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Abstract
Clinical symptoms and inflammatory markers cannot reliably distinguish the etiology of CAP, and chest radiographs have 
abundant information related with CAP. Hence, we developed a context-fusion convolution neural network (CNN) to explore 
the application of chest radiographs to distinguish the etiology of CAP in children. This retrospective study included 1769 
cases of pediatric pneumonia (viral pneumonia, n = 487; bacterial pneumonia, n = 496; and mycoplasma pneumonia, n = 786). 
The chest radiographs of the first examination, C-reactive protein (CRP), and white blood cell (WBC) were collected for 
analysis. All patients were stochastically divided into training, validation, and test cohorts in a 7:1:2 ratio. Automatic lung 
segmentation and hand-crafted pneumonia lesion segmentation were performed, from which three image-based models 
including a full-lung model, a local-lesion model, and a context-fusion model were built; two clinical characteristics were 
used to build a clinical model, while a logistic regression model combined the best CNN model and two clinical character-
istics. Our experiments showed that the context-fusion model which integrated the features of the full-lung and local-lesion 
had better performance than the full-lung model and local-lesion model. The context-fusion model had area under curves of 
0.86, 0.88, and 0.93 in identifying viral, bacterial, and mycoplasma pneumonia on the test cohort respectively. The addition 
of clinical characteristics to the context-fusion model obtained slight improvement. Mycoplasma pneumonia was more eas-
ily identified compared with the other two types. Using chest radiographs, we developed a context-fusion CNN model with 
good performance for noninvasively diagnosing the etiology of community-acquired pneumonia in children, which would 
help improve early diagnosis and treatment.
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Background

Pneumonia is an acute infection of the lung parenchyma 
by one or more pathogens, such as viruses, bacteria, and 
mycoplasma [1]. According to the World Health Organiza-
tion (WHO), the incidence in children under five is evaluated 
to be 0.05 episodes per child-year in developed countries and 
0.29 episodes per child-year in developing countries. This 
means there are about 151 million new cases in children that 
occur annually in developing countries, including 21 million 
in China [2]. Community-acquired pneumonia (CAP) has 
high morbidity and mortality rates in both developed and 
developing countries [3]. It is reported that pneumonia and 
preterm birth complications are the principal causes of death 
in children under five [4].

Viruses, bacteria, and mycoplasma are the common etiol-
ogies of pneumonia, but they need different medications and 
treatments. Viral pneumonia is treated with supportive care, 
bacterial pneumonia requires immediate antibiotic therapy 
(Penicillin G and amoxicillin), and macrolides are often used 
in the treatment of mycoplasma pneumonia. The empirical 
use of antibiotics remains fundamental to the treatment of 
pneumonia [5]. Untimely diagnosis of pathogens can lead to 
overuse of antibiotics and the formation of drug resistance 
[6, 7]. Delayed diagnosis increases the risk of irreversible 
damage to the patient’s respiratory system. Therefore, accu-
rate and timely diagnosis is the key to ensuring the most 
effective treatment.

In clinical practice, most diagnoses of CAP are based on 
radiology, clinical signs, and symptoms. In most patients 
with respiratory symptoms, a chest radiograph is the first 
choice [8]; it is also considered as the clinical reference 
standard for pneumonia [9]. C-reactive protein (CRP) and 
white blood cell (WBC) count are the most commonly 
used markers of inflammation in clinical practice, which 
are used to evaluate children suspected of pneumonia [10, 
11]. However, the diagnostic challenge of childhood CAP is 
that although clinical symptoms and inflammatory markers 
and radiological signs are indicative of pathogens [12–14], 
pneumonia pathogens cannot be reliably distinguished [3, 5, 
15–18]. Sputum culture, multiplex polymerase chain reac-
tion, or specific mycoplasma antibody tests can diagnose 
pneumonia [19, 20] but have some limitations.

To assist pediatricians and improve their diagnostic per-
formance, computer-aided diagnostic systems, e.g., deep 
learning or radiomics, have been increasingly utilized in 
radiology and medical image analysis [21–24]. Recently, it 
has been found that deep learning technology combined with 
big data have a better detection effect in chest image diagno-
sis [25–27], including detecting the presence and detection 
of pneumonia [28, 29], emphysema and quantification [30], 
and pneumothorax [31, 32].

In this study, we first investigated the clinical charac-
teristics and imaging biomarkers that were often used in 
chest radiograph analysis. Further analysis showed that 
the characteristics and biomarkers with different etiologies 
of children with CAP were significantly different, and the 
intensity-related biomarkers from lung and lesion areas have 
a complementary presentation ability. Despite the statistical 
significance, the scatter plot of the biomarkers showed broad 
overlap between three classes (as shown in the “Results”). 
Hence, we improved the diagnosis ability of chest radio-
graphs using deep learning methods, and we built a pediatric 
chest radiograph dataset and then developed the prediction 
models based on chest radiographs and clinical characteris-
tics. The diagnostic ability of a full-lung image, local-lesion 
image, and clinical characteristics were evaluated. The com-
plementarity ability between a full-lung image and local-
lesion image and between image CNN signature and clinical 
characteristics were explored.

Materials and Methods

Patient Selection and Data Collection

The dataset was approved by our ethics committee of 
Beijing children’s hospital, where the requirement of 
informed consent was waived. The retrospective analy-
sis of 1769 (viral pneumonia 487, bacterial pneumonia 
496, and mycoplasma pneumonia 786) cases of child-
hood CAP was confirmed in our hospital between 2015 
and 2018 including chest radiographs of the first exami-
nation, while CRP was measured and WBC count was 
determined, excluding patients with poor image quality 
and incomplete clinical data. The chest radiograph dataset 
only contained patients from newborns to 18-year-olds, 
and most of them were children under 10 years old. We 
included both posteroanterior and bedside anteroposterior 
chest radiographs, where all radiographs were obtained 
with a single dedicated radiography unit (DR7500; Kodak 
Healthineers). The patient recruitment procedure and 
workflow of this study are shown in Fig. 1. The patient 
demographics for the dataset and clinical information are 
shown in Table 1.

Statistical Analysis of Chest Radiograph Markers

We hypothesized that the chest radiograph appearance 
influenced by different etiologies may be reflected in the 
intensity of the radiograph. Thus, we investigated the 
intensity-related biomarkers from the chest radiograph 
image analysis, as shown in Fig. 2A. (1) Mean intensity 
of lung and lesion areas: The mean value of the pixel 
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intensity was calculated from the segmented lung and 
lesion areas, respectively. (2) Standard deviation of the 
intensity of lung and lesion areas: The standard deviation 
(STD) was calculated from the intensity histogram of the 
lung and lesion area pixels, respectively.

Research Design and Workflow

The patient cohort was stochastically divided into train-
ing, validation, and test cohorts in a 7:1:2 ratio. The 

training cohort was used to optimize the CNN. During 
training, the results of the validation cohort were used 
to select the optimal model. The test cohort was not dis-
closed until the model was finalized. In order to avoid 
overfitting, data augmentation techniques including ran-
dom rotations, translations, and flipping were used and 
further increased the size of the training cohort. The 
prediction ability of the full-lung image, local-lesion 
image, and clinical characteristics were studied and the 
prediction performances for the three etiologies are shown 
(Fig. 2B).

Fig. 1  The patient recruitment 
procedure and workflow of this 
study

Table 1  Characteristics of patients in the training, validation, and test cohorts

P value was derived from univariable association analyses between each characteristic and pneumonia types. Sex was calculated with chi2 test. 
Age, CRP, and WBC were calculated with Kruskal–Wallis test
SD standard deviation

Characteristics Training and validation cohort Test cohort

Virus Bacteria Mycoplasma P value Virus Bacteria Mycoplasma P value

Sex, no. (%)  < 0.001 0.048
Male 271 (69.8) 259 (65.1) 359 (57.3) 70 (70.7) 60 (61.2) 88 (55.3)
Female 117 (30.2) 139 (34.9) 268 (42.7) 29 (29.3) 38 (38.8) 71 (44.7)
Age, mean ± SD, months 30.28 ± 36.89 28.84 ± 34.42 52.14 ± 36.29  < 0.001 27.51 ± 35.37 28.63 ± 39.44 51.53 ± 33.53  < 0.001
CRP, No. (%)  < 0.001  < 0.001
 ≤ 8 212 (54.6) 186 (46.7) 420 (67.0) 55 (55.6) 41 (41.8) 118 (74.2)
 > 8 176 (45.4) 212 (53.3) 207 (33.0) 44 (44.4) 57 (58.2) 41 (25.8)
WBC NO. (%)  < 0.001 0.003
 < 4 27 (7.0) 13 (3.3) 30 (4.8) 6 (6.1) 5 (5.1) 8 (5.0)
[4, 10] 213 (54.9) 178 (44.7) 386 (61.6) 57 (57.5) 43 (43.9) 103 (64.8)
 > 10 148 (38.1) 207 (52.0) 211 (33.6) 36 (36.4) 50 (51.0) 48 (30.2)
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Preprocessing and ROI Acquisition

Routinely-used chest radiographs include some non-lung 
areas (neck, abdomen, bone, etc.) and blank spaces outside 
the body. To ensure the consistency of the exposure field, 
we first segmented lungs from the chest radiographs using 
an automatic segmentor, XLSor [33], which is an end-to-
end convolutional model that can perform robust and accu-
rate lung segmentation. The chest radiographs were input 
into XLSor, and the lung mask annotations were output 
automatically according to the results of the segmenta-
tion. The lung region was cropped automatically, which 
was a lung region of interest (ROI). The pneumonia lesion 
region was drawn manually using ITK-SNAP software 
(version 3.2.0; www. itksn ap. org) by two board-certified 
radiologists who were blinded to the histological diagnoses 
and patient clinical information. Their primary focus was 
hand-crafted segmentation of pneumonia lesions; in case of 
disagreement between the two radiologists, consensus was 
reached through discussion. The lesion region was cropped 
automatically according to the bounding box derived from 
manual segmentation, and we call this partial lesion region 
a lesion ROI. In order to match the neural network inputs, 
all lung ROIs were resized to a size of 224 × 224 and all 

lesion ROIs were resized to a size of 160 × 160. Image 
intensities were normalized using histogram equalization. 
Figure 3B shows the process of lung ROI and lesion ROI 
acquisition.

Model Development and Training

Both the lung ROI and lesion ROI generated from the chest 
radiographs were analyzed, and two clinical characteris-
tics including WBC count and CRP were used to build a clini-
cal model. In clinical diagnosis, a radiologist usually makes 
a comprehensive analysis about the entire lungs and local 
lesions. To provide this contextual information, we developed 
an end-to-end CNN model (context-fusion CNN). Overall, 
based on the chest radiograph, we built three models including 
a full-lung model, a local-lesion model, and a context-fusion 
model; based on clinical characteristics, we built a clinical 
model. We then combined the signature of the context-fusion 
model with two clinical characteristics to study the comple-
mentarity between the radiograph and characteristics.

In our study, the CNN models were derived from 
DenseNet121 [34], which consisted of a densely connected 
CNN feature extractor and a classifier. The full-lung model 
and local-lesion model were the standard Densenet. The 

Fig. 2  The process of study for distinguishing the etiology of chil-
dren with CAP using chest radiographs: A segmentation network and 
intensity-related biomarker analysis and B classification models based 

on local-lesion image, full-lung image and clinical characters, and the 
prediction performances for the three etiologies
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inputs of the full-lung model were the lung ROIs with a size 
of 224 × 224, and the outputs of the feature extractor were 
full-lung CNN features. Similar to the full-lung model, the 
inputs of the local-lesion model were the lesion ROIs with 
a size of 160 × 160 and the outputs of the feature extractor 
were local-lesion CNN features. A clinical model based on 
the clinical characteristics of the WBC count and CRP was 
built, which used the Catboost machine learning method [35].

The context-fusion CNN simultaneously extracted the 
lung features and lesion features with a two-branch CNN, 
and two branches did not share the weights for extracting dif-
ferent features from the lung and local lesion. Furthermore, 
the feature fusion module merged two features as context 
features with a concatenation operation and decreased the 
redundancy features between lung and local branch with a 
fully connected layer (the number of input nodes was much 
smaller than the number of output nodes). Finally, another 
fully connected layer was used as a classifier for predicting 
the etiology of CAP. Figure 3A shows the CNN structure and 
details of the context-fusion model.

The full-lung model, local-lesion model, and context-
fusion model were trained based on the Pytorch platform 
and optimized via an Adam algorithm with a mini-batch 
size of 32. The learning rate was set to 0.001 with a momen-
tum coefficient of 0.9. The weights of CNN were initialized 
stochastically. The clinical model was trained based on the 
Catboost platform, the learning rate was set to 0.25, and the 

depth was 2. The optimal model of every model was the one 
with the lowest validation loss during training.

Statistical Analysis

The performance of models was evaluated by assessing the 
accuracy (ACC) of training and test cohorts. In addition, 
softmax or logistic regression probabilities were used to 
calculate ACC, precision, recall, area under curve (AUC) 
of the ROC analysis, sensitivity, and specificity. Statistical 
analysis was conducted with a Python toolkit (scipy.stats). 
Chi2 test and Kruskal–Wallis test were used. A two-sided 
P value < 0.05 was used to indicate statistical significance. 
Wilcoxon rank sum test was used to compare chest radio-
graph markers among three classes with different data sizes.

Results

Clinical Characteristics

Clinical characteristics consist of sex, age, CRP, and WBC 
count are reported in Table 1. CRP and WBC count were 
significantly associated with the etiology of CAP after the 
univariate analysis (p < 0.05), and there was a significant 
difference in sex and age. Generally, a virus is the most 
common etiology of CAP in infants and young children, 

Fig. 3  Overall architecture of 
the proposed neural network 
approach: A the CNN structure 
of the context-fusion model and 
B the process of lung ROI and 
lesion ROI acquisition
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with mycoplasma occurring in children over the age of 5 
[36]. Although mycoplasma pneumonia was included in this 
study according to the age of viral pneumonia and bacte-
rial pneumonia, children with mycoplasma pneumonia were 
still older than those with viral and bacterial pneumonia. 
Stratified analyses for the subgroups were classified accord-
ing to sex. Specifically, man and woman subgroups yielded 
AUC values of 0.844 and 0.816 for viruses, 0.850 and 0.874 
for bacteria, and 0.918 and 0.908 for mycoplasma, respec-
tively (Delong test p-values: 0.220, 0.231, and 0.260). The 
results of the above stratified analyses indicated that our 
model was not affected by sex.

Statistical Significance of Potential Etiologic 
Biomarkers

Four intensity-related biomarkers from the CXR image were 
extracted and analyzed. Mean pixel intensity of each lung 
and lesion area is shown in the scatter plot of Figs. 4A and 
5A. In both areas, mycoplasma cases showed higher mean 
intensity compared to other cases with a statistical signifi-
cance level (p < 0.001 for all). In the lesion area, the differ-
ence between viral and bacterial cases was statistically sig-
nificant (p < 0.01). The STDs of pixel intensity of each lung 
and lesion areas are scattered in the plot in Figs. 4B and 5B.  

Fig. 4  Scatter and box plots for 
both the mean pixel intensity 
(left) and the STD of the pixel 
intensity from lung areas 
(right). Blue triangles in box 
plots show mean values, and 
statistical significance levels are 
indicated as asterisks; *p < 0.05, 
**p < 0.01, and ***p < 0.001

Fig. 5  Scatter and box plots for 
both the mean pixel intensity 
(left) and the STD of pixel 
intensity from lesion areas 
(right). Blue triangles in box 
plots show mean values and 
statistical significance levels are 
indicated as asterisks; *p < 0.05, 
**p < 0.01, and ***p < 0.001
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In the lesion area, the variance values of the viral cases 
were higher than other classes with a statistical signifi-
cance (p < 0.001 for all). Tables 2, 3, 4, 5 describe the cor-
responding statistical results. Despite statistical significance, 
the scatter plots of the biomarkers showed broad overlap 
between three classes. Statistical significance levels are indi-
cated as asterisks; * for p < 0.05, ** for p < 0.01, and *** 
for p < 0.001.

Overall Performance of the Models

The context-fusion model yielded the best performance with 
an ACC of 0.70 in the training cohort and 0.72 in the test 
cohort. Figure 6 shows the prediction distribution of patients 
in the three pneumonia types. It illustrated that the progno-
sis for the etiology of CAP needs a comprehensive analysis 
about the entire lungs and local lesions. The clinical model 
had poor diagnostic performance with an ACC of 0.60 in the 
training cohort and 0.51 in the test cohort. Compared with 
the local-lesion model, the full-lung model yielded better 
performance with an ACC of 0.65 in the training cohort and 
0.62 in the test cohort. The results in the training and test 
cohorts are provided in Table 6.

Table 3  Lung areas intensity variance statistics

* p < 0.05

Mean STD Statistical significance

Virus Bacteria Mycoplasma

Virus 0.255 0.035
Bacteria 0.258 0.033 *
Mycoplasma 0.259 0.036 - -

Table 5  Lesion areas intensity variance statistics

*** p < 0.001

Mean STD Statistical significance

Virus Bacteria Mycoplasma

Virus 0.103 0.025
Bacteria 0.098 0.023 ***
Mycoplasma 0.097 0.022 *** -

Table 2  Lung area intensity statistics

*** p < 0.001

Mean STD Statistical significance

Virus Bacteria Mycoplasma

Virus 0.405 0.082
Bacteria 0.405 0.072 -
Mycoplasma 0.439 0.074 *** ***

Table 4  Lesion areas intensity statistics

** p < 0.01 and ***p < 0.001

Mean STD Statistical significance

Virus Bacteria Mycoplasma

Virus 0.686 0.085
Bacteria 0.697 0.083 **
Mycoplasma 0.717 0.078 *** ***

Fig. 6  The prediction distribution of patients for the three pneumonia 
types

Table 6  Overall performance of the prediction models

Model Train/test Accuracy Precision Recall

Context-fusion Train 0.70 0.71 0.70
Test 0.72 0.73 0.72

Full-lung Train 0.65 0.66 0.65
Test 0.62 0.64 0.62

Local-lesion Train 0.57 0.53 0.57
Test 0.58 0.54 0.58

Clinical Train 0.60 0.62 0.60
Test 0.51 0.49 0.51

1085Journal of Digital Imaging (2022) 35:1079–1090



1 3

Prediction Performances

The prediction performances for every etiology of CAP were 
consistent with the overall performances, and the context-
fusion model yielded the best performance and was signifi-
cantly higher than the other models in the training cohort 
and test cohort. Mycoplasma is easily diagnosed with an 
AUC of 0.911 in the training cohort and 0.924 in the test 
cohort. The diagnostic ability for viruses and bacteria was 
equal. Table 7 shows the results of the three pneumonia 
types, and the ROCs are shown in Fig. 7.

Discussion

Early diagnosis of pneumonia is critical to prevent compli-
cations including death. In this retrospective research, we 
built deep learning prediction models and systematically 
analyzed the ability of chest radiographs and clinical charac-
teristics for distinguishing the etiology of CAP in children. A 
context-fusion model combined full-lung features and local-
lesion features showing good performance, and there was 
complementarity between the image CNN signature built 
from the context-fusion model and clinical characteristics. 
The adopted models can potentially improve the diagnostic 
speed and accuracy in a non-invasive way.

At first, we analyzed the clinical characteristics and inten-
sity-related biomarkers from chest radiographs. A positive 
correlation was found between the etiology of childhood 
CAP and both the clinical characteristics and chest radio-
graphs biomarkers. The results were consistent with the 

study of Oh et al. [37], and they described that the mean 
intensity and variance values of viral pneumonia were higher 
than bacterial pneumonia or tuberculosis cases with statisti-
cal significance (p < 0.001 for all). Despite statistical sig-
nificance, the scatter plot of the biomarkers showed a broad 
overlap between several classes. In addition, the presentation 
ability of the biomarkers from lung and lesion areas was 
complementary. Hence, we built a diagnostic model using 
deep learning methods and explored the complementarity 
ability between the full-lung image and local-lesion image.

In our study, deep learning methods were used to mine 
valuable features from chest radiographs for differentiating 
the etiology of pediatric pneumonia. Some studies compared a 
variety of algorithms to obtain the most optimal model [8, 29]. 
Deep learning is a promising technique for analyzing medi-
cal imaging, and some research in chest radiograph analyses 
achieved excellent performance. For example, in some studies 
[38, 39], they built deep learning models to diagnose chest 
pathology in chest radiographs and the models were competi-
tive with radiologists on some pathology. Some researchers 
proposed more effective models to localize diseases using lim-
ited location annotations [40, 41]. Our results are consistent 
with the above study. Our context-fusion model was derived 
from Densenet and adopted a dual-path construction to com-
bine the full-lung and local-lesion features from the patients’ 
chest radiograph, which proved valuable.

The full-lung and local-lesion regions of the chest radio-
graphs were analyzed separately, and the diagnostic ability 
of the local-lesion model was lower than that of the full-lung 
model. The reasons may be as follows: infection via different 
pathogens may lead to inflammation of the lobes, bronchi, 

Table 7  The prediction 
performance for the three 
etiologies of CAP

AUC  area under curve, SEN sensitivity, SPE specificity

Model Category Training cohort Test cohort

AUC SEN SPE AUC SEN SPE

Context-fusion Virus 0.837 0.842 0.663 0.851 0.776 0.793
Bacteria 0.858 0.733 0.804 0.876 0.702 0.902
Mycoplasma 0.911 0.868 0.798 0.924 0.834 0.865

Full-lung Virus 0.786 0.709 0.742 0.782 0.747 0.704
Bacteria 0.785 0.732 0.735 0.781 0.784 0.669
Mycoplasma 0.843 0.875 0.663 0.798 0.827 0.646

Local-lesion Virus 0.687 0.764 0.530 0.717 0.608 0.735
Bacteria 0.726 0.653 0.712 0.683 0.670 0.650
Mycoplasma 0.812 0.795 0.686 0.819 0.885 0.624

Clinical Virus 0.779 0.764 0.650 0.595 0.794 0.361
Bacteria 0.797 0.793 0.648 0.584 0.309 0.894
Mycoplasma 0.779 0.821 0.590 0.633 0.848 0.408

Context-fusion and clinical Virus 0.838 0.744 0.766 0.843 0.753 0.802
Bacteria 0.875 0.780 0.808 0.904 0.777 0.914
Mycoplasma 0.920 0.887 0.792 0.928 0.873 0.822
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alveoli, or interstitial lung areas, as well as bronchiolitis. 
The lesions vary in size and often permeate the whole lung, 
presenting on chest radiographs as whole-lung or partial 
pulmonary consolidation, bronchogenic inflation, pleural 
effusion, and interstitial infiltration [42], while the lesion 
that we chose to delineate on the chest radiograph was in 
the most severe areas, not the entire lung; secondly, limited 
by spatial resolution, a chest radiograph can directly show 
the trachea and large bronchus as well as related lesions, 
but cannot directly show the bronchioles and their lesions. 
When lesions occur in this part of the airway, the chest 
radiograph can show increased brightness and increased 

lung volume, which is not delineated; thirdly, we chose to 
depict the lesions by radiologists with diagnostic experience, 
which is subjective, and the full-lung model included the 
entire lung that was objectively unaffected by doctors. The 
context-fusion model had the highest diagnostic accuracy, 
indicating that not only the lesion delineation area, but also 
the entire chest radiograph had visual changes that were dif-
ficult to recognize visually due to pathological changes in 
pneumonia.

The pathological difference of different etiologies of 
CAP will affect the appearance of the chest radiograph. 
Viral pneumonia can be seen as a large lobe or multiple 

Fig. 7  The receiver operating characteristic curves of A context-fusion model, B full-lung model, C local-lesion model, and D clinical model
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focal infiltrates, typical bacterial pneumonia is usually 
lobar pneumonia with pleural effusion [43], and both are 
indistinguishable on chest radiographs. The pathology of 
mycoplasma pneumonia is usually confined to the airway 
wall, and even small airways and respiratory bronchioles 
and chest radiographs showed peri-bronchial infiltration, 
reticular nodules, and patchy and focal consolidation [44, 
45]. In our study, the diagnostic ability of the models 
based on chest radiographs was higher than the clinical 
model. In other published studies, WBC count and CRP 
could also be found to indicate the presence of pneumonia, 
but they did not play a significant role in the pathogen 
determination of pneumonia [46], which was also consist-
ent with this study.

A conjoint analysis regarding the clinical characteris-
tics and image signature built from the context-fusion model 
was conducted using logistic regression; the results showed 
that there was good complementarity between the image sig-
nature and clinical features. As can be seen from Table 3, 
the AUC of the context-fusion model for diagnosing viral 
pneumonia, bacterial pneumonia, and mycoplasma pneumo-
nia was 0.851, 0.876, and 0.924, respectively; the sensitivity 
was 0.776, 0.702, and 0.834; and the specificity was 0.793, 
0.902, and 0.865, respectively. Mycoplasma pneumonia is 
more easily identified from the three, followed by bacterial 
pneumonia and viral pneumonia. Bacterial pneumonia and 
viral pneumonia are more difficult to distinguish, but the 
clinical indicators of the differential efficacy are relatively 
low with AUC values being lower than 0.6.

Diagnosing the etiology of CAP in children via chest 
radiographs is practical in our study, since the local lesion 
may retain critical features of pneumonia and the lung region 
contains global information. The combination of global and 
local information contributes to diagnosing the etiology of 
CAP in children, which is significantly effective. It is prom-
ising for future research to extend its application to more 
tasks, such as the diagnosis between common viruses and 
coronavirus disease 2019.

There are also some limitations in this study. Our chest 
radiograph was the first chest radiograph of the patient 
admitted to the hospital. The patient had already had fever, 
cough, and other clinical manifestations before admission, so 
it is uncertain if the patient had pneumonia for several days 
when the chest radiograph was collected and the prognosis 
of the patient was not tracked further. Secondly, this study 
only limited pneumonia to three categories, which did not 
involve tuberculosis or fungal pneumonia, and did not make 
a more specific classification of bacterial or viral pneumonia. 
Finally, the clinical indicators we collected were relatively 
single, and it would be more meaningful if procalcitonin or 
percentage of neutrophils were added.

Conclusion

This study provides a deep learning-based etiological predic-
tion technology for community-acquired pneumonia, which 
can realize the early diagnosis of CAP in children in a non-
invasive and rapid manner, and is of great significance for 
guiding clinical medication and reducing the mortality rate 
of childhood pneumonia.
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