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Abstract

We construct for an equivariant homology theory for proper equivariant CW -complexes an equivari-
ant Chern character under certain conditions. This applies for instance to the sources of the assembly
maps in the Farrell-Jones Conjecture with respect to the family F of finite subgroups and in the
Baum-Connes Conjecture. Thus we get an explicit calculation of Q ⊗Z Kn(RG) and Q ⊗Z Ln(RG)
for a commutative ring R with Q ⊂ R and of Q ⊗Z Ktop

n
(C∗

r
(G, F )) for F = R, C in terms of group

homology, provided the Farrell-Jones Conjecture with respect to F resp. the Baum-Connes Conjecture
is true.
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0. Introduction and statements of results

In this paper we want to achieve the following two goals. Firstly, we want to construct an equivariant
Chern character for a proper equivariant homology theory H?

∗ which takes values in R-modules for a
commutative ring R with Q ⊂ R. The Chern character identifies HG

n (X) with the associated Bredon
homology which is much easier to handle and can often be simplified further. Secondly, we apply it to the
sources of the assembly maps appearing in the Farrell-Jones Conjecture with respect to the family F of
finite subgroups and in the Baum-Connes Conjecture. The target of these assembly maps are the groups
we are interested in, namely, the rationalized algebraic K- and L-groups Q⊗ZKn(RG) and Q⊗ZLn(RG) of
the group ring RG of a (discrete) group G with coefficients in R and the rationalized topological K-groups
Q ⊗Z Ktop

n (C∗
r (G, F )) of the reduced group C∗-algebra of G over F = R, C. These conjectures say that

these assembly maps are isomorphisms. Thus combining them with our equivariant Chern character yields
explicit computations of these rationalized K- and L-groups in terms of group homology and the K-groups
and L-groups of the coefficient ring R resp. F . As an example of such a computation we state

∗email: wolfgang.lueck@math.uni-muenster.de
www: http://www.math.uni-muenster.de/u/lueck/org/staff/lueck/
FAX: 49 251 8338370

1



Theorem 0.1 Let G be a (discrete) group. Let T be the set of conjugacy classes (g) of elements g ∈ G of
finite order. There is a commutative diagram

⊕p+q=n ⊕(g)∈T Hp(CG〈g〉; C)⊗Z Kq(C) −−−−→ C⊗Z Kn(CG)
y

y

⊕p+q=n ⊕(g)∈T Hp(CG〈g〉; C)⊗Z Ktop
q (C) −−−−→ C⊗Z Ktop

n (C∗
r (G))

where CG〈g〉 is the centralizer of the cyclic group generated by g in G and the vertical arrows come from
the obvious change of ring and of K-theory maps Kq(C) → Ktop

q (C) and Kn(CG) → Ktop
n (C∗

r (G)). The
horizontal arrows can be identified with the assembly maps occuring in the Farrell-Jones Conjecture with
respect to F for Kn(CG) and in the Baum-Connes Conjecture for Ktop

n (C∗
r (G)) after applying C⊗Z−. If

these conjectures are true for G, then the horizontal arrows are isomorphisms.

Throughout this paper all groups are discrete and R will denote a commutative associative ring with
unit. A proper G-homology theory HG

∗ assigns to any G-CW -pair (X, A) which is proper, i.e. all isotropy
groups are finite, a Z-graded R-module HG

∗ (X, A) such that G-homotopy invariance, excision and the
disjoint union axiom hold and there is a long exact sequence of a proper G-CW -pair. An equivariant
proper homology theory H?

∗ assigns to any group G a proper G-homology theory HG
∗ , and these are linked

for the various groups G by an induction structure. An example is equivariant bordism for smooth oriented
manifolds with proper orientation preserving group actions whose orbit spaces are compact. The main
examples for us will be given by the sources of the assembly maps appearing in the Farrell-Jones Conjecture
with respect to F and the Baum-Connes Conjecture. These notions will be explained in Section 1.

To any equivariant proper homology theory H?
∗ we will construct in Section 3 another equivariant

proper homology theory, the associated Bredon homology BH?
∗. The point is that BH?

∗ is much easier to
handle than H?

∗. We will construct an isomorphism of equivariant homology theories

ch?
∗ : BH∗

?

∼=
−→ H?

∗

in Section 4, provided that a certain technical assumption is fullfilled, namely, that the covariant
RSub(G,F)-module HG

q (G/?) ∼= H?
q(∗) is flat for all q ∈ Z and all groups G. There are some favourite

situations, where this condition is automatically satisfied, and the Bredon homology BH?
∗ can be computed

further. Let FGINJ be the category of finite groups with injective group homomorphisms as morphisms.
The equivariant homology theory defines a covariant functor H?

q(∗) : FGINJ → R −MOD which sends H

to HH
q (∗). Functoriality comes from the induction structure. Suppose that this functor can be extended to

a Mackey functor. This essentially means that we also get a contravariant structure by restriction and the
induction and restriction structures are related by a double coset formula (see Section 5). An important
example of a Mackey functor is given by sending H to the rational, real or complex representation ring.
Define for a finite group H

SHH
H
q (∗) := coker

(
⊕K⊂H,K 6=H indH

K : ⊕K⊂H,K 6=HH
K
q (∗)→ HH

q (∗)
)

.

For a subgroup H ⊂ G we denote by NGH the normalizer, by CGH the centralizer of H in G and by
WGH the quotient NGH/CGH . Notice that WGH is finite if H is finite.

Theorem 0.2 Let F be a field of characteristic 0. Let H?
∗ be a proper equivariant homology theory with

values in F -modules. Suppose that the covariant functor H?
q(∗) : FGINJ→ F −MOD extends to a Mackey

functor for all q ∈ Z. Let I be the set of conjugacy classes (H) of finite subgroups H of G. Then there is
an isomorphism of proper homology theories

ch?
∗ : BH?

∗

∼=
−→ H?

∗

such that for a group G and a proper G-CW -pair (X, A)

BHG
n (X, A) = ⊕p+q=n ⊕(H)∈IHp(CGH\(XH , AH); F )⊗F [WGH] SHH

H
q (∗).
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This theorem reduces the computation of HG
n (X, A) to the computation of the singular or cellular

homology F -modules Hp(CGH\(XH , AH); F ) of the CW -pairs CGH\(XH , AH) including the obvious right
WGH-operation and of the left F [WGH ]-modules SHH

H
q (∗) which only involve the values HG

q (G/H) =

HH
q (∗). Suppose that H?

∗ comes with a restriction structure as explained in Section 6. Then it induces a

Mackey structure on H?
q(∗) for all q ∈ Z and a preferred restriction structure on BH?

∗ so that Theorem 0.2

applies and the equivariant Chern character is compatible with these restriction structures. If H?
∗ comes

with a multiplicative structure as explained in Section 6, then BH?
∗ inherits a multiplicative structure and

the equivariant Chern character is compatible with these multiplicative structures (see Theorem 6.3).

If we have the following additional structure which will be available in the examples we are interested
in, we can simplify the Bredon homology further. Namely we assume that the Mackey functor HH

q (∗) is
a module over the Green functor Q ⊗Z RQ(?) which assigns to a finite group H the rationalized ring of
rational H-representations. This notion is explained in Section 7. In particular it yields for any finite group
H the structure of a Q ⊗Z RQ(H)-module on HH

q (∗). Let classQ(H) be the ring of functions f : H → Q
which satisfy f(h1) = f(h2) if the cyclic subgroups 〈h1〉 and 〈h2〉 generated by h1 and h2 are conjugated
in H . Taking characters yields an isomorphism of rings

χ : Q⊗Z RQ(H)
∼=−→ classQ(H).

Given a finite cyclic group C, there is the idempotent θC
C ∈ classQ(C) which assigns 1 to a generator of

C and 0 to the other elements. This element acts on HC
q (∗). The image im

(
θC

C : HC
q (∗)→ HC

q (∗)
)

of the

map given by multiplication with θC
C is a direct summand in HC

q (∗).

Theorem 0.3 Let F be a field of characteristic 0. Let H?
∗ be a proper equivariant homology theory with

values in F -modules. Suppose that the covariant functor FGINJ→ R−MOD sending H to HH
q (∗) extends

to a Mackey functor for all q ∈ Z which is a module over the Green functor Q ⊗Z RQ(?) with respect to
the inclusion Q → F . Let J be the set of conjugacy classes (C) of finite cyclic subgroups C of G. Then
there is an isomorphism of proper homology theories

ch?
∗ : BH?

∗

∼=
−→ H?

∗

such that

BHG
n (X, A) = ⊕p+q=n ⊕(C)∈J Hp(CGC\(XC , AC); F )⊗F [WGC] im

(
θC

C : HC
q (∗)→ HC

q (∗)
)
.

Since Kq(R?), Lq(R?) and Ktop
q (C∗

r (?, F )) are Mackey functors and come with module structures over
the Green functor Q⊗Z RQ(?) as explained in Section 8, Theorem 0.3 implies

Theorem 0.4 Let R be an associative commutative ring with unit such that Q ⊂ R. Denote by F the field
R or C. Let G be a (discrete) group. Let J be the set of conjugacy classes (C) of finite cyclic subgroups
C of G. Then the rationalized assembly map in the Farrell-Jones Conjecture with respect to F for the
algebraic K-groups Kn(RG) and the algebraic L-groups Ln(RG) and in the Baum Connes Conjecture for
the topological K-groups Ktop

n (C∗
r (G, F )) can be identified with the homomorphisms

⊕p+q=n ⊕(C)∈J Hp(CGC; Q)⊗Q[WGC] im
(
θC

C : Q⊗Z Kq(RC)→ Q⊗Z Kq(RC)
)

→ Q⊗Z Kn(RG);

⊕p+q=n ⊕(C)∈J Hp(CGC; Q)⊗Q[WGC] im
(
θC

C : Q⊗Z Lq(RC)→ Q⊗Z Lq(RC)
)

→ Q⊗Z Ln(RG);

⊕p+q=n ⊕(C)∈J Hp(CGC; Q)⊗Q[WGC] im
(
θC

C : Q⊗Z Ktop
q (C∗

r (C, F ))→ Q⊗Z Ktop
q (C∗

r (C, F ))
)

→ Q⊗Z Ktop
q (C∗

r (G, F )).

In the L-theory case we assume that R comes with an involution R→ R, r 7→ r and that we use on RG
the involution which sends

∑
g∈G rg · g to

∑
g∈G rg · g

−1.
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If the Farrell-Jones Conjecture with respect to F resp. the Baum-Connes Conjecture is true, then these
maps are isomorphisms.

Notice that in Theorem 0.3 and hence in Theorem 0.4 only cyclic groups occur. The basic input in
the proof is essentially the same as in the proof of Artin’s theorem that any character in the complex
representation ring of a finite group H is rationally a linear combination of characters induced from cyclic
subgroups. Moreover, we emphasize that all the splitting results are obtained after tensoring with Q, no
roots of unity are needed in our construction. In the special situation that the coefficient ring R is a field
F of characteristic zero and we tensor with F⊗Z? for an algebraic closure F of F , one can simplify the
expressions further as carried out in Section 8. We have already mentioned a particular nice situation in
Theorem 0.1. The computations of K- and L-groups integrally and with R = Z as coefficients are much
harder (see for instance [18]).

Notice that Theorem 0.1 and the results of Section 8 show that the computation of the K- and L-theory
of RG seems to split into a piece, which involves only the group and consists essentially of group homology,
and a part, which involves only the coefficient ring and consists essentially of its K-theory. Moreover, a
change of rings or change of K-theory map involves only the coefficient ring R and not the part involving
the group. This seems to suggest to look for a proof of the Farrell-Jones Conjecture which works for
all coefficients simultaneously. We refer to Example 1.5 and to [3], [9], [12], [13], [14] and [15] for more
information about the Farrell-Jones and the Baum-Connes Conjectures and about the classes of groups,
for which they have been proven.

We mention that a different construction of an equivariant Chern character has been given in [2] in the
case, where HG

∗ is equivariant K-homology after applying C ⊗Z −. Moreover, the lower horizontal arrow
in Theorem 0.1 has already been discussed there.

The paper is organized as follows

1. Equivariant homology theories
2. Modules over a category
3. The associated Bredon homology theory
4. The construction of the equivariant Chern character
5. Mackey functors
6. Restriction structures and multiplicative structures
7. Green functors
8. Applications to K- and L-theory

References

I would like to thank Tom Farrell for a lot of fruitful discussions of the Farrell-Jones Conjecture and
related topics.

1. Equivariant homology theories

In this section we describe the axioms of a (proper) equivariant homology theory. The main examples
for us are the source of the assembly map appearing in the Farrell-Jones Conjecture with respect to the
family F of finite subgroups for algebraic K- and L-theory and the equivariant K-homology theory which
appears as the source of the Baum-Connes assembly map and is defined in terms of Kasparov’s equivariant
KK-theory.

Fix a discrete group G and an associative commutative ring R with unit. A G-CW -pair (X, A) is a pair
of G-CW -complexes. It is called proper if all isotropy groups of X are finite. Basic informations about
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G-CW -pairs can be found for instance in [16, Section 1 and 2]. A G-homology theory HG
∗ with values in

R-modules is a collection of covariant functors HG
n from the category of G-CW -pairs to the category of

R-modules indexed by n ∈ Z together with natural tranformations ∂G
n (X, A) : HG

n (X, A) → HG
n−1(A) :=

HG
n−1(A, ∅) for n ∈ Z such that the following axioms are satisfied:

(a) G-homotopy invariance

If f0 and f1 are G-homotopic maps (X, A) → (Y, B) of G-CW -pairs, then HG
n (f0) = HG

n (f1) for
n ∈ Z;

(b) Long exact sequence of a pair

Given a pair (X, A) of G-CW -complexes, there is a long exact sequence

. . .
HG

n+1(j)
−−−−−→ HG

n+1(X, A)
∂G

n+1
−−−→ HG

n (A)
HG

n (i)
−−−−→ HG

n (X)
HG

n (j)
−−−−→ HG

n (X, A)
∂G

n−−→ . . . ,

where i : A→ X and j : X → (X, A) are the inclusions;

(c) Excision

Let (X, A) be a G-CW -pair and let f : A → B be a cellular G-map of G-CW -complexes. Equip
(X ∪f B, B) with the induced structure of a G-CW -pair. Then the canonical map (F, f) : (X, A)→
(X ∪f B, B) induces an isomorphism

HG
n (F, f) : HG

n (X, A)
∼=
−→ HG

n (X ∪f B, B);

(d) Disjoint union axiom

Let {Xi | i ∈ I} be a family of G-CW -complexes. Denote by ji : Xi →
∐

i∈I Xi the canonical
inclusion. Then the map

⊕i∈IH
G
n (ji) : ⊕i∈IH

G
n (Xi)

∼=
−→ HG

n

(
∐

i∈I

Xi

)

is bijective.

If HG
∗ is defined or considered only for proper G-CW -pairs (X, A), we call it a proper G-homology

theory HG
∗ with values in R-modules.

Let α : H → G be a group homomorphism. Given an H-space X , define the induction of X with f to
be the G-space indα X which is the quotient of G×X by the right H-action (g, x) · h := (gα(h), h−1x) for
h ∈ H and (g, x) ∈ G×X . If α : H → G is an inclusion, we also write indG

H instead of indα.

A (proper) equivariant homology theory H?
∗ with values in R-modules is an assignment which associates

to each discrete group G a (proper) G-homology theory HG
∗ with values in R-modules together with the

following so called induction structure. This induction structure links the various homology theories for
different groups G. It will play a key role in the construction of the equivariant Chern character even if
we want to carry it out only for a fixed group G.

Let α : H → G be a group homomorphism and (X, A) be a H-CW -pair such that ker(α) acts freely
on X . Then there are for each n ∈ Z natural isomorphisms

indα : HH
n (X, A)

∼=
−→ HG

n (indα(X, A)). (1.1)

We require

(a) Compatibility with the boundary homomorphisms

∂G
n ◦ indα = indα ◦∂

H
n ;
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(b) Functoriality

Let β : G → K be another group homomorphism such that ker(β ◦ α) acts freely on X . Then we
have for n ∈ Z

indβ◦α = HK
n (f1) ◦ indβ ◦ indα : HH

n (X, A)→ HK
n (indβ◦α(X, A)),

where f1 : indβ indα(X, A)
∼=
−→ indβ◦α(X, A), (k, g, x) 7→ (kβ(g), x) is the natural K-homeomor-

phism;

(c) Compatibility with conjugation

For n ∈ Z, g ∈ G and a (proper) G-CW -pair (X, A) the homomorphism indc(g):G→G :
HG

n (X, A) → HG
n (indc(g):G→G(X, A)) agrees with HG

n (f2) for the G-homeomorphism f2 : (X, A) →
indc(g):G→G(X, A) which sends x to (1, g−1x) in G×c(g) (X, A).

We will later need

Lemma 1.2 Consider finite subgroups H, K ⊂ G and an element g ∈ G with gHg−1 ⊂ K. Let Rg−1 :
G/H → G/K be the G-map sending g′H to g′g−1K and c(g) : H → K be the homomorphism sending h
to ghg−1. Let pr : indc(g):H→K ∗ → ∗ be the projection. Then the following diagram commutes

HH
n (∗)

HK
n (pr)◦indc(g)

−−−−−−−−−−→ HK
n (∗)

indG
H

y∼= indG
K

y∼=

HG
n (G/H)

HG
n (Rg−1 )

−−−−−−−→ HG
n (G/K)

Proof : Define a bijective G-map f1 : indc(g):G→G indG
H ∗ → indG

K indc(g):H→K ∗ by sending (g1, g2, ∗) in

G ×c(g) G ×H ∗ to (g1gg2g
−1, 1, ∗) in G ×K K ×c(g) ∗. The condition that induction is compatible with

composition of group homomorphisms means precisely that the composition

HH
n (∗)

indG
H−−−→ HG

n (indG
H ∗)

indc(g):G→G
−−−−−−−−→ HG

n (indc(g):G→G indG
H ∗)

HG
n (f1)

−−−−−→ HG
n (indG

K indc(g):H→K ∗)

agrees with the composition

HH
n (∗)

indc(g):H→K
−−−−−−−−→ HK

n (indc(g):H→K ∗)
indG

K−−−→ HG
n (indG

K indc(g):H→K ∗).

Naturality of induction implies HG
n (indG

K pr) ◦ indG
K = indG

K ◦H
K
n (pr). Hence the following diagram com-

mutes

HH
n (∗)

HK
n (pr)◦indc(g):H→K

−−−−−−−−−−−−−→ HK
n (∗)

indG
H

y
yindG

K

HG
n (G/H)) −−−−−−−−−−−−−−−−−−−−−−→

HG
n (indG

K pr)◦HG
n (f1)◦indc(g):G→G

HG
n (G/K)

By the axioms the homomorphism indc(g):G→G : HG
n (G/H)→ HG

n (indc(g):G→G G/H) agrees with HG
n (f2)

for the map f2 : G/H → indc(g):G→G G/H which sends g′H to (g′g−1, 1H) in G ×c(g) G/H . Since the

composition (indG
K pr) ◦ f1 ◦ f2 is just Rg−1 , Lemma 1.2 follows.
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Example 1.3 Let K∗ be a homology theory for (non-equivariant) CW -pairs with values in R-modules.
Examples are singular homology, oriented bordism theory or topological K-homology. Then we obtain two
equivariant homology theories with values in R-modules by the following constructions

HG
n (X, A) = Kn(G\X, G\A);

HG
n (X, A) = Kn(EG×G (X, A)).

The second one is called the equivariant Borel homology associated to K. In both cases HG
∗ inherits the

structure of a G-homology theory from the homology structure on K∗. Let a : H\X
∼=
−→ G\(G ×α X)

be the bijection sending Hx to G(1, x). Define b : EH ×H X → EG ×G G ×α X by sending (e, x) to
(Eα(e), 1, x) for e ∈ EH , x ∈ X and Eα : EH → EG the α-equivariant map induced by α. Induction for
a group homomorphism α : H → G is induced by these maps a and b. If the kernel ker(α) acts freely on
X , the map b is a homotopy equivalence and hence in both cases indα is bijective.

Example 1.4 Given a proper G-CW -pair (X, A), one can define the G-bordism group ΩG
n (X, A) as the

abelian group of G-bordism classes of maps f : (M, ∂M) → (X, A) whose sources are oriented smooth
manifolds with orientation preserving proper smooth G-actions such that G\M is compact. The definition
is analogous to the one in the non-equivariant case. This is also true for the proof that this defines a
proper G-homology theory. There is an obvious induction structure coming from induction of H-spaces.
It is well-defined because of the following fact. Let α : H → G be a group homomorphism. Let M be
an oriented smooth H-manifold with orientation preserving proper smooth H-action such that H\M is
compact and ker(α) acts freely. Then indα M is an oriented smooth G-manifold with orientation preserving
proper smooth G-action such that G\M is compact. The boundary of indα M is indα ∂M .

Our main example will be

Example 1.5 Let R be a commutative associative ring with unit. There are equivariant homology theories
H?

∗ such that HG
n (∗) is the rationalized algebraic K-group Q⊗Z Kn(RG) or the rationalized algebraic L-

group Q ⊗Z Ln(RG) of the group ring RG or such that HG
n (∗) is the rationalized topological K-theory

Q⊗Z Kn(Cr
∗(G; R)) resp. Q⊗Z Kn(Cr

∗(G; C)) of the reduced real resp. complex C∗-algebra of G. Let F
resp. VC be the family of finite resp. of virtually cyclic subgroups of G. Denote by E(G,F) resp. E(G,VC)
the classifying space of G with respect to the family F resp. VC. This is a G-CW -complex whose H-fixed
point set is contractible for H ∈ F resp. H ∈ VC and is empty otherwise. It is unique up to G-homotopy
because it is characterized by the property that for any G-CW -complex X , whose isotropy groups belong
to F resp. VC, there is up to G-homotopy precisely one G-map from X to E(G,F) resp. E(G,VC). The
G-space E(G,F) agrees with the classifying space EG for proper G-actions. The assembly map in the
Farrell-Jones Conjecture with respect to F resp. the Baum-Connes Conjecture are the maps induced by
the projection E(G,F)→ ∗

HG
n (E(G,F)) → HG

n (∗), (1.6)

where one has to choose the appropriate homology theory among the ones mentioned above. The Baum-
Connes Conjecture says that this map is an isomorphism (even without rationalizing) for the topological
K-theory of the reduced group C∗-algebra. The Farrell-Jones Conjecture with respect to F is the analogous
statement.

It is important to notice that the situation in the Farrell-Jones Conjecture is more complicated. The
Farrell-Jones Conjecture itself is formulated with respect to the family VC, i.e. it says that the projection
E(G,VC)→ ∗ induces an isomorphism (even without rationalizing)

HG
n (E(G,VC))→ HG

n (∗). (1.7)

For the version of the Farrell-Jones Conjecture with respect to VC no counterexamples are known, whereas
the version for F is not true in general. In other words, the canonical map E(G,F) → E(G,VC) does
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not necessarily induce an isomorphism HG
n (E(G,F)) → HG

n (E(G,VC)). This is due to the existence of
Nil-groups. However, if for instance R is a field of characteristic zero, this map is bijective for algebraic
K-theory. Hence the Farrell-Jones Conjecture for Q ⊗Z Kn(FG) for a field F of characteristic zero is
true with respect to F if and only if it is true with respect to VC. At the time of writing not much is
known about this conjecture for Kn(FG) for a field F of characteristic zero, since most of the known
results are for the algebraic K-theory for ZG. The situation in L-theory is better since the change of
rings map Q⊗Z Ln(ZG) → Q⊗Z Ln(QG) is bijective for any group G. The Farrell-Jones Conjecture for
both Q⊗Z Ln(ZG) and Q⊗Z Ln(QG) is true with respect to both F and VC if G is a cocompact discrete
subgroup of a Lie group with finitely many path components [9], if G is a discrete subgroup of GLn(CG)
[10], or if G is an elementary amenable group [11].

The target of the assembly map for F in (1.6) is Q⊗ZKn(RG), Q⊗ZLn(RG) resp. Q⊗ZKtop
n (C∗

r (G, F ))
for F = R, C. These are the groups we would like to compute. The source of the assembly map for F
in (1.6) is the part which is better accessible for computations. We will apply the equivariant Chern
character for proper equivariant homology theories to it which is possible since E(G,F) is proper (in
contrast to E(G,VC) and ∗). Thus we get computations of the rationalized K- and L-groups, provided
the Farrell-Jones Conjecture with respect to F resp. the Baum-Connes Conjecture is true.

For more informations about the relevant G-homology theories HG
∗ mentioned above we refer to [3], [5],

[9]. It is not hard to construct the relevant induction structures so that they yield equivariant homology
theories H?

∗. We remark that one can construct for them also restriction structures and multiplicative
structures in the sense of Section 6.

We refer to [3], [9], [12], [13], [14] and [15] for more information about the Farrell-Jones and the
Baum-Connes Conjectures and about the classes of groups, for which they have been proven.

2. Modules over a category

In this section we give a brief summary about modules over a category as far as needed for this paper.
They will appear in the definition of the source of the equivariant Chern character.

Let C be a small category and let R be a commutative associative ring with unit. A covariant resp.
contravariant RC-module is a covariant resp. contravariant functor from C to the category R − MOD
of R-modules. Morphisms of RC-modules are natural transformations. Given a group G, let Ĝ be the
category with one object whose set of morphisms is given by G. Then a covariant resp. contravariant
RĜ-module is the same as a left resp. right RG-module. All the constructions, which we will introduce
for RC-modules below, reduce in the special case C = Ĝ under the identification above to their classical
versions for RG-modules. The reader should have this example in mind.

The category RC − MOD of covariant resp. contravariant RC-modules inherits the structure of an
abelian category from R −MOD in the obvious way, namely objectwise. For instance a sequence 0 →
M → N → P → 0 of RC-modules is called exact if its evaluation at each object in C is an exact sequence
in R −MOD. The notion of a projective RC-module is now clear. Given a family B = (ci)i∈I of objects
of C, the free RC-module with basis B is

RC(B) := ⊕i∈IR morC(ci, ?).

The name free with basis B refers to the following basic property. Given a covariant RC-module N , there
is a natural bijection

homRC(RC(B), N)
∼=
−→

∏

i∈I

N(ci), f 7→ (f(ci)(idci))i∈I . (2.1)
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Obviously RC(B) is a projective RC-module. Any RC-module is a quotient of some free RC-module. For
instance, there is an obvious epimorphism from RC(B) to M if we take B to be the family of objects
indexed by

∐
c∈Ob(C) M(c), where we assign c to m ∈ M(c). Therefore a RC-module M is projective

if and only if it is a direct summand in a free RC-module. The analogous considerations apply to the
contravariant case.

Given a contravariant RC-module M and a covariant RC-module N , one can define a R-module M⊗RCN
called tensor product over RC as follows. It is given by

M ⊗RC N = ⊕c∈Ob(C)M(c)⊗R N(c)/ ∼,

where ∼ is the typical tensor relation mf ⊗n = m⊗ fn, i.e. for each morphism f : c→ d in C, m ∈M(d)
and n ∈ N(c) we introduce the relation M(f)(m) ⊗ n − m ⊗ N(f)(n) = 0. The main property of this
construction is that it is adjoint to the homR-functor in the sense that for any R-module L there are
natural isomorphisms of R-modules

homR(M ⊗RC N, L)
∼=
−→ homRC(M, homR(N, L)); (2.2)

homR(M ⊗RC N, L)
∼=
−→ homRC(N, homR(M, L)). (2.3)

Consider a functor F : C → D. Given a covariant resp. contravariant RD-module M , define the
covariant resp. contravariant RC-module resF M called restriction with F to be M ◦F . Given a covariant
resp. contravariant RC-module M , one can define a covariant resp. contravariant RD-module indF M
called induction with F. In the covariant case it is defined by

indF M(??) := R morD(F (?), ??) ⊗RC M(?).

Restriction with F can be written as resF N(?) = homRD(R morD(F (?), ??), N(??)) because of (2.1). We
conclude from (2.3) that induction and restriction form an adjoint pair, i.e. for a covariant resp. con-
travariant RC-module M and a covariant resp. contravariant RD-module N there is a natural isomorphism
of R-modules

homRD(indF M, N)
∼=−→ homRC(M, resF N). (2.4)

Given a contravariant RC-module M and a covariant RD-module N , there is a natural R-isomorphism

indF M ⊗RD N
∼=
−→ M ⊗RC resF N. (2.5)

It is explicitly given by (f :??→ F (?))⊗m⊗ n 7→ m⊗N(f)(n) or can be obtained formally from (2.2)
and (2.4). One easily checks

indF R morC(c, ?) = R morD(F (c), ??) (2.6)

for c ∈ Ob(C). This shows that indF respects direct sums and the properties free and projective.

Next we explain how one can reduce the study of projective RC-modules to the study of projective
R aut(c)-modules, where aut(c) is the group of automorphism of an object c in C. Given a covariant
RC-module M , we obtain for each object c in C a left R aut(c)-module RcM := M(c). Given a left
R aut(c)-module N, we obtain a covariant RC-module EcN by

EcN(?) := R morC(c, ?)⊗R aut(c) N. (2.7)

Notice that Ec resp. Rc is induction resp. restriction with the obvious inclusion of categories âut(c)→ C.
Hence Ec and Rc form an adjoint pair by (2.4). In particular we get for any covariant RC-module M an
in M natural homomorphism

ic(M) : EcM(c) →M (2.8)
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by the adjoint of id : RcM → RcM . Explicitly ic(M) maps (f : c →?) ⊗R m to M(f)(m). Given a
covariant RC-module M , define M(c)s to be the R-submodule of M(c) which is spanned by the images of
all R-maps M(f) : M(b) →M(c), where f runs through all morphisms f : b→ c with target c which are
not isomorphisms in C. Obviously M(c)s is an R aut(c)-submodule of M(c). Define a left R aut(c)-module
ScM by

ScM := M(c)/M(c)s. (2.9)

Notice that Ec maps R aut(c) to R morC(c, ?) and that ScR morC(d, ?) ∼=R aut(c) R aut(c), if c ∼= d, and
ScR morC(d, ?) = 0 otherwise. This implies for a free RC-module M = ⊕i∈IR morC(ci, ?)

⊕(c)∈Is(C)EcScM ∼=RC M,

where Is(C) is the set of isomorphism classes (c) of objects c in C. This splitting can be extended to
projective modules as follows.

Let M be an RC-module. We want to check whether it is projective or not. Since Sc is compatible
with direct sums and each projective module is a direct sum in a free RC-module, a necessary (but not
sufficient) condition is that ScM is a projective R aut(c)-module. Assume that ScM is R aut(c)-projective
for all objects c in C. We can choose a R aut(c)-splitting σc : ScM → M(c) of the canonical projection
M(c)→ ScM = M(c)/M(c)s. Then we obtain after a choice of representatives c ∈ (c) for any (c) ∈ Is(C)
a morphism of RC-modules

T : ⊕(c)∈Is(C)EcScM
⊕(c)∈Is(C)Ecσc

−−−−−−−−−→ ⊕(c)∈Is(C)EcM(c)
⊕(c)∈Is(C)ic(M)
−−−−−−−−−−→M, (2.10)

where ic(M) has been introduced in (2.8).

We call C an EI-category if any endomorphism in C is an isomorphism. The length l(c) ∈ N ∪ {∞} of
an object c is the supremum over all natural numbers l for which there exists a sequence of morphisms

c0
f1
−→ c1

f2
−→ c2

f3
−→ . . .

fl−→ cl such that no fi is an isomorphism and cl = c. If each object c has length
l(c) <∞, we say that C has finite length.

Theorem 2.11 Let C be an EI-category of finite length. Let M be a covariant RC-module such that the
R aut(c)-module ScM is projective for all objects c in C. Let σc : ScM → M(c) be an R aut(c)-section of
the canonical projection M(c)→ ScM . Then the map introduced in (2.10)

T : ⊕(c)∈Is(C)EcScM →M

is surjective. It is bijective if and only if M is a projective RC-module.

Proof : We show by induction over the length l(c) that T (c) is surjective. For any object c and R aut(c)-

module N there is an in N natural aut(c)-isomorphism N(c)
∼=
−→ ScEcN which sends n to the class of

(id : c→ c)⊗ n. If b and c are non-isomorphic objects in C, then SbEcN = 0. This implies that ScT is an
isomorphism for all objects c ∈ C. Hence it suffices for the proof of surjectivity of T (c) to show that each
element of M(c)s is in the image of T (c). It is enough to verify this for an element of the form M(f)(x)
for x ∈ M(b) and a morphism f : b → c which is not an isomorphism in C. Since C is an EI-category,
l(b) < l(c). By induction hypothesis T (b) is surjective and the claim follows.

Suppose that T is injective. Then T is an isomorphism of RC-modules. Its source is projective since
Ec sends projective R aut(c)-modules to projective RC-modules. Therefore M is projective. We will not
need the other implication that for projective M the map T is bijective in this paper. Therefore we omit
its proof but refer to [16, Theorem 3.39 and Corollary 9.40].

Given a contravariant RC-module M and a left R aut(c)-module N , there is a natural isomorphism

M ⊗RC EcN ∼= M(c)⊗R aut(c) N. (2.12)

It is explicitly given by m⊗ (f : c→?)⊗ n 7→M(f)(m)⊗ n. It is due to the fact that tensor products are
associative. For more details about modules over a category we refer to [16, Section 9A].
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3. The associated Bredon homology theory

Given a (proper) G-homology theory resp. equivariant homology theory with values in R-modules, we
can associate to it another (proper) G-homology theory resp. equivariant homology theory with values in
R-modules called Bredon homology, which is much simpler. The equivariant Chern character will identify
this simpler homology theory with the given one.

Before we give the construction we have to organize the coefficients of a G-homology theory HG
∗ . The

smallest bulding blocks of G-CW -complexes or G-spaces in general are the homogeneous spaces G/H . The
book keeping of all the values HG

∗ (G/H) is organized using the following two categories.

The orbit category Or(G) has as objects homogeneous spaces G/H and as morphisms G-maps. Let
Sub(G) be the category whose objects are subgroups H of G. For two subgroups H and K of G denote
by conhomG(H, K) the set of group homomorphisms f : H → K, for which there exists an element g ∈ G
with gHg−1 ⊂ K such that f is given by conjugation with g, i.e. f = c(g) : H → K, h 7→ ghg−1. Notice
that c(g) = c(g′) holds for two elements g, g′ ∈ G with gHg−1 ⊂ K and g′H(g′)−1 ⊂ K if and only if
g−1g′ lies in the centralizer CGH = {g ∈ G | gh = hg for all h ∈ H} of H in G. The group of inner
automorphisms of K acts on conhomG(H, K) from the left by composition. Define the set of morphisms
morSub(G)(H, K) by Inn(K)\ conhomG(H, K).

There is a natural projection pr : Or(G)→ Sub(G) which sends a homogeneous space G/H to H . Given
a G-map f : G/H → G/K, we can choose an element g ∈ G with gHg−1 ⊂ K and f(g′H) = g′g−1K.
Then pr(f) is represented by c(g) : H → K. Notice that morSub(G)(H, K) can be identified with the
quotient morOr(G)(G/H, G/K)/CGH , where g ∈ CGH acts on morOr(G)(G/H, G/K) by composition with
Rg−1 : G/H → G/H, g′H 7→ g′g−1H . We mention as illustration that for abelian G morSub(G)(H, K) is
empty if H is not a subgroup of K, and consists of precisely one element given by the inclusion H → K if
H is a subgroup in K.

Denote by Or(G,F) ⊂ Or(G) and Sub(G,F) ⊂ Sub(G) the full subcategories whose objects G/H
resp. H are given by finite subgroups H ⊂ G. Both Or(G,F) and Sub(G,F) are EI-categories of finite
length.

Given a proper G-homology theory HG
∗ with values in R-modules we obtain for n ∈ Z a covariant

ROr(G,F)-module

HG
n (G/?) : Or(G,F)→ R−MOD, G/H 7→ HG

n (G/H). (3.1)

Let (X, A) be a pair of proper G-CW -complexes. Then there is a canonical identification XH =
map(G/H, X)G. Thus we obtain contravariant functors

Or(G,F)→ CW − PAIRS, G/H 7→ (XH , AH);

Sub(G,F)→ CW − PAIRS, G/H 7→ CGH\(XH , AH),

where CW −PAIRS is the category of pairs of CW -complexes. Composing them with the covariant functor
CW −PAIRS→ R−CHCOM sending (Z, B) to its cellular chain complex with coefficients in R yields the

contravariant ROr(G,F)-chain complex C
Or(G,F)
∗ (X, A) and the contravariant RSub(G,F)-chain complex

C
Sub(G,F)
∗ (X, A). Both chain complexes are free. Namely, if Xn is obtained from Xn−1 by attaching the

equivariant cells G/Hi ×Dn for i ∈ I , then

C
Or(G,F)
∗ (X, A) = ⊕i∈IR morOr(G,F)(G/?, G/Hi); (3.2)

C
Sub(G,F)
∗ (X, A) = ⊕i∈IR morSub(G,F)(?, Hi). (3.3)

Given a covariant ROr(G,F)-module M , the equivariant Bredon homology (see [4]) of a pair of proper
G-CW -complexes (X, A) with coefficients in M is defined by

HOr(G,F)
n (X, A; M) := Hn(C

Or(G,F)
∗ (X, A)⊗ROr(G,F) M). (3.4)
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This is indeed a proper G-homology theory. Hence we can assign to a proper G-homology theory HG
∗

another proper G-homology theory which we call the associated Bredon homology

BHG
n (X, A) := ⊕p+q=nHOr(G,F)

p (X, A;HG
q (G/?)). (3.5)

There is a canonical homomorphism indpr C
Or(G,F)
∗ (X, A)

∼=
−→ C

Sub(G,F)
∗ (X, A) which is bijective (see

(2.6), (3.2), (3.3)). Given a covariant RSub(G,F)-module M , it induces using (2.5) natural isomorphisms

HOr(G,F)
n (X, A; respr M)

∼=
−→ Hn(C

Sub(G,F)
∗ (X, A)⊗RSub(G,F) M). (3.6)

This will allows to view modules over the category Sub(G;F) which is smaller than the orbit category and
has nicer properties from the homological algebra point of view. In particular we will exploit the following
elementary lemma.

Lemma 3.7 Suppose that the covariant RSub(G,F)-module M is flat, i.e. for any exact sequence 0 →
N1 → N2 → N3 → 0 of contravariant RSub(G,F)-modules the induced sequence of R-modules 0 →
N1 ⊗RSub(G,F) M → N2 ⊗RSub(G,F) M → N3 ⊗RSub(G,F) M → 0 is exact. Then the natural map

Hn(C
Sub(G,F)
∗ (X, A))⊗RSub(G,F) M

∼=
−→ Hn(C

Sub(G,F)
∗ (X, A)⊗RSub(G,F) M)

is bijective.

Suppose, we are given a proper equivariant homology theory H?
∗ with values in R-modules. We get

from (3.1) for each group G and n ∈ Z a covariant RSub(G,F)-module

HG
n (G/?) : Sub(G,F)→ R −MOD, H 7→ HG

n (G/H). (3.8)

We have to show that for g ∈ CGH the G-map Rg−1 : G/H → G/H, g′H → g′g−1H induces the identity
on HG

n (G/H). This follows from Lemma 1.2. We will denote the covariant Or(G,F)-module obtained
by restriction with pr : Or(G,F) → Sub(G,F) from the Sub(G,F)-module HG

n (G/?) of (3.8) again by
HG

n (G/?) as introduced already in (3.1).

Next we show that the collection of the G-homology theories BHG
∗ (X, A;HG

q (G/?)) defined in (3.5)
inherits the structure of a proper equivariant homology theory. We have to specify the induction structure.

Let α : H → G be a group homomorphism and (X, A) be a H-CW -pair such that ker(α) acts freely
on X . We only explain the case, where α is injective. In the general case one has to replace F by the
smaller family F(X) of subgroups of H which occur as subgroups of isotropy groups of X . Induction with
α yields a functor denoted in the same way

α : Or(H,F)→ Or(G,F), H/K 7→ indα(H/K) = H/α(K).

There is a natural isomorphism of Or(G,F)-chain complexes

indα C
Or(H,F)
∗ (X, A)

∼=
−→ C

Or(G,F)
∗ (indα(X, A))

and a natural isomorphism (see (2.5))

indα C
Or(H,F)
∗ (X, A)⊗ROr(G,F) H

G
q (G/?)

∼=
−→ C

Or(H,F)
∗ (X, A)⊗ROr(H,F) resαH

G
q (G/?).

The induction structure on H?
∗ yields a natural equivalence of ROr(H,F)-modules

HH
q (H/?)

∼=
−→ resαH

G
q (G/?).

The last three maps can be composed to a chain isomorphism

C
Or(H,F)
∗ (X, A)⊗ROr(H,F) H

H
q (H/?)

∼=
−→ C∗(indα(X, A))⊗ROr(G,F) H

G
q (G/?),

which induces a natural isomorphism

indα : HOr(H,F)
p (X, A,HH

q (H/?))
∼=
−→ HOr(G,F)

p (indα(X, A),HG
q (G/?)).

Thus we obtain the required induction structure.
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Remark 3.9 For any G-homology theory HG
∗ with values in R-modules for an associative commutative

ring R with unit there is an equivariant version of the Atiyah-Hirzebruch spectral sequence. It converges to

HG
p+q(X, A) and its E2-term is E2

p,q = H
Or(G)
p (X, A;HG

q (G/?)). If (X, A) is proper, the E2-term reduces to

H
Or(G,F)
p (X, A;HG

q (G/?)). The existence of a bijective equivariant Chern character says that this spectral
sequence collapses completely for proper G-CW -pairs (X, A).

4. The construction of the equivariant Chern character

Let (X, A) be a proper G-CW -pair. Let R be an associative commutative ring with unit satisfying
Q ⊂ R. We want to construct an R-homomorphism

chG
p,q(X, A)(H) : Hp(CGH\(XH , AH); R)⊗R H

G
q (G/H) → HG

p+q(X, A), (4.1)

where Hp(CGH\(XH , AH); R) is the cellular homology of the CW -pair CGH\(XH , AH) with R-
coefficients. For (notational) simplicity we give the details only for A = ∅. The map will be defined
by the following composition

Hp(CGH\XH ; R)⊗R HG
q (G/H)

Hp(pr1;R)⊗Rid

x∼=

Hp(EG×CGH XH ; R)⊗R HG
q (G/H)

hur(EG×CGHXH)⊗RindG
H

x∼=

πs
p((EG×CGH XH)+)⊗Z R⊗R HH

q (∗)

DH
p,q(EG×CGHXH )

y

HH
p+q(EG×CGH XH)

indpr:CGH×H→H

x∼=

HCGH×H
p+q (EG×XH)

indmH

y∼=

HG
p+q(indmH EG×XH)

HG
p+q(indmH

pr2)

y

HG
p+q(indmH XH)

HG
p+q(vH )

y

HG
p+q(X)

Some explanations are in order. We have a left CGH-action on EG × XH by g(e, x) = (eg−1, gx) for
g ∈ CGH , e ∈ EG and x ∈ XH . The map pr1 : EG ×CGH XH → CGH\XH is the canonical projection.
It induces an isomorphism

Hp(pr1; R) : Hp(EG×CGH XH ; R)
∼=
−→ Hp(X

H/CGH ; R)

by the following argument. Each isotropy group of the CGH-space XH is finite. The projection induces
an isomorphism Hp(BL; R) ∼= Hp(∗; R) for p ∈ Z and any finite group L because by assumption the order
of L is invertible in R. Hence Hp(pr1; R) is bijective if XH = CGH/L for some finite L ⊂ CGH . Now
apply the usual Mayer-Vietoris argument.
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For any space Y let hur(Y ) : πs
p(Y+)⊗Z R→ Hp(Y ; R) be the Hurewicz homomorphism. It is bijective

since Q ⊂ R and therefore hur is a natural tranformation of (non-equivariant) homology theories which
induces for the one-point space Y = ∗ an isomorphism πs

p(∗+)⊗Z R ∼= Hp(∗; R) for p ∈ Z.

Given a space Z and a finite group H , consider Z as an H-space by the trivial action and define a map

DH
p,q(Z) : πs

p(Z+)⊗Z H
H
q (∗) = πs

p(Z+)⊗Z R⊗R H
H
q (∗)→ HH

p+q(Z)

as follows. For an element a ⊗ b ∈ πs
p(Z+) ⊗Z HH

q (∗) choose a representative f : Sp+k → Sk ∧ Z+ of a.

Define DH
p,q(Z)(a⊗ b) to be the image of b under the composition

HH
q (∗)

σ
−→ HH

p+q+k(Sp+k, ∗)
f
−→ HH

p+q+k(Sk ∧ Z+, ∗)
σ−1

−−→ HH
p+q(Z),

where σ denotes the suspension isomorphism. Notice that H is finite so that any H-CW -complex is proper.

The group homomorphism pr : CGH×H → H is the obvious projection and the group homomorphism
mH : CGH ×H → G sends (g, h) to gh. Notice that the CGH ×H-action on EG ×XH comes from the
given CGH-action and the trivial H-action and that the kernels of the two group homomorphisms above
act freely on EG × XH . So the induction isomorphisms on homology for these group homomorphisms
exists for the CGH ×H-space EG×XH .

We denote by pr2 : EG × XH → XH the canonical projection. The G-map vH : indmH XH =
G×mH XH → X sends (g, x) to gx.

Lemma 4.2 Let G be a group and let X be a proper G-CW -complex. Then

(a) The map chG
p,q(X)(H) is natural in X;

(b) Consider H, K ⊂ G and g ∈ G with gHg−1 ⊂ K. Let Lg−1 : XK → XH and Lg−1 : CGK\XK →
CGH\XH be the map induced by left multiplication with g−1. Then following two maps agree

Hp(CGK\XK; R)⊗RH
G
q (G/H)

Hp(Lg−1 ;R)⊗Rid
−−−−−−−−−−−→ Hp(CGH\XH ; R)⊗RH

G
q (G/H)

chG
p,q(X)(H)

−−−−−−−−→ HG
p+q(X)

and

Hp(CGK\XK; R)⊗RH
G
q (G/H)

id⊗RHG
q (Rg−1 )

−−−−−−−−−−→ Hp(CGK\XK; R)⊗RH
G
q (G/K)

chG
p,q(X)(K)

−−−−−−−−→ HG
p+q(X);

(c) Consider a G-map f : G/H → X. Then f(eH) ∈ XH represents an element u in the set
π0(CGH\XH), which is a R-basis for H0(CGH\XH ; R), and the map

HG
q (G/H)→ HG

q (X), v 7→ chG
0,q(X)(H)(u⊗R v)

agrees with the map HG
q (f).

Proof : (a) is obvious

(b) Since gHg−1 ⊂ K we can define a group homomorphism c(g−1) : CGK → CGH by mapping g′ to
g−1g′g. The map

Rg × Lg−1 : EG×XK → EG×XH , (e, x) 7→ (eg, g−1x)

is c(g−1) : CGK → CGH equivariant with respect to the CGK-action on EG ×XK given by g′ · (e, x) =

(eg′
−1

, g′x) and the analogous CGH-action on EG×XH . It induces a map

Rg × Lg−1 : EG×CGK XK → EG×CGH XH .
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If we extend the CGH- resp. CGK-action on EG×XH resp. EG×XK to a CGH ×H- resp. CGK ×H-
action in the trivial way, we also get CGH ×H-maps

˜Rg × Lg−1 : indc(g−1×id):CGK×H→CGH×H EG×XK = CGH ×H ×c(g−1)×id EG×XK → EG×XH

(c, h, e, x) 7→ (egc−1, cg−1x)

and

L̃g−1 : indc(g−1)×id:CGK×H→CGH×H XK = CGK ×H ×c(g−1)×id XK → XH , (c, h, x) 7→ (cg−1x).

In the sequel the maps pi denote the canonical projections. They are of the shape Y ×K/gHg−1 → Y .
The maps fi denote canonical equivariant homeomorphisms which describe the natural identifications of
indβ◦α Z with indβ indα Z. One easily checks using the axioms of an induction structure that the following
three diagrams commute:

Hp(CGK\XK ; R)
Hp(Lg−1 ;R)
−−−−−−−−→ Hp(CGH\XH ; R)

∼=

xHp(pr1;R) Hp(pr1;R)

x∼=

Hp(EG×CGK XK ; R)
Hp(Rg×Lg−1 ;R)
−−−−−−−−−−−→ Hp(EG ×CGH XH ; R)

∼=

xhur(EG×CGKXK) hur(EG×CGHXH )

x∼=

πs
p((EG×CGK XK)+)⊗Z R

πs
p(Rg×Lg−1 )
−−−−−−−−−→ πs

p((EG×CGH XH)+)⊗Z R

and

πs
p((EG×CGK XK)+)⊗Z HK

q (∗)
id⊗HK

q (p1)◦indc(g):H→K

←−−−−−−−−−−−−−−−− πs
p((EG×CGK XK)+)⊗Z HH

q (∗)
yDK

p,q DH
p,q

y

HK
p+q(EG ×CGK XK)

HK
q (p2)◦indc(g):H→K

←−−−−−−−−−−−−− HH
p+q(EG×CGK XK)

∼=

xindpr:CGK×K→K indpr:CGK×H→H

x∼=

HCGK×K
p+q (EG×XK)

HK
q (p3)◦indid×c(g)

←−−−−−−−−−−−− HCGK×H
p+q (EG ×XK)

yindmK
indmK◦id×c(g)

y

HG
p+q(indmK EG×XK)

HG
p+q(indmK

p3)◦HG
p+q(f1)

←−−−−−−−−−−−−−−−−− HG
p+q(indmK◦id×c(g) EG×XK)

yHG
p+q(indmK

pr2) HG
p+q(indmK◦id×c(g) pr2)

y

HG
p+q(indmK XK)

HG
p+q(indmK

p4)◦HG
p+q(f2)

←−−−−−−−−−−−−−−−−− HG
p+q(indmK◦id×c(g) XK)
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and

πs
p((EG×CGK XK)+)⊗R HH

q (∗)
πs

p(Rg×Lg−1 )⊗id
−−−−−−−−−−−→ πs

p((EG×CGK XH)+)⊗R HH
q (∗)

yDH
p,q DH

p,q

y

HH
p+q(EG ×CGK XK)

HG
p+q(Rg×Lg−1 )

−−−−−−−−−−−→ HH
p+q(EG×CGK XH)

∼=

xindpr:CGK×H→H indpr:CGH×H→H

x∼=

HCGK×H
p+q (EG×XK)

HG
p+q( ˜Rg×Lg−1 )◦indc(g−1)×id

−−−−−−−−−−−−−−−−−−−−→ HCGH×H
p+q (EG×XH)

yindmK◦id×c(g) indmH

y

HG
p+q(indmK◦id×c(g) EG×XK)

HG
p+q(indmH

˜Rg×Lg−1 )◦HG
p+q(f3)◦indc(g−1)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ HG
p+q(indmH EG×XH)

yHG
p+q(indmK◦id×c(g) pr2) HG

p+q(indmH
pr2)

y

HG
p+q(indmK◦id×c(g) XK)

HG
p+q(indmH

L̃g−1 )◦HG
p+q(f4)◦indc(g−1)

−−−−−−−−−−−−−−−−−−−−−−−−−−→ HG
p+q(indmH XH)

yHG
p+q(indmK

p4)◦HG
p+q(f2) HG

p+q(vH )

y

HG
p+q(indmK XK)

HG
p+q(vK )

−−−−−−→ HG
p+q(X)

Now assertion (b) follows from an easy diagram chase in the three commutative diagrams above and
Lemma 1.2.

(c) Its proof is similar to the one of (b) but much easier and hence left to the reader. This finishes the
proof of Lemma 4.2.

Theorem 4.3 Let R be an associative commutative ring with unit for which Q ⊂ R holds. Let H?
∗

be a proper equivariant homology theory with values in R-modules. Suppose for any group G that the
RSub(G,F)-module HG

q (G/?) is flat for all q ≥ 0. Then there is an isomorphism, called equivariant
Chern character, of proper equivariant homology theories

ch?
∗ : BH?

∗

∼=
−→ H?

∗,

i.e. for any group G and any proper G-CW -pair (X, A) there is an in (X, A) natural isomorphism

chG
n (X, A) : ⊕p+q=nHOr(G,F)

p (X, A;HG
q (G/?))

∼=
−→ HG

n (X, A)

such that the obvious compatibility conditions for the boundary homomorphisms of pairs and the induction
structures hold.

Proof : We get for a pair of proper G-CW -complexes (X, A) from the collection of the homomorphisms
of (4.1), the identification (3.6), Lemma 3.7 and Lemma 4.2 (which holds for pairs (X, A) also) a natural
R-homomorphism

chG
p,q(X, A) : HOr(G,F)

p (X, A;HG
q (G/?)) = Hp(C

Sub(G,F)
∗ (X, A))⊗RSub(G,F) H

G
q (G/?) → HG

p+q(X).

Taking their direct sum for p + q = n yields an in (X, A)-natural homomorphism

chG
n (X, A) : BHG

n (X, A) → HG
n (X). (4.4)

One easily checks that chG
∗ : BHG

∗ → H
G
∗ is a transformation of G-homology theories. Essentially one has

to check that it is compatible with the boundary maps in the long exact sequences of pairs.
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Next we show that chG
∗ is a natural equivalence, i.e. chG

n (X, A) is bijective for all n ∈ Z and all proper
G-CW -pairs (X, A). The disjoint union axiom implies that both G-homology theories are compatible with
colimits over directed systems indexed by the natural numbers such as the system given by the skeletal
filtration X0 ⊂ X1 ⊂ X2 . . . ∪n≥0 Xn = X . The argument for this claim is analogous to the one in

[24, 7.53] or [26, Theorem XIII.1.1 on page 604]. Hence it suffices to prove the bijectivity of chG
n (X, A)

for finite-dimensional pairs. By excision, the exact sequence of pairs, the disjoint union axiom and the
five-lemma one reduces the proof of the bijectivity of chG

n (X, A) to the special case (X, A) = (G/H, ∅) for
finite H ⊂ G. In this case the bijectivity follows from the consequence of Lemma 4.2 (b) that chG

n (G/H)
is the identity under the obvious identification of its source with HG

n (G/H) coming from (3.2).

Remark 4.5 Suppose that G is trivial and we consider a (non-equivariant) homology theory H∗ with
values in R-modules for Q ⊂ R. Then the construction of the equivariant Chern character reduces to the
following composition

chn : ⊕p+q=nHp(X, A;Hq(∗))
∼=

←−−−−
α

⊕p+q=nHp(X, A; R)⊗R Hq(∗)

hur⊗ id
←−−−−−

∼=
πs

p(X+, A+)⊗Z R⊗R Hq(∗)
Dp,q
−−−−→ Hn(X, A).

Here the canonical map α is bijective, since any R-module is flat over Z because of the assumption Q ⊂ R.
The second bijective map comes from the Hurewicz homomorphism. This construction is due to Dold [7].

Example 4.6 Given a homology theory K with values in R-modules for Q ⊂ R, we can associate to it an
equivariant homology theory H?

∗ in two ways as explained in Example 1.3. There is an obvious equivariant
Chern character coming from the non-equivariant one of Remark 4.5. Our general construction reduces
to it by the following elementary observation. For any finite group H the natural map Kq(BH) → Kq(∗)
is an isomorphism by the Atiyah-Hirzebruch spectral sequence since Hp(BH ; Q) → Hq(∗; Q) is bijective.
Hence in both cases the RSub(G,F)-module HG

q (G/?) = H?
q(∗) is constant with value Kq(∗). Therefore

it is isomorphic to Q morSub(G,F)(1, ?)⊗Q Kq(∗) which is obviously a projective RSub(G,F)-module. By
(2.12) the source of our equivariant Chern character reduces in this special case to

⊕p+q=nHOr(G,F)
p (X, A;HG

q (G/?)) ∼= ⊕p+q=n Hp(G\(X, A);Kq(∗)).

Remark 4.7 Let H∗
G be an equivariant proper cohomology theory with values in F -modules for a field

F of characteristic zero. It is defined axiomatically in the obvious way analogous to the definition of
an equivariant homology theory. Suppose that Hn

H(∗) is a finite-dimensional F -vector space for all finite
groups H and n ∈ Z. Put HG

n (X, A) := homF (Hn
G(X, A), F ). This defines an equivariant homology

theory for proper finite G-CW -pairs (X, A). We can rediscover Hn
G(X, A) by homF (HG

n (X, A), F ) for
proper finite G-CW -pairs (X, A). If one obtains a bijective Chern character for HG

∗ for proper finite
G-CW -pairs, dualizing yields a bijective Chern character from H∗

G to the associated equivariant Bredon
cohomology for proper finite G-CW -pairs.

This applies for instance to equivariant K-cohomology after tensoring with Q over Z. Equivariant
Chern characters for equivariant K-cohomology have been constructed after tensoring with C resp. Q over
Z in [2] resp. [17]. Our construction of an equivariant Chern character for proper equivariant homology
theories is motivated by [17].

5. Mackey functors

In order to apply Theorem 4.3, we have to check the flatness condition about the RSub(G,F)-module
HG

q (G/?). We will see that the existence of a Mackey structure will guarantee that it is projective and
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hence flat. This would not work if we would consider HG
q (G/?) over the orbit category. Recall that we

can consider it over Sub(G,F) because of Lemma 1.2 which is a consequence of the induction structure.
The desired Mackey structures do exist in all relevant examples.

Let R be an associative commutative ring with unit. Let FGINJ be the category of finite groups with
injective group homomorphisms as morphisms. Let M : FGINJ → R −MOD be a bifunctor, i.e. a pair
(M∗, M

∗) consisting of a covariant functor M∗ and a contravariant functor M∗ from FGINJ to R−MOD
which agree on objects. We will often denote for an injective group homomorphism f : H → G the map
M∗(f) : P (H) → P (G) by indf and the map M∗(f) : P (G) → P (H) by resf and write indG

H = indf and
resH

G = resf if f is an inclusion of groups. We call such a bifunctor M a Mackey functor with values in
R-modules if

(a) For an inner automorphism c(g) : G→ G we have M∗(c(g)) = id : M(G)→M(G);

(b) For an isomorphism of groups f : G
∼=
−→ H the compositions resf ◦ indf and indf ◦ resf are the

identity;

(c) Double coset formula

We have for two subgroups H, K ⊂ G

resK
G ◦ indG

H =
∑

KgH∈K\G/H

indc(g):H∩g−1Kg→K ◦ resH∩g−1Kg
H ,

where c(g) is conjugation with g, i.e. c(g)(h) = ghg−1.

Our main examples of Mackey functors will be RQ(H), Kq(RH), Lq(RH) and Ktop
q (Cr

∗(H, F )). Recall
that for a subgroup H ⊂ G we denote by NGH and CGH the normalizer and the centralizer of H in G and
by WGH the quotient NGH/CGH . In the sequel we will use the identification WGH ∼= autSub(G,F)(H)
which sends the class of n ∈ NGH to the class of c(n) : H → H . We have introduced SHP = P (H)/P (H)s

for a covariant Sub(G,F)-module P in (2.9). Notice for the sequel that

P (H)s = im
(
⊕K⊂H,K 6=H indH

K : ⊕K⊂H,K 6=HP (K)→ P (H)
)

. (5.1)

Given a left R[WGH ]-module Q, we have defined the covariant RSub(G,F)-module EHQ in (2.7). Recall
that (H) has two meanings, namely, the set of subgroups of G which are conjugated to H and the
isomorphism class of objects in Sub(G,F). One easily checks that these two interpretations give the same.

Theorem 5.2 Let F be a field of characteristic 0. Let M be a Mackey functor with values in F -modules.
It induces a covariant FSub(G,F)-module denoted in the same way

M : Sub(G,F)→ F −MOD, (f : H → L) 7→ (M∗(f) : M(H)→M(K)) .

Each F [WGH ]-module SHM is projective. For any finite subgroup H ⊂ G choose a section σH : SHM →
M(H) of the canonical projection M(H)→ SHM . Then the homomorphism defined in (2.10)

T : ⊕(H)∈IEH ◦ SHM →M

is an isomorphism and the FSub(G,F)-module M is projective and hence flat.

Proof : Since WGH is finite, any F [WGH ]-module is projective. Because of Theorem 2.11 it suffices to
show for any finite subgroup K ⊂ G that T (K) is injective. Consider an element u in the kernel of T (K).
Put J(H) = morSub(G,F)(H, K)/(WGH) and I = Is(Sub(G,F)). Choose for any (H) ∈ I a representative

H ∈ (H). Then fix for any element f ∈ J(H) a representative f : H → K in morSub(G,F)(H, K). We can
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find elements xH,f ∈ SHM for (H) ∈ I and f ∈ J(H) such that only finitely many are different from zero
and u can be written as

u =
∑

(H)∈I

∑

f∈J(H)

(f : H → K)⊗R[WGH] xH,f .

We want to show that all elements xH,f are zero. Suppose that this is not the case. Let (H0) be maximal
among those elements (H) ∈ I for which there is f ∈ J(H) with xH,f 6= 0, i.e. if for (H) ∈ I the element
xH,f is different from zero for some morphism f : H → K in Sub(G,F) and there is a morphism H0 → H
in Sub(G,F), then (H0) = (H). In the sequel we choose for any of the morphisms f : H → K in Sub(G,F)
a group homomorphism denoted in the same way f : H → K representing it. Recall that f : H → K is
given by conjugation with an appropriate element g ∈ G. Fix f0 : H0 → K with xH0.f0 6= 0. We claim
that the composition

A : ⊕(H)∈IEH ◦ SHM(K)
T (K)
−−−→M(K)

res
im(f0)

K−−−−−→M(im(f0))
ind

f
−1
0

:im(f0)→H0
−−−−−−−−−−−→M(H0)

prH0−−−→ SH0M

maps u to m · xH0 ,f0 for some integer m > 0. This would lead to a contradiction because of T (K)(u) = 0
and xH0,f0 6= 0.

Consider (H) ∈ I and f ∈ J(H). It suffices to show that A
(
(f : H → K)⊗F [WGH] xH,f

)
is [K ∩

NG im(f0) : im(f0)] · xH,f if (H) = (H0) and f = f0, and is zero otherwise. One easily checks that
A((f : H → K)⊗F [WGH] xH,f ) is the image of xH,f under the composition

a(H, f) : SHM
σH−−→M(H)

indf:H→im(f)
−−−−−−−−→M(im(f))

indK
im(f)

−−−−−→M(K)
res

im(f0)

K−−−−−→M(im(f0))

ind
f
−1
0 :im(f0)→H0

−−−−−−−−−−−→M(H0)
prH0−−−→ SH0M.

The Double Coset formula implies

res
im(f0)
K ◦ indK

im(f) =
∑

k∈im(f0)\K/ im(f)

indc(k):im(f)∩k−1 im(f0)k→im(f0) ◦ res
im(f)∩k−1 im(f0)k
im(f) .

The composition prH0
◦ indf−1

0 :im(f0)→H0
◦ indc(k):im(f)∩k−1 im(f0)k→im(f0) is trivial, if c(k) : im(f) ∩

k−1 im(f0)k → im(f0) is not an isomorphism. Suppose that c(k) : im(f) ∩ k−1 im(f0)k → im(f0) is
an isomorphism. Then k−1 im(f0)k ⊂ im(f). Since H0 has been choosen maximal among the H for
which xH,f 6= 0 for some morphism f : H → K, this implies xH,f = 0 or that k−1 im(f0)k = im(f).
Suppose k−1 im(f0)k = im(f). Then (H) = (H0) which implies H = H0. Moreover, the homomorphisms
in Sub(G,F) represented by f0 and f agree. Hence the group homomorphisms f0 and f agree themselves
and we get k ∈ NG im(f0) ∩K. This implies that a(H, f) = [K ∩ NG im(f0) : im(f0)] · id if (H) = (H0)
and f = f0, and that otherwise a(H, f) = 0 or xH,f = 0 holds. Hence the map T is injective. This finishes
the proof of Theorem 5.2.

Now Theorem 0.2 follows from Theorem 4.3 and Theorem 5.2 using (2.12).

6. Restriction structures and multiplicative structures

Before we simplify the source of the equivariant Chern character further in the presence of a module
structure over the Green functor Q⊗Z RQ(?) on H?

q(∗) in Section 7, we introduce an additional structure
on an equivariant homology theory called restriction structure. It will guarantee that the Mackey structure
appearing in Theorem 0.2 exists. This restriction structure is canonically given in all relevant examples.
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We also briefly deal with multiplicative structures. The material of this section is not needed for the
following sections.

A restriction structure on an equivariant homology theory H?
∗ consists of the following data. For any

injective group homomorphism α : H → G, whose image has finite index in G, we require in (X, A) natural
homomorphisms

resα : HG
n (X, A)→ HH

n (resα(X, A)),

where (X, A) is a pair of G-CW -complexes and resα(X, A) is the H-CW -pair obtained from (X, A) by
restriction with α. If α is an inclusion of a subgroup H ⊂ G, we also write resH

G instead of resα. We require

(a) Compatibility with the boundary homomorphisms

The restriction homomorphism resα is compatible with the boundary homomorphism δG
n and δH

n ;

(b) Functoriality

If β : G → K is another injective group homomorphism whose image has finite index in K, then
resβ◦α = resα ◦ resβ ;

(c) Compatibility of induction and restriction for isomorphisms

If α : H
∼=
−→ G is an isomorphism of groups, then the composition

HG
n (X)

resα−−→ HH
n (resα X)

indα−−−→ HG
n (indα resα X)

T (X)
−−−→ HG

n (X)

is the identity, where T (X) : indα resα X → X is the canonical G-homeomorphism;

(d) Double Coset formula

Let H, K ⊂ G be subgroups such that K has finite index in G. Let (X, A) be a H-CW -pair. (Notice
for the sequel that K\G/H is finite.) Denote by

f :
∐

KgH∈K\G/H

indc(g):H∩g−1Kg→K resH∩g−1Kg
H (X, A)

∼=
−→ resK

G indG
H(X, A)

the canonical K-homeomorphism.

Then the following two compositions agree for all q ∈ Z

HH
q (X)

Q

KgH∈K\G/H indc(g):H∩g−1Kg→K ◦ resH∩g−1Kg
H

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

∏

KgH∈K\G/H

HK
q

(
indc(g):H∩g−1Kg→K resH∩g−1Kg

H (X, A)
)

∼=
−→ HK

q




∐

KgH∈K\G/H

indc(g):H∩g−1Kg→K resH∩g−1Kg
H (X, A)


 HK

q (f)
−−−−→ HK

q (resK
G indG

H(X, A))

and
resK

G ◦ indG
H : HH

q (X, A)→ HK
q (resK

G indG
H(X, A)).

If H?
∗ is an equivariant homology theory with a restriction structure, BH?

∗ inherits a restriction struc-
ture as follows. For K ⊂ H we get a natural map H/K → resα indα H/K as the adjoint of the identity on
indα H/K. It induces HH

q (H/K) → HH
q (resα indα H/K). We get a ROr(G,F)-module HH

q (resα G/?)

which assigns to G/K the R-module HH
q (resα G/K). Thus we obtain a transformation of covariant

ROr(H,F)-modules HH
q (H/?)→ resαHH

q (resα G/?). Its adjoint is a map of ROr(G,F)-modules

iq : indαH
H
q (H/?)

∼=
−→ HH

q (resα G/?),
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which turns out to be bijective. This can be seen from its more explicit description as the composition of
isomorphisms

indαH
H
q (H/?) = R morOr(G,F)(indα H/?, G/??)⊗ROr(H,F) H

H
q (H/?)

µ
−→ R morOr(H,F)(H/?, resα G/??)⊗ROr(H,F) H

H
q (H/?)

ν
−→ HG

q (G/??),

where µ comes from the adjunction of indα and resα and ν sends (f : H/?→ resα G/??)⊗x to HH
q (f)(x).

The restriction structure on H?
∗ induces a map of Or(G,F)-modules

HG
q (G/?)→ HH

q (resα G/?).

There is a natural isomorphism of ROr(H,F)-chain complexes

C
Or(H,F)
∗ (resα(X, A))

∼=
−→ resα C

Or(G,F)
∗ (X, A).

There is a natural isomorphism of R-modules (compare (2.5))

resα C
Or(G,F)
∗ (X, A))⊗ROr(H,F) H

H
q (H/?)

∼=
−→ C

Or(G,F)
∗ (X, A)⊗ROr(G,F) indαH

H
q (H/?).

The last four maps together can be combined to a map of R-chain complexes

C
Or(G,F)
∗ (X, A)⊗ROr(G,F) H

G
q (G/?)→ C

Or(H,F)
∗ (resα(X, A))⊗ROr(H,F) H

H
q (H/?).

It induces on homology homomorphisms

resα : HOr(G,F)
p (X, A;HG

q (X, A))→ HOr(H,F)
p (resα(X, A);HH

q (H/?)).

Their direct sum yields the desired natural homomorphism

resα : BHG(X, A)→ BHH(resα(X, A)).

We leave it to the reader to check that the axioms of a restriction structure are fullfilled.

Next we introduce multiplicative structures. An external product on HG
∗ assigns to any two groups G

and G′ and pairs of (proper) G- resp. G′-CW -complexes (X, A) resp. (X ′, A′) an in (X, A) and (X ′, A′)
natural homomorphism

× : HG
n (X, A)⊗R HG′

n′ (X ′, A′)→ HG×G′

n+n′ ((X, A) × (X ′, A′)), (6.1)

where (X, A)×(X ′, A′) is the pair of (proper) G×G′-CW -complexes (X×X ′, X×A′∪A×X ′). We mention
that we work in the category of compactly generated spaces (see [25], [26, I.4]) so that (X, A) × (X ′, A′)
is indeed a (proper) G × G′-CW -pair. These parings are required to be compatible with the boundary
homomorphisms, namely, for u ∈ HG

p (X, A) and v ∈ HG
q (Y, B) we have

∂(u× v) = ∂(u)× v + (−1)p · u× ∂(v).

We also assume that these pairings are compatible with induction, i.e. for group homomorphisms α : H →
G and α′ : H ′ → G′ and u ∈ HH

p (X, A) and u′ ∈ HH′

q (Y, B) we require

HG×G′

p+p′ (f) (indα(u)× indα′(u′)) = indα×α′(u× v)

for f : indα(X, A) × indα′(X ′, A′)
∼=−→ indα×α′ ((X, A)× (X ′, A′)) the canonical G × G′-homeomorphism.

Furthermore we require that the external product × is associative, graded commutative and has a unit

element 1 in H
{1}
0 (∗).

If H?
∗ comes with an external product, we call it a multiplicative (proper) equivariant homology theory

with values in R-modules. If H?
∗ comes with a restriction structure, we will require that the multiplicative
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structure and restriction structure are compatible. Namely, for injective group homomorphisms α : H → G
and α′ : H ′ → G′, whose images have finite index, and u ∈ HG

p (X, A) and u′ ∈ HG′

q (Y, B) we require

resα(u)× resα′(u′) = resα×α′(u× v).

Next we explain how a multiplicative structure on H?
∗ induces a multiplicative structure on the as-

sociated Bredon homology BH?
∗. Let (X, A) be a proper G-CW -pair and let (X ′, A′) be a proper G′-

CW -pair. Let C∗(X, A)⊗R C∗(X
′, A′) be the obvious ROr(G,F)×Or(G′,F)-chain complex. Denote by

I : Or(G,F) ×Or(G′,F)→ Or(G ×G′,F) the functor sending (G/H, G′/H ′) to G×G′/H ×H ′. There
is a natural isomorphism of Or(G×H,F)-chain complexes

indI

(
C

Or(G,F)
∗ (X, A)⊗R C

Or(G′,F)
∗ (X ′, A′)

)
∼=
−→ C

Or(G×G′,F)
∗ ((X, A)× (X ′, A′)),

which comes from the adjunction (2.4) and the natural isomorphism of the cellular chain complex of a
product of two (non-equivariant) CW -complexes with the tensor product of the individual cellular chain
complexes. The multiplicative structure on H?

∗ induces a natural transformation of Or(G,F)×Or(H,F)-
modules

HG
p (G/?)⊗R H

G′

q (G′/?′)→ resI H
G×G′

p+q (G×G′/??).

There are natural isomorphisms of R-chain complexes
(
C

Or(G,F)
∗ (X, A)⊗ROr(G,F) H

G
p (G/?)

)
⊗R

(
C

Or(G′,F)
∗ (X ′, A′)⊗ROr(G′,F) H

G′

p (G′/?′)
)

∼=
−→

(
C

Or(G,F)
∗ (X, A)⊗R C

Or(G′,F)
∗ (X ′, A′)

)
⊗ROr(G,F)×Or(G′,F)

(
HG

p (G/?)⊗R H
G′

p (G′/?′)
)

and (see (2.5))

indI

(
C

Or(G,F)
∗ (X, A)⊗R C

Or(G′,F)
∗ (X ′, A′)

)
⊗ROr(G×G′,F) H

G×G′

p+q (G×G′/??)

∼=
−→ C

Or(G,F)
∗ (X, A)⊗R C

Or(G′,F)
∗ (X ′, A′))⊗ROr(G,F)×Or(G′,F) resI H

G×G′

p+q (G×G′/??).

Combining the last four maps yields a chain map
(
C

Or(G,F)
∗ (X, A)⊗ROr(G,F) H

G
p (G/?)

)
⊗R

(
C

Or(G′,F)
∗ (X ′, A′)⊗ROr(G′,F) H

G′

p (G′/?′)
)

→ C
Or(G×G′,F)
∗ ((X, A)× (X ′, A′))⊗ROr(G×G′,F) H

G×G′

p+q (G×G′/??).

It induces the required multiplicative structure

BHG
m(X, A)⊗R BH

G′

n (X ′, A′)→ BHG×G′

m+n ((X, A)× (X ′, A′)). (6.2)

We leave it to the reader to verify the axioms of a multiplicative proper equivariant homology theory for
BH?

∗.

Theorem 6.3 Let F be a field of characteristic 0. Let H?
∗ be a proper equivariant homology theory with

values in F -modules. Suppose that H?
∗ possesses a restriction structure. Let I be the set of conjugacy

classes (H) of finite subgroups H of G. Then there is an isomorphism of proper homology theories

ch?
∗ : BH?

∗

∼=
−→ H?

∗

such that

BHG
n (X, A) = ⊕p+q=n ⊕(H)∈IHp(CGH\(XH , AH); F )⊗F [WGH] SHH

G
q (G/?).

The isomorphism ch?
∗ is compatible with the given restriction structure on H?

∗ and the induced restriction
structure on BH?

∗. If H∗ comes with a multiplicative structure and we equip BH?
∗ with the associated

multiplicative structure, ch?
∗ is also compatible with the multiplicative structures.
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Proof : Given a proper equivariant homology theoryH?
∗ with values in F -modules together with restriction

structure, then H?
q(∗) inherits a Mackey structure in the obvious way. Given an injective group homomor-

phism f : H → K of finite groups, induction is given by the composition HH(∗)
indf
−−−→ HK

q (indf ∗)
HK

q (pr)
−−−−−→

HK
q (∗) and restriction by resf : HK

q (∗) → HH
q (∗). Now apply Theorem 0.2. We leave the lengthy but

straighforward verification that the equivariant Chern character is compatible with the restriction struc-
tures and multiplicative structures to the reader.

Example 6.4 Equivariant bordism as introduced in Example 1.4 has an obvious restriction structure com-
ing from restriction of spaces and an obvious multiplicative structure coming from the cartesian product.
Hence Theorem 6.3 applies to it and yields an isomorphism of multiplicative proper equivariant homology
theories with restriction structure

chG
n (X, A) : ⊕p+q=n ⊕(H)∈I Hp(CGH\(XH , AH); Q)⊗Q[WGH] SHQ⊗Z ΩG

q (G/?)
∼=−→ Q⊗Z ΩG

n (X, A),

where SHQ⊗Z ΩG
q (G/?) = coker

(
⊕K⊂H,K 6=HQ⊗Z ΩK

q (∗)→ Q⊗Z ΩH
q (∗)

)
.

7. Green functors

Next we simplify the source of the equivariant Chern character further in the presence of a module
structure over the Green functor Q⊗Z RQ(?) on H?

q(∗). Such additional structure is given in the situation
of our main Example 1.5.

Let φ : R → S be a homomorphism of associative commutative rings with unit. Let M be a Mackey
functor with values in R-modules and let N and P be Mackey functors with values in S-modules. A pairing
with respect to φ is a family of maps

m(H) : M(H)×N(H)→ P (H), (x, y) 7→ m(H)(x, y) =: x · y,

where H runs through the finite groups and we require the following properties for all injective group
homomorphisms f : H → K of finite groups:

(x1 + x2) · y = x1 · y + x2 · y for x1, x2 ∈M(H), y ∈ N(H);
x · (y1 + y2) = x · y1 + x · y2 for x ∈M(H), y1, y2 ∈ N(H);
(rx) · y = φ(r)(x · y) for r ∈ R, x ∈M(H), y ∈ N(H);
x · sy = s(x · y) for s ∈ S, x ∈M(H), y ∈ N(H);
resf (x · y) = resf (x) · resf (y) for x ∈M(K), y ∈ N(K);
indf (x) · y = indf (x · resf (y)) for x ∈M(H), y ∈ N(K);
x · indf (y) = indf (resf (x) · y) for x ∈M(K), y ∈ N(H).

A Green functor with values in R-modules is a Mackey functor U together with a pairing with respect
to id : R → R and elements 1H ∈ U(H) for each finite group H such that for each finite group H the
pairing U(H)× U(H) → U(H) induces the structure of an R-algebra on U(H) with unit 1H and for any
morphism f : H → K in FGINJ the map U∗(f) : U(K) → U(H) is a homomorphism of R-algebras with
unit. Let U be a Green functor with values in R-modules and M be a Mackey functor with values in
S-modules. A (left) U -module structure on M with respect to the ring homomorphism φ : R → S is a
pairing such that any of the maps U(H)×M(H)→M(H) induces the structure of a (left) module over the
R-algebra U(H) on the R-module φ∗M(H) which is obtained from the S-module M(H) by rx := φ(r)x
for r ∈ R and x ∈M(H).
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Lemma 7.1 Let φ : R → S be a homomorphism of associative commutative rings with unit. Let U be
a Green functor with values in R-modules and let M be a Mackey functor with values in S-modules such
that M comes with a U -module structure with respect to φ. Let S be a set of subgroups of the finite group
H. Suppose that the map

⊕K∈S indH
K : ⊕K∈SU(K)→ U(H)

is surjective. Then the map
⊕K∈S indH

K : ⊕K∈SM(K)→M(H)

is surjective.

Proof : By hypothesis there are elements uK ∈ U(K) for K ∈ S satisfying 1H =
∑

K∈S indH
K uK in

U(H). This implies for x ∈M(H).

x = 1H · x =

(
∑

K∈S

indH
K uK

)
· x =

∑

K∈S

indH
K

(
uK · res

K
H x
)
.

Our main example of a Green functor with values in Q-modules Q⊗Z RQ(?) assigns to a finite group
H the Q-module Q⊗Z RQ(H), where RQ(H) denotes the rational representation ring. Notice that RQ(H)
is the same as the projective class group K0(QH). The Mackey structure comes from induction and
restriction of representations. The pairing Q ⊗Z RQ(H) × Q ⊗Z RQ(H) → Q ⊗Z RQ(H) comes from the
tensor product P ⊗Q Q of two QH-modules P and Q equipped with the diagonal H-action. The unit
element is the class of Q equipped with the trivial H-action.

Let classQ(H) be the Q-vector space of functions H → Q which are invariant under Q-conjugation, i.e.
we have f(h1) = f(h2) for two elements h1, h2 ∈ H if the cyclic subgroups 〈h1〉 and 〈h2〉 generated by
h1 and h2 are conjugated in H . Elementwise multiplication defines the structure of a Q-algebra on classQ

with the function which is constant 1 as unit element. Taking the character of a rational representation
yields an isomorphism of Q-algebras [23, Theorem 29 on page 102]

χH : Q⊗Z RQ(H)
∼=
−→ classQ(H). (7.2)

We define a Mackey structure on classQ(?) as follows. Let f : H → K be an injective group homomorphism.
For a character χ ∈ classQ(H) define its induction with f to be the character indf (χ) ∈ classQ(K) given
by

indf (χ)(k) =
1

|H |
·

∑

l∈K,h∈H,f(h)=l−1kl

χ(h).

For a character χ ∈ classQ(H) define its restriction with f to be the character resf (χ) ∈ classQ(H) given
by

resf (χ)(h) := χ(f(h)).

One easily checks that this yields the structure of a Green functor on classQ(?) and that the family of
isomorphisms χH defined in (7.2) yields an isomorphism of Green functors from Q⊗Z RQ(?) to classQ(?).

For a finite group H and any cyclic subgroup C ⊂ H , define

θH
C ∈ classQ(H) (7.3)

to be the function which sends h ∈ H to 1 if 〈h〉 and C are conjugated in H and to 0 otherwise.

Lemma 7.4 Let φ : Q → R be a homomorphism of associative commutative rings with unit. Let M be
a Mackey functor with values in R-modules which is a module over the Green functor Q ⊗Z RQ(H) with
respect to φ. Then
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(a) For a finite group H the map

⊕C⊂H,C cyclic indH
C : ⊕C⊂H,C cyclicM(C)→M(H)

is surjective;

(b) Let C be a finite cyclic group. Let
θC

C : M(C)→M(C)

be the map induced by the Q ⊗Z RQ(C)-module structure and multiplication with preimage of the
element θC

C ∈ classQ(C) under the isomorphism χH : Q ⊗Z RQ(C) ∼= classQ(C) of (7.2). Then the
image resp. cokernel of

⊕D⊂C,D 6=C indC
D : ⊕D⊂C,D 6=CM(D)→M(C)

is equal resp. isomorphic to the kernel resp. image of the map θC
C : M(C)→M(C).

Proof : Let C ⊂ H be a cyclic subgroup of the finite group H . Then we get for h ∈ H

1

[H : C]
· indH

C θC
C (h) =

1

[H : C]
·

1

|C|
·

∑

l∈H,l−1hl∈C

θC
C (l−1hl) =

1

|H |
·

∑

l∈H,〈l−1hl〉=C

1.

This implies in Q⊗Z RQ(H) ∼= classQ(H)

1H =
∑

C⊂H,C cyclic

1

[H : C]
· indH

C θC
C (7.5)

since for any l ∈ H and h ∈ H there is precisely one cyclic subgroup C ⊂ H with C = 〈l−1hl〉. Now
assertion (a) follows from the following calculation for x ∈M(H)

x = 1H · x =




∑

C⊂H,C cyclic

1

[H : C]
· indH

C θC
C


 · x =

∑

C⊂H,C cyclic

1

[H : C]
· indH

C (θC
C · res

C
H x).

It remains to prove assertion (b). Obviously θC
C is an idempotent for any cyclic group C. We get for

x ∈M(C) from (7.5)

(1C − θC
C ) · x =




∑

D⊂C,D 6=C

1

[C : D]
· indC

D θD
D


 · x =

∑

D⊂C,D 6=C

1

[C : D]
· indC

D(θD
D · res

D
C x)

and for D ⊂ C, D 6= C and y ∈M(D)

θC
C · indC

D y = indC
D(resD

C θC
C · y) = indC

D(0 · y) = 0.

This finishes the proof of Lemma 7.4.

Now Theorem 0.3 follows from Theorem 0.2 and Lemma 7.4. For more information about Mackey and
Green functors and induction theorems we refer for instance to [6, Section 6] and [8].

8. Applications to K- and L-theory

In this section we apply Theorem 0.3 to the equivariant homology theories of Example 1.5. Thus we
obtain explicit computations of the rationalized source of the assembly map (1.6). These give explicit
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computations of the rationalized algebraic K- and L-groups of RG and of the topological K-groups of the
real and complex reduced group C∗-algebras of G, provided that the Farrell-Jones Conjecture with respect
to the family F of finite subgroups resp. the Baum Connes Conjecture is true for G. Before we carry out
this program, we mention the following facts. Notice for the sequel that all various versions of L-groups,
symmetric, quadratic or decorated L-groups, differ only by 2-torsion and hence agree after inverting 2.

Theorem 8.1 There are natural isomorphisms

Ln(ZG)[1/2]
∼=
−→ Ln(QG)[1/2];

Kn(C∗
r (G, R))[1/2]

∼=
−→ Ln(C∗

r (G, R))[1/2];

Kn(C∗
r (G, C))[1/2]

∼=
−→ Ln(C∗

r (G, C))[1/2].

Proof : The proof of the first isomorphism can be found in [20, page 376]. The other two isomorphism
are explained in [22, Theorem 1.8 and 1.11], where they are attributed to Karoubi, Miller and Mishchenko.

Next we introduce a Mackey structure and then a module structure over the Green functor Q⊗Z RQ(?)
on the various K- and L-groups. Let R be an associative commutative ring with unit satisfying Q ⊂ R
and let F be R, C. Induction and restriction yield obvious Mackey functors

Q⊗Z Kq(R?) : FGINJ → Q−MOD, H 7→ Q⊗Z Kq(RH);

Q⊗Z Lq(R?) : FGINJ → Q−MOD, H 7→ Q⊗Z Lq(RH);

Q⊗Z Ktop
q (C∗

r (?, F )) : FGINJ → Q−MOD, H 7→ Q⊗Z Ktop
q (C∗

r (H, F )).

The tensor product over R resp. F with the diagonal action induces on Q ⊗Z K0(R?), Q⊗Z L0(R?) and
Q ⊗Z Ktop

0 (C∗(?, F )) the structure of a Green functor with values in Q-modules and the structure of a
module over these Green functors on Q⊗Z Kq(R?), Q⊗Z Lq(R?) and Q⊗Z Ktop

q (C∗(?, F )) for all q ∈ Z.
The change of ring maps

Q⊗Z K0(Q?) → Q⊗Z K0(R?);

Q⊗Z L0(Q?) → Q⊗Z L0(R?);

Q⊗Z Ktop
0 (C∗

r (?, R)) → Q⊗Z Ktop
0 (C∗

r (?, C))

induce maps of Green functors. Since Q ⊗Z K0(Q?) = Q ⊗Z RQ(?), we get a module structure over the
Green functor Q⊗Z RQ(?) on each Mackey functor Q⊗Z Kq(R?). The change of rings map

Q⊗Z L0(Q?)
∼=
−→ Q⊗Z L0(R?)

is known to be an isomorphism (see [21, Proposition 22.19 on page 237]. There is an isomorphism of Green
functors (see Theorem 8.1 or [21, Proposition 22.33 on page 252])

Q⊗Z K0(R?)
∼=
−→ Q⊗Z L0(R?).

Thus we get a morphism of Green functors

Q⊗Z RQ(?)
∼=−→ Q⊗Z L0(Q?).

Hence we obtain a module structure over the Green functor Q ⊗Z RQ(?) on the Mackey functor Q ⊗Z

Lq(R?). Since K0(R?) = Ktop
0 (C∗

r (?, R)), we finally obtain also a module structure over the Green functor
Q ⊗Z RQ(?) on the Mackey functor Q ⊗Z Ktop

q (C∗
r (?, F )). If Q ⊂ R, then the cellular R[CGH ]-chain

complex C∗(E(G,F)H ) is a projective resolution of the trivial R[CGH ]-module R and we obtain for any
finite group H ⊂ G an identification

Hp(CGH\E(G,F)H ; R) ∼= Hp(CGH ; R). (8.2)
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Notice that now Theorem 0.4 follows from Theorem 0.3 and Example 1.5. The homomorphisms appearing
in Theorem 0.4 are compatible with the various change of rings or of K-theory maps since these maps are
compatible with the relevant module structures over the Green functor Q⊗Z RQ(?).

If the ring R is a field of characteristic zero and we are willing to extend Q to a larger field, then we
can simplify the right side of the various maps appearing in Theorem 0.4 as follows. Let F be a field of
characteristic zero. Fix an integer m ≥ 1. Let F (ζm) ⊃ F be the Galois extension given by adjoining the
primitive m-th root of unity ζm to F . Denote by G(m, F ) the Galois group of this extension of fields,
i.e. the group of automorphisms σ : F (ζm)→ F (ζm) which induce the identity on F . It can be identified

with a subgroup of Z/m∗ by sending σ to the unique element u(σ) ∈ Z/m∗ for which σ(ζm) = ζ
u(σ)
m

holds. Given a finite cyclic group C of order |C|, the Galois group G(|C|, F ) acts on C by sending c to
cu(σ), and thus on the set Gen(C) of generators of C. Let V be a F (ζ|C|)-module. Denote by resσ V
for σ ∈ G(|C|, F ) the F (ζ|C|)-module obtained from V by restriction with σ, i.e. the underlying abelian
groups of resσ V and V agree and multiplication with x ∈ F (ζm) on resσ V is given by multiplication
with σ(x) on V . Thus we obtain an action of G(|C|, F ) on Kq(F (ζ|C|)) by sending σ ∈ G(|C|, F ) to
the automorphism resσ : Kq(F (ζ|C|)) → Kq(F (ζ|C|)) coming from the functor V 7→ resσ V . This action
extends to an action of the Galois group G(|C|, F ) on F (ζ|C|)⊗Z Kq(F (ζ|C|)) by σ · (v⊗w) := v⊗ resσ(w).

Equip map
(
Gen(C), F (ζ|C|)⊗Z Kq(F (ζ|C|))

)G(|C|,F )
and F (ζ|C|)⊗ZSCKq(F [C]) with the obvious F (ζ|C|)-

module structures.

Lemma 8.3 Let C be a finite cyclic group. Then there is an isomorphism of F (ζ|C|)-modules

map
(
Gen(C), F (ζ|C|)⊗Z Kq(F (ζ|C|))

)G(|C|,F ) ∼=
−→ F (ζ|C|)⊗Q im

(
θC

C : Q⊗Z Kq(F [C])→ Q⊗Z Kq(F [C])
)

which is natural with respect to automorphisms of C.

Its proof needs some preparation. Let G be a group. Given a positive integer m and a F (ζm)[G]-module
V , we define an in V natural isomorphism of F (ζm)[G]-modules

Φ : ind
F (ζm)
F resF

F (ζm) V = F (ζm)⊗F V
∼=
−→ ⊕σ∈G(m,F ) resσ V, x⊗ v 7→ (σ(x)v)σ∈G(m,F ).

Obviously φ is natural in V and F (ζm)[G]-linear. We claim that an inverse of φ is given by

Φ−1 : ⊕σ∈G resσ V → ind
F (ζm)
F resF

F (ζm) V = F (ζm)⊗F V,

(vσ)σ∈G(m,F ) 7→ 1
m ·
∑m

i=1

∑
σ∈G(m,F ) ζ−i

m ⊗F σ(ζm)ivσ .

This follows from an easy calculation using the facts that for a m-th root of unity ζ the sum
∑m

i=1 ζi is
zero, if ζ 6= 1, and is m, if ζ = 1, and that an element x ∈ F (ζm) belongs to F if and only if σ(x) = x for
all σ ∈ G(m, F ) holds. Fix a F - basis {bσ | σ ∈ G(m, F )} for F (ζm). Given a FG-module W , we obtain
an in W natural FG-isomorphism

Ψ : ⊕G(m,F )W
∼=−→ resF

F (ζm) ind
F (ζm)
F W = F (ζ)⊗F W, (wσ)σ∈G(m,F ) 7→

∑

σ∈G(m,F )

bσ ⊗F wσ

and an in W natural F (ζm)[G]-isomorphism for σ ∈ G(m, F )

Λ : ind
F (ζm)
F W = F (ζ)⊗F W → resσ ind

F (ζm)
F W, x⊗F w 7→ σ(x) ⊗F w.

From the existence of the natural isomorphisms Φ,Ψ and Λ above we conclude for the homomorphisms

ind
F (ζm)
F : Kq(FG) → Kq(F (ζm)[G]);

resF
F (ζm) : Kq(F (ζm)[G]) → Kq(FG);

resσ : Kq(F (ζm)[G]) → Kq(F (ζm)[G]),

that resF
F (ζm) ◦ ind

F (ζm)
F = |G(m, F )| · id, ind

F (ζm)
F ◦ resF

F (ζm) =
∑

σ∈G(m,F ) resσ and resσ ◦ ind
F (ζm)
F =

ind
F (ζm)
F holds for σ ∈ G(m, F ). The various maps resσ induce a G(m, F )-action on Kq(F (ζm)[G]). We

conclude
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Lemma 8.4 Induction induces an isomorphism

Q⊗Z ind
F (ζm)
F : Q⊗Z Kq(FG)

∼=
−→ Q⊗Z Kq(F (ζ)[G])G(m,F ).

Let C be a finite cyclic group of order |C|. Then all irreducible F (ζ|C|)-representations of C are 1-
dimensional. The number of isomorphism classes of irreducible F (ζ|C|)-representations is equal to |C|.
Given a finite-dimensional F (ζ|C|)-representation V of C, we obtain a functor from the category of finitely
generated projective F (ζ|C|)-modules to the category of finitely generated projective F (ζ|C|)[C]-modules
by tensoring with V over F (ζm) and thus a map Kq(F (ζ|C|)[C]) → Kq(F (ζ|C|)[C]). This yields a homo-
morphism

α : K0(F (ζ|C|)[C]) ⊗Z Kq(F (ζ|C|))
∼=
−→ Kq(F (ζ|C|)[C]), (8.5)

which is an isomorphism by the following elementary facts. Given a F (ζ|C|)[C]-module U and an irreducible
F (ζ|C|)[C]-module V , denote by UV the V -isotypical summand. This is the F (ζ|C|)[C]-submodule of U
generated by all element u ∈ U for which there exists a F (ζ|C|)[C]-submodule U ′ ⊂ U which contains u
and is F (ζ|C|)[C]-isomorphic to V . For any homomorphism f : U → W of finitely generated projective
F (ζ|C|)[C]-modules there are natural splittings U = ⊕V UV and W = ⊕V WV , where V runs over the
irreducible representations, f maps UV to WV and autF (ζ|C|)[C](V ) = {x · idV | x ∈ F (ζ|C|)}.

An element σ ∈ G(|C|, F ) induces automorphisms resσ of Kq(F (ζ|C|)) and of Kq(F (ζ|C|)[C]) by re-
striction with σ : F (ζ|C|)→ F (ζ|C|) and σ : F (ζ|C|)[C]→ F (ζ|C|)[C],

∑
c∈C xc · c 7→

∑
c∈C σ(xc) · c. We

get for σ ∈ G(|C|, F )

resσ ◦α = α ◦ (resσ ⊗Z resσ).

Taking the character of a representation yields an isomorphism

χ : F (ζ|C|)⊗Z K0(F (ζ|C|)[C])
∼=
−→ map(C, F (ζ|C|)), x⊗ [V ] 7→ x · χV . (8.6)

The operation of G(|C|, F ) on K0(F (ζ|C|)[C]) extends to an operation on F (ζ|C|) ⊗Z K0(F (ζ|C|)[C]) by
taking the tensor product id⊗Z?. We define a G(|C|, F )-operation on map(C, F (ζ|C|) by assigning to

σ ∈ G(|C|, F ) and χ ∈ map(C, F (ζ|C|) the element σ · χ which sends c ∈ C to χ(cu(σ)). The map χ
is compatible with these G(|C|, F )-actions. It suffices to check this for 1 ⊗Z [V ] if V is an irreducible
F (ζ|C|)[C]-representation. Its character is a homomorphism χV : C → F (ζ|C|) whose values are multiples
of ζ|C| and c ∈ C acts on V by multiplication with χV (c). Hence c ∈ C acts on resσ V by multiplication

with σ(χV (c)) on V . This implies χresσ V (c) = σ(χV (c)) = χV (c)u(σ) = χV (gu(σ)). We have the obvious
isomorphism

β : map
(
C, F (ζ|C|)

)
⊗Z Kq(F (ζ|C|))

∼=
−→ map

(
C, F (ζ|C|)⊗Z Kq(F (ζ|C|))

)
. (8.7)

Now the maps α, χ and β defined in (8.5), (8.6) and (8.7) can be combined to an isomorphism

γ = (id⊗α) ◦ (χ⊗ id)−1 ◦ β−1 : map
(
C, F (ζ|C|)⊗Z Kq(F (ζ|C|)

) ∼=−→ F (ζ|C|)⊗Z Kq(F (ζ|C|)[C]). (8.8)

It is G(|C|, F )-equivariant, where we use on the source the action given by (σ · χ)(c) := (id⊗σ)(χ(cu(σ)))
and on the target by resσ ⊗ id.

Next we treat the various Q⊗Q RQ(C)-module structures. The source of α and the source of χ inherit a

module structure over Q⊗Q RQ(C) by the obvious ring homomorphism ind
F (ζ|C|)

Q : RQ(C) = K0(Q[C])→
K0(F (ζ|C|)[C]). We equip the target of α with the Q⊗Q RQ(C)-module structure for which α becomes a

Q ⊗Q RQ(C)-homomorphism. We have introduced the isomorphism of Q-algebras χH : Q ⊗Z RQ(C)
∼=
−→

classQ(C) in (7.2). The target of the isomorphism χ is a module over classQ(C) by the obvious inclusion
of rings classQ(C) → map(C, F (ζ|C|). Then χ is a Q ⊗Q RQ(C)-homomorphism. Equip the source of
the isomorphism β with the Q ⊗Z RQ(C)-module structure given by the one on the target of χ and the
trivial one on Kq(F (ζ|C|)). Equip the target of β with the Q⊗Q RQ(C)-structure for which β becomes a
Q ⊗Q RQ(C)-homomorphism. Then the isomorphism γ is a Q ⊗Q RQ(C)-homomorphism. Therefore we
obtain a commutative diagram of F (ζ|C|)-modules where all maps are G(|C|, F )-equivariant
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map
(
C, F (ζ|C|)⊗Z Kq(F (ζ|C|))

) γ
−−−−→ Kq(F (ζ|C|)[C])⊗Z F (ζ|C|)

θC
C

y
yθC

C

map
(
C, F (ζ|C|)⊗Z Kq(F (ζ|C|))

)
−−−−→

γ
Kq(F (ζ|C|)[C])⊗Z F (ζ|C|)

By taking the fixed point sets, we obtain a commutative diagram of F (ζ|C|)-modules

map
(
C, F (ζ|C|)⊗Z Kq(F (ζ|C|))

)G(|C|,F ) γ
−−−−→ Kq(F (ζ|C|)[C])G(|C|,F ) ⊗Z F (ζ|C|)

θC
C

y
yθC

C

map
(
C, F (ζ|C|)⊗Z Kq(F (ζ|C|))

)G(|C|,F )
−−−−→

γ
Kq(F (ζ|C|)[C])G(|C|,F ) ⊗Z F (ζ|C|)

Thus we obtain an isomorphism from the image of the left vertical arrow in the diagram above to the
the image of the right vertical arrow. Recall that θC

C is the character which sends a generator of C
to 1 and all other elements to 0. Hence the image of the left vertical arrow is canonically isomorphic
to map(Gen(C), F (ζ|C|) ⊗Z Kq(F (ζ|C|))

G(|C|,F ). The image of the right vertical arrow is by Lemma 8.4
canonically isomorphic to the image of θC

C : Kq(F [C]) ⊗Z F (ζ|C|) → Kq(F [C]) ⊗Z F (ζ|C|). This finishes
the proof of Lemma 8.3.

We conclude from Theorem 0.4 and Lemma 8.3

Theorem 8.9 Let F be a field of characteristic zero. Let F ⊂ F be a field extension such that for any
finite cyclic subgroup C ⊂ G the the primitive |C|-th root belongs to F . Let G be a group. Let J be the set
of conjugacy classes (C) of finite cyclic subgroups of G. Then the assembly map (1.6) in the Farrell-Jones
Conjecture with respect to F for the algebraic K-groups Kn(FG) can be identified after applying F⊗Z?
with

⊕p+q=n ⊕(C)∈J Hp(CGC; F )⊗F [WGC] map
(
Gen(C), F ⊗Z Kq(F (ζ|C|))

)G(|C|,F )

→ F ⊗Z Kn(FG).

If the Farrell-Jones Conjecture with respect to F is true, then this maps is an isomorphism.

Example 8.10 If F = C, then F (ζ|C|) = C and G(|C|, C) = 1. Let T be the set of conjugacy classes (g)
of elements g ∈ G of finite order. The action of WGC on Gen(C) is free. Then the assembly maps (1.6) in
the Farrell-Jones Conjecture with respect to F and in the Baum-Connes conjecture can be identified after
applying C⊗Z? with

⊕p+q=n ⊕(g)∈T Hp(CG〈g〉; C)⊗Z Kq(C) → C⊗Z Kn(CG);

⊕p+q=n ⊕(g)∈T Hp(CG〈g〉; C)⊗Z Lq(C) → C⊗Z Ln(CG);

⊕p+q=n ⊕(g)∈T Hp(CG〈g〉; C)⊗Z Ktop
q (C) → C⊗Z Ktop

n (C∗
r (G, C)),

where we use in the definition of Lq(C) and Ln(CG) the involutions coming from complex conjugation.
We get the first one from Theorem 8.9. The proof for the third is completely analogous to the one of the
first. The proof of the second can be reduced to the one of the third by Theorem 8.1. In particular this
proves Theorem 0.1. We mention that the restriction of the upper horizontal arrow in Theorem 0.1 to the
part for q = 0 has been shown to be split injective for all groups G using the Dennis trace map but not
the Farell-Jones Conjecture in [19].

If we use the trivial involution on C in the definition of Ln(CG), then the Farrell-Jones Conjecture
with respect to F implies Ln(CG)[1/2] = 0 since Ln(CH)[1/2]) = 0 is known for all finite groups H with
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respect to the trivial involution on C [21, Proposition 22.21 on page 239]. Notice that the Farrell-Jones
Conjecture with respect to F and the Baum Connes Conjecture together with Theorem 8.1 imply that the
change of ring maps Ln(CG)→ Ln(C∗

r (G, C)) becomes a bijection after inverting 2.

Example 8.11 Next we consider the case F = R. Put F = C. We call g1 and g2 in G R-conjugated if
(g1) = (g2) or (g1) = (g−1

2 ). Denote by (g)R the R-conjugacy class of g ∈ G. Denote by TR the set of
R-conjugacy classes of elements of finite order in G. This splits as the disjoint union T ′

R

∐
T ′′

R , where T ′
R

resp. T ′′
R consists of classes (g)R with (g) 6= (g−1) resp. (g) = (g−1). For a class (g)R ∈ T ′′

R we can find an
element g′ ∈ G such that the homomorphism c(g′) : G → G given by conjugation with g′ maps g to g−1.
Then c(g′) induces also an automorphism CG〈g〉 → CG〈g〉. The induced automorphism of Hp(CG〈g〉; C)
does not depend on the choice of g′ and is of order two. Thus we obtain a Z/2-action on Hp(CG〈g〉; C).
The Galois group of the field extension R ⊂ C is Z/2 with complex conjugation as generator. Complex
conjugation induces a Z[Z/2]-structure on Kq(C) and Ktop

q (C). We obtain analogously to Example 8.10
an identification of the assembly maps (1.6) in the Farrell-Jones Conjecture with respect to F and in the
Baum-Connes conjecture after applying C⊗Z? with

⊕p+q=n

(
⊕(g)R∈T ′

R
Hp(CG〈g〉; C)⊗Z Kq(C)⊕⊕(g)R∈T ′′

R
Hp(CG〈g〉; C)⊗Z[Z/2] Kq(C)

)

→ C⊗Z Kn(RG),

⊕p+q=n

(
⊕(g)R∈T ′

R
Hp(CG〈g〉; C)⊗Z Lq(C)⊕⊕(g)R∈T ′′

R
Hp(CG〈g〉; C)⊗Z[Z/2] Lq(C)

)

→ C⊗Z Ln(RG),

⊕p+q=n

(
⊕(g)R∈T ′

R
Hp(CG〈g〉; C)⊗Z Ktop

q (C)⊕⊕(g)R∈T ′′
R
Hp(CG〈g〉; C)⊗Z[Z/2] K

top
q (C)

)

→ C⊗Z Ktop
n (C∗

r (G, R)),

where we use in the definition of Lq(C) the involution coming from complex conjugation. Notice that the
Farrell-Jones Conjecture with respect to F and the Baum Connes Conjecture together with Theorem 8.1
imply that the change of ring maps Ln(QG) → Ln(RG) and Ln(RG) → Ln(C∗

r (G, R)) become bijections
after inverting 2 since Ln(QH) → Ln(RH) is known to be bijective after inverting 2 for finite groups H
[21, Proposition 22.33 on page 252].

Example 8.12 If F = Q, then G(|C|, Q) = Z/|C|∗ = aut(C). Since G(|C|, Q) acts freely and transitively
on Gen(C), we obtain after the choice of a generator c ∈ C an isomorphism

map
(
Gen(C), Q(ζ|C|)⊗Z Kq(Q(ζ|C|))

)G(|C|,Q) ∼= Q(ζ|C|)⊗Z Kq(Q(ζ|C|)).

It is natural with respect to automorphisms of C, if f ∈ aut(C) acts on Q(ζ|C|)⊗Z Kq(Q(ζ|C|)) by id⊗ resσ

for the element σ in the Galois group G(|C|, Q) for which σ(ζ) = ζu and f(c) = cu holds. Let J be the set
of conjugacy classes (C) of finite cyclic subgroups of G. We conclude from Theorem 8.9 that the assembly
map (1.6) in the Farrell-Jones Conjecture with respect to F can be identified with

⊕p+q=n ⊕(C)∈J Hp(CGC; Q)⊗Q[WGC] Q⊗Z Kq(Q(ζ|C|)) → Q⊗Z Kn(QG).

Example 8.13 Let F be a field of characteristic zero and let G be a group. Let g1 and g2 be two elements
of G of finite order. We call them F -conjugated if for some (and hence all) positive integers m with

gm
1 = gm

2 = 1 there exists an element σ in the Galois group G(m, F ) with the property (g
u(σ)
1 ) = (g2).

Denote by conF (G) the set of F -conjugacy classes (g)F of elements g ∈ G of finite order. Let classF (G)
be the F -vector space with the set conF (G) as basis, or, equivalently, the F -vector space of functions
conF (G)→ F with finite support. Recall that for a finite group H taking characters yields an isomorphism
[23, Corollary 1 on page 96]

χ : F ⊗Z RF (H) = F ⊗Z K0(FH)
∼=
−→ classF (H). (8.14)
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By Theorem 0.4 and (8.14) the assembly map (1.6) of the Farrell-Jones Conjecture with respect to F for
K0(FG) can be identified with a map

classF (G)→ F ⊗Z K0(FG).

If the Farrell-Jones Conjecture with respect to F for K0(FG) is true, this map is an isomorphism. This
generalizes (8.14) for finite groups to infinite groups. This example is related to the Hattori-Stalling rank
and the Bass Conjecture [1].
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