik. By the definitions, one has

τ(Li1...ik) =
1
2

∑
i∈{i1,...,ik}

RicLi1...ik
(ei),

τ(x) =
1

Ck−2
n−2

∑
1≤i1<...<ik≤n

τ(Li1...ik).

From (5.1) and the above relations, one derives

τ(x) ≥ n(n − 1)
2

Θk(p),

which implies (5.8).
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