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Abstract

Chest wall strapping (CWS) induces breathing at low lung volumes.
Mild to moderate obesity can lead to similar changes in lung volumes,
due to chest wall and abdominal restriction. Chest wall strapping is also
conceptually similar to a mismatch between significantly oversized
donor lungs transplanted into a recipient with a smaller chest cavity.
Chest wall strapping increases lung elastic recoil, reduces pulmonary
compliance, and substantially increases maximal expiratory flows.
The interactions between elastic properties of the lung parenchyma
and small airways are critical for pulmonary function. Chest wall
strapping lowers residual volume and closing volume, likely from
the interdependence between increased elastic recoil and airways,
leading to greater radial distending forces on small airways and small
airway dilation. Chronic obstructive pulmonary disease (COPD) and

chronic rejection of the transplanted lung, bronchiolitis obliterans
syndrome (BOS), are primarily diseases of the small airways, and are
characterized by progressive obstruction and subsequent loss of small
airways. In COPD, higher body mass index (BMI) (conceptually like
being more tightly strapped) is associated with lower lung volumes,
increased airway conductance, and lower risk of progression to
emphysema or death. Likewise, in lung transplantation, oversized
donor lungs have been linked to higher expiratory airflows, lower risk
of bronchiolitis obliterans syndrome, and improved survival. This
article reviews thephysiologyof chestwall strappingandexploreshowit
could enhance the understanding or even the treatment of small airway
diseases, such as COPD and bronchiolitis obliterans syndrome.
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Chest wall strapping (CWS) is a procedure
that involves restricting the thorax and
abdomen, forcing the subject to breathe at
low lung volumes (1–10). CWS has been
used to understand basic mechanisms of
pulmonary physiology. In particular, it has
long served as a model for studying the
physiology of restrictive chest wall diseases,
respiratory muscle weakness, and the effects
of general anesthesia and paralytics on lung
physiology (2, 3, 8). It now holds the

additional promise of providing insights
and potential treatments for diseases as
diverse as chronic obstructive pulmonary
disease (COPD) and post-transplant
bronchiolitis obliterans syndrome (BOS).

The aim of this Perspective is to provide
a concise overview of the physiology of
CWS, explore analogies to respiratory
effects of obesity and transplantation of
oversized lungs, and demonstrate how the
physiology of CWS can enhance our

understanding of diseases of small airways,
and possibly lead to novel treatments.

The Physiology of Chest
Wall Strapping

Lung Volumes, Expiratory Airflows,
and Airway Conductance
Lung volumes are decreased by the
application of external CWS (1–10). The
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magnitude of these decreases in lung
volumes depends on the stiffness of the
restricting device, the force with which it is

applied, and the extent to which it restricts
the abdomen (Figure 1 and the online
supplement). In studies of normal subjects,

CWS reduced total lung capacity (TLC) by
a mean of 34% (range, 28–43%), vital
capacity (VC) by 41% (range, 30–50%), and
FRC by 31% (range, 22–38%) (Table 1).
Residual volumes (RVs) decreased by 15%
(range, 6–24%). The expiratory reserve
volume (ERV) consistently showed the
greatest decrease, averaging 51% (range, 36–
60%). In three studies reporting on closing
volume it was uniformly reduced by CWS,
on average 18% (range, 14–20%) (1, 5, 9).

Somewhat more surprisingly, CWS
enhances forced expiratory airflows.
Maximal expiratory airflows (for the same
absolute lung volumes) were consistently
and substantially increased to averaging
159% (range, 147–188%) of the prestrapped
flow rates (Table 2, Figure 1C). Douglas
and colleagues (4) described the
relationship between CWS-induced
changes in lung volumes (represented by
reductions in ERV) and raised expiratory
flow (Figure 2A). After a threshold
reduction in ERV of 20–30%, further
reductions were associated with higher
maximal expiratory airflows (represented
by the slope of the flow–volume curve
from 30 to 10% of the unstrapped VC).
This study also showed that voluntarily
breathing at low lung volume leads to
changes in lung function identical to
those of CWS. Enhanced expiratory airflow
could be measured within 30 seconds of
low–lung volume breathing, and increased
further up to 2 minutes (4). Six studies
reported on airway conductance (reciprocal
of airway resistance), showing a consistent
increase after CWS (1, 3–5, 7–10). Specific
conductance (conductance adjusted for
lung volume) increased by an average of
32% (range, 24–43%) (6, 8, 10).
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Figure 1. Chest wall strapping (CWS) and its physiological effect. (A) CWS as performed by
Sybrecht and colleagues (9) (reproduced by permission from Reference 9). (B) Flow–volume loops
in control (blue) and CWS (orange) condition of author M.E. plotted against absolute lung volume.
Vertical dashed line shows absolute lung volume at 50% of control total lung capacity (TLC). The blue

horizontal line shows that expiratory flow at 50% of control TLC in control state is 3.2 L/s, whereas,
in the strapped state at the same absolute lung volume (50% of control TLC), expiratory flow is 5.9 L/s.
(C) Presentation of all the basic data from a typical subject with CWS (reproduced by permission
from Reference 8). Control (solid) and strapped flow–volume (dashed) curves on the left and
corresponding static lung elastic recoil pressures (Pst(l_ )) on the right of the ordinate. At the same absolute
lung volume (horizontal red line), the CWS shows higher expiratory flows (V

:

) and higher static lung elastic
recoil pressure (Pst(l_ )). (D) Relating expiratory flows (V

:

) and static lung elastic recoil pressures (Pst(l_ ))
from the same data as shown in (C) (reproduced by permission from Reference 8). The expiratory flows
and static lung elastic recoil pressure (Pst(l_ )) curves from control and strapped state overlie each other,
suggesting that the increased elastic recoil with CWS is the explanation for the increase expiratory airflows.

Table 1. Chest wall strapping and lung volumes in healthy subjects

First Author, Year (Ref.) n TLC VC FRC ERV RV CV

Caro, 1960 (3) 25 236% 245% 235% 260% 224% —
Butler, 1960 (2) 10 — — — — — —
Stubbs, 1972 (8) 8 233% 240% 236% 257% 211%
Sybrecht, 1975 (9) 5 228% 230% 227% 244% 220% 220%
Bradley, 1980 (1) 8 243% 250% 238% 260% 29% 214%
Douglas, 1981 (4) 6 Variable Variable Variable 0 to 270% Variable. —
Klineberg, 1981 (5) 7 236% 244% 232% 258% 215% 220%
Scheidt, 1981 (7) 10 236% 246% 224% 248% 26%
Noord, 1986 (10) 14 231% 236% 228% 240% 212%
O’Donnell, 2000 (6) 12 229% 235% 222% 236% 210%
Weighted mean, % (SE) 234% (0.5) 241% (0.7) 231% (0.6) 251% (1.0) 215% (0.7) 218% (0.7)

Definition of abbreviations: CV = closing volume; ERV = expiratory reserve volume; FRC = functional residual capacity; RV = residual volume; TLC = total
lung capacity; VC = vital capacity.
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Chest Wall Strapping and
Lung Mechanics
CWS decreases compliance of the
respiratory system. However, studies of
CWS have not only shown decreased chest
wall compliance, but have consistently
shown reduced lung compliance (slope of
the expiratory limb of the static pressure–
volume curve) and an increase in lung
elastic recoil (static lung recoil pressure
measured at 50% of control TLC) (Table 2,
Figure 1C) (1–5, 7–10). Increased lung
elastic recoil is similarly seen in voluntary
low–lung volume breathing (4).

The key determinants of maximal
expiratory airflow are lung elastic recoil,
airway resistance, and the “tube law” (the
relationship between airway cross-sectional
area and transmural pressure) (11). Thus,
the increased expiratory airflows with CWS
can be explained, in part, by the elevated
lung elastic recoil (Figure 1D) (8). The elastic
properties of the lung parenchyma interact
with small airways to impact pulmonary
function. Increased lung elastic recoil due
to CWS would be expected to dilate small
airways, altering the tube law (12). This is
the likely explanation for the significant
decrease in residual and closing volume and
the increase in airway conductance that
attend CWS (1–10). This is supported
by preliminary data from computerized
tomography (CT) airway structure analysis
comparing CT scans at 50% of control TLC
in the strapped and control states (Figure 3).
In the strapped condition, there were greater
numbers of detectable airways (129 versus 107;

P, 0.05), and this increase occurred only in
airways less than 5-mm diameter. Some
airways of very small diameter in the control
condition may have been dilated to larger
diameters in the strapped condition, and
thus reached the detection threshold of the
automated airway segmentation algorithm.

What Is the Mechanism for Chest Wall
Strapping–induced Lung Function
Changes?
The mechanisms of increased lung elastic
recoil with CWS have not been conclusively
defined. Overall lung elastic recoil is
determined by tissue forces and surface
forces at the air–liquid interface (13),
both of which could be affected by CWS.
Possible mechanisms for the increased lung
elastic recoil with CWS could include
airway closure and atelectasis, distortion
of the lung, and decreased alveolar surface
compliance from changes in surfactant
function. Of these, decreased alveolar
surface compliance is the most likely
mechanism, supported by the following
observations.

From animal studies. When isolated
rat (14) and dog (15) lungs were ventilated
at low volumes, lung compliance decreased
by approximately 40%. There was no
histological evidence of airway occlusion,
atelectasis, or change in alveolar ducts or
alveoli. In other experiments, after a period
of ventilation at low volumes, lungs were
filled with saline to nullify the effect of
surface forces and reveal that of tissue
forces. There was no difference in the

pressure–volume relationship of control
and low–lung volume–ventilated lungs.
This suggested that ventilation at low
volumes reduces lung compliance via
a change in surface forces, not tissue forces
related to atelectasis or distortion. There
was a significant negative correlation
between the minimum surface tension
in the lung extracts and the compliance
changes. Higher surface forces were
associated with lower lung compliance.

From human studies. Several studies
demonstrated that, after CWS, only one
breath to the unstrapped TLC was necessary
to normalize lung compliance (1–5, 7–9).
On the other hand, when CWS was
released, but no deep breaths were taken,
the decrease in lung compliance persisted
(1, 4). This latter observation makes
lung distortion via CWS unlikely to
be a significant mechanism. Regional
ventilation, as assessed by xenon breathing,
showed no inhomogeneities during CWS
(9). Furthermore, in patients with low-
volume breathing because of respiratory
muscle weakness, there was no imaging
evidence of atelectasis on CT scans of the
chest (16). These findings provide further
evidence that atelectasis is unlikely to
be a significant mechanism underlying
elevated elastic recoil due to CWS.

The role of surface compliance in the
increased elastic recoil seen with CWS draws
attention to pulmonary surfactant. Massaro
and colleagues (17, 18) provide insight
into how surfactant function might change
with ventilation at low volumes. Low-volume

Table 2. Chest wall strapping, expiratory flows, and lung mechanics in healthy subjects

First Author,
Year (Ref.)

n FEF at
50% TLC

Conductance Lung Compliance
50% TLC

Lung Elastic Recoil
50% TLC

Caro, 1960 (3) 25 — 19% (overall) 238%* 1185*
Butler, 1960 (2) 10 — ↑↑† ↓↓† —
Stubbs, 1972 (8) 8 1188% 143% (50% TLC) 233% 1164%
Sybrecht, 1975 (9) 5 1133% 243%
Bradley, 1980 (1) 8 1150%‡ 259% 1244%
Douglas, 1981 (4) 6 1148%x ↑↑ — 1139%‡

Klineberg, 1981 (5) 7 1181% 248% 1151%
Scheidt, 1981 (7) 10 1167%‡ 1188%
Noord, 1986 (10) 14 1147% 124% (50% TLC)
O’Donnell, 2000 (6) 12 — 135% (sGaw)
Weighted mean, % (SE) 1159% (2.3) 132% (1.3) 242% (1.1) 1182% (3.6)

Definition of abbreviations: FEF = forced expiratory airflow; FRC = functional residual capacity; sGaw = specific conductance; TLC = total lung capacity.
*Measured at control FRC.
†Graphic display of conductance and compliance over the entire lung volume range. At each lung volume, conductance and compliance were significantly
higher/lower, respectively.
‡At 40% TLC.
xAt 30% of vital capacity.
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ventilation without periodic large inflations
led to a decrease in lung compliance in
rats. Disaturated phosphatidylcholine
(DSPC) is the only recognized surface-
active constituent of surfactant present in a
sufficient amount to form a monomolecular
film over the entire alveolar surface. The
total amount of DSPC after low-volume
ventilation was unchanged compared with
the control condition. However, large
aggregates of DSPC (that sediment at
1,0003 g) accumulated in the lungs of low-
volume–ventilated animals. Surfactant in

this form lowered surface tension less
rapidly than surfactant in the 1,000 3 g
supernatant fraction. As with the CWS data,
a large inflation after low-volume ventilation
returned the amount of DSPC sedimenting
at 1,000 3 g to control levels (17, 18).

The Analogy of Chest Wall
Strapping and Obesity

The effects of obesity on the respiratory
function of healthy subjects have been

reviewed recently (19–21). This section
focuses only on possible analogies to
and differences from CWS. The greatest
proportional changes in lung volumes with
obesity occur in FRC and ERV. With
increasing body mass index (BMI), FRC
and ERV decrease exponentially
(Figure 2B) (22). ERV is reduced in obesity
secondary to reduction in FRC, as RV
usually decreases only modestly. CWS of
healthy subjects reduces FRC by 30%,
on average, resembling the lung volume
impact on FRC and ERV of mild to
moderate obesity (Table 3). However, with
CWS, TLC and VC are reduced to a similar
proportion as ERV and FRC, whereas, in
mild to moderate obesity, TLC and VC
are, in general, normal or only modestly
reduced (22, 23). Reductions in TLC and
VC often only occur with morbid obesity.

The mass loading effects of excess
adipose tissue on the chest wall and
abdomen reduce compliance (increase
stiffness) of the relaxed respiratory system
(24–28). Although early physiological
studies emphasized the contribution
of the chest wall to lowered respiratory
system compliance in obesity (26), later
investigations repeatedly highlight the
significant contribution of the lung (24, 27,
28), as in CWS. Reduced lung compliance
is consistently shown in obese subjects
undergoing anesthesia (24, 27, 28). In
awake, otherwise healthy obese subjects,
reduced lung compliance is reported (29,
30); however, there are also reports on
normal lung mechanics in obese subjects
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Figure 2. Chest wall strapping (CWS) and obesity induced breathing at low lung volumes. (A) The
degree of expiratory reserve volume (ERV) reduction via CWS (open circles) or voluntary low–lung
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slope correlates with higher airflows). Reproduced with permission from Douglas and colleagues (4).
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permission from Reference 22. FVL = flow-volume loop.
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(31). Almost all studies on the respiratory
effects of obesity rely on BMI. However, for
the same change in BMI, different patterns
of adipose tissue distribution likely
associate with different alterations in
respiratory mechanics (32). In CWS, the
location of the strapping is also important.
Strapping the thorax only does not reduce
lung volumes sufficiently to affect
expiratory airflows or lung compliance (7,
9). The chest straps need to restrict at least
the upper portion of the abdomen also
to cause a decrease in FRC and ERV
in normal subjects. Similarly, isolated
abdominal strapping does not reduce
lung volumes significantly.

In several studies, higher BMIs
are associated with higher maximal
midexpiratory airflows and higher FEV1/
FVC ratios in otherwise healthy, obese,
nonsmoking subjects (33). In addition,
the effect of obesity on FRC correlates
significantly with increases in maximal
expiratory flows (as measured by the slope
of the expiratory flow–volume relationship)
(34). The observation that flow at moderate
to low lung volumes is increased in
obesity is best explained by an increase in
lung elastic recoil from breathing at low
lung volumes. These findings in obese
subjects are analogous to those in healthy
subjects exposed to CWS. The authors state
“this analogy (of CWS) with our findings
makes us confident that until the decrease
in lung volumes does not exceed a given
threshold in obesity, the increase in lung
stiffness can protect ventilation from
becoming more heterogeneous and worsen
gas exchange” (34). This threshold was
approximately 65% of FRC or an ERV
below 0.6 L, where an exponential increase

in ventilation heterogeneities, suggestive of
airway closures, was observed (34).

The Analogy of Chest Wall
Strapping and Transplanting
Oversized Lungs

The FRC of a lung transplant recipient is
determined by both the recipient’s chest
wall mechanics and those of the donor
lung. A patient given an oversized allograft
will likely have an FRC that is lower than
the donor’s FRC, because of the mechanics
of the relatively smaller recipient thorax.
In adults, absolute RV is determined by
intrinsic characteristics of the lung (airway
closure), rather than the chest wall (35).
Thus, the RV of an oversized allograft is
likely large relative to the recipient’s thorax.
As a consequence, a patient with an
oversized allograft will likely breathe at
relatively low lung volumes that are closer
to the RV of the allograft (that is, ERV is
reduced). In fact, in a cohort of recipients of
oversized lungs, the pulmonary function
pattern resembled that of CWS (Table 3)
(36). In another group of bilateral lung
transplant patients, an oversized allograft
was associated with higher expiratory
airflows, FEV1/FVC ratio, and flow–volume
loop slope estimates (37). To evaluate the
physiology of the transplanted lung, it is
helpful to analyze post–lung transplant
allograft function in relation to donor
predicted function. When flow–volume loops
are analyzed in this way, oversized allografts
resemble those of CWS (Figure 4) (37).

There is very limited information on
lung compliance and lung elastic recoil
pressure after lung transplantation in

relation to donor–recipient size matching.
In 15 patients who had undergone bilateral
lung transplantation whose donor lungs
were, on average, mildly oversized, elastic
recoil of the transplanted lungs was mildly
increased (38).

Thus, the respiratory effects of mild to
moderate obesity in healthy subjects and
transplantation of oversized allografts show
significant analogies to CWS. Differences
are that mild to moderate obesity in general
does not reduce TLC and that morbid obesity
can lead to even greater reductions in
FRC and ERV than are typically achievable
by CWS. These greater reductions in ERV
and FRC with morbid obesity might exhaust
the “compensatory mechanism” of increased
lung stiffness, instead compromising airway
patency, effective ventilation, and gas
exchange at low lung volumes.

Chest Wall Strapping and
Implications for Diseases of the
Small Airways

This section explores how conditions that
are conceptually similar to CWS (obesity
and oversized lung transplantation)
associate with the occurrence and
progression of diseases of the small airways.

COPD
CT and micro-CT studies in COPD have
demonstrated that small conducting airways
narrow and disappear before the onset of
emphysematous disease, drawing attention
to these airways in its pathogenesis
(Figure 3C) (39). In COPD, obesity lowers
lung volumes much as it does when the
lungs are healthy (40). As such, the impact

Table 3. Comparison of respiratory effects of chest wall strapping, obesity, and transplantation of oversized lungs

Obesity (22)

Lung Function CWS (1–10) Mild, BMI 30–35 Moderate, BMI 35–40 Morbid, BMI >40 Oversized Transplant
(36)

Lung Volumes
TLC, % predicted (SD) 66% (5) 93% (9) 92% (11) 88% (11) 65% (13)
FRC, % predicted (SD) 70% (6) 78% (13) 72% (13) 66% (12) 81% (22)
ERV, % predicted (SD) 50% (9) 42% (29) 29% (19) 24% (19) 55% (18)

Expiratory airflow ↑↑ ↑ (33, 34) ↑ (33, 34) variable ↑↑
Slope of expiratory

flow–volume loop
↑↑ ↑ (34) ↑ (34) variable ↑↑ (37)

Lung elastic recoil ↑↑ ↑ (24, 27, 28) ↑↑ (24, 27, 28) ↑↑ (24, 27, 28) ↑ (38)

Definition of abbreviations: BMI = body mass index; CWS = chest wall strapping; ERV = expiratory reserve volume; FRC = functional residual capacity;
TLC = total lung capacity.
Supporting references are shown in parentheses, except SD where indicated.
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of obesity on the respiratory system in
patients with COPD could be considered
a “CWS experiment.” For the same degree
of COPD severity, obesity is associated with
lower lung volumes, decreased airflow
resistance, and higher inspiratory capacity
(20, 40). Ora and colleagues (41) performed
a study matching obese and normal-weight
patients with COPD based on disease
severity. In the obese patients with COPD,
TLC was reduced by 15%, FRC by 20%, and
ERV by 45%. Lung static recoil pressure
was significantly increased by 29% in
the obese group. If it is correct that
widespread narrowing and loss of smaller
conducting airways precedes the onset
of emphysematous destruction, then the
“CWS effect of obesity” could protect small
airway function or reduce the risk for
progression to emphysema. Interestingly, in
the Multiethnic Study of Atherosclerosis

lung study, the higher the BMI, the lower
the risk for emphysema (42). In a risk-
adjusted analysis, obesity was associated
with improved survival in COPD when
compared with normal weight (43). The
above observations form the basis for
the “obesity paradox of COPD,” as this
is contrary to data from the general
population, where obesity is associated
with adverse health effects (44).

Bronchiolitis Obliterans Syndrome
after Lung Transplantation
BOS is a disease that primarily affects small
airways (45), and represents the main
cause of long-term mortality after lung
transplantation. Oversized allografts have
been associated with a decreased risk for
the occurrence of BOS (Figure 4) (37).
Furthermore, an oversized allograft is
associated with improved short-term

and long-term survival (46–49). The
mechanism(s) for these associations
remains unclear. In the transplanted lung,
immune- and nonimmune-mediated
injuries to the small airways are risk factors
for BOS (50). In injured small airways,
repetitive opening and closing is associated
with accelerated airway epithelial cell
damage (51), inflammation, and,
ultimately, fibrosis.

The likely increased elastic recoil of
oversized lungs could have a beneficial effect
on small airway function via greater radial
distending traction on small airways (12).
A possible mechanistic explanation for the
physiology of CWS relates to the surfactant
system. The associations between the
surfactant system and risk factors for BOS
are summarized in Table 4. The surfactant
system shows adaptive responses to changes
in lung compliance. In a model of decreased
lung compliance, increases in surfactant
protein and phospholipid content mediated
a compensatory reduction in surface tension
(52). Furthermore, compared with normal
inflation state in the donor chest, an
oversized allograft would operate at lower
lung volumes in the recipient, and thus
alveolar size would, on average, be reduced.
Surfactant fills in the regions adjacent to
infolding of the alveoli as the lung deflates
to maintain a spherical inner surface (53).
Thus, a chronically underinflated lung could
be expected to accumulate more surfactant.

Chest Wall Strapping as a
(Preventive) Therapy for COPD
or Bronchiolitis Obliterans
Syndrome?

So, does the normal or underweight subject
with COPD have a greater risk of developing
emphysema because his chest wall is
not restricted? On the contrary, is the
“strapped” obese patient with COPD
protected from emphysema because
increased lung elastic recoil benefits small
airway function? Instead of treating end-stage
emphysema with lung volume reduction
surgery, can “chest cavity reduction”
(i.e., CWS) limit progression to emphysema?

Abdominal binding or strapping in
patients with COPD has produced variable
results (54, 55). However, even these studies
may not be informative, because strapping
failed to affect either TLC or FRC (55).

When thinking about CWS as a
possible nonpharmacologic approach to
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Kaplan-Meier estimates of proportion of patients with bronchiolitis obliterans syndrome (BOS)
stratified by recipients of undersized or oversized donor lungs. Oversized was defined as a donor-to-
recipient predicted total lung capacity (pTLC) ratio greater than 1.0, and undersized was defined as
a pTLC ratio of 1.0 or less. Comparison between over- and undersized cohorts was via log-rank test.
Adapted by permission from Reference 37.
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COPD or BOS, several issues need
additional clarification. First, it is unclear if
the response to CWS in subjects with COPD
or other pulmonary diseases will be similar
to that in healthy subjects, although the
effect of obesity in COPD would suggest so.
However, the possible effect of obesity on
COPD can be confounded by similar airflow
reduction from pathology of a emphysema
and one of small airway disease with little
emphysematous destruction. Then, in the
latter case, elastic recoil would be greater,
TLC may not be increased, and the clinical
course may differ, because of the difference
in disease pathology rather than as a
function of obesity.

Furthermore, the duration of
CWS needed in order to have a

potentially beneficial impact is completely
speculative.

Potential Negative Effects of
Chest Wall Strapping

In general, CWS in healthy subjects is well
tolerated and not associated with serious
adverse events (1–10). However, CWS
can increase airways hyperresponsiveness
to a methacholine challenge (56).
Furthermore, during exercise in healthy
subjects, CWS is associated with a greater
dyspnea intensity at any given workload
(6, 57), and reduced breath-to-breath
variability (58). In subjects with COPD,
abdominal strapping was well tolerated at

rest, but impaired exercise performance
(55). However, it is possible that CWS is
poorly tolerated in subjects with lung
disease.

Conclusions

Breathing at low lung volumes is associated
with increased lung stiffness (increased
elastic recoil). Increased lung stiffness
produces radial traction on small airways,
which seems to maintain airway patency at
low lung volumes and increase expiratory
airflows. The similarities of CWS to
respiratory effects of mild to moderate
obesity and transplantation of oversized
lungs bring new relevance to this old
physiology experiment. Further studies of
CWS could provide novel insights and
potential treatments for diseases as diverse
as COPD and BOS. n
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