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CHERN CLASSES FOR SINGULAR HYPERSURFACES

PAOLO ALUFFI

Abstract. We prove a formula expressing the Chern-Schwartz-MacPherson
class of a hypersurface in a nonsingular variety as a variation on another def-
inition of the homology Chern class of singular varieties, introduced by W.
Fulton; and we discuss the relation between these classes and others, such as
Mather’s Chern class and the µ-class we introduced in previous work.

0. Introduction

There are several candidates for a notion of homology ‘Chern class’ of a (possibly
singular) algebraic variety X , agreeing with the class obtained as dual of the total
Chern class of the tangent bundle of X if X is nonsingular. One such notion was
introduced by R. MacPherson [MacPherson], agreeing (as it was later understood)
with a class introduced earlier by M.–H. Schwartz, and enjoying good functorial
properties. A different class was defined by W. Fulton ([Fulton], 4.2.6), in a different
and somewhat more general setting. The main purpose of this paper is to prove
a precise relation between the Schwartz-MacPherson and the Fulton class of a
hypersurface X of a nonsingular variety. We denote these two classes by cSM(X),
cF (X) respectively.

A summary of the context and essential definitions is given in §1, where we
present several different statements of the result. The version which expresses most
directly the link between the two classes mentioned above goes as follows. Fulton’s
class for a subscheme X of a nonsingular variety M is defined by

cF (X) := c(TM |X) ∩ s(X,M),

that is, by capping the total Chern class of the ambient space against the Segre class
of the subscheme (it is proved in [Fulton], 4.2.6 that this definition does not depend
on the choice of the ambient variety M). For a hypersurface X of a nonsingular
variety M , let Y be the ‘singular subscheme’ of X (locally defined by the partial
derivatives of an equation of X). For an integer k ≥ 0 we can consider the k-th
thickening X(k) of X along Y , and then consider its Fulton class cF (X(k)). It is
easily seen that cF (X(k)) is a polynomial in k (with coefficients in the Chow group
A∗(X)), so it can be formally evaluated at negative k’s. We can then define a class

c∗(X) := cF (X(−1)).(*)

The main result of this paper is

Theorem. c∗(X) is equal to the Chern-Schwartz-MacPherson class of X.
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This result is quite distant in spirit from both Schwartz’s original definition
of cSM(X), which depends on a suitable stratification of X , and MacPherson’s
definition, which involves adding Chern-Mather classes of subvarieties ofX weighted
according to their own singularity, as measured by ‘local Euler obstructions’. The
formula seems at first equally distant from the good functoriality properties which
make cSM effectively computable: as pointed out in [Fulton], p. 377, functoriality
properties of cF are somewhat elusive. However, our proof will precisely consist of
showing that the ‘twisted’ cF does enjoy enough of these functoriality properties to
force it to equal cSM.

We do not know whether our result is an essential feature of hypersurfaces, or
whether a formula similar to (*) may compute the Schwartz-MacPherson class of
arbitrary varieties. While this is a natural question, the approach of this paper
does not seem well suited to address it. One reason for presenting several differ-
ent formulations of the result is indeed that we do not see at the moment which
formulation is more suited to be generalized to arbitrary varieties.

These statements are given in §1, Theorem I.1–5, where we offer several alterna-
tive formulations for the class c∗(X). More specifically:
• An explicit form in terms of Segre classes is given in §1.1.
• In §1.2 we give the form presented above. This was conjectured in [Aluffi2],

where we put restrictions on the line bundle L = O(X) ofX and we could only prove
the conjectured equality ‘numerically’, that is, after taking degrees with respect to
L. The result proved in this note holds in the Chow group of X , and without
hypotheses on O(X).
• In §1.3 we discuss a form which attempts to put under the same umbrella the

Schwartz-MacPherson class together with the Fulton and Chern-Mather classes, by
expressing all in terms of natural classes on the blow-up of the ambient variety
along the singular subscheme of X .
• In §1.4 we introduce notations which we use elsewhere and in the proof of the

main theorem, and give a formulation of the statement in term of these notations;
• Finally, in §1.5 we express c∗(X) as an explicit formula in terms of µ-class we

introduced in [Aluffi1]. In this form, and using the notations introduced in §1.4,
the result is

cSM(X) = cF (X) + c(L)dimX ∩ (µL(Y )∨ ⊗M L),

and therefore it interprets the µ-class essentially as the difference between cF (X)
and cSM(X). In fact this is the form in which we first produced the result; the key
technical step in proving the main result of this paper can be written as a formula
describing the behavior of the µ-class under blow-ups (see §4.2).

The equivalence of the different formulations is straightforward and is proved
along the way in §1. The proof of the main result is in §§2 and 3. We show
that a class satisfying the functorial properties prescribed by Grothendieck and
Deligne (which motivated MacPherson’s work) must necessarily agree with c∗(X);
the Schwartz-MacPherson class cSM(X) is such a class. Our proof uses resolution
of singularities, reducing the statement to a computation for a divisor with nor-
mal crossing (§2), and to studying the behavior of the class under blow-ups along
nonsingular centers (§3). This ultimately involves a rather detailed analysis of an
adaptation of MacPherson’s graph construction applied to our situation: the re-
quired equality is expressed in terms of the vanishing of the contribution of a ‘cycle
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at infinity’ obtained in the construction, and this contribution can be evaluated
explicitly.

While this proof is elementary, and tailored for our set-up (Chow groups of
algebraic varieties over a field of characteristic 0), it is admittedly rather long
and involved for what it aims to show. We sketch a much shorter argument in
§1.6, which hinges on the index formula of [BDK]. This reduces the proof to the
computation of a characteristic cycle (see the Fact in §1.6), which we leave to the
expert reader. This alternative argument relies on a more powerful framework than
the longer proof given in §§2 and 3, and in a sense clarifies ‘why’ the main theorem
is true. We suspect that a suitable generalization of the result to arbitrary singular
varieties will necessarily have to employ this more powerful technology.

I am very grateful to the referee of a previous version of this work for detailed
suggestions leading to the present §1.6.
§4 collects a few consequences of the main theorem. For example, in its raw

form (presented in §1.1), the result writes cSM(X) as a certain combination of
Segre classes of the singular subscheme of X in the ambient variety M . The good
functoriality properties of cSM(X) then translate into properties of these Segre
classes, which often we are not able to prove more directly. We give one (rather
technical) example of these phenomena in §4.3.

Properties of Segre classes frequently have concrete geometric applications. Here
is a simple example of such an application, which can be proved easily as a conse-
quence of the main theorem (see §4.4 for details):

Proposition. Let M1, M2 be two hypersurfaces in PN , and assume the contact
scheme of M1 and M2 is nonsingular (as a scheme) and positive-dimensional. Then
degM1 = degM2.

Here the ‘contact scheme’ is the singularity subscheme of M1∩M2 (in the above
sense), a scheme supported on the locus where M1 and M2 are tangent. This corol-
lary thus states that if two hypersurfaces of projective space are tangent—in the
strong ‘schemey’ sense specified above—along a nonsingular positive-dimensional
locus, then their degree must be equal: to our knowledge, this observation is new
(although not difficult to prove otherwise: Robert Varley kindly showed us an al-
ternative argument).

The paper is organized so that a hasty reader who is willing to trust us on the
main technical step of the elementary proof can skip §3 at first: the notations
introduced in §3 are not used elsewhere. In fact, an even more trusting reader
could skip all but the beginning of §2. The experts will probably be content with
the sketch of the alternative proof given in §1.6, and will want to stop there.

Notations are gravely abused in this paper (pull-backs are usually omitted, etc.).
The worst abuse occurs when we ask the reader to interpret a class defined a priori
on an ambient variety M , but supported on a subvariety X , as a class defined on
X : this will mean that there is only one reasonable way to interpret the class as a
push-forward of a class from A∗X , and that the given formula is a short-hand for
the latter class. This saves us a great amount of notational grief, especially in §3;
the reader who feels uncomfortable about this choice will only believe our result
after push-forward to the ambient variety M .

I thank Barbara Fantechi, William Fulton, Roberto Silvotti, and Tatsuo Suwa
for useful comments.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3992 PAOLO ALUFFI

1. Statements of the result

1.1. Chern-Schwartz-MacPherson class and Segre classes. A constructible
function on an algebraic varietyX is an integral linear combination of characteristic
functions of closed subvarieties. Over the complex numbers one can define a functor
assigning to X the group of constructible functions on X ; for any proper morphism
f : X → Y , the push-forward f∗ is defined by setting

f∗(1V )(p) = χ(f−1(p) ∩ V )

for V a subvariety of X and p ∈ Y , and extending by linearity; here χ denotes topo-
logical Euler characteristic. Grothendieck and Deligne conjectured, and MacPher-
son proved ([MacPherson]), that there exists a natural transformation from this
functor to homology, which, for X nonsingular, sends the constant 1X to the total
homology Chern class of X

c(TX) ∩ [X ].

It is then natural to consider the image of 1X for arbitrary X ; we call this class
the (Chern-)Schwartz-MacPherson class of X , denoted cSM(X), as the class was
later shown to agree with a class previously defined by M.–H. Schwartz ([Schwartz,
B-S]). After work of C. Sabbah and G. Kennedy ([Kennedy]), this definition can
be extended to varieties over arbitrary fields of characteristic 0; and cSM(X) lives
in the Chow group A∗X of cycles modulo rational equivalence. Also, for possibly
nonreduced X , we define cSM(X) = cSM(Xred).

The main theorem in this paper will give explicit formulas for cSM(X), in the
case where X is a hypersurface of an n-dimensional nonsingular variety M , that is,
the zero-scheme of a nonzero section F of a line bundle L on M . We give the result
in its raw form in terms of Segre classes here in §1.1; however, the result is more
significant if the formula is rewritten to emphasize its relation with other definitions
of characteristic classes for singular hypersurfaces. This is done in the rest of §1.
In §1.4 we will also introduce a notation which makes some of the formulas easier
to handle. A quick sketch of an argument proving the main theorem is presented
in §1.6; a complete and elementary (but longer) proof is given in §§2 and 3.

Assume cSM satisfies the above functoriality condition, and assume resolution of
singularities à la Hironaka holds (for example, cSM can be the Schwartz-MacPherson
class, in characteristic zero). By the singularity (sub)scheme of a hypersurface
X ⊂ M as above we mean the subscheme of M defined locally by F and its first
partial derivatives—that is, by the jacobian ideal of X . (Note: the definition of
singularity scheme of X given in [Aluffi1], §1.1, fails to include F among the local
generators of its ideal. The definition given here is the ‘correct’ one; all the results
in [Aluffi1] hold for this notion.) The singular scheme of X depends on X only, and
not on a specific realization of X as a hypersurface of a nonsingular variety.

For Y ⊂ X , we define a class s(X \ Y,M) ∈ A∗X by setting its dimension-m
component to be

s(X \ Y,M)m = s(X,M)m + (−1)n−m
n−m∑
j=0

(
n−m

j

)
Xj · s(Y,M)m+j

(here and in the following, s(Y,M) denotes the Segre class of Y in M in the sense
of [Fulton], Chapter 4).
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Theorem I.1. Let X be a hypersurface in a nonsingular variety M , and let Y be
its singular scheme. Then cSM(X) = c∗(X), where

c∗(X) = c(TM) ∩ s(X \ Y,M).

The reader will notice a similarity among the class s(X \ Y,M) defined above
and formulas for residual intersections (cf. [Fulton], §9.2). Of course this is not
accidental. The connection will be clarified in the next subsection.

1.2. Chern-Schwartz-MacPherson class and Fulton’s Chern class. Let X
be a scheme embeddable in a nonsingular variety M . Fulton shows ([Fulton], 4.2.6)
that the class

c(TM) ∩ s(X,M)

only depends on X (and not on the choice of the ambient variety M). We will call
this class Fulton’s Chern class of X , denoted cF (X).

Now let X again denote a divisor in a nonsingular variety M of dimension n, L
its line bundle, and Y its singular subscheme. Fix an integer k ≥ 0 and consider
the scheme X(k) obtained by ‘thickening X k times along Y ’: more precisely, if IY
denotes the ideal of Y and J is the locally principal ideal of X , then X(k) is the
subscheme of M defined by the ideal J · IkY . We may then consider the class

cF (X(k))

in A∗X . We observed in [Aluffi2] that this class is a polynomial in k with coefficients
in A∗X , so it can be formally evaluated for arbitrary k. It is also clear from the
definition that

cF (X) = cF (X(0)).

The main theorem of this note can then be stated as:

Theorem I.2. Let X be a hypersurface in a nonsingular variety M , and let
cF (X(k)) be defined as above. Then cSM(X) = c∗(X), where

c∗(X) = cF (X(−1)).

To see that this statement is equivalent to the one given in §1.1 amounts to ap-
plying standard residual intersection formulas to compute s(X(k),M): by Proposi-
tion 9.2 in [Fulton], the m-dimensional component of this class is

s(X(k),M)m = s(X,M)m +
n−m∑
j=0

(
n−m

j

)
(−X)j · kn−m−js(Y,M)m+j .

That is, s(X(−1),M) is the class s(X \ Y,M) introduced above, and it follows that
the two expressions for c∗(X) in the two statements of the theorem agree.

1.3. Chern-Schwartz-MacPherson class and Mather’s Chern class. An-
other notion of Chern classes for possibly singular varieties can be defined as fol-
lows. For a reduced pure-dimensional X embedded in a nonsingular M , let X◦

denote the nonsingular part of X . The Nash blow-up NB of X is the closure in
GrassdimX(TM |X) of the image of the map associating with every p ∈ X◦ the
tangent space to X◦ at p; it comes equipped with a natural map π to X . The
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universal subbundle T of GrassdimX(TM |X) restricts to TX◦ over X◦ ⊂ NB(X),
so it is rather natural to consider the class

π∗(c(T ) ∩ [X ]).

Again, one proves this is independent of the choice ofM ; this class is called Mather’s
Chern class of X , and we will denote it cM (X). MacPherson computes cSM(X) as
a suitable combination of Mather’s Chern classes of subvarieties of X .

The definition of cM (X) can be rewritten in a slightly different way. If X is a
reduced hypersurface in M , x1, . . . , xn are local parameters for M , and F = 0 is a
local equation for X , then GrassdimX(TM) = PT ∗M , the projectivized cotangent
bundle to M , and the map from X◦ is written in natural coordinates

p 7→
(
p;
∂F

∂x1
|p : · · · : ∂F

∂xn
|p
)
.

It follows that locally NB can be recovered as the blow-up of X along the ideal
of partials of the section of L = O(X) defining X in M (cf. also [Nobile], where
a corresponding observation is worked out for more general X). We need a global
version of this observation.

Lemma I.1. Let X be a reduced hypersurface of a nonsingular variety M , and let
Y be the singular subscheme of X. Then NB is the proper transform of X in the
blow-up B`YM

π−→M of M along Y . Further, there is a bundle T on B`YM such
that

cM (X) = π∗(c(T ) ∩ [NB]).

Proof. Let P1
ML denote the bundle of principal parts of L over M , where L = O(X)

as above, and consider the sectionM → P1
ML determined by F ∈ H0(M,L); locally

we can write this as

p 7→
(
p;F (p) :

∂F

∂x1
|p : · · · : ∂F

∂xn
|p
)

(recall that P1
ML fits into an exact sequence

0 → T ∗M ⊗ L → P1
ML → L → 0).

It follows that the closure of the image of the corresponding rational map

M 99K PP1
ML

is the blow-up B`YM
π−→M along the singular scheme Y of X defined in §1.1. Over

X this reproduces (up to tensoring by L) the map to PT ∗M considered above, and
the first part of the statement follows.

For the second part, let Q be the universal quotient bundle of PP1
ML, and

consider T = Q∨ ⊗ L. Observe that the universal subbundle O(−1) of PP1
ML is

⊂ T ∗M ⊗ L over NB (since this dominates X , and F ≡ 0 over X), so there is a
sequence

0 → Q′|NB → Q|NB → L→ 0,

where Q′ is the universal quotient bundle of P(T ∗M ⊗ L|X). Chasing the identifi-
cation

Grassn−1(TM |X) ∼= P(T ∗M |X) ∼= P(T ∗M ⊗ L|X)
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shows that Q′∨⊗L is the bundle used above in the definition of cM , and T = Q∨⊗L
differs from this by a trivial factor.

The next lemma gives the Mather class in an alternative form, which highlights a
remarkable analogy with the Schwartz-MacPherson class. Still assumingX reduced,
in B`YM we have the proper transform NB of X ; X itself pulls back to a Cartier
divisor of B`YM , which we still denote X ; also, we have the exceptional divisor Y,
and we note that O(Y) is the restriction of O(−1) from PP1

ML.

Lemma I.2. With notations as above,

cM (X) = c(TM) ∩ π∗
(

[NB]
1 +X − Y

)
.

Proof. From the proof of Lemma I.1, we know that

cM (X) = π∗

(
c

((
P1
ML

O(−1)

)∨
⊗ L

)
∩ [NB]

)
.

Because c(L) = 1+X , c(O(1)) = 1−Y, and c(P1
ML) = c(T ∗M ⊗L)c(L), this gives

cM (X) = π∗

(
c((P1

ML)∨ ⊗ L)
1 +X − Y ∩ [NB]

)
= π∗

(
c(TM ⊗ L∨ ⊗ L) c(L∨ ⊗ L) ∩ [NB]

1 +X − Y

)
= c(TM) ∩ π∗

(
[NB]

1 +X − Y

)
.

With this understood, the third form of the result of this paper should appear
more significant: it says that the Schwartz-MacPherson class can be obtained sim-
ilarly to the Mather class, by replacing the class [NB] of the proper transform of
X with the residual to the exceptional divisor in the whole inverse image of X . In
other words, under the same hypotheses of the first and second statement of the
main theorem:

Theorem I.3. Let X be a hypersurface in a nonsingular variety M , and let π, Y
be as defined above. Then cSM(X) = c∗(X), where

c∗(X) = c(TM) ∩ π∗
(

[X ]− [Y]
1 +X − Y

)
.

Note: X may be nonreduced here.
To see that Theorem I.3 is equivalent to the other statements, we have to show

that

π∗

(
[X ]− [Y]
1 +X − Y

)
= s(X \ Y,M).(*)

One way to see this is to consider for all k the class

π∗

(
[X ] + k [Y]
1 +X + k Y

)
:
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for k ≥ 0, [X ]+k [Y] is the cycle of the inverse image of the scheme X(k) considered
in §1.2; hence, by the birational invariance of Segre classes,

π∗

(
[X ] + k [Y]
1 +X + k Y

)
= s(X(k),M)

for k ≥ 0. Both sides are polynomials in k, so they must agree for k = −1, and this
is what (*) claims.

1.4. Notational device. The following notations will be helpful in writing the
arguments needed in our proof of the theorem stated above. In fact they simplify
considerably the first formulation we gave, by giving a summation-free alternative
definition for the class s(X \ Y,M).

Definition. If A =
⊕

i a
i is a rational equivalence class on a scheme, indexed by

codimension, we let

A∨ =
∑
i≥0

(−1)iai,

the dual of A; also, for a line bundle L we let

A⊗ L =
∑
i≥0

ai

c(L)i
,

the tensor of A by L. We put a subscript to ⊗ to denote the ambient in which the
codimension is computed (which may be larger than the scheme on which the class
lives), if this doesn’t seem otherwise clear from the context.

These notations were introduced in [Aluffi2], where we also proved simple com-
patibilities with standard vector bundle operations (Prop. 1 and 2 in [Aluffi2], §2).
We will freely use those properties in this note (especially in §2).

Lemma I.3. With notations as above,

s(X \ Y,M) = s(X,M) + c(L)−1 ∩ (s(Y,M)∨ ⊗M L).

Proof. This is detailed in [Aluffi2] (section 2), so we will not reproduce it here. It
is a good exercise for the reader interested in acquiring some familiarity with the
notations introduced above: if X ⊂ W ⊂ M , with X , M as above, and R is the
residual scheme to X in W , show that

s(W,M) = s(X,M) + c(L)−1 ∩ (s(R,M)⊗M L).

Applying to X(k) (as in §1.2 above) and setting k = −1 gives the statement. Details
may be found in [Aluffi2].

By Lemma I.3, the main theorem can be formulated:

Theorem I.4. Let X be a hypersurface in a nonsingular variety M , and let Y be
its singular scheme. Then cSM(X) = c∗(X), where

c∗(X) = c(TM) ∩
(
s(X,M) + c(L)−1 ∩ (s(Y,M)∨ ⊗M L)

)
.
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1.5. Chern-Schwartz-MacPherson class and µ-classes. Another formulation
of the main result of this paper can be given in terms of the µ-class introduced in
[Aluffi1].

If Y is a singular subscheme of a hypersurface X in a nonsingular variety M ,
with L = O(X), the µ-class of Y with respect to L is defined by

µL(Y ) = c(T ∗M ⊗ L) ∩ s(Y,M).

This class does not depend on the specific realization of Y as a singular scheme of
a hypersurface (Corollary 1.7 in [Aluffi1]). Note that if Y ⊂M is nonsingular, and
with the notations introduced in §1.4,

c(L)dimM ∩ (µL(Y )∨ ⊗M L) = (−1)codimMY c(TY ) ∩ [Y ].

(This isn’t entirely obvious from the definition; it follows from Corollary 1.8 in
[Aluffi1]. Of course this formula fails spectacularly unless one assumes Y is realized
as the singular scheme of a hypersurface in M .) That is, the µ-class can be used to
define yet another class extending the notion of Chern class to (certain) possibly
singular varieties. It turns out that this class gives a precise ‘correction term’ for the
class of the hypersurface of which Y is the singular scheme. The precise statement
is

Theorem I.5. Let X be a hypersurface in a nonsingular variety M , let Y be its
singular scheme, and let L = O(X). Then cSM(X) = c∗(X), where

c∗(X) = c(TM) ∩ s(X,M) + c(L)dimX ∩ (µL(Y )∨ ⊗M L).

This statement is equivalent to Theorem I.1–4; showing this amounts to showing
that

c(L)dimX ∩ (µL(Y )⊗M L) = c(TM) ∩ s(X \ Y,M).

This is a good exercise in the notations of §1.4, and we leave it to the reader.
The full proof of Theorem I.1–5 occupies §§2 and 3: §2 reduces it to showing that

the class c∗ introduced in this section satisfies a simple blow-up formula ((3) in §2),
and §3 proves this formula. In the next subsection we summarize an alternative
(and shorter) approach to a proof of the main theorem.

1.6. Proof by library search. In principle, the main theorem should follow
directly from the extensive current literature on singularities. We include here a
sketch of an argument along these lines, pointing to a proof of the theorem as
stated in §1.3. While we are not attempting here to fill in the details involved in
proving the key step (the Fact below), the expert will probably find this sketch
more insightful than the rather long-winded argument of §§2 and 3. On the other
hand, the longer argument gives full details, works over any algebraically closed
field of characteristic 0, and puts fewer demands on the background of the reader.

Working in the analytic category over C, let S = {Sα} be a Whitney stratification
of the hypersurfaceX inM , and denote by dα the codimension of Sα inX . Bounded
complexes of sheaves F• onX , constructible with respect to S, have a characteristic
cycle in T ∗M ,

Ch (F•) =
∑
α

mαN∗
Sα
M,
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a combination of the cycles of the closures of the conormal bundles to Sα in M (see
for example [Massey], p. 356). We view the projectivization PCh (F•) as a cycle in
P(P1

ML), via

P(T ∗M) ∼= P(T ∗M ⊗ L) ⊂ P(P1
ML).

Assume now that the Euler characteristic χ(F•p ) of the stalks of F• is the charac-
teristic function 1X of X. Then a particular case of Theorem 2 in [BDK] yields

1X =
∑
α

(−1)dαmαEuSα
,

where EuSα
denotes the local Euler obstruction of Sα. Applying MacPherson’s

natural transformation gives

cSM(X) =
∑
α

(−1)dαmαcM (Sα);

arguing as in Lemma I.2, we can write

cM (Sα) = (−1)dαc(TM) ∩ π∗

(
[PN∗

Sα
M ]

1 +X − Y

)
(where, as in §1.3, π is the projection from P1

ML, and Y denotes the exceptional
divisor of the blow-up of M along the singular subscheme of X) and therefore

cSM(X) = c(TM) ∩ π∗
∑

αmα[PN∗
Sα
M ]

1 +X − Y

= c(TM) ∩ π∗
(

PCh (F•)
1 +X − Y

)
.

Comparing with the statement of Theorem I.3, we see that in order to prove the
main theorem, it would suffice to show

Fact. For any complex F• as above,

PCh (F•) = [X ]− [Y].

This is where we leave the expert. This statement looks reasonable set-theo-
retically, for example by Theorem 3.3 in [Lê-Mebkhout]. It has been suggested to
us that the necessary multiplicity computation can be extracted from results in
[Parusiński2], but this does not seem immediate.1

In a more general set-up, formulas for characteristic cycles can be found in
[BMM]. Excellent accounts on the beautiful circle of ideas surrounding character-
istic cycles and index formulas are [Sabbah], [Ginsburg], and [Massey].

2. The proof: preliminaries

In this section we set up our strategy for a more elementary proof of the main
theorem, by reducing it to the proof of one property (property (3) below) describing
the behavior of c∗ under blow-ups along nonsingular subvarieties. Section 3 is
devoted to the proof of (3).

We will need here neither the full functorial picture summarized in the beginning
of §1 nor the details of MacPherson’s construction. We will only consider the
following three properties of a class c∗:

1Added in proof : This computation is in fact carried out in a recent preprint by A. Parusiński
and P. Pragacz.
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1. If X is a hypersurface, and the support Xred of X is nonsingular, then

c∗(X) = c(TXred) ∩ [Xred].

2. Normal crossings: If X = X1 ∪ X2, where X,X2 are divisors with normal
crossings in a nonsingular ambient variety M , and X1 is a nonsingular hyper-
surface of M , then

c∗(X) = c∗(X1) + c∗(X2)− c∗(X1 ∩X2)

(note: we say that a divisor has normal crossings if its support does).
3. Blow-up: If X is a hypersurface of a nonsingular variety M , Z ⊂ X ⊂ M is

a nonsingular subvariety of codimension d in M , π : M̃ → M is the blow-up
of M along Z, and X ′ denotes the (scheme-theoretic) inverse image of X in
M̃ , then

(π|X′)∗(c∗(X ′)) = c∗(X) + (d− 1) c∗(Z).

(We often abuse notations and omit obvious push-forwards and pull-backs, as
above.) It is easy to see that the Schwartz-MacPherson class satisfies these prop-
erties: (2) follows from the analogous relation between characteristic functions (in
fact, with no restrictions on what X1, X2 may be); for (3), consider the map

f : X ′ q Z → X

restricting to π|X′ on X ′ and to the inclusion i into X on Z, and define the con-
structible function ℵ = 1X′ − (d− 1) 1Z on X ′ q Z. Then for p ∈ X

f∗(ℵ)(p) = (π|X′)∗(1X′)(p)− (d− 1) i∗(1Z)(p) =

{
1− 0 = 1 for p /∈ Z,
d− (d− 1) = 1 for p ∈ Z,

since for p ∈ Z, π−1(p) ∼= Pd−1 has Euler characteristic d. This shows that f∗(ℵ) =
1X , and (3) follows for cSM.

It is also clear from embedded resolution of singularities that the class is uniquely
determined by (1), (2), (3) for hypersurfacesX of nonsingular varieties M . For this,
let Ms →Ms−1 → · · · →M1 →M0 = M be a sequence of blow-ups at nonsingular
centers such that the inverse image Xs of X0 = X is a divisor with nonsingular
components and normal crossings. Then (1) and (2) determine the class for Xs;
and, for i = s, . . . , 1, Xi → Xi−1 is a map as in (3), so the value of the class at
Xi−1 is determined by its value at Xi.

Summarizing: in order to prove the main theorem, it suffices to show that the
class c∗(X) introduced in the statements of Theorem I in §1 satisfies properties (1),
(2), (3) above.

The rest of this section is devoted to the proof of (1) and (2) for this class.
Property (3) is technically more demanding, and we will devote the entire §3 to its
proof.

2.1. c∗(X) = c∗(Xred). Here we prove that under good hypotheses the hypersur-
face may be assumed to be reduced. Note: it will be a consequence of the main
theorem that in fact this holds for all hypersurfaces, but we do not know how
to prove this directly in general. The following lemma establishes (1) above, and
simplifies the work required to prove (2).
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The context of the lemma is as follows: we want to show that if the compo-
nents of a hypersurface are sufficiently transversal, then the class of their union is
independent of the multiplicity with which the components appear.

Lemma II.1. Let X1, X2 be two hypersurfaces in a nonsingular variety M , and
assume that at every point of M there are local parameters x1, . . . , xn such that X1

has equation x1 = 0, and X2 has equation f(x2, . . . , xn) = 0. Also denote by X(m)

the hypersurface locally defined by the ideal (xm1 f). Then

c∗(X(m)) = c∗(X(1)) for all m ≥ 1.

Proof. The jacobian ideal of X(m) is given locally by

xm−1
1

(
f, x1

∂F

∂xi

)
i≥2

;

that is, it consists of the (m − 1)-multiple of X1 and of a residual R independent
of m. But then

B`Y(m)M
∼= B`RM

π−→M

is independent of m, while the exceptional divisor in B`Y(m) is

Y(m) = (m− 1)X1 + Y,
where Y denotes the exceptional divisor in B`RM . Using the expression for c∗ in
Theorem I.3, we find that

c∗(X(m)) = c(TM) ∩ π∗
[X(m)]− [Y(m)]
1 +X(m) − Y(m)

= c(TM) ∩ π∗
(m[X1] + [X2])− ((m− 1)[X1] + [Y])
1 + (mX1 +X2)− ((m− 1)X1 + Y)

= c(TM) ∩ π∗
[X1] + [X2]− [Y]
1 +X1 +X2 − Y

is also independent of m ≥ 1, as needed.

Lemma II.1 implies (1):

Corollary II.1. If the support Xred of X is nonsingular, then

c∗(X) = c(TXred) ∩ [Xred].

Proof. Taking X2 = ∅ in Lemma II.1 yields c∗(X) = c∗(Xred), so we may assume
X is reduced and nonsingular. Then its singular scheme is Y = ∅, so s(X \Y,M) =
s(X,M). Finally, s(X,M) = c(NXM)−1 ∩ [X ] (the inverse Chern class of the
normal bundle of X), so

c∗(X) = c(TM)c(NXM)−1 ∩ [X ] = c(TX) ∩ [X ].

By a divisor with normal crossings we mean a union of smooth distinct hyper-
surfaces X1 ∪ · · · ∪ Xr such that at each point of intersection of some of the Xi,
say of X1, . . . , Xk, there are local coordinates (x1, . . . , xn) for the ambient variety
so that x1 = 0, . . . , xk = 0 are equations for X1, . . . , Xk respectively. In fact we
must allow the Xi’s to come with multiplicity: the plan is to apply resolution of
singularities to an arbitrary hypersurface X ⊂ M , and this will produce a non-
singular variety mapping to M , in which the (scheme-theoretic) inverse image of
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X is a divisor with normal crossings, whose components will appear with multi-
plicity. Lemma II.1 implies that at this stage we will be able to discard the extra
multiplicity information:

Corollary II.2. If X is a (possibly nonreduced) divisor with normal crossing, then

c∗(X) = c∗(Xred).

Proof. This follows by repeatedly applying Lemma II.1, taking for X1 each com-
ponent of the divisor in turn.

It will follow from the main theorem that in fact Corollary II.2 holds for arbitrary
hypersurfaces. Again, we do not know how to prove this more general statement
directly.

2.2. Divisors with normal crossings. Here we prove that c∗ satisfies property
(2) above. We first translate (2) into the exact form proved below.

Let X = X1 ∪ · · · ∪ Xr be a divisor with normal crossings. By Corollary II.2,
above, in computing c∗(X) we may assume X is reduced. As usual, Y denotes the
singular scheme of X and L = O(X). Also, we write Li for O(Xi).

Lemma II.2. In order to prove (2), it suffices to show that

s(Y,M) =
((

1− c(L∨)
c(L∨1 ) · · · c(L∨r )

)
∩ [M ]

)
⊗M L.

Here the reader must interpret the right-hand-side as a class supported in Y ;
that is, obvious cancellations must be performed on the right-hand side. This will
be assumed implicitly in the following.

Proof. Assuming s(Y,M) is given by the expression in the statement, we derive

s(Y,M)∨ ⊗M L =
(

1− c(L)
c(L1) · · · c(Lr)

)
∩ [M ]

and therefore (using the expression for c∗ given in Theorem I.4, and after simple
manipulations)

c∗(X) = c(TM) ·
(

1− 1
(1 +X1) · · · (1 +Xr)

)
∩ [M ].

Thus showing (2) for this class amounts to showing that

c(TM)
(

1− 1
(1 +X1) · · · (1 +Xr)

)
∩ [M ]

= c(TX1) ∩ [X1] + c(TM) ·
(

1− 1
(1 +X2) · · · (1 +Xr)

)
∩ [M ]

− c(TX1)
(

1− 1
(1 +X2) · · · (1 +Xr)

)
∩ [X1],

since X1 ∩ (X2 ∪ · · · ∪Xr) is also a reduced divisor with normal crossings (in X1,
which is assumed to be nonsingular). Now the right-hand side can be written

c(TM)
(

X1

(1 +X1) · · · (1 +Xr)
+ 1− 1

(1 +X2) · · · (1 +Xr)

)
∩ [M ],

and this is immediately seen to equal the left-hand-side, as needed.
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In passing we note that since cSM satisfies (2), the following formula must hold
for the Schwartz-MacPherson class of a reduced divisor X = X1 ∪ · · · ∪Xr ⊂M as
above:

cSM(X) = c(TM) ·
(

1− 1
(1 +X1) · · · (1 +Xr)

)
∩ [M ].(*)

Taking degrees in (*) yields an expression for the Euler characteristic of X equiva-
lent to the Claim in §3 of [Silvotti]. In fact, (*) shows that if X is a normal crossing
divisor as above, cSM(X) maps to the dual of

(c(ΩM )− c(ΩM (logX))) ∩ [M ]

in A∗M , where ΩM (logX) denotes the sheaf of logarithmic 1-forms along X . Theo-
rem 3.1 in [Silvotti] (that is, ‘Gauss-Bonnet for the complement of a divisor’) follows
by taking degrees in this expression.

Returning to the proof of (2) for c∗, by Lemma II.2 we are reduced to showing
that

s(Y,M) =
((

1− c(L∨)
c(L∨1 ) · · · c(L∨r )

)
∩ [M ]

)
⊗M L

for Y the singular scheme of a reduced divisor X = X1 ∪ · · · ∪Xr with nonsingular
components and normal crossings.

Proof of (2). As a set, Y is the union of all theXi∩Xj with i 6= j; X has multiplicity
k along the intersection of k components, XI = Xi1 ∩ · · · ∩Xik (k = |I|), provided
that this is nonempty. We will work by induction on the number N of nonempty
such intersections XI , |I| ≥ 2.

The statement is clear if this number is 0, that is if Y is empty: c(L∨1⊗· · ·⊗L∨r ) =
c(L∨1 ) · · · c(L∨r ) if the Xi’s do not intersect. Assume then Y 6= ∅, and consider an
XI of minimal dimension, say Z = X1 ∩ · · · ∩ Xk. Locally along Z, Xi has the
equation xi = 0 (for i ≤ k), where the xi’s are part of a system of parameters;
so the hypersurface is x1 · · ·xk = 0 along Z, and Z has (local) ideal (x1, . . . , xk);
along Z, Y has ideal (

x1 · · ·xk
x1

, . . . ,
x1 · · ·xk
xk

)
.

Note that if some other hypersurface of the lot came in at some point of Z not
covered by the above chart, this would determine a smaller nonempty intersection,
against the minimality of Z. In other words, Xi ∩ Z = ∅ for i > k.

Now blow-up M along Z; with a suitable choice of coordinates x̃i in the blow-up,
we can write the blow-up map as 

x1 = x̃1,

x2 = x̃1x̃2,

. . .

xk = x̃1x̃k,

and the inverse image of Y has ideal(
x̃k1 · · · x̃k

x̃1
,
x̃k1 · · · x̃k
x̃1x̃2

, . . . ,
x̃k1 · · · x̃k
x̃1x̃k

)
= x̃k−1

1

(
x̃2 · · · x̃k
x̃2

, . . . ,
x̃2 · · · x̃k
x̃k

)
in this chart. Now this says that the residual of (k − 1) times the exceptional
divisor in the inverse image of Y is (in this chart) the singular scheme of the proper
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transform of the hypersurface. This must in fact hold globally on Z, as the behavior
on the other charts is identical to the one shown above.

Now the key is that the proper transform of the hypersurface is again a divisor
with normal crossing, but for which the number N considered above is one less
than for the original hypersurface; therefore by induction we know the Segre class
of its singular scheme from Lemma II.2:

1− 1− (X1 − E)− · · · − (Xk − E)−Xk+1 − · · · −Xr

(1−X1 + E) . . . (1−Xk + E)(1−Xk+1) . . . (1−Xr)
⊗O(X1 + · · ·+ Xr − kE),

where E is the class of the exceptional divisor.
Using Proposition 3 from [Aluffi2] to include the (k − 1)-multiple E, and using

the birational invariance of Segre classes, we get that s(Y,M) is the push-forward
to M of

(k − 1)E

(1 + (k − 1)E)
+

1

1 + (k − 1)E

·
(

1− 1−X1 − · · · −Xr + k E

(1−X1 + E) . . . (1−Xk + E)(1−Xk+1) . . . (1−Xr)
⊗O(X1 + · · ·+ Xr − E)

)
;

that is,

1− 1

1 + (k − 1)E

·
(

1−X1 − · · · −Xr + k E

(1−X1 + E) . . . (1−Xk + E)(1−Xk+1) . . . (1−Xr)
⊗O(X1 + · · ·+ Xr − E)

)
,

and, using [Aluffi2], §2, this is manipulated into

1−
(

1−X1 − · · · −Xr + E

1−X1 − · · · −Xr + kE

· 1−X1 − · · · −Xr + kE

(1−X1 + E) . . . (1−Xk + E)(1−Xk+1) . . . (1−Xr)
⊗O(X1 + · · ·+ Xr − E)

)
= 1−

(
1−X1 − · · · −Xr + E

(1−X1 + E) . . . (1−Xk + E)(1−Xk+1) . . . (1−Xr)
⊗O(X1 + · · ·+ Xr − E)

)
= 1−

(
(1−X1 − · · · −Xr)

(1−X1) . . . (1−Xk)
· (1− E)r−1

(1−Xk+1 − E) . . . (1−Xr − E)
⊗O(X1 + · · ·+ Xr)

)
.

Now we claim that
(1 − E)r−1

(1−Xk+1 − E) . . . (1 −Xr − E)
(*)

pushes forward to
1

(1−Xk+1) . . . (1−Xr)
.(**)

Indeed, any term involving both E and some of the Xi’s, i > k, is necessarily 0
since these Xi’s do not meet Z; so (*) equals

(1− E)k−1 − 1 +
1

(1−Xk+1) . . . (1−Xr)
,

and all powers Ei with 0 < i < k push forward to 0 because Z has codimension k.
So (**) is all that survives the push-forward.

In conclusion, this shows that s(Y,M) equals

[M ]− ([M ]− [X1]− · · · − [Xr])
(1−X1) . . . (1−Xr)

⊗M O(X1 + · · ·+Xr),

completing the induction step.
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This concludes the proof that the class c∗ of §§1 and 2 satisfies properties (1)
and (2) stated at the beginning of this section (and it follows that c∗ and the
Schwartz-MacPherson class coincide for hypersurfaces with normal crossing).
§3 is devoted to the proof of (3), thereby concluding the proof of Theorem I.

This will be the most delicate ingredient in the proof of the main theorem.

3. Behavior under blow-ups

The last ingredient in the elementary proof of the main theorem is the proof of
(3) from §2. We will obtain this by transforming (3) into equivalent and more basic
assertions, which however will require more and more notations to be stated. In
the end, (3) will follow by an explicit computation of a ‘cycle at infinity’ (Z∞ in
§§3.4–3.8) arising in a graph construction.

We first reproduce the notations used so far, and the statement of (3) given in
§2. Let X be a hypersurface of a nonsingular variety M , and let Z ⊂ X ⊂ M

be a nonsingular subvariety of codimension d in M . M̃ π−→ M will be the blow-up
of M along Z, E will denote the exceptional divisor of this blow-up, and X ′ the
scheme-theoretic inverse image of X in M̃ ; L will be the line bundle of X (hence
its pull-back, also denoted L, is the line bundle of X ′), and Y , Y ′ will respectively
denote the singular subschemes of X , X ′. Then (3) states that

π∗(c∗(X ′)) = c∗(X) + (d− 1) c∗(Z)

in A∗X . (Note: in this section especially we will often indulge in severe notational
abuses, of which this formula is a good example. To interpret this formula correctly,
the reader is expected to restrict π to X ′ before using it to push forward c∗(X ′);
and to push forward c∗(Z) from A∗Z to A∗X . While this will make some of our
statements slightly imprecise, employing full notations would often make them quite
unreadable; we opt for the first alternative.)

3.1. (3) in terms of classes in PP1
ML, PP1

M̃
L. Here we translate (3) by using

the form of c∗ given in Theorem I.3.
We will denote by P1

ML, P1
M̃
L respectively the bundles of principal parts of L

overM , M̃ . The section F of L over M , M ′ defining X , X ′ resp. determine sections

M̃ → π∗P1
ML, M̃ → P1

M̃
L,

which projectivize to rational maps

M̃ 99K Pπ∗P1
ML, M̃ 99K P1

M̃
L.

The closures of the images of these maps are the blow-ups B`π−1Y M̃ , B`Y ′M̃
respectively (this follows from staring at local descriptions for the sections; cf. §1.3).

This is the first instance in which we perform two parallel constructions: one on
the π∗P1

ML side, the other on the P1
M̃
L side. As a rule, we will put subscripts M ,

M̃ on corresponding objects on the two sides, to keep track of which side they be-
long to: we start this convention by naming the universal subbundles in Pπ∗P1

ML,
PP1

M̃
L respectively OM (−1), O

M̃
(−1). Similarly, YM , Y

M̃
will denote respectively

the exceptional divisors in B`π−1Y M̃ , B`Y ′M̃ ; note that O(YM ), O(Y
M̃

) are re-
spectively the restriction of OM (−1), O

M̃
(−1) to the blow-ups. Also, pM , p

M̃
will

denote respectively the bundle maps on Pπ∗P1
ML, PP1

M̃
L. Finally, the reader is
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warned that the π∗ employed so far will soon be dropped (as is allowed by various
functorialities of pull-backs).

Claim III.1. In order to prove (3), it suffices to show that

π∗pM ∗

(
c

(
P1
ML

OM (−1)

)
∩ [B`π−1Y M̃ ]

)
= π∗pM̃ ∗

(
c

(
P1
M̃
L

O
M̃

(−1)

)
∩ [B`Y ′M̃ ]

)
.

Proof. Writing c∗ as in §1.3, and with the above notations,

c∗(X) = π∗

(
c(TM) ∩ pM∗

(
[X ]− [YM ]
1 +X − YM

))
,

c∗(X ′) = c(TM̃) ∩ p
M̃∗

(
[X ′]− [Y

M̃
]

1 +X ′ − Y
M̃

)
.

Now

π∗pM∗

(
c

( P1
ML

OM (−1)

)
∩ [B`π−1Y M̃ ]

)
− π∗pM̃∗

(
c

(
P1

M̃
L

O
M̃

(−1)

)
∩ [B`Y ′M̃ ]

)

= π∗

(
pM∗

(
c(T ∗M ⊗ L)c(L)

1 + YM
∩ [B`π−1Y M̃ ]

)
− p

M̃∗

(
c(T ∗M̃ ⊗ L)c(L)

1 + Y
M̃

∩ [B`Y ′M̃ ]

))

= c(L)n+1π∗

(
pM∗

(
c(T ∗M)

1−X + YM
∩ [B`π−1Y M̃ ]

)
− p

M̃∗

(
c(T ∗M̃)

1−X ′ + Y
M̃

∩ [B`Y ′M̃ ]

))
⊗L

(notations as in §1.4, and properties of the same from [Aluffi2]). Thus the equality
in the statement is equivalent to

π∗

(
pM∗

(
c(T ∗M)

1−X + YM
∩ [B`π−1Y M̃ ]

)
− p

M̃ ∗

(
c(T ∗M̃)

1−X ′ + Y
M̃

∩ [B`Y ′M̃ ]

))
= 0.

Taking duals, this is equivalent to

π∗

(
pM∗

(
c(TM)

1 +X − YM
∩ [B`π−1Y M̃ ]

)
− p

M̃∗

(
c(TM̃)

1 +X ′ − Y
M̃

∩ [B`Y ′M̃ ]

))
= 0,

that is, to

π∗pM ∗

(
c(TM)

(
1− X − YM

1 +X − YM

)
∩ [B`π−1Y M̃ ]

)
− π∗pM̃∗

(
c(TM̃)

(
1−

X ′ − Y
M̃

1 +X ′ − Y
M̃

)
∩ [B`Y ′M̃ ]

)
= 0,

or, using the expressions given above for c∗, to

π∗pM∗
(
c(TM) ∩ [B`π−1Y M̃ ]

)
− c∗(X)− π∗pM̃∗

(
c(TM̃) ∩ [B`Y ′M̃ ]

)
+ π∗c∗(X

′) = 0,

and finally, using the projection formula, to

π∗c∗(X ′) = c(X) + π∗
(
(c(TM̃)− c(TM)) ∩ [M̃ ]

)
.
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Now

π∗(c(TM̃) ∩ [M̃ ])− c(TM) ∩ [M ] = (d− 1) c(TZ) ∩ [Z] :

in characteristic 0 this is immediate from the functoriality of Schwartz-MacPherson
classes (in fact it holds in arbitrary characteristic, as may be easily checked using
Theorem 15.4 in [Fulton]). Therefore the equality in the statement is equivalent to

π∗c∗(X ′) = c(X) + (d− 1) c(TZ) ∩ [Z],

which is precisely (3), as needed.

3.2. (3) in terms of classes in P(P1
ML ⊕ P1

M̃
L) over M̃ . Before attacking the

equality stated in Claim III.1, we need another notational layer to put both sides
in the same place. The general plan is to show that they are equal by realizing
them as cycles arising in a graph construction ([MacPherson], [BFM], or [Fulton],
§18.1). The natural place to look for something of the sort is

P(P1
ML ⊕ P1

M̃
L)

There are two natural embeddings:

P(P1
ML) ↪→ P(P1

ML ⊕ P1
M̃
L), P(P1

M̃
L) ↪→ P(P1

ML ⊕ P1
M̃
L),

as ‘first’, resp. ‘second’ factor. These are the centers of two families of central
projections

P(P1
ML⊕ P1

M̃
L)

ρ
M̃99K P(P1

M̃
L), P(P1

ML ⊕ P1
M̃
L)

ρM99K P(P1
ML)

respectively. Also, the rational maps from M̃ to the bundles (considered above)
determine two embeddings

B`π−1Y M̃ ↪→ P(P1
ML) ↪→ P(P1

ML ⊕ P1
M̃
L),

B`Y ′M̃ ↪→ P(P1
M̃
L) ↪→ P(P1

ML ⊕ P1
M̃
L),

and the cones

GM = ρ−1
M (B`π−1Y M̃), G

M̃
= ρ−1

M̃
(B`Y ′M̃).

Also denote by O(−1) the tautological subbundle of P(P1
ML⊕P1

M̃
L), and note that

O(−1) restricts to OM (−1), O
M̃

(−1) on the two factors, and that

NP(P1
ML)P(P1

ML ⊕ P1
M̃
L) = P1

M̃
L⊗O(1),

NP(P1
M̃
L)P(P1

ML ⊕ P1
M̃
L) = P1

ML ⊗O(1)
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(as seen with the aid of standard Euler sequences). Finally, p will denote the bundle
map to M̃ . Here are some of the notations in a diagram:

P(P1
ML ⊕ P1

M̃
L)

ρM

wwo
o
o
o
o
o

ρ
M̃

''O
O

O
O

O
O

p

��

P(P1
ML)

pM

''O
O
O
O
O
O
O
O
O
O
O
O
O
O

P(P1
M̃
L)

p
M̃

wwoo
o
o
o
o
o
o
o
o
o
o
o

M̃

π

��

M

Now we are ready for the new reformulation of what we have to prove:

Claim III.2. In order to prove (3), it suffices to show that

c

(
P1
ML ⊕ P1

M̃
L

O(−1)

)
∩
(
[G

M̃
]− [GM ]

)
pushes forward to 0 in M .

Proof. This follows immediately from Claim III.1 and the following lemma:

Lemma III.1.

p∗

(
c

(
P1
ML⊕ P1

M̃
L

O(−1)

)
∩ [GM ]

)
= pM∗

(
c

(
P1
ML

OM (−1)

)
∩ [B`π−1Y M̃ ]

)
,

p∗

(
c

(
P1
ML⊕ P1

M̃
L

O(−1)

)
∩ [G

M̃
]

)
= p

M̃∗

(
c

(
P1
M̃
L

O
M̃

(−1)

)
∩ [B`Y ′M̃ ]

)
.

Proof. We check the first equality; the second is entirely similar.
First, observe that, since GM ∩ P(P1

ML) = B`π−1Y M̃ in P(P1
ML ⊕ P1

M̃
L) (and

this intersection is transversal),

pM∗

(
c

(
P1
ML

OM (−1)

)
∩ [B`π−1Y M̃ ]

)
= p∗

(
c

(
P1
ML

OM (−1)

)
∩ [P(P1

ML)] · [GM ]
)
.

Next, O(1) restricts to OM (1) on P(P1
ML); denote by j its first Chern class. The

normal bundle formula above tells us that (with n = dimM)

[P(P1
ML)] · [GM ] = ctop(P1

M̃
L ⊗O(1)) ∩ [GM ]

=
(
jn+1 + · · ·+ j cn(P1

M̃
L) + cn+1(P1

M̃
L)
)
∩ [GM ].

Therefore

c

(
P1
ML

OM (−1)

)
∩ [P(P1

ML)] · [GM ]

= c(P1
ML)(1 + j + j2 + . . . )

(
jn+1 + · · ·+ j cn(P1

M̃
L) + cn+1(P1

M̃
L)
)
∩ [GM ].
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With the same notations,

c

(
P1
ML⊕ P1

M̃
L

O(−1)

)
∩ [GM ]

= c(P1
ML)(1 + j + j2 + . . . )

(
1 + · · ·+ cn(P1

M̃
L) + cn+1(P1

M̃
L)
)
∩ [GM ].

The difference consists of a sum of terms

c(P1
ML) jick(P1

M̃
L) ∩ [GM ]

with i + k < n + 1; but GM fibers over its image in P(P1
ML) (via ρM ) with fibers

of dimension n + 1, so all such terms die already in P(P1
ML); and a fortiori after

push-forward to M̃ .

3.3. (3) in terms of classes in P(P1
ML ⊕ P1

M̃
L) over BL. In order to attack

Claim III.2, we have to produce explicitly a class equivalent to [G
M̃

]− [GM ], and we
have to evaluate the intersection product and push-forward stated in Claim III.2.
For this, we will pull-back the situation to a variety dominating both B`π−1Y M̃

and B`Y ′M̃ . Consider the natural morphism of bundles

φ : P1
ML → P1

M̃
L

over M̃ , extending the differential dπ : T ∗M → T ∗M̃ . (We are omitting here,
and we will omit from now on, the pull-back notation π∗ on the sources of these
morphisms.) This morphism will play a fundamental role in what follows.

For a start, observe that φ is also a family of central projections: over a general
point of M̃ , φ is an isomorphism; over a point of E, say corresponding to a direction
u normal to Z, φ collapses forms vanishing along TZ and u. Projectivizing, we get
a rational map

ψ : PP1
ML 99K PP1

M̃
L

which is resolved by blowing up the family C of centers of the projections (with the
reduced structure); equivalently, the blow-up will be the graph Γ of ψ in PP1

ML×M̃
PP1

M̃
L. At the same time, ψ restricts to a rational map

B`π−1Y M̃ 99K B`Y ′M̃

which can be resolved by blowing up the source along its intersection with C,
obtaining a variety BL. Equivalently, BL is the graph of this map, which sits in Γ:

Γ

}}z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z
z

  
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

BL

OO

~~|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

��
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@
@

PP1
ML

ψ
//______________ PP1

M̃
L

B`π−1Y M̃

OO

//_____________ B`Y ′M̃

OO

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CHERN CLASSES FOR SINGULAR HYPERSURFACES 4009

Since BLmaps to both B`π−1Y M̃ , B`Y ′M̃ , note that on BL we have line bundles
(obtained by pulling back) OM (−1) = O(YM ), O

M̃
(−1) = O(Y

M̃
).

Now we can pull-back P(P1
ML⊕P1

M̃
L) etc. to BL. The advantage of doing so is

that the cycles playing the role of GM , G
M̃

have a nicer description: consider the
following loci defined over BL:

GM = P(OM (−1)⊕ P1
M̃
L) ⊂ P(P1

ML ⊕ P1
M̃
L),

G
M̃

= P(P1
ML ⊕O

M̃
(−1)) ⊂ P(P1

ML ⊕ P1
M̃
L);

the reader will verify that these GM , G
M̃

push forward to the loci with the same
name over M̃ (the reason is that P(OM (−1)) ⊂ P(P1

ML) realizes the embedding of
B`π−1YM in PP1

ML, etc.).
It follows that we can adopt Claim III.2, taking the bundle and cycles in the

statement to live now over BL, with the above positions.

3.4. The graph construction. The loci GM , G
M̃

are now projectivizations of
rank-(n+2) subbundles of P1

ML⊕P1
M̃
L over BL. It is natural to interpolate them

by considering the span of the graph of

1
λ
φ : P1

ML → P1
M̃
L

and 0⊕O
M̃

(−1) in P1
ML⊕P1

M̃
L : let Gλ denote this span (thus Gλ is a rank-(n+2)

subbundle of P1
ML⊕ P1

M̃
L for all λ 6= 0).

Notice that as 1/λ→ 0, Gλ projectivizes to the locus G
M̃

defined above. In fact
Gλ can be realized (for λ 6= 0) as the element in Grassn+2(P1

ML⊕P1
M̃
L) determined

by the graph of

P1
ML

1
λφ−−→ P1

M̃
L →

P1
M̃
L

O
M̃

(−1)
,(*)

a point of Grassn+1(P1
ML⊕(P1

M̃
L/O

M̃
(−1))). Over general points ofBL, the kernel

of the composition (*) is the fiber of OM (−1); it follows from general considerations
about the graph construction ([BFM]; also [Kwieciński], I.7, p. 56) that the flat limit
of Gλ as 1/λ → ∞ will consist of several components, one of which will precisely
projectivize to the locus GM defined above. This will also be recovered later on, by
a coordinate computation.

Let Z∞ denote the other (that is, distinct from GM ) components of the projec-
tivization of lim1/λ7→∞Gλ.

Claim III.3. In order to prove (3), it suffices to show that

c

(
P1
ML ⊕ P1

M̃
L

O(−1)

)
∩ [Z∞]

pushes forward to 0 in M .

Proof. The construction gives an explicit rational equivalence between [G
M̃

] =
[lim1/λ7→0 P(Gλ)] and [lim1/λ7→∞ P(Gλ)] = [GM ] + [Z∞].
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3.5. Coordinate set-up in BL. Fortunately limλ7→0Gλ (and therefore Z∞) can
be analyzed most explicitly by a coordinate computation; however, this requires
studying BL more carefully and introducing if possible yet more notations.

The variety BL contains (inverse images of) divisors E, YM , Y
M̃

; in fact we
already observed that the line bundles for the latter two are respectively OM (−1),
O
M̃

(−1). Also, as BL arises by blowing up B`π−1Y M̃ along a certain locus (called
C in the above), it contains a corresponding exceptional divisor EM . Further, note
that the rational map ψ defined above is birational; so we can think of BL as the
resolution of indeterminacies of ψ−1, which realizes it as a blow-up of B`Y ′M̃ . De-
note by E

M̃
the exceptional divisor of this blow-up. (Note: EM , E

M̃
are restrictions

of analogous exceptional divisors from Γ.)
The intersection of C and B`π−1Y M̃ can be computed easily. The reader may

wish to check that it is the residual to YM of the scheme-theoretic inverse image of
Y ′ in B`π−1Y M̃ . Similarly, it is not hard to see that the center of the blow-up of
B`Y ′M̃ producing BL is the residual to Y

M̃
in the (scheme theoretic) union of E

and the inverse image of Y in B`Y ′M̃ .
To get a feeling for the situation, the reader may also wish to check that the

residual to Y in Y ′ is supported on the intersection of E and the proper transform
X̃ of X in M̃ . In fact, E∩Y ′ is precisely this intersection, while E∩Y is supported
‘just’ on the points at which X̃ is tangent to the fibers of E over Z.

Lemma III.2. With the above notations

EM + E
M̃

= E,

YM + EM = Y
M̃
,

as divisors of BL.

Proof. These equalities follow easily from the considerations immediately preceding
this statement. For example, the ideal of EM is the pull-back of the ideal of C, hence
it is the residual to YM in Y

M̃
; this gives the second equality. By the same token,

E
M̃

is the residual to Y
M̃

in YM + E; that is,

YM + E = Y
M̃

+ E
M̃
,

and the first equality follows.

Lemma III.2 will be used in a moment, when we choose functions on BL to write
entries for a matrix whose row-span is Gλ. First, we have to choose local coordinates
in P1

ML and P1
M̃
L. Choose local parameters x1, . . . , xn in M and x̃1, . . . , x̃n in M̃

so that Z has ideal (x1, . . . , xd) and the blow-up map M̃ →M is given by

x1 = x̃1,

x2 = x̃1x̃2,

. . .

xd = x̃1x̃d,

xd+1 = x̃d+1,

. . .

xn = x̃n.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CHERN CLASSES FOR SINGULAR HYPERSURFACES 4011

Keeping in mind the sequences

0 → T ∗M ⊗ L → P1
ML → L → 0,

0 → T ∗M̃ ⊗ L → P1
M̃
L → L → 0,

and working locally, we use (s, v1, . . . , vn) to denote the jet in P1
ML mapping to s

in the fibers of L and with differential v1dx1 + · · ·+vndxn. Similarly, (s, ṽ1, . . . , ṽn)
in P1

M̃
L maps to s in L and has differential ṽ1dx̃1 + · · ·+ ṽndx̃n. The morphism

φ : P1
ML → P1

M̃
L

defined above has the matrix

1 0 0 0 · · · 0 0 · · · 0
0 1 x̃2 x̃3 · · · x̃d 0 · · · 0
0 0 x̃1 0 · · · 0 0 · · · 0
0 0 0 x̃1 · · · 0 0 · · · 0

...
. . .

...
0 0 0 0 · · · x̃1 0 · · · 0
0 0 0 0 · · · 0 1 · · · 0

...
...

. . .
...

0 0 0 0 · · · 0 0 · · · 1


in these coordinates. Also, the embeddings

B`π−1Y M̃ ⊂ P1
ML,

B`Y ′M̃ ⊂ P1
M̃
L

are obtained by projectivizing (and closing) the image of the sections

p 7→
(
F (p),

∂F

∂x1
|p, . . . ,

∂F

∂xn
|p
)
,

p 7→
(
F (p),

∂F

∂x̃1
|p, . . . ,

∂F

∂x̃n
|p
)
.

Here F is the section of L giving the original hypersurface X , pulled back to M̃ to
give the hypersurface X ′. If X has multiplicity m along Z, F will be a multiple of
x̃m1 on M̃ .

With these notations and over points at which F or some of its partials ∂F
∂x̃i

do
not vanish (that is, away from Y ′), the subbundle Gλ ⊂ P1

ML⊕P1
M̃
L defined above

is spanned by the (n+ 1) rows of

λ 0 0 0 · · · 0 0 · · · 0
0 λ 0 0 · · · 0 0 · · · 0
0 0 λ 0 · · · 0 0 · · · 0
0 0 0 λ · · · 0 0 · · · 0

...
. . .

...
0 0 0 0 · · · λ 0 · · · 0
0 0 0 0 · · · 0 λ · · · 0

...
...

. . .
...

0 0 0 0 · · · 0 0 · · · λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 · · · 0 0 · · · 0
0 1 0 0 · · · 0 0 · · · 0
0 x̃2 x̃1 0 · · · 0 0 · · · 0
0 x̃3 0 x̃1 · · · 0 0 · · · 0

...
. . .

...
0 x̃d 0 0 · · · x̃1 0 · · · 0
0 0 0 0 · · · 0 1 · · · 0

...
...

. . .
...

0 0 0 0 · · · 0 0 · · · 1



License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4012 PAOLO ALUFFI

together with the row vector(
0 0 0 0 · · · 0 0 · · · 0

∣∣F ∂F
∂x̃1

· · · ∂F
∂x̃n

)
(accounting for the 0⊕O

M̃
(−1) factor). The reason why we introduced the variety

BL above is to be able to extend this description to points of Y ′. Still working
locally, give names to the sections corresponding to the various divisors on BL. We
have:

—E, with local generator x̃1 (borrowing its name from M̃ , from which the gen-
erator is pulled back);

—the exceptional divisors YM , Y
M̃

; the ideals of these are the pull-backs of
Iπ−1Y , IY ′ , and we will call local generators for these (principal) ideals yM , y

M̃
respectively;

—the exceptional divisors EM , E
M̃

; local generators for these will be called eM ,
e
M̃

respectively.
Lemma III.2 gives the following relations among these terms:

x̃1 = eMeM̃ , y
M̃

= yMeM

(so that also y
M̃
e
M̃

= yM x̃1).
Since IY ′ pulls back to (y

M̃
), there must be (local) a0, . . . , an over BL so that

F = a0yM̃ ,
∂F

∂x̃1
= a1yM̃ , . . . ,

∂F

∂x̃n
= anyM̃ .

By the same token, there must be b0, . . . , bn such that

F = b0yM ,
∂F

∂x1
= b1yM , . . . ,

∂F

∂xn
= bnyM .

Further, both ideals (a0, . . . , an) and (b0, . . . , bn) equal (1).
Now

∂F

∂x̃1
=
∂F

∂x1
+ x̃2

∂F

∂x2
+ · · ·+ x̃d

∂F

∂xd
,

∂F

∂x̃2
= x̃1

∂F

∂x2
, . . . ,

∂F

∂x̃d
= x̃1

∂F

∂xd
,

∂F

∂x̃d+1
=

∂F

∂xd+1
, . . . ,

∂F

∂x̃n
=

∂F

∂xn
,

which translates into

a0yM̃ = b0yM , a1yM̃ = b1yM + x̃2b2yM + · · ·+ ỹdbdyM ,

a2yM̃ = x̃1b2yM , . . . , adyM̃ = x̃1bdyM ,

ad+1yM̃ = bd+1yM , . . . , anyM̃ = bnyM ,

and therefore

b0 = a0eM , b1 = a1eM − x̃2b2 − · · · − x̃dbd,

a2 = b2eM̃ , . . . , ad = bdeM̃ ,

bd+1 = ad+1eM , . . . , bn = aneM .

This means that we can throw away half of the a’s and b’s; from the data of

{a0, a1, b2, . . . , bd, ad+1, . . . , an}
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(which again locally generate (1)) we can obtain explicit coordinates in PP1
ML,

PP1
M̃
L for the image of a point of BL:

(a0eM : a1eM − x̃2b2 − · · · − x̃dbd : b2 : · · · : bd : ad+1eM : · · · : aneM ),

(a0 : a1 : b2eM̃ : · · · : bdeM̃ : ad+1 : · · · : an).
With this understood, the rows of the (n+ 2)× (2n+ 2)-matrix

λ 0 0 · · · 0 0 · · · 0
0 λ 0 · · · 0 0 · · · 0
0 0 λ · · · 0 0 · · · 0

...
. . .

...
0 0 0 · · · λ 0 · · · 0
0 0 0 · · · 0 λ · · · 0

...
...

. . .
...

0 0 0 · · · 0 0 · · · λ
0 0 0 · · · 0 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 0 · · · 0
0 1 0 · · · 0 0 · · · 0
0 x̃2 x̃1 · · · 0 0 · · · 0

...
. . .

...
0 x̃d 0 · · · x̃1 0 · · · 0
0 0 0 · · · 0 1 · · · 0

...
...

. . .
...

0 0 0 · · · 0 0 · · · 1
a0 a1 b2eM̃ · · · bdeM̃ ad+1 · · · an


do span Gλ for all λ 6= 0.

3.6. Three lemmas. The following lemmas will not be used till the final step of
our proof, but this seems the best place to include them, as they use the notations we
just introduced. Consider again the coordinates for a point in B`π−1Y M̃ ⊂ PP1

ML
obtained above:(

a0eM : a1eM − x̃2b2 − · · · − x̃dbd : b2 : · · · : bd : ad+1eM : · · · : aneM
)
.

The entries here are (local) components of a vector spanning OM (−1) in P1
ML. It

is clear that the boxed entries vanish along EM (as eM = 0 is an equation for the
latter). To express this more intrinsically, consider the natural projection

ρZ : P1
ML⊕ P1

M̃
L → P1

ML → P1
ZL

killing the second factor and projecting the first onto the bundle of principal parts
of L over Z; then the above observation is that

Lemma III.3. ρZ(OM (−1)⊕ 0) = 0 along EM .

This vanishing will be an important ingredient at the final step of the proof, in
§3.8. The two lemmas that follow are also important, and they are less evident.
First, observe that as E

M̃
maps injectively into B`π−1M̃ , its components either

(i) dominate E ⊂ M̃ , or
(ii) dominate components in E ⊂ B`π−1M̃ which contract in M̃ .

Lemma III.4. ρZ(OM (−1)⊕ 0) = 0 along components of E
M̃

of type (i).

Proof. To see this, it suffices to check that, at points of E
M̃

mapping to general
points of E ⊂ M̃ , necessarily e

M̃
divides a0 and ad+1, . . . , an. Assume X has

multiplicity m ≥ 1 along Z, and write (locally) F = x̃m1 F̃ (that is, let (F̃ ) be the
ideal of the proper transform X̃ of X). Then computing partials gives the ideal of
π−1Y :

Iπ−1Y = x̃m−1
1

(
x̃1F̃ ,mF̃ + x̃1

∂F̃

∂x̃1
,
∂F̃

∂x̃2
, . . . ,

∂F̃

∂x̃d
, x̃1

∂F̃

∂x̃d+1
, . . . , x̃1

∂F̃

∂x̃n

)
.(*)
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This ideal pulls back to (yM ) in BL. Now F̃ 6= 0 at a general point of E ⊂ M̃ ,
and hence at a general point p of the component of E

M̃
we are considering. Then

at such points (*) gives

Iπ−1Y = (x̃m−1
1 ),

that is, yM = x̃m−1
1 in BL; with the positions made in §3.5 we have

a0eM = x̃1F̃ , ad+1eM = x̃1
∂F̃

∂x̃d+1
, . . . , aneM = x̃1

∂F̃

∂x̃n
,

that is

a0 = F̃ e
M̃
, ad+1 =

∂F̃

∂x̃d+1
e
M̃
, . . . , an =

∂F̃

∂x̃n
e
M̃

;

a0 and ad+1, . . . , an are multiples of e
M̃

near p, as we needed.

The story for components of type (ii) is a little different: the boxed entries
above do not vanish identically along these components. However, let E ′

M̃
be such

a component, and let Z ′ be the subvariety of Z that E ′
M̃

dominates; also, let

P1
ML⊕ P1

M̃
L ρZ′−−→ P1

Z′L
denote the natural projection. Then

Lemma III.5. ρZ′(OM (−1)⊕ 0) = 0 along E ′
M̃

.

Proof. Again, it suffices to show this at the general point p of E ′
M̃

. So let ỹM denote

a local equation for E ′
M̃

at p. E ′
M̃

dominates a component contained in E ⊂ B`π−1M̃

of the exceptional divisor of the blow-up of M̃ along π−1Y . Thus E ′
M̃

is, aside from
a multiple of E, the inverse image of π−1Y in BL (near p), and we may assume
that the ideal of the latter (again, aside from the factor x̃m−1

1 ) contains x̃1: from
(*) above; we see that (ỹM ) is the pull-back of

J =

(
x̃1, F̃ ,

∂F̃

∂x̃2
, . . . ,

∂F̃

∂x̃d

)
near p, and (since x̃m−1

1 J = Iπ−1Y pulls back to (yM )) we have

yM = x̃m−1
1 ỹM

up to units at p.
Since x̃1 ∈ J and F̃ ∈ J , we have

x̃1 = cxỹM , F̃ = cF ỹM

for some cx, cF . By the positions made in §3.5,

yMa0eM = F = x̃m1 F̃ ;

that is

ỹMa0eM = x̃1F̃ ,

and therefore

a0eM = cxcF ỹM .

The left-hand side is the first boxed entry listed at the beginning of this subsection,
and the right-hand side shows that this vanishes along E ′

M̃
(as ỹM = 0 is an equation
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for the latter). Behind the notational smoke, the reader should be able to see that
this simply works because both x̃1 and F̃ vanish along the subscheme defined by
J in M̃ ; the first boxed entry is controlled by x̃1F̃ , so it vanishes to higher order.
The above computation simply formalizes this observation.

Now we want to argue similarly for the other entries. For i = d + 1, . . . , n we
have (from §3.5)

yMaieM =
∂F

∂x̃i
= x̃m1

∂F̃

∂x̃i

and therefore

ỹMaieM = x̃1
∂F̃

∂x̃i
or

aieM = cx
∂F̃

∂x̃i
;

the vanishing of aieM along E ′
M̃

follows for i > d+1 if ∂F̃
∂x̃i

vanishes along the subset

S ⊂ M̃ dominated by E ′
M̃

.
Recall we are denoting by Z ′ ⊂ Z the image of E ′

M̃
(hence of S). The image of

p will be a general, hence nonsingular point q of Z ′. Choose the local parameters
x̃d+1, . . . , x̃n on Z so that Z ′ has equations x̃d+1 = · · · = x̃s = 0 in Z near q. Now Z ′

is the image of S ⊂ F̃ : the tangent space to F̃ at a general point of S must dominate
the tangent space to Z ′. This means that ∂F̃

∂x̃i
= 0 along S for i = s+ 1, . . . , n, and

this implies the vanishing of the corresponding entries aieM along E ′
M̃

, as observed
above. Intrinsically, this amounts to the vanishing of ρZ′(OM (−1)⊕ 0), and we are
done.

Example. The case considered in Lemma III.5 occurs when the hypersurface is
nonsingular away from Z, and ‘cuspidal’ along some subset Z ′ of Z. For an example
that may help fixing ideas, consider the surface with equation

x2
2 + x2

1(x1 + x3) = 0

in A3. This is singular (and equimultiple) along the line x1 = x2 = 0; the singularity
has transversal branches at all points with x3 6= 0, but is cuspy at the origin. In the
blow-up, the proper transform of the surface intersects each fiber of the exceptional
divisor in two points; these collide into one point, say r, in the fiber over the origin.
In the above terminology, S = {r}; so blowing up π−1Y in M̃ amounts to blowing
up r in this case. Since r ∈ E, this will produce a component of E ⊂ B`π−1Y M̃

contracting into M̃ , that is, a component of type (ii) in E
M̃

. In this example Z ′

would be the origin.

3.7. Computing Z∞. In order to determine the limit of Gλ as λ 7→ 0 we consider
the matrix given in §3.5 as defining a rational map

BL× P1 99K Grassn+2(P1
ML ⊕ P1

M̃
L),

by sending (for λ 6= 0) (p, (λ : 1)) to the fiber of Gλ over p. The plan is to resolve
the indeterminacies of this map, and determine Z∞ as the image of specific loci via
the resolved map.
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The base locus of the map is determined (using Plücker coordinates for Grassn+2)
by the ideal of (n+ 2)× (n+ 2) minors of the matrix of row-vectors given in §3.5.
In terms of the ∂F

∂x̃i
’s, this turns out to be the ideal

λd
(
F,

∂F

∂x̃1
, . . . ,

∂F

∂x̃n

)
+λd−1

(
x̃1F, x̃1

∂F

∂x̃1
,
∂F

∂x̃2
, . . . ,

∂F

∂x̃d
, x̃1

∂F

∂x̃d+1
, . . . , x̃1

∂F

∂x̃n

)
+ . . .

+λx̃d−2

(
x̃1F, x̃1

∂F

∂x̃1
,
∂F

∂x̃2
, . . . ,

∂F

∂x̃d
, x̃1

∂F

∂x̃d+1
, . . . , x̃1

∂F

∂x̃n

)
.

Pulling back to BL, this is written

λy
M̃

(
λd−1, λd−2e

M̃
, λd−3eMe

2
M̃
, . . . , ed−2

M ed−1

M̃

)
and resolving the map amounts to making the ideal in ( ) principal.

By our good fortune, this is easy to accomplish: it suffices to blow-up BL × P1

twice, first along E
M̃
⊂ Λ, where Λ is the copy BL × {(0 : 1)} of BL, and then

along the proper transform of EM ⊂ Λ. In terms of ideals, first we blow-up along
(λ, e

M̃
); the interesting chart (we leave it to the reader to check that nothing goes

wrong on the other charts) is {
λ = λ̃ẽ

M̃
,

e
M̃

= ẽ
M̃
,

so the ideal pulls back to(
λ̃d−1ẽd−1

M̃
, λ̃d−2ẽd−1

M̃
, λ̃d−3ẽd−1

M̃
eM , . . . , ẽ

d−1

M̃
ed−2
M

)
= ẽd−1

M̃
(λ̃, eM )d−2,

then along (λ̃, eM ). It is clear that the pull-back of the ideal will then be principal,
as claimed.

Now we have to do this on the matrix whose rows span the Gλ’s. Again, we
show what happens on one interesting chart of the result, and leave the others to
the reader. We change coordinates according to{

λ = st,

e
M̃
, = t,

{
s = uv,

eM = v;

that is, 
λ = uvt,

eM = v,

e
M̃

= t,

x̃1 = vt,
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and the matrix becomes



uvt 0 0 · · · 0 0 · · · 0
0 uvt 0 · · · 0 0 · · · 0
0 0 uvt · · · 0 0 · · · 0

...
. . .

...
0 0 0 · · · uvt 0 · · · 0
0 0 0 · · · 0 uvt · · · 0

...
...

. . .
...

0 0 0 · · · 0 0 · · · uvt
0 0 0 · · · 0 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 0 · · · 0
0 1 0 · · · 0 0 · · · 0
0 x̃2 vt · · · 0 0 · · · 0

...
. . .

...
0 x̃d 0 · · · vt 0 · · · 0
0 0 0 · · · 0 1 · · · 0

...
...

. . .
...

0 0 0 · · · 0 0 · · · 1
a0 a1 b2t · · · bdt ad+1 · · · an


At general points, this has the same span as



uvt 0 0 · · · 0 0 · · · 0
0 uvt 0 · · · 0 0 · · · 0
0 −x̃2u u · · · 0 0 · · · 0

...
. . .

...
0 −x̃du 0 · · · u 0 · · · 0
0 0 0 · · · 0 uvt · · · 0

...
...

. . .
...

0 0 0 · · · 0 0 · · · uvt
0 0 0 · · · 0 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 0 · · · 0
0 1 0 · · · 0 0 · · · 0
0 0 1 · · · 0 0 · · · 0

...
. . .

...
0 0 0 · · · 1 0 · · · 0
0 0 0 · · · 0 1 · · · 0

...
...

. . .
...

0 0 0 · · · 0 0 · · · 1
a0 a1 b2t · · · bdt ad+1 · · · an


hence as



uvt 0 0 · · · 0 0 · · · 0
0 uvt 0 · · · 0 0 · · · 0
0 −x̃2u u · · · 0 0 · · · 0

...
. . .

...
0 −x̃du 0 · · · u 0 · · · 0
0 0 0 · · · 0 uvt · · · 0

...
...

. . .
...

0 0 0 · · · 0 0 · · · uvt

a0v a1v −∑d
2 x̃ibi b2 · · · bd ad+1v · · · anv

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 0 · · · 0
0 1 0 · · · 0 0 · · · 0
0 0 1 · · · 0 0 · · · 0

...
. . .

...
0 0 0 · · · 1 0 · · · 0
0 0 0 · · · 0 1 · · · 0

...
...

. . .
...

0 0 0 · · · 0 0 · · · 1
0 0 0 · · · 0 0 · · · 0


This matrix has maximal rank everywhere, as it ought to (this is because

(a0v, a1v −
d∑
2

x̃ibi, b2, · · · , bd, ad+1v, · · · , anv) = (1),

cf. §3.5); so the map corresponding to Grassn+2 is indeed defined everywhere. The
limλ7→0Gλ is therefore determined by the image of λ = 0; since λ = uvt, this breaks
up the limit into three pieces:
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—over u = 0, the component dominating BL× {(0 : 1)}; this gives



0 0 0 · · · 0 0 · · · 0
0 0 0 · · · 0 0 · · · 0
0 0 0 · · · 0 0 · · · 0

...
. . .

...
0 0 0 · · · 0 0 · · · 0
0 0 0 · · · 0 0 · · · 0

...
...

. . .
...

0 0 0 · · · 0 0 · · · 0

a0v a1v −∑d
2 x̃ibi b2 · · · bd ad+1v · · · anv

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 0 · · · 0
0 1 0 · · · 0 0 · · · 0
0 0 1 · · · 0 0 · · · 0

...
. . .

...
0 0 0 · · · 1 0 · · · 0
0 0 0 · · · 0 1 · · · 0

...
...

. . .
...

0 0 0 · · · 0 0 · · · 1
0 0 0 · · · 0 0 · · · 0


which projectivizes to [P(OM (−1) ⊕ P1

M̃
L)] = [GM ] (as we promised in §3.4, GM

had to appear as one component in the limit);
—over v = 0, which dominates EM × {(0 : 1)}:

0 0 0 · · · 0 0 · · · 0
0 0 0 · · · 0 0 · · · 0
0 −x̃2u u · · · 0 0 · · · 0

...
. . .

...
0 −x̃du 0 · · · u 0 · · · 0
0 0 0 · · · 0 0 · · · 0

...
...

. . .
...

0 0 0 · · · 0 0 · · · 0

0 −∑d
2 x̃ibi b2 · · · bd 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 0 · · · 0
0 1 0 · · · 0 0 · · · 0
0 0 1 · · · 0 0 · · · 0

...
. . .

...
0 0 0 · · · 1 0 · · · 0
0 0 0 · · · 0 1 · · · 0

...
...

. . .
...

0 0 0 · · · 0 0 · · · 1
0 0 0 · · · 0 0 · · · 0


—and over t = 0, which dominates E

M̃
× {(0 : 1)}:



0 0 0 · · · 0 0 · · · 0
0 0 0 · · · 0 0 · · · 0
0 −x̃2u u · · · 0 0 · · · 0

...
. . .

...
0 −x̃du 0 · · · u 0 · · · 0
0 0 0 · · · 0 0 · · · 0

...
...

. . .
...

0 0 0 · · · 0 0 · · · 0

a0v a1v −∑d
2 x̃ibi b2 · · · bd ad+1v · · · anv

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · 0 0 · · · 0
0 1 0 · · · 0 0 · · · 0
0 0 1 · · · 0 0 · · · 0

...
. . .

...
0 0 0 · · · 1 0 · · · 0
0 0 0 · · · 0 1 · · · 0

...
...

. . .
...

0 0 0 · · · 0 0 · · · 1
0 0 0 · · · 0 0 · · · 0


These last two loci make up Z∞ (by definition of the latter as residual of GM in
the limit). We have to study these loci, aiming toward computing the class of the
statement of Claim III.3.

3.8. End of the proof of (3). Summarizing, we have determined Z∞ as the
image of two loci defined over a double blow-up of BL × P1. They both sit in
(the pull-back of) P(P1

ML⊕P1
M̃
L), and they dominate respectively the second and

first exceptional divisors (equations v = 0, t = 0), which we will call DM , D
M̃

;
these in turn dominate resp. EM , E

M̃
. The loci can be written as projectivizations

FM = PFM , F
M̃

= PF
M̃

of rank-(n+ 2) subbundles FM , F
M̃

of P1
ML⊕P1

M̃
L over
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resp. DM , D
M̃

, determined by the last two matrices written above. The following
is our final reformulation of (3):

Claim III.4. In order to prove (3), it suffices to show that

c

(
P1
ML⊕ P1

M̃
L

O(−1)

)
∩ [FM ], c

(
P1
ML⊕ P1

M̃
L

O(−1)

)
∩ [F

M̃
]

vanish after push-forward to M .

Proof. Via the map of bundles

P(P1
ML ⊕ P1

M̃
L) −−−−→ P(P1

ML ⊕ P1
M̃
L)y y

double blow-up of BL× P1 −−−−→ BL

the cycle [FM ] + [F
M̃

] (which lives in the top-left spot) pushes forward to [Z∞] (in
the top-right spot). So the claim follows directly from Claim III.3.

Finally, we are ready to complete the proof of (3), and therefore of the main
theorem:

Proof of (3). Observe that

c

(
P1
ML⊕ P1

M̃
L

O(−1)

)
∩ [FM ] = c

(
P1
ML ⊕ P1

M̃
L

FM

)
c

(
FM
O(−1)

)
∩ [FM ]

pushes forward to

c

(
P1
ML ⊕ P1

M̃
L

FM

)
∩ [DM ](†)

on the double blow-up of BL × P1; indeed, O(−1) restricts to the universal line
bundle in FM , so c(O(−1))−1 ∩ [FM ] pushes forward to c(FM )−1 ∩ [DM ]. Similarly

c

(
P1
ML ⊕ P1

M̃
L

O(−1)

)
∩ [F

M̃
]

pushes forward to

c

(
P1
ML ⊕ P1

M̃
L

F
M̃

)
∩ [D

M̃
].(††)

The reason why these classes (†), (††) vanish when pushed forward to M lies in
the three lemmas in §3.6. Arguing explicitly for (†), the key observation is that FM
is contained in the kernel of the natural morphism P1

ML⊕P1
M̃
L ρZ−→ P1

ZL: this can
be checked locally, and it is immediate from the matrix description given above,
since in the chosen coordinates ρZ acts by(

v0 . . . vn
∣∣ṽ0 · · · ṽn

)
7→
(
v0 vd+1 · · · vn

)
.

Lemma III.3 in §3.6 amounts to observing this vanishing for the last row of the
matrix, as DM dominates EM ; the vanishing for the rest of the matrix is clear for
(†) as well as for (††).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4020 PAOLO ALUFFI

Therefore we have an onto morphism

P1
ML ⊕ P1

M̃
L

FM
→ P1

ZL → 0;

if K denotes the kernel of this morphism, and Π denotes the projection to M , we
get

Π∗

(
c

(
P1
ML⊕ P1

M̃
L

FM

)
∩ [DM ]

)
= c(P1

ZL)Π∗(c(K) ∩ [DM ]).

Now DM has dimension n (DM is a divisor in a blow-up of BL × P1, and BL is
birational to M) while K has rank (2n+ 2)− (n+ 2)− (n− d+ 1) = d− 1, so that
c(K) ∩ [DM ] has no terms in dimension ≤ dimZ, while DM dominates Z via Π:
DM dominates EM , then E, then Z. This forces the last Π∗ to vanish, as needed.

Concerning (††), Lemma III.4 in §3.6 shows that F
M̃

is in the kernel of ρZ along
components dominating components ‘of type (i)’ of E

M̃
, and the vanishing follows

by the same argument as for (†).
The situation is slightly more complicated over components ‘of type (ii)’. By

Lemma III.5 in §3.6 we know that, along such a component D′
M̃

, F
M̃

is in the
kernel of the epimorphism ρZ′ : P1

ML ⊕ P1
M̃
L → P1

Z′L for the subvariety Z ′ of Z
dominated by the component. Now pull back the situation through the fiber square

D̃′
M̃

−−−−→ D′
M̃y y

Z̃ ′ −−−−→ Z ′

where the bottom row is the Nash-blow-up of Z ′: over Z̃ ′, the pull-back of P1
Z′L

surjects onto a locally free sheaf of rank 1 + dimZ ′; the above argument then tells
us that (

c

(
P1
ML ⊕ P1

M̃
L

F
M̃

)
∩ [D̃′

M̃
]

)
vanishes after push-forward to Z̃ ′, and this implies the vanishing of

c

(
P1
ML ⊕ P1

M̃
L

F
M̃

)
∩ [D′

M̃
]

after push-forward to Z ′ ⊂ M , as needed. This concludes the proof of (3), in the
equivalent formulation stated in Claim III.4.

4. Remarks and examples

4.1. µ-class and Parusiński’s Milnor number. Assuming X is complete and
taking degrees in Theorem I.5 gives∫

cSM(X) =
∫
c(TM)
c(L)

∩ [X ] +
∫
c(L)dimX ∩ (µL(Y )∨ ⊗M L).

Now observe that the
∫

picks up the term of degree dimM = dimX +1 in the last
term. Thinking of c(L)dimX as c(L⊕ dimX) and using (an immediate generalization
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of) [A-F], we get∫
c(L)dimX ∩ (µL(Y )∨ ⊗ L) =

∫
c(L⊕ dimX ⊗ L∨) ∩ (µL(Y )∨ ⊗ L⊗ L∨)

=
∫
µL(Y )∨.

Recalling that the degree of cSM(X) equals the Euler characteristic ofX , this proves

Proposition IV.1.∫
µL(Y ) = (−1)dimM

(
χ(X)−

∫
c(TM)
c(L)

∩ [X ]
)
.(*)

Over C, the right-hand-side in this formula equals Parusiński’s generalization of
Milnor’s number ([Parusiński1]); so this gives an alternative proof of Proposition 2.1
in [Aluffi1], and extends to arbitrary fields of characteristic 0 the interpretation
of
∫
µL(Y ) as a measure of the difference in the Euler characteristics of special

vs. general sections of a line bundle (if L has enough sections, the last term in (*)
gives χ(Xg) for a general section Xg of L).

Conversely, at least if L is ample enough, the formula in Proposition IV.1 suffices
to prove Theorem I ‘numerically’, that is, up to taking degrees with respect to L.
This is worked out in [Aluffi2].

For isolated singularities on strong local complete intersections, a statement
analogous to Theorem I.5 has been proved by T. Suwa [Suwa].

4.2. Blowing up µ-classes. The blow-up formula proved in §3 translates nicely
in terms of µ-classes.

Notations as in (3) from §2: Z ⊂ X ⊂ M is a nonsingular subvariety of codi-
mension d in M (dimM = n), M̃ = B`ZM →M denotes the blow-up of M along
Z, and X ′ denotes the (scheme-theoretic) inverse image of X in M̃ . Also, Y, Y ′ are
the singular schemes of X,X ′ respectively. If L denotes the line bundle of X , note
that its pull-back is the line-bundle of X ′. Then the equality (3) we proved in §3,

π∗(c∗(X ′)) = c∗(X) + (d− 1) c∗(Z)

(with c∗ as in §1), becomes, in terms of µ-classes,

Proposition IV.2. With notations as above,

π∗µL(Y ′) = µL(Y ) + (−1)d(d− 1)µL(Z)

in A∗X.

Note: it is reasonable to expect that this equality holds in A∗(Y ∪ Z).

Proof. Since O(X ′) is the pull-back of O(X),

π∗(c(TM̃) ∩ s(X ′, M̃))− c(TM) ∩ s(X,M)

= π∗

(
c(TM̃) ∩ π∗[X ]

1 + π∗X

)
− c(TM) ∩ [X ]

1 +X

=
(
π∗(c(TM̃) ∩ [M̃ ])− c(TM) ∩ [M ]

)
· [X ]
1 +X

.

Now we already observed in §3.1 that

π∗(c(TM̃) ∩ [M̃ ])− c(TM) ∩ [M ] = (d− 1) c(TZ) ∩ [Z];
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therefore, using the expression for c∗ in Theorem I.5, (3) is equivalent to

π∗
(
c(L)n−1 ∩ (µL(Y ′)∨ ⊗ L)

)
− c(L)n−1 ∩ (µL(Y )∨ ⊗ L)

= (d− 1) c(TZ) ∩ [Z]− (d− 1) c(TZ) ∩ [Z] · [X ]
1 +X

,

that is, to

π∗
(
c(L)n−1 ∩ (µL(Y ′)∨ ⊗ L)

)
− c(L)n−1 ∩ (µL(Y )∨ ⊗ L) = (d− 1)

c(TZ)
c(L)

∩ [Z]

Now we apply easy manipulations (see [Aluffi2], §2):
—cap by c(L)−(n−1):

π∗µL(Y ′)∨ ⊗ L− µL(Y )∨ ⊗ L = (d− 1)
c(TZ)
c(L)n

∩ [Z];

—⊗ML∨:

π∗µL(Y ′)∨ − µL(Y )∨ = (d− 1) c(L∨)d
c(TZ ⊗ L∨)
c(L ⊗ L∨)n

∩ [Z]
c(L∨)d

;

—clean up, dualize, apply Corollary 1.8 from [Aluffi1]:

π∗µL(Y ′)− µL(Y ) = (−1)d(d− 1) c(T ∗Z ⊗ L) ∩ [Z] = (−1)d(d− 1)µL(Z),

as needed.

The relation of µ-classes stated above is of some independent interest. It is
related to a result in [Parusiński1] (Lemma 2.2), which can be stated as the fact
that (if X is complete) the zero-dimensional terms of the two sides have the same
degree.

4.3. Contact of two hypersurfaces. Our proof of the main theorem used very
little of the good functoriality properties of cSM(X): we proved just enough of them
for c∗(X) to force this to equal cSM(X). After the fact, however, c∗(X) inherits
the full set from cSM(X), and this reflects into facts about Segre classes of singular
schemes of hypersurfaces which we are not able to prove otherwise, or which would
require substantially more work by more conventional techniques. While we plan
to explore this elsewhere, we give a few such examples in this subsection.

Suppose M1, M2 are distinct nonsingular hypersurfaces of a nonsingular ambient
variety M . Then X = M1 ∩M2 is a hypersurface of both M1 and M2, with normal
bundle L2 = O(M2)|X in M1 and L1 = O(M1)|X in M2. The singular scheme Y of
X is supported on the locus where M1 and M2 are tangent: we call Y the contact
scheme of M1 and M2 in this case. What can be said in general about Y ?

Proposition IV.3. Under the above hypotheses (and with the notation introduced
in §1.4),

s(Y,M1)⊗M1 L1 = s(Y,M2)⊗M2 L2

Again, while it is reasonable to expect that this equality holds in A∗Y , our
argument only proves it in A∗X .

Proof. By Theorem I.4, we can compute cSM(X) by viewing it as a hypersurface of
M1:

cSM(X) = c(TM1) ∩
(
s(X,M1) + c(L2)−1 ∩ (s(Y,M1)∨ ⊗M1 L2)

)
,
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or as a hypersurface of M2:

cSM(X) = c(TM2) ∩
(
s(X,M2) + c(L1)−1 ∩ (s(Y,M2)∨ ⊗M2 L1)

)
.

It follows that the right-hand sides of these expressions are equal. The first sum-
mand in both is cF (X), so we get

c(TM1)
c(L2)

∩ (s(Y,M1)∨ ⊗M1 L2) =
c(TM2)
c(L1)

∩ (s(Y,M2)∨ ⊗M2 L1).

Capping with the inverse Chern class of the virtual tangent bundle of X and dual-
izing yields

s(Y,M1)⊗M1 L∨2 = s(Y,M2)⊗M2 L∨1 .
Tensoring both sides by L1 ⊗ L2 gives the statement of the proposition.

We do not see any simple way to derive the result in Proposition IV.3 more
directly. The result prompts us to define a class

S(Y,M) = s(Y,M1)⊗M1 L1,

since we just showed that this is in a sense intrinsic to the contact scheme and to
the ambient variety. It would be interesting to study properties of this class.

Next, observe that M1 ∪M2 is a hypersurface of M , with line bundle O(M1)⊗
O(M2). The singular scheme X of M1 ∪M2 is supported on X = M1 ∩M2, but
‘thicker’ than X along Y . Now

cSM(M1 ∪M2) = cSM(M1) + cSM(M2)− cSM(M1 ∩M2)(**)

(cf. the beginning of §2). If the hypersurfaces involved are all divisors with normal
crossings, we proved this relation ‘by hand’ in §2 for the class c∗ defined in §1. As
we have now proved that c∗ = cSM, we know that this equality must hold regardless
of how the hypersurfaces meet. Using for example the expression for c∗ given in
Theorem I.4, this gives a nontrivial relation among s(X,M) (on the left-hand side)
and s(Y,Mi) (on the right-hand side). Unraveling notations, the reader will check
that this gives (in A∗(M1 ∪M2))

Proposition IV.4. s(X,M) = s(X,M) + c(NXM)−1 ∩ S(Y,M) .

This is a sort of ‘residual intersection formula’ (thinking of Y as the residual of X
in X), and as such it could probably be proved by judicious use of Proposition 9.2 in
[Fulton], perhaps after blowing up M along X . If X ⊂M1, then standard residual
intersection formulas can be applied to X ⊂ X ⊂ M1 (as X is a divisor of M1),
and do yield the formula stated in the proposition. However, in general X is not
contained in either M1 or M2.

The above argument will work even if one of the hypersurfaces, say M2, is singu-
lar. In such a case X will be supported on X = M1 ∩M2 and on W = the singular
scheme of M2. In terms of c∗, (**) then says (all ⊗ in M unless otherwise denoted)

c(TM) ∩
(

[M1] + [M2]
c(L1 ⊗ L2)

+
1

c(L1 ⊗ L2)
∩ (s(X,M)∨ ⊗ L1 ⊗ L2)

)
= c(TM) ∩

(
[M1]
c(L1)

+
[M2]
c(L2)

+
1

c(L2)
∩ (s(W,M)∨ ⊗ L2)

)
− c(TM1) ∩

(
[M1] · [M2]
c(L2)

− 1
c(L2)

(s(Y,M1)∨ ⊗M1 L2)
)
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(note: the last ∨ is also taken in M , hence the change of sign in the last ()). The
reader should have no difficulties (using [Aluffi2]) simplifying this expression to

Proposition IV.5. With the above notations,

s(X,M)− s(X,M) =
1

c(L1)
∩ (s(W,M)⊗M L1) +

1
c(L2)

∩ (s(Y,M1)⊗M L1)

(again, in A∗(M1 ∪M2)).

The residual intersection problem is in this case complicated enough that we
were not able to prove this relation otherwise.

4.4. A geometric application. If the singular scheme Y of a hypersurface X
is nonsingular, then the class c∗(X) of §1 (and hence cSM(X)) has a particularly
simple form:

Proposition IV.6. Let X be a hypersurface in a nonsingular variety M , let L =
O(X) and assume that the singular scheme Y of X is nonsingular. Then

cSM(X) = cF (X) + (−1)codimM Y c(TY )
c(L)

∩ [Y ].

Proof. By [Aluffi1], Corollary 1.8, if Y is nonsingular then

µL(Y ) = c(T ∗Y ⊗ L) ∩ [Y ];

hence by Theorem I.5

cSM(X) = cF (X) + c(L)dimX ∩
(
(c(T ∗Y ⊗ L) ∩ [Y ])∨ ⊗M L

)
.

Using [Aluffi2], §2, we get

c(L)dimX ∩
(
(c(T ∗Y ⊗ L) ∩ [Y ])∨ ⊗M L

)
= (−1)codimMY c(L)dimX ((c(TY ⊗ L∨) ∩ [Y ])⊗M L)

= (−1)codimMY c(L)dimX

(
c(TY )
c(L)dimY

∩ [Y ]
c(L)codimMY

)
= (−1)codimMY c(TY )

c(L)
∩ [Y ]

which yields the statement.

As an application, consider again the situation at the beginning of §4.3: M1,
M2 are nonsingular hypersurfaces with contact scheme Y (= singular scheme of
M1∩M2). Proposition IV.3 in §4.3 spells out a constraint imposed on the situation;
in the particular case when Y is nonsingular, Proposition IV.6 allows us to rewrite
this in a particularly simple form:

Proposition IV.7. Assume M1, M2 are nonsingular hypersurfaces in a nonsingu-
lar ambient variety, and let Y be their contact scheme. Assume Y is nonsingular;
then

M1 · Y = M2 · Y.

Proof. Let X = M1 ∩M2. The last proposition can be used to compute cSM(X)
in two ways: considering X as a hypersurface in M1, with normal bundle L2 =
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O(M2)|X , or as a hypersurface in M2, with normal bundle L1 = O(M1)|X . This
gives

cF (X) + (−1)codimMY c(TY )
c(L2)

∩ [Y ] = cF (X) + (−1)codimMY c(TY )
c(L1)

∩ [Y ],

and hence

c(L1) ∩ [Y ] = c(L2) ∩ [Y ],

from which the stated formula follows.

Again, the formula stated above should hold in A∗Y , although our argument only
proves it in A∗(M1 ∪M2). This suffices however for some concrete applications.
For example, say the ambient variety is a projective space, di = degMi, and the
contact scheme Y of M1, M2 is nonsingular (as a scheme, not just as a set) and
positive dimensional; then the statement is that necessarily d1 = d2. It is easy
to produce examples of hypersurfaces of the same degree and having nonsingular
contact scheme: for instance, the quadrics

x2 + y2 + z2 + w2 = 0,

x2 + y2 + z2 + 2w2 = 0

in P3 meet along a double conic, so have contact scheme equal to a nonsingular
plane conic. Proposition IV.7 shows that no such example can be concocted with
smooth hypersurfaces of different degrees.
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tique complexe, Astérisque 82–83 (1981), 93–147. MR 83h:32011

[BDK] J.-L. Brylinski, A. Dubson, M. Kashiwara, Formule de l’indice pour les Modules
Holonomes et obstruction d’Euler locale, C. R. Acad. Sci. Paris Sér. I Math. 293
(1981), 573–576. MR 83a:32010

[BFM] P. Baum, W. Fulton, R. MacPherson, Riemann-Roch for singular variety, Publ.
Math. I.H.E.S. 45 (1975), 101–145. MR 54:317
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