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Abstract

Concurrency is used pervasively in the development of
large systems programs. However, concurrent program-
ming is difficult because of the possibility of unexpected
interference among concurrently executing tasks. Such
interference often results in “Heisenbugs” that appear
rarely and are extremely difficult to reproduce and de-
bug. Stress testing, in which the system is run under
heavy load for a long time, is the method commonly
employed to flush out such concurrency bugs. This
form of testing provides inadequate coverage and has un-
predictable results. This paper proposes an alternative
called concurrency scenario testing which relies on sys-
tematic and exhaustive testing We have implemented a
tool called CHESS for performing concurrency scenario
testing of systems programs. CHESS uses model check-
ing techniques to systematically generate all interleav-
ing of a given scenario. CHESS scales to large concur-
rent programs and has found numerous previously un-
known bugs in systems that had been stress tested for
many months prior to being tested by CHESS. For each
bug, CHESS is able to consistently reproduce an erro-
neous execution manifesting the bug, thereby making it
significantly easier to debug the problem. CHESS has
been integrated into the test frameworks of many code
bases inside Microsoft and is being used by testers on a
daily basis.

1 Introduction

Given the importance and prevalence of concurrent sys-
tems,1 it is unfortunate that there exists no first-class
notion of concurrency testing. What is “concurrency
testing”? In theory, concurrency testing is the process
of testing a concurrent system for correct behavior un-
der all possible schedules. In practice, people almost
always identify concurrency testing with stress testing,
which evaluates the behavior of a concurrent system un-

der load. While stress testing does indirectly increase
the variety of thread schedules, such testing is far from
sufficient. Stress testing does not cover enough different
thread schedules and, as a result, yields unpredictable re-
sults. A bug may surface one week, when stress testing
happens to cover a low-probability schedule, and then
disappear for months. Stories are legend of the so-called
“Heisenbugs” that rarely surface and are hard to repro-
duce. Still, the mark of reliability of a system remains its
ability to run for a long time under heavy load without
crashing.

We introduce a new concept called concurrency sce-
nario testing that is applicable to large systems.The sys-
tem designer thinks of interesting concurrency scenar-
ios. For instance, an interesting scenario for a device
driver is concurrently receiving both an I/O message and
a shutdown message. These scenarios are system spe-
cific and intuitively correspond to unit-tests for sequen-
tial programs, though we expect concurrent scenarios to
be more complex.

Given these scenarios, we use model checking [7, 31]
techniques to systematically cover all thread schedules.
A model checker essentially captures the nondetermin-
ism of a system and then systematically enumerates all
possible choices. For a multithreaded process, this ap-
proach is tantamount to running the system under a de-
monic scheduler. We identify and address three key
challenges in making model checking applicable to large
shared-memory multithreaded programs.

First, existing model checkers requires the program-
mer to do a huge amount of work just to get started. We
call this the ”perturbation problem.” Traditional methods
for model checking are meant to formally verify abstract
models and do not work on real code. Other direct-
execution methods for checking multithreaded code re-
quire significant modifications to the system under test.
For instance, CMC [26, 39] requires running the Linux
kernel in user-space in order to analyze it, a non-trivial
engineering effort. Tools like JPF [37] and ExitBlock [4]

2



force the user to use a specialized JVM. Other recent
approaches to model checking systems code, such as
MaceMC [19], require writing the program in a new pro-
gramming language.

The perturbation problem makes model checking a
non-starter for testers who want better control over the
execution of concurrent programs. Whenever code is
changed for the benefit of testing, the tester knows that
the real bits are not being tested. Moreover, testers do not
have the luxury of changing code. Changing code takes
time and is risky. Finally, testers already have extensive
and varied test infrastructure in place and are unwilling to
“buy into” a different testing tool. Therefore, a concur-
rency test tool should easily integrate with existing test
infrastructure with no modification to the system under
test and little modification to the test harness.

Second, concurrency is enabled in most systems via
rich and complex concurrency APIs.2 For instance, the
Win32 API [25] used by most user-mode Windows pro-
grams contains more than 200 threading and synchro-
nization functions, many with different options and pa-
rameters. We wish to wrap the concurrency APIs to cap-
ture and control the nondeterminism inherent in the API,
without changing the underlying OS scheduler or reim-
plementing the synchronization primitives of the API.
Again, the principle of minimal perturbation is key to
making model checking an effective test tool.

Finally, we have the classic problem of state-space
explosion. The number of thread interleavings even
for small systems can be astronomically large. Scal-
ing model checking to such large systems essentially re-
quires various techniques to focus the systematic enu-
meration to interesting parts of the state space that are
more likely to contain bugs. Recent work [14, 26, 39,
19] has successfully applied model checking to coarse-
grained message-passing systems. However, it is not
clear how to adapt such techniques for shared-memory
multithreaded programs with fine-grained concurrency.

In this paper, we address all these challenges with
a tool called CHESS. CHESS enables systematic test-
ing and debugging of three classes of multithreaded
programs—user-mode Win32 programs, .NET pro-
grams, and Singularity [16] applications. The main con-
tribution of CHESS is that it eliminates the nondeter-
minism inherent in multithreaded execution, systemati-
cally exploring thread schedules in a deterministic man-
ner and, when a bug is discovered, reproducing the exact
thread schedule that led to the bug.

To solve the perturbation problem, we first observe
that most concurrency tests have been designed to run
repeatedly millions of times for the purpose of stress
testing. This means that at the end of a concurrency
test, all allocated resources are freed and any global
state is reset. CHESS leverages this idempotency of

concurrency tests in its testing methodology (see Fig-
ure 1). Given an idempotent test, CHESS repeatedly ex-
ecutes the test in a loop, exploring a different schedule
in each iteration. In particular, CHESS does not need
to track any program state, including the initial state,
making it relatively easy to attach CHESS to an existing
test. The test harness either exposes the TestStartup,
RunTestScenario, TestShutdown functions to
CHESS, or the tester introduces appropriate calls to
CHESS in an existing test framework.

The only perturbation introduced by CHESS is a thin
wrapper layer between the program under test and the
concurrency API (see Figure 2). This is required to cap-
ture and explore the nondeterminism inherent in the API.
We have developed a methodology for writing wrap-
pers that provides enough hooks to CHESS to control the
thread scheduling without changing the semantics of the
API functions and without modifying the underlying OS,
the API implementation, or the system under test. We are
also able to map complex synchronization primitives into
simpler operations that greatly simplify the process of
writing these wrappers. We have validated our methodol-
ogy by building wrappers for three different platforms—
Win32, .NET, and Singularity.

Finally, CHESS uses a variety of techniques, discussed
in Section 4 to address the state-explosion problem. The
CHESS scheduler is non-preemptive by default, giving it
the ability to execute large bodies of code atomically. Of
course, a non-preemptive scheduler is at odds with the
fact that a real scheduler may preempt a thread at just
about any point in its execution. Pragmatically, CHESS
explores thread schedules giving priority to schedules
with fewer preemptions. The intuition behind this search
strategy, called preemption bounding [27], is that many
bugs are exposed in multithreaded programs by a few
preemptions occurring in particular places in program
execution. To scale to large systems, we had to im-
prove upon preemption bounding in several important
ways. First, we not only restrict preemptions at synchro-
nization points (calls to synchronization primitives in the
concurrency API) we also only preempt at volatile vari-
ables that participate in a data race. Second, we give
the tester the ability to control the components to which
preemptions are added (and conversely the components
which are treated atomically). This is critical for trusted
libraries that are known to be thread-safe.

This paper is the culmination of a three-year effort in
applying model checking techniques to comprehensively
test concurrent programs. Our testing methodology has
been validated by the successful integration of CHESS
into the test frameworks of several codebases inside Mi-
crosoft (§5). Using CHESS, we have found 25 unknown
bugs; each bug was found by running an existing stress
tests, modified to run with smaller number of threads.
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Moreover, CHESS produced a consistently reproducible
execution for each bug, greatly simplifying the debug-
ging process. Interestingly, one bug found by CHESS
was the root cause of more than 30 previously hard-to-
debug Heisenbugs.

More importantly, more than half of the bugs were
found by Microsoft testers—people other than the au-
thors of this paper. We emphasize this point because
there is a huge difference between the robustness and us-
ability of a tool that researchers apply to a code base of
their choice and a tool that has been released ”into the
wild” to be used daily by testers. CHESS has made this
transition successfully. Furthermore, we have demon-
strated that CHESS scales to large code bases. It has
been applied to Dryad, a distributed execution engine for
coarse-grained data-parallel applications [18] and Singu-
larity, a research operating system.

We would like to emphasize that although CHESS is a
testing tool dependent on the concurrent test scenario that
a tester creates, it has the capability to explore all thread
schedules of that test scenario (up to a given a preemption
bound). Testers who use CHESS appreciate this concept
of quantified soundness and, indeed, have themselves
pushed us in this direction. In particular, the soundness
guarantee is critically important to the use of CHESS in
testing a software transactional memory (STM) library.
The test harness of this library uses CHESS to compare
the behaviors of the STM implementation under different
memory consistency models.

To summarize, the main contributions of this paper are
the following:

• the first system for integrating model checking into
concurrent systems and test frameworks with mini-
mal perturbation;

• techniques for systematic exploration of systems
code for fine-grained concurrency with shared
memory and multithreading;

• validation of the CHESS tool and its accompany
testing and wrapper methodology on three different
platforms;

• a substantial number of previously unknown bugs,
even in well-tested systems;

• the ability to consistently reproduce crashing bugs
with unknown cause.

2 Using CHESS

In this section, we describe how CHESS is used to sys-
tematically test a concurrent program. From the point of
view of CHESS, a concurrent program is an isolated code
module that exports three functions—TestStartup,

TestStartup();
Chess.Quiesce();

while(true){
RunTestScenario();
Chess.Quiesce();
if(Chess.Done()) break;

}

TestShutdown();

Figure 1: The CHESS testing methodology. CHESS re-
peatedly executes the RunTestScenario exploring a
different schedule in each iteration.

RunTestScenario, and TestShutdown. The plat-
form on which such a module is expected to run typically
exposes a concurrency API for two purposes—for creat-
ing a new task that will execute in parallel with existing
tasks, and for creating and accessing primitive objects
that will be used for synchronization among the tasks.
For example, a user-mode Windows application may use
the function CreateThread to create a new thread
and the functions InitializeCriticalSection,
EnterCriticalSection, and
LeaveCriticalSection to respectively cre-
ate, acquire, and release a lock object. Intuitively,
TestStartup is expected to prepare the input for the
test by allocating and initializing needed data structures,
RunTestScenario creates and executes the tasks
participating in the concurrency scenario being tested,
and TestShutdown disposes any allocated resources
after the test is finished.

Testing scenarios for real-world concurrent pro-
grams invariably have functions that are analo-
gous to TestStartup, RunTestScenario, and
TestShutdown. The essence of traditional testing is
captured by the following code fragment, whose net ef-
fect is to call TestStartup once, followed by repeated
calls to RunTestScenario, followed by a final call to
TestShutdown.

TestStartup();
while(true){
RunTestScenario();
if(*) break;

}
TestShutdown();

There are two disadvantages of this traditional test-
ing method. First, there is little scheduling variance
among the various calls to RunTestScenario result-
ing in poor coverage and possibility of latent bugs that
are manifested later possibly after the software is de-
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ployed. Second, even if a bug is revealed during a call
to RunTestScenario, the buggy execution might not
replay on a subsequent call making such errors extremely
difficult to debug. On the other hand, testing the scenario
with CHESS is tantamount to executing the code shown
in Figure 1; this is identical to the code executed with tra-
ditional testing but for the callbacks Chess.Quiesce
and Chess.Done whose purpose will be explained
later in this section. As with traditional testing, each exe-
cution of RunTestScenario is a legal interleaving of
the tasks in the scenario. In addition, CHESS guarantees
that every execution of RunTestScenario generates
a new interleaving and that each such interleaving can be
replayed.

To provide these guarantees, CHESS must control the
scheduling of the tasks in the test scenario. One way to
achieve this control is to modify the scheduler in the run-
time platform of the test module. We avoided this option
for two main reasons. First, this option contradicts our
philosophical goal of perturbing the system under test as
little as possible. Second, the deployment of CHESS in
practical testing situations would be severely limited if
it required its own modified version of the runtime plat-
form. Instead, CHESS controls the scheduling of tasks
by instrumenting all functions in the concurrency API of
the platform that create tasks and access synchronization
objects (Figure 2). The instrumentation wrappers have to
be written once for each platform, e.g. WIN32 or CLR,
and are reused for all programs written for that platform.
We explain the implementation of these wrappers in Sec-
tion 3.

The callbacks Chess.Quiesce and Chess.Done
are part of the contract between CHESS and the test pro-
gram that allows CHESS to control the task scheduling
using instrumentation wrappers. CHESS requires that
every call to RunTestScenario is performed only
when the system being tested has reached quiescence.
Let us refer to the task executing the code in Figure 1
as the main task. Informally, quiescence means that
the computation in the system has ceased temporarily.
The computation restarts as soon as the main task calls
RunTestScenario. Thus, CHESS takes the test sce-
nario from one quiescent state to another quiescent state
via interleavings, each of which is guaranteed to be dis-
tinct. The callback Chess.Quiesce asks CHESS to
wait until the system under test has reached quiescence.
CHESS supports several different modes for reaching
quiescence, as described in Section 2.1. In order to
determine when to terminate the testing, the callback
Chess.Done simply asks CHESS if there are any in-
terleavings that remain to be explored.

CHESS makes two important assumptions about the
test program. First, the test program should be isolated
from any other computation running on the test platform.

For testing a user-mode application on the WIN32 plat-
form, this is easily achieved if the application has no
tasks other than those created in TestStartup and
RunTestScenario. If such tasks exist, then it is up
to the tester to make sure they do not interfere with the
tasks in the program being tested. Second, each ex-
ecution of RunTestScenario must be idempotent,
that is, the quiescent states at the beginning and end
of RunTestScenario must be behaviorally equiva-
lent. Idempotence of the test guarantees that there is
a unique quiescent state of the program. An interleav-
ing of tasks in RunTestScenario then corresponds
to a unique non-quiescent state obtained by executing
that interleaving from the unique quiescent state. Thus,
CHESS to systematically generate all interleavings of
RunTestScenario without capturing any state of the
program including the quiescent state. Section 4 de-
scribes the details of the search algorithm. The idempo-
tence requirement is usually simple to satisfy; it means
that RunTestScenario must free all allocated re-
sources and reset any global state accessed by the com-
putation. We have observed that most real-world test pro-
grams already satisfy this requirement because they are
designed to run repeatedly for a long time.

2.1 Quiescence

The simplest kind of quiescent state is one in which
the main task is the only task in the system and it
is about to call RunTestScenario. In such a test
case, a call to TestStartup simply initializes data
structures without creating any tasks, while a call to
RunTestScenario creates tasks but waits for all of
them to terminate before returning. Detecting such a qui-
escent state is quite simple.

A more general quiescent state is one in which there
are several tasks in the system including the main
task. In this state, the main task is about to call
RunTestScenario and each of the other tasks is
blocked on a synchronization object. In such a test
case, a call to TestStartup not only initializes data
structures but also creates worker tasks that typically
block on some resource waiting for work. A call to
RunTestScenario creates a few work items which
are processed by the workers until the next quiescent
state in which they again block waiting for work. Such
a quiescent state is also simple to detect; it is similar to
a deadlock state except that the main task is enabled and
about to call RunTestScenario.

The most general quiescent state handled by CHESS
is one in which the main task is about to call
RunTestScenario and the other tasks are either
blocked on a synchronization object or in a livelock.
In such a test case, a call to TestStartup, in addi-
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Figure 2: CHESS architecture

tion to initializing data structures and creating worker
threads, also creates a few background tasks that wake
up periodically to perform some activity such as flushing
dirty buffers. These background tasks are different from
blocking worker tasks because in the quiescent state, they
usually sleep for some fixed time rather that blocking on
a synchronization object. CHESS detects such a state
by keeping track of elapsed time accumulated by sleep
statements. When the total elapsed time reaches a large
value, CHESS considers it to be a livelock. Note that this
strategy for detecting livelocks works only for fair sched-
ules in which all background threads get opportunity to
make progress. Fortunately, fairness is designed into the
CHESS scheduler [29]; more details are provided in Sec-
tion 4.3.

3 Capturing nondeterminism

Large concurrent programs contain a variety of asyn-
chronously executing entities such as threads, thread-
pool work items, timers, and asynchronous I/O. To en-
able systematic search, CHESS creates a simple abstrac-
tion for each such entity called a task. CHESS abstracts
a program as a nondeterministic state transition system
in which each transition is executed by a task. Given a
state and task enabled in it, executing the task results in a
unique new state; nondeterminism arises because in each
state more than one task may be enabled and any one of
them may be scheduled. The initial state of this system is
the unique quiescent state described in Section 2. Start-
ing from this initial state, an execution is obtained by
iteratively picking an enabled task and executing it for
one step. Given the task abstraction and knowledge of
the set of tasks enabled in a state, all such execution can
be systematically generated in a straightforward fashion.

The goal of the wrappers is to capture sufficient se-
mantics of the concurrency API to provide the abstrac-
tion mentioned above to CHESS. In this section, we de-
scribed the design of these wrappers for the Win32 API.

Let us first look at the wrapper for a function
that creates a new task (Figure 3). The function
CreateThread creates a new thread that starts the ex-

Wrapper_CreateThread(f,arg){
tid = Chess.Fork();
Closure c = <f, arg, tid>;
return Real_CreateThread(

ChessTaskWrapper, c);
}

ChessTaskWrapper(Closure c){
Chess.TaskBegin(c.tid);
DWORD retVal = c.f(c.arg);
Chess.TaskEnd(c.tid);

return retVal;
}

Figure 3: Task wrappers

ecution by calling the function pointer f with the ar-
gument arg. The wrapper for CreateThread in-
forms the CHESS scheduler that a new task is being
forked by calling Chess.Fork. It also creates a clo-
sure containing f, arg, and the task identifier returned
by Chess.Fork. Then instead of f and arg, it passes
a wrapper function ChessTaskWrapper and the clo-
sure to CreateThread. ChessTaskWrapper re-
trieves the original function and argument from the
closure and brackets the call to the function by
calls to Chess.TaskBegin and Chess.TaskEnd.
Chess.TaskBegin adds the child task to the set of
enabled threads. Chess.TaskEnd removes the child
task from the set of enabled threads and then schedules
another task. Other API functions that create tasks be-
have similarly by creating closures that bracket appro-
priate calls to TaskBegin and �TaskEnd.

We now show the wrappers for typical synchro-
nization functions (Figure 4). The simplest wrappers
are for non-blocking synchronization operations such
as InterlockedIncrement. The wrapper sim-
ply introduces a call to the CHESS scheduler indicat-
ing that a synchronization variable is about to be ac-
cessed. CHESS treats each access of a synchronization
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Wrapper_InterlockedIncrement(v) {
Chess.SyncVarAccess(v, RW);
return InterlockedIncrement(v);

}

Wrapper_EnterCriticalSection(cs) {
while (true) {

Chess.SyncVarAccess(cs, ACQUIRE);
if (TryEnterCriticalSection(cs))

return;
Chess.LocalBacktrack();

}
}

Wrapper_LeaveCriticalSection(cs) {
Chess.SyncVarAccess(cs, RELEASE);
LeaveCriticalSection(cs);

}

Wrapper_WaitForSingleObject(
handle, timeout) {

while (true) {
Chess.SyncVarAccess(handle, ACQUIRE);
ret = WaitForSingleObject(

handle, 0);
if !(ret == WAIT_TIMEOUT &&

timeout == INFINITE)
return ret;

Chess.LocalBacktrack();
}

}

Figure 4: Synchronization wrappers

variable as a potential point for introducing a context
switch. The wrappers for EnterCriticalSection
LeaveCriticalSection are more interesting; they
illustrate how CHESS solves the problem of keep-
ing track of the set of enabled threads in the pres-
ence of potentially blocking operations. To illustrate
the problem, note that if the wrapper simply called
EnterCriticalSection directly, then the CHESS
scheduler will deadlock if the lock is currently held by
another thread. Fortunately, the WIN32 API provides
a non-blocking version of EnterCriticalSection
called TryEnterCriticalSection that acquires
the lock if available and returns true, and other-
wise returns false without blocking. The wrap-
per calls TryEnterCriticalSection and then
Chess.LocalBacktrack if the lock is not available.
This call to Chess.LocalBacktrack is matched
with the preceding call to Chess.SyncVarAccess
and indicates that the current task is blocked on the
lock being accessed. The CHESS scheduler then re-
moves the current task from the set of enabled tasks,
adds it to the set of tasks waiting on this lock, and
schedules a different task. Later, when the task holding
this lock calls LeaveCriticalSection, the call to
Chess.SyncVarAccess inside the wrapper moves
every task waiting on this lock to the set of enabled
tasks. In our experience, concurrency APIs invariably
provide a “try” version for every blocking operation al-
lowing us to treat every other potentially-blocking op-
eration in the same fashion. For example, the wrapper
for WaitForSingleObject uses a timeout of 0 mil-
liseconds to create the non-blocking version of the oper-
ation.

The implementation of the task abstraction, while
mostly straightforward, has a few subtle cases, one of
which we describe here. The CHESS scheduler performs
cooperative scheduling of the tasks maintaining the in-
variant that only one task in the program is executing at
any given moment. When the currently executing task
calls Chess.TaskEnd, the CHESS scheduler must not
only schedule another task but also let the current task
continue to termination. Without proper care, a small
window is created where the aforementioned invariant
does not hold. This window might create an undesir-
able race condition if the newly scheduled task attempts
to join with the terminating task. The wrapper of the
join operation will attempt to join using the “try” ver-
sion of the operation as described earlier. The attempt
will succeed or fail depending on the relative timing of
the joining and terminating thread, thereby corrupting
the enabled set in the scheduler. To solve this problem,
Chess.TaskEnd maintains a variable whose value is
either null or the identifier of the terminating task. When-
ever a task is woken up by the CHESS scheduler, it first
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checks this variable and waits for the terminating thread
to finish if the value is non-null.

A task may also be created when a work item in a
threadpool is created using CreateUserWorkItem or
a timer is created using CreateTimerQueueTimer.
While threadpools are handled in the same way as
threads, timers are more complicated for several reasons.
First, a timer is expected to start after a time period spec-
ified in the call to create the timer. The CHESS scheduler
abstracts real-time and therefore creates a schedulable
task immediately. We feel this is justified because pro-
grams written for commodity operating systems usually
do not depend for their correctness on real-time guaran-
tees. Second, a timer may be periodic in which case it
must execute repeatedly after every elapse of a time in-
terval. Continuing our strategy of abstracting away real-
time, We handle periodic timers by converting them into
aperiodic timers executing the timer function in a loop.
Finally, a timer may be cancelled any time after it has
been created. We handle cancellation by introducing a
canceled bit per timer. This bit is checked just before
the timer function starts executing; the bit checked once
for an aperiodic timer and repeatedly at the beginning of
each loop iteration for a periodic timer. If the bit is set,
the timer task is terminated.

In addition to the synchronization operations dis-
cussed above, CHESS also handles communication prim-
itives involving FIFO queues such as asynchronous pro-
cedure calls (APC) and IO completion ports. Each
WIN32 thread has a queue of APCs associated with it.
A thread can enqueue a closure to the queue of an-
other thread by using the function QueueUserAPC.
The APCs in the queue of a thread are executed when
the thread enters an alertable wait function such as
SleepEx. Since the operating system guarantees FIFO
execution of the APCs, it suffices in the wrappers to pass
on the call to the actual function. The treatment of IO
completion ports is similar again because the completion
packets in the queue associated with an IO completion
port are delivered in FIFO order.

Asynchronous IO, usually in conjunction with events,
APCs, or IO completion ports, also introduces nondeter-
minism in concurrent programs. To understand the prob-
lem, consider the function

BOOL WINAPI ReadFileEx(
HANDLE hFile,
LPVOID lpBuffer,
DWORD nNumberOfBytesToRead,
LPOVERLAPPED lpOverlapped,
LPOVERLAPPED_COMPLETION_ROUTINE routine);

This function reads a file asynchronously and en-
queues a closure to the queue of APCs of the calling
thread upon completion. This behavior is inherently non-
deterministic and dependent upon the relative speed of

API No. of wrappers LOC
Win32 134 2512
.NET 64 1270
Singularity 37 876

Table 1: Complexity of writing wrappers for the APIs.
The LOC does not count the boiler-plate code that is au-
tomatically generated from API specifications.

the program and the IO operation executing in the ker-
nel. To expose this nondeterminism, we create a separate
task mapped onto a freshly created thread for each call
to ReadFileEx. This task performs the read operation
synchronously and when the read is finished enqueues
the completion routine to the caller of ReadFileEx us-
ing the function QueueUserAPC mentioned earlier.

3.1 Hooking the wrappers

Once the wrappers are defined, we use various mecha-
nisms to dynamically intercept calls to the real API func-
tions and forward them to the wrappers. For Win32 pro-
grams, we use dll shimming techniques to overwrite the
import address table of the program under test. For .NET
programs, we used a generalized CLR profiler [8] that re-
places calls to API functions with calls to the wrappers at
JIT time. Finally, for the Singularity API, we used static
IL rewriter [1] to make the modifications. Table 1 shows
the complexity and the amount of effort required to write
the wrappers.

4 Exploring nondeterminism

The previous section describes how CHESS obtains con-
trol at scheduling points before the synchronization op-
erations of the program and how CHESS determines the
set of enabled threads at each scheduling point. This sec-
tion describes how CHESS systematically drives the test
along different schedules

4.1 Basic scheduler operation

To maintain absolute control of the thread interleaving,
CHESS allows only one thread to execute at a time, es-
sentially emulating the execution of the test on a uni-
processor. The reason for this design decision is that
two or more threads running simultaneously could cre-
ate data-races whose outcome CHESS cannot control.
By systematically exploring the different interleavings,
CHESS still has the capability of driving the test along
any sequentially-consistent execution of the test possible
on a multi-processor.

8



CHESS repeatedly executes the same test driving each
iteration of the test through a different schedule. In each
iteration, the scheduler works in three phases: replay,
record, and search.

In the replay phase, the scheduler replays a sequence
of scheduling choices from a trace file. This trace file is
empty in the first iteration, and contains a partial sched-
ule generated by the search phase from the previous it-
eration. Once the replay is done, CHESS switches to the
record phase. In this phase, the scheduler behaves as a
fair, nonpreemptive scheduler. It schedules a thread till
the thread yields the processor either by completing its
execution, or blocking on a synchronization operation, or
calling one of the yielding operations such as sleep().
On a yield, the scheduler picks the next thread to ex-
ecute based on priorities that the scheduler maintains to
guarantee fairness (§4.3). Also, the scheduler extends the
partial schedule in the trace file by recording the thread
scheduled at each schedule point together with the set
of threads enabled at each point. The latter provides the
set of choices that are available but not taken in this test
iteration.

When the test terminates, the scheduler switches to
the search phase. In this phase, the scheduler uses the
enabled information at each schedule point to determine
the schedule for the next iteration. Picking the next in-
teresting schedule among the myriad choices available is
a challenging problem, and the algorithms in this phase
are the most complicated and computationally expensive
components of CHESS (§4.4).

The subsequent three subsections describe the key
challenges in each of the three phases.

4.2 Dealing with imperfect replay

Unlike stateful model checkers [37, 26] that are able to
checkpoint and restore program state, CHESS relies on
its ability to replay a test iteration from the beginning to
bring a program to particular state. As has been amply
demonstrated in previous work [10, 20, 23, 3], perfect
replay is impossible without significant engineering and
heavy-weight techniques that capture all sources of non-
determinism. In CHESS, we have made a conscious de-
cision to not rely on perfect replay capability. Instead,
CHESS can robustly handle extraneous nondeterminism
in the system, albeit at the cost of the exhaustiveness of
the search.

The CHESS scheduler can fail to replay a trace in the
following two cases. First, the thread to schedule at a
scheduling point is disabled. This happens when a par-
ticular resource, such as a lock, was available at this
scheduling point in the previous iteration but is currently
unavailable. Second, a scheduled thread performs a dif-
ferent sequence of synchronization operations than the

one present in the trace. This can happen due to a change
in the program control flow resulting from a program
state not reset at the end of the previous iteration.

When the scheduler detects such extraneous nondeter-
minism, the default strategy is to give up replay and im-
mediately switch to the record phase. This ensures that
the current test runs to completion. The scheduler then
tries to replay the same trace once again, in the hope that
the nondeterminism is transient. On a failure, the sched-
uler continues the search beyond the current trace. This
essentially prunes the search space at the point of nonde-
terminism. To alleviate this loss of coverage, CHESS has
special handling for the most common sources of nonde-
terminism that we encountered in practice.

Lazy-initialization: Almost all systems we have en-
countered perform some sort of lazy-initialization, where
the program initializes a data-structure the first time the
structure is accessed. If the initialization performs syn-
chronization operations, CHESS would fail to see these
operations in subsequent iterations. To avoid this nonde-
terminism, CHESS “primes the pump” by running a few
iterations of the tests as part of the startup in the hope of
initializing all data-structures before the systematic ex-
ploration. The downside, of course, is that CHESS loses
the capability to interleave the lazy-initialization opera-
tions with other threads, potentially missing some bugs.

Interference from environment: The system under
test is usually part of a bigger environment that could be
concurrently performing computations during a CHESS
run. For instance, when we run CHESS on Dryad we
bring up the entire Cosmos system (of which Dryad is a
part) as part of the startup. While we do expect the tester
to provide sufficient isolation between the system under
test and its environment, it is impractical to require com-
plete isolation. As a simple example, both Dryad and
Cosmos share the same logging module, which uses a
lock to protect a shared log buffer. When a Dryad thread
calls into the logging module, it could potentially inter-
fere with a Cosmos thread that is currently holding the
lock. CHESS handles this as follows. In the replay phase,
the interference will result in the current thread being dis-
abled unexpectedly. When this happens, the scheduler
simply retries scheduling the current thread a few times
before resorting to the default solution mentioned above.
If the interference happens in record mode, the sched-
uler might falsely think that the current thread is disabled
when it can actually make progress. In the extreme case,
this can result in a false deadlock if no other threads are
enabled. To distinguish this from a real deadlock, the
CHESS scheduler repeatedly tries scheduling the threads
in a deadlock state to ensure that they are indeed unable
to make progress.

Nondeterministic calls: The final source of
nondeterminism arises from calls to random() and
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gettimeofday(), which can return different values
at different iterations of the test. We expect the tester
to avoid making such calls in the test code. However,
such calls might still be present in the system under test
that the tester has no control over. We determinize calls
to random() by simply reseeding the random number
generate to a predefined constant at the beginning of each
test iteration. On the other hand, we do not determinize
time functions such as gettimeofday(). Most of the
calls to time functions do not affect the control flow of
the program. Even when they do, it is to periodically re-
fresh some state in the program. In this case, the default
strategy of retrying the execution works well in practice.

4.3 Ensuring fair schedules

All reasonable operating systems schedulers are fair —
they use various queueing policies and priority schemes
to ensure that no thread is starved forever. Moreover,
most concurrent programs implicitly assume scheduler
fairness for correct behavior. For instance, spin-loops are
very common in programs. Such loops would not ter-
minate if the scheduler continuously starves the thread
that is supposed to set the condition of the loop. Simi-
larly, some threads perform computation till they receive
a signal from another thread. An unfair scheduler is not
required to eventually schedule the signalling thread.

On such programs, it is essential to restrict systematic
enumeration to only fair schedules. Otherwise, a simplis-
tic enumeration strategy will spend a significant amount
of time exploring unfair schedules. 3 Moreover, errors
found on these interleavings will appear uninteresting to
the user as she would consider these interleavings im-
possible or unlikely in practice. Finally, fair scheduling
is essential for the CHESS testing methodology (§2) for
a subtle reason. CHESS relies on the termination of the
idempotent test scenario to bring the system to the initial
state. Most tests will not terminate on unfair schedules,
and with no other checkpointing capability, CHESS will
not be able to bring the system to the initial state.

Of course, it is unreasonable to expect CHESS to enu-
merate all fair schedules. For most programs, there are
infinitely many fair interleavings. To see this, any sched-
ule that unrolls a spin-loop arbitrary but finite number
of times is still fair. Instead, CHESS makes a pragmatic
choice to focus on interleavings that are likely to occur
in practice. The fair scheduler, described in detail in
a simultaneous publication [29], gives lower priority to
threads that yield the processor, either by calling a yield-
ing function such as Thread.yield or by sleeping
for a finite time. This immediately restricts the CHESS
scheduler to only schedule enabled threads with a higher
priority, if any. Under the condition that a thread yields
only when it is unable to make progress, this fair sched-

uler is guaranteed to not miss any safety error [29].
As an interesting side-effect of fair scheduling, CHESS

automatically gets the ability to detect liveness violations
as well. This is because all liveness properties can be re-
duced to fair-termination [36]. Essentially, to check if
“something good eventually happens”, the user writes a
test that terminates only when the “good” condition hap-
pens. If the program violates this property, the CHESS
scheduler will eventually produce a fair schedule under
which the test does not terminate. The user identifies
such nonterminating behavior by setting an abnormally
high bound on the length of the execution.

4.4 Tackling state-space explosion

State-space explosion is the bane of model checking.
Given a program with n threads that execute k atomic
steps in total, it is very easy to show that the number
of thread interleavings grows astronomically as nk. The
exponential in k is particularly troublesome. It is normal
for realistic tests to perform thousands (if not more) syn-
chronization operations in a single run of the test. To be
effective in such large state spaces, it is essentially to fo-
cus on interesting and potentially bug-yielding interleav-
ings. In the previous section, we described how fairness
helps CHESS to focus only on fair schedules. We discuss
other key strategies below.

4.4.1 Inserting preemptions prudently

In recent work [27], we showed that bounding the num-
ber of preemptions is a very good search strategy when
systematically enumerating thread schedules. Given a
program with n threads that execute k steps in total, the
number of interleavings with c preemptions grows with
kc. Informally, this is because, once the scheduler has
picked c out of the k possible places to preempt, the
scheduler is forced to schedule the resulting chunks of
execution atomically. (See [27] for a more formal argu-
ment.) On the other hand, we expect that most concur-
rency bugs happen [24] because of few preemptions hap-
pening at the right places. In our experience with CHESS,
we have been able to reproduce very serious bugs using
just 2 preemptions.

On applying to large systems, however, we found that
preemption bounding alone was not sufficient to reason-
ably reduce the size of the state space. To solve this prob-
lem, we had to scope preemptions to code regions of in-
terest, essentially reducing k. First, we realized that a
significant portion of the synchronization operations oc-
cur in system functions, such as the C run time. Simi-
larly, many of the programs use underlying base libraries
which can be safely assumed to be thread-safe. CHESS
does not insert preemptions in these modules, thereby
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gaining scalability at the cost of missing bugs resulting
from adverse interactions between these modules and the
rest of the system.

Second, we observed that a large number of the syn-
chronizations are due to accesses to volatile variables.
Here we borrow a crucial insight from Bruening and
Chapin [4] (see also [35]) — if accesses to a particular
volatile variable are always ordered by accesses through
other synchronization, then it is not necessary to inter-
leave at these points.

4.4.2 Capturing states

One advantage of stateful model checkers [37, 26] is
their ability to cache visited program states. This pre-
vents them from redundantly exploring the same pro-
gram state more than once, a huge gain in efficiency. The
downside is that precisely capturing the state of a large
system is onerous [26, 39]. Avoiding this complication
was the main reason for designing CHESS to be stateless.

However, we obtain some advantages of state-caching
by observing that we can use the trace used to reach the
current state from the initial state as a representation of
the current state. Specifically, CHESS maintains for each
execution a partially-ordered happens-before graph over
the set of synchronization operations in the execution.
Two executions that generate the same happens-before
graph only differ in the order of independent synchro-
nizations operations. Thus, a program that is data-race
free will be at the same program state on the two exe-
cutions. By caching the happens-before graphs of vis-
ited states, CHESS avoids exploring the same state re-
dundantly. This reduction has the same reduction as a
partial-order reduction method called sleep-sets [13] but
combines well with preeemption bounding [28].

5 Evaluation

In this section, we describe our experience in applying
CHESS to several large industry-scale systems.

5.1 Brief description of benchmarks
Table 2 describes the systems on which CHESS has been
run on. We briefly describe each of these systems to
emphasize the range of systems CHESS is applicable to.
Also, the integration of CHESS with the first five systems
in Table 2 was done by the users of CHESS, with some
help from the authors.4

PLINQ [9] is an implementation of the declarative
data-parallel extensions to the .NET framework. CDS
(Concurrent Data Structures) is a library that implements
efficient concurrent data structures. STM is an imple-
mentation of software transactional memory inside Mi-

max max max
Programs LOC Threads Synch. Preemp.
PLINQ 23750 8 23930 2
CDS 6243 3 143 2
STM 20176 2 75 4
TPL 24134 8 31200 2
ConcRT 16494 4 486 3
CCR 9305 3 226 2
Dryad 18093 25 4892 2
Singularity 174601 14 167924 1

Table 2: Characteristics of input programs to CHESS

crosoft. TPL and ConcRT are two libraries that pro-
vide efficient work-stealing implementations of user-
level tasks, the former for .NET programs and the lat-
ter for C and C++ programs. CCR is the concurrency
and coordination runtime [6], which is part of Microsoft
Robotics Studio Runtime. Dryad is a distributed exe-
cution engine for coarse-grained data-parallel applica-
tions [18]. Finally, Singularity [16] is a research oper-
ating system.

5.2 Test scenarios
In all these programs, except Singularity, we took exist-
ing stress tests and modified them to run with CHESS.
Most of the stress tests were originally written to create
large number of threads. We modified them to run with
fewer threads, for two reasons. Due to the systematic
exploration of CHESS, one no longer needs a large num-
ber of threads to create scheduling variety. Also, CHESS
scales much better when there are few threads. We vali-
date this reduction in the next section.

Other modifications were required to “undo” code
meant to create scheduling variety. We found that testers
pepper the code with random calls to yield functions.
With CHESS, such tricks are no longer necessary. On
the other hand, such calls impede the coverage achieved
with CHESS as the scheduler (§4.3) assumes that a yield-
ing thread is not able to make progress, and accordingly
assigns it a low scheduling priority. Another common
paradigm in the stress tests was to randomly choose be-
tween a variety of inputs with probabilities to mimic real
executions. In this case we had to refactor the test to con-
currently generate the inputs so that CHESS interleaved
their processing. These modifications would not be re-
quired if system developers and testers were only con-
cerned about creating interesting concurrency scenarios,
and relied on a tool like CHESS to create scheduling va-
riety.

Many of the stress tests were idempotent by design,
once CHESS was able to handle lazy-initialization of
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Failure / Bug
Programs Total Unk/Unk Kn/Unk Kn/Kn
PLINQ 1 1
CDS 1 1
STM 2 2
TPL 9 9
ConcRT 4 4
CCR 2 1 1
Dryad 7 7
Singularity 1 1
Total 27 21 4 2

Table 3: Bugs found with CHESS, classified on whether
the failure and the bug were known or unknown.

datastructures (§4.2). Common failures of idempotence
were bugs in test harnesses, such as handle leaks, that
were easy to fix. These bugs are not reported in Table 3.
There was one case where a test was not idempotent by
design — the tester left the state “corrupted” for subse-
quent tests. While CHESS could handle this scenario, by
running the corrupting test once as part of the startup, we
have not tried this at the time of writing this paper.

Finally, we used CHESS to systematically test the en-
tire boot and shutdown sequence of the Singularity op-
erating system [16]. Singularity OS has the ability to
run as a user process on top of the Win32 API. This
functionality is essentially provided by a thin software
layer that emulates necessary hardware abstractions on
the host. This mechanism alone was sufficient to run
the entire Singularity OS on CHESS with little modifica-
tion. The only changes required were to expose certain
low-level synchronization primitives at the hardware ab-
straction layer to CHESS and to call the shutdown imme-
diately after the boot without forking the login process.
These changes involved ˜300 lines in 4 files.5

5.3 Validating CHESS against stress-testing
A common objection to the CHESS methodology is the
belief that one cannot find concurrency errors with a
small number of threads. This belief is a direct conse-
quence of the painful experience people have of their
concurrent systems failing under stress. A central hy-
pothesis of CHESS is that errors in complex systems
occur due to complex interleavings of simple scenar-
ios. In this section, we validate this hypothesis. Recent
work [24] also suggests a similar hypothesis.

Table 3 shows the bugs that CHESS has found so far on
the systems described in Table 2. Table 3 distinguishes
between bugs and failures. A bug is an error in the pro-
gram and is associated with the specific line(s) in the
code containing the error. A failure is a, possibly non-

deterministic, manifestation of the bug in a test run, and
is associated with the test case that fails. Thus, a single
bug can cause multiple failures. Also, as is common with
concurrency bugs, a known failure does not necessarily
imply a known bug — the failure might be too hard to
reproduce and debug.

Table 3 only reports the number of distinct bugs found
by CHESS. The number of failures exceeds this number.
As an extreme case, the PLINQ bug is a race-condition in
a core primitive library that was the root-cause for over
30, apparently unrelated, test failures. CHESS found a
total of 27 bugs in all of the programs, of which 25 were
previously unknown. Of these 25 bugs, 21 did not mani-
fest in existing stress runs over many months. The other 4
bugs were those with known failures but unknown cause.
In these cases, the tester pointed us to existing stress tests
that failed occasionally but she was not able to debug
the problem. CHESS was able to reproduce the failure,
within minutes in some cases, with less than 10 threads
and two preemptions. Similarly, CHESS was able to re-
produce two failures that the tester had previously (and
painfully) debugged on the STM library. So far, CHESS
has succeeded in reproducing every stress-test failure re-
ported to us.

5.4 Description of two bugs

We describe two bugs that CHESS was able to find in this
section.

5.4.1 PLINQ bug

CHESS discovered a bug in PLINQ that is due to an in-
correct use of LiteEvents, a concurrency primitive
implemented in the library. A LiteEvent is an optimiza-
tion over kernel events that does not require a kernel tran-
sition in the common case. It was originally designed
to work between exactly two threads — one that calls
Set and one that calls Wait followed by a Dispose.
Figure 5 contains a simplified version of the code. A
lock protects the subtle race that occurs between a Set
that gets preempted right after an update to state and
Dispose. However, the lock does not protect a similar
race between a Wait and a Dispose. This is because,
the designer did not intend to use LiteEvents with multi-
ple waiters. However, the PLINQ code did not obey this
restriction and CHESS promptly reported this error with
just one preemption. As with many concurrency bugs,
the fix is easy once the bug is identified.

5.4.2 Singularity bug

CHESS is able to check for liveness properties and it
checks the following property by default [29]: every
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LiteEvent::Set(){
state = SIGNALLED;
if(kevent)

lock_and_set_kevent();
}

LiteEvent::Wait(){
if(state == SIGNALLED)

return;
alloc_kevent();
//BUG:kevent can be 0 here
kevent.wait();

}

LiteEvent::Dispose(){
lock_and_delete_kevent();

}

Figure 5: A race condition exposed when LiteEvents are
used with multiple waiters.

thread either makes progress towards completing its
function or yields the processor. This property detected
an incorrect spin loops that never yields in the boot pro-
cess of Singularity. Figure 6 shows the relevant code
snippet. A thread spins in a loop till it receives a particu-
lar notification from the underlying hardware. If the noti-
fication has a different id and thus does not match what
it is waiting for, the thread retries without dispatching
the notification. On first sight, it appears that this loop
yields by calling the Halt function. However, Halt
will return without yielding, if any notification is pend-
ing. The boot thread, thus, needlessly spins in the loop
till its time-slice expires, starving other threads, poten-
tially including the one that is responsible for receiving
the current notification.

The developers responsible for this code immediately
recognized this scenario as a serious bug. In practice,
this bug resulted in “sluggish I/O behavior” during the
boot process, a behavior that was previously known to
occur but very hard to debug. This bug was fixed within
a week. The fix involved changing the entire notification
dispatch mechanism in the hardware abstraction layer.

6 Related work

This paper is concerned with systematic exploration of
the behaviors of executable concurrent programs. This
basic idea is not new and has previously occurred in the
research areas of software testing and model checking.
In contrast to this previous work, this paper is the first
to demonstrate the applicability of such systematic ex-
ploration to large systems with little perturbation to the

Dispatch(id){
while (true) {

Platform.Halt();
// We wake up on any notification.
// Dispatch only our id

if ( PendingNotification(id) ) {
DispatchNotification(id);
break;

}
}

}

Platform.Halt(){
if(AnyNotification())
return;

Sleep();
}

Figure 6: Violation of the good samaritan property. Un-
der certain cases, this loop results in the thread spinning
idly till time-slice expiration.

program, the runtime, and the test infrastructure.
Carver and Tai [5] proposed repeatable deterministic

testing by running the program with an input and explicit
thread schedule. The idea of systematic generation of
thread schedules came later under the rubric of teachabil-
ity testing [17]. Recent work in this area includes RichT-
est [22] which performs efficient search using on-the-
fly partial-order reduction techniques, and ExitBlock [4]
which observes that context switches only need to be in-
troduced at synchronization accesses, an idea we borrow.

In the model checking community, the idea of ap-
plying state exploration directly to executing concur-
rent programs can be traced back to the Verisoft model
checker [15], which is similar to the testing approach
in that it enumerates thread schedules rather than states.
There are a number of other model checkers, such
as Java Pathfinder [37], Bogor [32], CMC [26], and
MaceMC [19], that attempt to capture and cache the
visited states of the program. CHESS is designed to
be stateless; hence it is similar in spirit to the work on
systematic testing and stateless model checking. What
sets CHESS apart from the previous work in this area
is its focus on detecting both safety and liveness vio-
lations on large multithreaded systems programs. Ef-
fective safety and liveness testing of such programs re-
quires novel techniques—quiescence detection, preemp-
tion bounding, and fair scheduling—absent from the pre-
vious work.

ConTest [12] is a lightweight testing tool that attempts
to create scheduling variance without resorting to sys-
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tematic generation of all executions. In contrast, CHESS
obtains greater control over thread scheduling to offer
higher coverage guarantees and better reproducibility.

The ability to replay a concurrent execution is a fun-
damental building block for CHESS. The problem of de-
terministic replay has been well-studied [21, 33, 38, 10,
2, 20, 11]. The goal of CHESS is to not only capture
the nondeterminism but also to systematically explore it.
Also, to avoid the inherent cost of deterministic replay,
we have designed CHESS to robustly handle some non-
determinism at the cost of test coverage.

The work on dynamic data-race detection, e.g., [34,
30, 40], is orthogonal and complementary to the work
on systematic enumeration of concurrent behaviors. A
tool like CHESS can be used to systematically generate
dynamic executions, each of which can then be analyzed
by a data-race detector.
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Notes
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and C#, which simply provide syntactic sugar over an existing concur-
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for reasonable programs. Theoretically, for a program that terminates
on fair schedules, the set of fair schedulers is countably infinite while
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