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We formulate noncommutative three-dimensional ~3D! gravity by making use of its connection with 3D
Chern-Simons theory. In the Euclidean sector, we consider the topology T23R and show that the 3D black
hole solves the noncommutative equations. We then consider the black hole on a constant U~1! background and
show that the black hole charges ~mass and angular momentum! are modified by the presence of this back-
ground.
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I. INTRODUCTION

Recently, field theories in noncommutative spaces have
attracted much attention, partly in connection with string
theory. More specifically, it has been shown that noncommu-
tative U(N) gauge theory emerges in a certain low energy
limit of a system of Dp-branes in a constant Neveu-Schwarz
B field background @1–3#. In general, gauge theories can be
formulated in noncommutative spaces starting from
Lagrangians written in terms of ordinary fields multiplied
using the Moyal * product. It should be noted that consis-
tency requires that the gauge group has to be U(N) @or cer-
tain subgroups of U(N) @4–6##.

It is then natural to analyze whether noncommutative ex-
tensions can be also constructed for gravity. There have been
several investigations on this issue that basically start by
gauging, instead of the SO(d) Lorentz group, the U(1,d
21) @7–12# ~or some orthogonal and symplectic subalgebras
of unitary groups @4–6#! and then define the theory in terms
of vielbeins and spin connection to be multiplied using the *
product.

It is well known that in three-dimensional space-time, ~or-
dinary! gravity can be formulated as a Chern-Simons theory
@13,14#. Many aspects, both at the classical and quantum
levels, have been understood using this connection since,
through field redefinitions, it simplifies the equations and in-
troduces a rich mathematical structure. The construction of a
black hole in 211 space-time with a negative cosmological
constant @the so called Bañados-Teitelboim-Zanelli ~BTZ!
blackhole @15,16## also enhanced the interest in 3D gravity,
particularly in view of the role it plays in string theory @17#.

The goal of this work is to use the Chern-Simons formu-
lation of three-dimensional ~3D! gravity to give a definition
for 3d noncommutative gravity. We will rely on the fact that
many classical and quantum aspects of noncommutative
Chern-Simons theory are well understood @18–31# to define
the noncommutative 3D gravity action in terms of the corre-
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sponding noncommutative Chern-Simons action ~NCCS!.1
The paper is organized as follows. We start by describing

in Sec. II the NCCS theory for the group GL(2,C), the one
that will be relevant for the formulation of noncommutative
3D gravity. Then, in Sec. III we establish the connection
between gauge fields and gravitational variables ~triad and
spin connection! so that the noncommutative ‘‘Einstein equa-
tions,’’ and their corresponding action, can be obtained. We
also work out the metric formulation of the equations. In
Sec. IV we study gravitational solutions for the particular
topology M 35T23R. After showing the chiral character of
these solutions, we construct the corresponding metric and
explore its conformal properties and relate it to the corre-
sponding commutative solutions. In Sec. V we couple the
chiral solution to a constant Abelian field and discuss how
noncommutative effects determine the properties of the re-
sulting black hole solution.

II. NONCOMMUTATIVE CHERN-SIMONS THEORY

Noncommutative Chern-Simons theory can be defined by
the equations of motion

]mAn2]nAm1Am*An2An*Am50, ~1!

which are invariant under the noncommutative gauge trans-
formations

Am8 5U21*Am*U1U21*]mU . ~2!

Here the * product of two functions f (x) and g(x) is defined
as

~ f *g !~x !5expUS i
2 umn]xm

]ynD f ~x !g~y !U
y5x

~3!

with umn a constant antisymmetric matrix.

1There is another kind of noncommutative field theories, namely,
the so called q-deformed theories. In this context, a q-deformed 3D
gravity theory has been discussed using the CS connection @32#.
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It is important to note that noncommutative Chern-
Simons theory is not invariant under diffeomorphisms. In
particular, the known relation between diffeomorphisms and
gauge transformations, discussed in Ref. @14#, breaks down.
In other words, the group of gauge transformations does not
include the diffeomorphisms, as in the commutative case. We
also mention that in the applications to general relativity the
relevant gauge group is noncompact and therefore the quan-
tization is nontrivial. We shall restrict our discussion to clas-
sical considerations.

The Seiberg-Witten @3# map provides a powerful method
to find solutions to Eq. ~1!. In fact, the key property of this
map is that Â1 d̂Â5Â(A1dA) ~with A and Â gauge fields
for spaces with different values of umn). Thus, if A is a
solution to the commutative equation dA1AA50, it fol-
lows that Â is a solution to the noncommutative equation.

Euclidean gravity, which will be our main interest here,
can be formulated as a Chern-Simons theory for the group
SL(2,C). It is well known, however, that in the noncommu-
tative case this group is not closed with respect to the Moyal
product and thus we are forced to consider GL(2,C). The
gauge field APGL(2,C) can be expanded in the basis
$Ja ,i%,

Am5Am
a Ja1bm i , ~4!

where J15(i/2)s1 ,J252(i/2)s2 ,J35(i/2)s3 are anti-
Hermitian (sa are the Pauli matrices!. Since Aa and b are
complex, we define a second field

Ām5Ām
a Ja1 b̄m i ~5!

which satisfies the Chern-Simons equations as well. It is con-
ventional to use the same basis $Ja ,i% for both fields and
thus Ām is not the complex conjugate of Am .

The Abelian field b can be set equal to zero in the com-
mutative case because it decouples from Aa. This is no
longer true in the noncommutative theory, although solutions
with b50 do exist.

The full set of equations for A is

Fa@A#52i~Aa*b1b*Aa!,

db52i~b*b1~1/4!Aa*Aa! ~6!

with Fa@A#5dAa1(1/2)e bc
a Ab*Ac. The right-hand side

terms are zero at u50 showing that Aa and b are decoupled
in the commutative limit. For future reference, we mention
that ‘‘flat’’ solutions with Fa50 exist provided

Aa*b1b*Aa50. ~7!

Analogous equations can be written for Ā.
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III. THREE-DIMENSIONAL NONCOMMUTATIVE
GRAVITY

A. Connection representation

Consider a GL~2,C! gauge field A, satisfying two copies
of Eq. ~1!:

dA1A*A50, ~8!

dĀ1Ā*Ā50. ~9!

~Here, the wedge symbol has been omitted.! Now we define
the combinations

e5
l

2i ~A2Ā!,

w5
1
2 ~A1Ā!, ~10!

where e5eaJa1e4 i and w5waJa1w4 i . These relations
are the natural noncommutative generalization of

ea5
l

2i ~Aa2Āa!,

wa5
1
2 ~Aa1Āa!. ~11!

Adding and subtracting the Chern-Simons equations, it is
direct to prove that e and w satisfy the noncommutative
‘‘Einstein equations’’:

dw1w*w2
1
l2 e*e50, ~12!

de1w*e1e*w50. ~13!

These equations can be derived from the noncommutative
‘‘Einstein-Hilbert’’ action

I@e ,w#5E TrS R*e2
1

3l2 e*e*e D , ~14!

where R5dw1w*w . The variation with respect to the triad
yields Eq. ~12! while the variation with respect to w yields
the noncommutative torsion condition ~13!. In deriving the
equations of motion from Eq. ~14! one has to take into ac-
count surface terms which arise in handling Moyal products
~and are absent in the ordinary commutative case!. This
terms vanish for the choice of umn that will be done below
~see Sec. IV!.

Despite the similarities between the action ~14! and the
usual Einstein-Hilbert action, it should be kept in mind that,
in the former, the Abelian fields b and b̄ are coupled to ea

and wa in a nontrivial way. The full action ~14! depends on
all fields,

I5I@ea,wa,b , b̄# . ~15!
2-2
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The couplings between b and the gravitational variables are
proportional to u . We define noncommutative three-
dimensional gravity by this action.

If we set the Abelian fields equal to zero, Eqs. ~12! and
~13! become

Ra2
1
l2 e bc

a eb*ec50, ~16!

dea1~1/2!e bc
a wb*ec1~1/2!e bc

a eb*wc50, ~17!

where Ra5dwa1(1/2)e bc
a wb*wc. The first equation can be

regarded as a noncommutative constant curvature condition,
written in terms of connections. The second equation is the
analogous to a torsion condition. This equation, however,
does not imply that the affine connection is symmetric.

Equations ~16! and ~17! are valid provided the equations
for the Abelian field are satisfied with b5 b̄50. This implies,

1

l2 ea*ea2wa*wa50, ~18!

ea*wa1wa*ea50 ~19!

~which are identically satisfied at u50). We shall display
below explicit solutions fulfilling these conditions.

B. Metric representation

Equations ~16! and ~17! have the same form of Einstein
equations in the triad formalism, where all products of func-
tions have been replaced by the * product. It is now natural
to ask whether there exists a metric formulation for them.

We shall assume that the constraints ~19! are satisfied and
try to write Eq. ~16! in terms of the metric and affine con-
nection. ~See Refs. @8–11# for other approaches to this prob-
lem in four dimensions.!

We define the metric and affine connection as2

gmn5e m
a *en

b hab , ~20!

Glr
m 5eabcema*w r

b *e l
c 1e a

m *]rea
l . ~21!

In other words, gmn and G mn
r represent, as usual, the metric

and connection in the coordinate basis. Given ea and wa, the
above formulas completely determines g and G . If ea and wa

satisfy the Chern-Simons equations, we would like to find
the differential equation satisfied by g and G .

The curvature in the coordinate basis is

2The definition of the affine connection can be motivated by the
gauge invariance of the action. Under gauge transformations the
spin connection transforms as w→w85U21*w*U1U21*dU . Let
w85G ls

r be the connection in a coordinate basis related to the
tangent basis via the matrix U5e m

a . The new connection G ls
r

becomes ~21!. This equation can also be expressed as ]re l
a

1e bc
a w r

b *e l
c 2e m

a *G lr
m 50, i.e., the full covariant derivative of

e m
a is zero.
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R n
m 5dG n

m 1G s
m *G n

s ~G n
m 5G ns

m dxs!, ~22!

and it is related to Ra by the formula

R n
m 5eabc ema*Rb*e n

c . ~23!

This follows by direct replacement of Eq. ~21! into Eq. ~22!,
and it expresses the fact that the curvature is a tensor. Since
Ra satisfies Eq. ~16! we find the ‘‘Einstein’’ equation

R n ab
m 52

1
l2 ~da

mgbn2db
mgan!1E n ab

m , ~24!

where gmn is defined in Eq. ~20!, and

E n ab
m 5

1

2l2 e a
m *~e [a

a *e b]
b 2e [b

b *e a]
a !*ebn . ~25!

The first term in Eq. ~24! is the usual contribution from
the cosmological constant to the Einstein equations. Recall,
however, that in this theory the metric is not symmetric. The
second term (E) is a purely noncommutative effect, depend-
ing on the commutator of triads with respect to the Moyal
product, and cannot be expressed in terms of the metric only.

To summarize, given ea and wa satisfying the Chern-
Simons equations of motion then the metric ~20! and affine
connection ~21! satisfy the ‘‘Einstein’’ equation ~24!. We
shall exhibit below a family of solutions satisfying these
equations.

IV. SOLUTIONS

Before discussing the gravitational solutions, we shall
make some general remarks on the solutions to the Chern-
Simons equations. All solutions considered here live on the
topology M 35T23R. We shall not consider the generaliza-
tion to other topologies with higher genus. The local coordi-
nates on T2 are $z , z̄% and rPR. The components of the
gauge field are then Am5$Az ,Az̄ ,Ar%. We shall take urz
5ur z̄50 while the noncommutative coordinates satisfy

@z , z̄#5u . ~26!

This means that, to first order in u ,

f *g5 f g1
u

2 ~] f ]̄g2 ]̄ f ]g !1O~u2! ~27!

with ]5]/]z , ]̄5]/] z̄ . In particular, we find the Moyal rep-
resentation of Eq. ~26!, z*z̄2 z̄*z5u . We shall not consider
the generalization to other topologies with higher genus.

The choice of manifold M 3 and nontrivial component of
umn ensures that when varying the CS action one can use the
cyclic property of the * product without worrying about sur-
face terms. The boundary condition Az̄50 is required in
order to have well defined functional derivatives of the CS
action.

It should be clear that the 3D black hole @15,16# ~the
Euclidean three-dimensional black hole has been studied in
2-3
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Ref. @33#, and Euclidean anti–de Sitter space in Ref. @34#! is
a solution to the full noncommutative equations simply be-
cause this field has two Killing vectors ]z and ] z̄ , which
effectively reduce the Moyal product to the usual one.

In order to explore the noncommutative structure, we
need to look at more general solutions. We shall start by
looking at solutions to the noncommutative Chern-Simons
equations.

A. The chiral solution

Let us rewrite the first of Eqs. ~6! in the form

Frz
a @A#1i@br ,Az

a#1i@Ar
a ,bz#50,

Fr z̄
a

@A#1i@br ,Az̄
a
#1i@Ar

a ,bz̄#50,

Fzz̄
a

@A#1i@bz ,Az̄
a
#1i@Az

a ,bz̄#50, ~28!

where @A ,b#5A*b2b*A . Now, fixing the gauge to

Ar5iJ3, br50 ~29!

the first two equations ~28! become

]rAz
a1id b

3 « c
ab Az

c50,

]rAz̄
a
1id b

3 « c
ab Az̄

c
50 ~30!

with solution

Az5d21Ãz~z , z̄ !d ,

Az̄5d21Ã z̄~z , z̄ !d , ~31!

where

d5eirJ3
. ~32!

Now, the boundary condition Az̄u]M50 implies Ã z̄50, this
resulting in Az̄50. Finally, replacing this solution in the last
equation in Eq. ~28!, we obtain

] z̄Az
a1i@bz̄ ,Az

a#5Dz̄@b#Az
a50. ~33!

Let us now study the last equation in Eq. ~6!

]rbz2]zbr1i@br ,bz#1
i
4 @Ar

a ,Aza#50,

]rbz̄2] z̄br1i@br ,bz̄#1i
i
4 @Ar

a ,Az̄a#50,

]zb z̄2] z̄bz1i@bz ,bz̄#1i
i
4 @Az

a ,Az̄a#50. ~34!

Using Az̄50 and the gauge condition ~29!, Eq. ~34! reads
08401
]rbz50,

]rbz̄50,

]zb z̄2] z̄bz1i@bz ,bz̄#50. ~35!

One then sees that bz ,bz̄ must be independent of r . Being
the boundary condition bz̄u]M50, this implies that bz̄50 ev-
erywhere. The remaining equation is

] z̄bz50 ~36!

and then bz5bz(z). With this solution for the U(1) field, the
Eq. ~33! simplifies to

] z̄Az
a50, ~37!

which implies Az5Az(z).
Then, the general solution to Eqs. ~6! with boundary con-

ditions Az̄u]M5bz̄u]M50, closely related to the 3D black
hole, is chiral,

Az5d21Ãz~z !d ,

Az̄50,

Ar5iJ35d21]rd ,

bz5bz~z !,

br5bz̄50 ~38!

with Ãz(z),bz(z) arbitrary Lie algebra-valued functions of z.
This configuration solves both, the commutative and non-
commutative equations. It can also be checked that it is a
fixed point under the Seiberg-Witten map @3#. A similar
analysis can be done for the second complex field Ā leading
to a solution analogous to Eq. ~38! but with Az(z)→Ā z̄( z̄),
bz(z)→ b̄ z̄( z̄) and d→d21.

A gauge transformation ~with group element d21) brings
the solution to the simpler form

Az5Az~z !,

Az̄5Ar50,

bz5bz~z !,

bz̄5br50. ~39!

An important property of Eq. ~39! is its Kac-Moody sym-
metry under holomorphic gauge transformations. To see this,
let us specialize to the case bz50 and note that the configu-
ration ~39! is form invariant under gauge transformations
which only depend on z. Let l5l(z). We act with the non-
commutative transformation ~2! and find

dAz5]zl1Az*l2l*Az5]zl1Azl2lAz , ~40!

dAz̄50, ~41!
2-4
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dAr50. ~42!

The * product has been eliminated because the whole solu-
tion only depends on z. This symmetry of the space of solu-
tions ~39! is generated by a Kac-Moody algebra and play an
important role in various approaches to understand the 3d
black hole entropy as well as the Brown-Henneaux confor-
mal symmetry.

B. The metric

Let us construct the metric corresponding to the solution
found above. We start from Eq. ~20! with the vierbeins em
contructed according to Eq. ~10! which, for the affine solu-
tion takes the form

ez
aJa5

l
2i d21Ã~z !d , ez̄

aJa52
l

2i d Ã̄~ z̄ !d21,

er
aJa5lJ3 . ~43!

Defining

Ã5
i
2 S A3 A1

A2 2A3D , Ã̄5
i
2 S Ā3 Ā1

Ā2 2Ā3D ~44!

then, the symmetric ~arc length! part of the associated metric
is ds25gmndxmdxn,

ds25l2dr22
l2

4 ~A32
1A1A2!dz22

l2

4 ~ Ā32
1Ā1Ā2!dz̄2

1
l2

8 ~2$A3,Ā3%11$A2,Ā1%1e22r

1$A1,Ā2%1e2r!dzdz̄1il2Ā3dz̄dr2il2A3dzdr .

~45!

At this point, we are interested in determining the conditions
to be imposed on the gauge fields in order to have an asymp-
totically AdS metric. To this end, we follow Ref. @35# ex-
tended to the noncommutative case. The nondiagonal com-
ponents should be absent. This can be achieved taking A3

5Ā350, conditions that extend to the noncommutative case
the first Polyakov reduction condition. The resulting metric
is

ds25l2dr22
l2

4 A1A2dz22
l2

4 Ā1Ā2dz̄2

1
l2

8 ~$Ā1,A2%1e22r1$A1,Ā2%1e2r!dzdz̄

~46!

which has an asymptotic (r→`) form

ds25l2dr21
l2

8 $A1,Ā2%1e2rdzdz̄ . ~47!
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Then, to match with the AdS form we need to impose the
condition

$A1,Ā2%158. ~48!

Taking the derivatives with respect to z and z̄ we obtain the
relations ~remember that A1 is holomorphic and Ā2 is anti-
holomorphic!

$]zA1,Ā2%150, $A1,] z̄Ā2%150. ~49!

In the usual commutative case these relations will imply con-
stants A1,Ā2. To test this in the noncommutative case, let us
first observe that following Ref. @36#, one can write

f ~z !*g~ z̄ !5e (u/2)]]̄ f ~z !g~ z̄ !,

g~ z̄ !* f ~z !5e2(u/2)]]̄ f ~z !g~ z̄ ! ~50!

which implies

1
2 $ f ,g%5

1
2 ~e (u/2)]]̄1e2(u/2)]]̄! f ~z !g~ z̄ !

5coshS u

2 ]]̄ D f ~z !g~ z̄ !. ~51!

Using this, Eqs. ~49! can be rewritten as

coshS u

2 ]]̄ D ~]zA1Ā2!50, coshS u

2 ]]̄ D ~A1] z̄Ā2!50.

~52!

Calling cl and l the eigenfunctions and eigenvalues of ]]̄
and assuming that $cl% is complete, one can write
cosh@(u/2)]]̄#5(lcosh@(u/2)l#ucl&^clu. This ensures that
cosh@(u/2)]]̄# has no zero modes and then one has, from Eq.
~52!

]zA1Ā250, A1] z̄Ā250 ~53!

this implies that A1,Ā2 should be constants. Then we have
found the second reduction condition

A152, Ā252. ~54!

We conclude that in order to have an asymptotic AdS form in
the noncommutative case, one needs to impose just the usual
Polyakov reduction conditions, previously discussed in Ref.
@35#. In this case, Eqs. ~44! take the form

Az5iS 0 er

1
2l T~z !e2r 0 D , ~55!

Ā z̄5iS 0
1
2lT̄~ z̄ !e2r

er 0
D , ~56!
2-5
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Ar52Ār5iJ3 ,

Az̄5Āz5b5 b̄50. ~57!

With this, the symmetric metric as defined in Eq. ~45! be-
comes

ds25l2dr22
l
2 Tdz22

l
2T̄dz̄21

1
8 ~$T̄ ,T%1e22r

18l2e2r!dzdz̄ . ~58!

We see that the only component of the symmetric metric
affected by noncommutativity is gzz̄

S . Using Eq. ~50!, this
component can be written as

gzz̄
S

5coshS u

2 ]]̄ D g̃ zz̄ , ~59!

g̃ being the metric constructed in Ref. @37# for the commu-
tative case. The operator cosh@(u/2)]]̄# acts similar to the
identity when applied to the other components of the metric
~all derivative terms vanish!,

gzz
S 5coshS u

2 ]]̄ D g̃ zz

g z̄z̄
S

5coshS u

2 ]]̄ D g̃ z̄ z̄ ~60!

so that the relation between the commutative and the ~sym-
metric! noncommutative solutions can be compactly written
as

gmn
S 5coshS u

2 ]]̄ D g̃mn . ~61!

The full metric gmn5gmn
S 1gmn

A , where gmn
A is the anti-

symmetric part, satisfies the ‘‘Einstein’’ equation ~24!. Note
that gmn

A is in fact nonzero. Its nonzero contributions come
from

gzz̄5expS u

2 ]]̄ D g̃ zz̄ , gz̄z5expS 2
u

2 ]]̄ D g̃ z̄z ~62!

which imply

gzz̄
A

5sinhS u

2 ]]̄ D g̃ zz̄ . ~63!

Recall that the deviation of Eq. ~24! from the ordinary
Einstein equations is encoded in the combination Em

nab
which depends on the commutator @ea

a ,eb
b# . In the present

case the only nonvanishing contribution to this commutator
is the (a5z ,b5 z̄) component, and it is proportional to the
commutator @T ,T̄#52 sinh@(u/2)]]̄#T(z)T̄( z̄). For future
use, let us end this section rewriting the solution ~55!,~56! in
the Ar50 gauge
08401
Az5iS 0 1
1
2l T~z ! 0D , ~64!

Ā z̄5iS 0
1
2lT̄~ z̄ !

1 0
D . ~65!

V. CONSTANT ABELIAN BACKGROUND

We consider in this section the chiral solution considered
in the last section coupled to a constant Abelian field of
magnitude Fzz̄5ia . We shall see that the black hole field
with constant values of T and T̄ will feel the Abelian field
due to noncommutative effects.

In order to fix the value of the Abelian field we add to the
action the term 22i* Tr(aA) where a is a fixed 2-form a

5adz`dz̄ . This is a term of the kind introduced in Ref.
@23#. The equations of motion ~1! are replaced by

]mAn2]nAm1Am*An2An*Am5amn i . ~66!

a is a number and it contributes only to the Abelian
curvature.3

The generalization of the chiral solution satisfying Eq.
~66! in the Ar50 gauge is simply

Az5A~z !2i a z̄

Az̄50, ~67!

Ar50.

Since the extra term only contributes to the Abelian field, one
could naively conclude that the black hole solution has not
changed. However, this field depends on both coordinates
and noncommutative effects do take place.

The point is that, the noncommutative structure of the
gauge transformations changes the affine algebra and, as a
result, Polyakov’s reduction conditions needs to be modified.
Let l5l(z) and compute the noncommutative gauge trans-
formation ~2! acting on Eq. ~67!. The components Ar and Az̄
are left invariant while the transformation for Az yields

dAz5]zl1~Az2ia z̄ !*l2l*~Az2ia z̄ !,

5~11iu a!]zl1Azl2lAz . ~68!

The extra term proportional to u comes from the Moyal for-
mula z̄* f 2 f *z̄52u ] f . The solution ~67! still has an affine
holomorphic Kac-Moody symmetry but its form has
changed.

3A constant noncommutative Abelian field has been studied in
detail in Ref. @38#.
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Even though the extra term au in Eq. ~68! does not affect
the gauge symmetries in any significant way,4 it does change
the definition of global charges. We shall see that the mass
and angular momentum of the black hole are modified by the
presence of a .

The point is that under the transformation ~68!, the reduc-
tion condition Az

152 is not consistent, and does not yield
the Virasoro algebra. The correct reduction conditions are

Az
350, Az

152~11ia u!, ~69!

and the Virasoro charge is T(z)5A2/(212iau). The re-
duced field is then

Az5i~11iau!S 0 1
T~z !

2l
0D . ~70!

In order to match the boundary conditions ~keeping the pe-
riodicity of the torus fixed! with the solution ~64! we perform
a constant gauge transformation on Az with a group element
g5eiaJ3 and a5log(11iau). The field ~70! is transformed
into

Az5iS 0 1

~11iau!2 T~z !

2l
0D ~71!

4In fact one could define A5(11au)A8 and A8 would transform
in the usual way. This corresponds to the Seiberg-Witten map @3#
applied to this particular situation.
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which is of the form ~64!. The antiholomorphic field can be
constructed in a similar way and one finds

Ā z̄5iS 0 ~12iāu!2 T̄~ z̄ !

2l
1 0

D . ~72!

For constant values of T and T̄ this field represent a black
hole. However, the relation between the mass and angular
momentum and the Virasoro charges have changed,

Ml5~11iau!2T1~12iāu!2T̄ , ~73!

iJ5~11iau!2T2~12iāu!2T̄ . ~74!

It is instructive to expand these relations to first order in
u ,

lM5lM 012ua J0 , ~75!

J5J022ua lM 0 , ~76!

where M 0 and J0 are the values of M and J at a50. For
example one can start at a50 with a nonrotating black hole
(J050). Then we turn on the Abelian field with aÞ0 and
find that the corresponding black hole will have a nonzero
angular momentum.
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