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Abstract: Due to its widespread availability, low cost, feasibility at the patient’s bedside and
accessibility even in low-resource settings, chest X-ray is one of the most requested examinations
in radiology departments. Whilst it provides essential information on thoracic pathology, it can be
difficult to interpret and is prone to diagnostic errors, particularly in the emergency setting. The
increasing availability of large chest X-ray datasets has allowed the development of reliable Artificial
Intelligence (AI) tools to help radiologists in everyday clinical practice. AI integration into the diag-
nostic workflow would benefit patients, radiologists, and healthcare systems in terms of improved
and standardized reporting accuracy, quicker diagnosis, more efficient management, and appropri-
ateness of the therapy. This review article aims to provide an overview of the applications of AI for
chest X-rays in the emergency setting, emphasizing the detection and evaluation of pneumothorax,
pneumonia, heart failure, and pleural effusion.

Keywords: artificial intelligence; chest X-ray; emergency radiology; deep learning; chest radiography

1. Introduction

Over recent years, there has been increasing interest in the application of artificial
intelligence (AI) techniques to medical imaging examinations. Chest X-ray (CXR) is one of
the most frequently performed examinations, particularly in the emergency setting, due to
its widespread availability, low costs, and the possibility to be performed at the patient’s
bed. It provides significant information on lung parenchyma and the related pathologies,
as well as on cardiovascular circulation and pleural disorders.

A correct and rapid CXR report is decisive in choosing the proper treatment and
improving the patients’ outcome. Although CXR reading is considered a basic radiological
skill, it remains challenging and depends on the radiologist’s experience, workload, and
environment. The development of robust and efficient AI algorithms could greatly facilitate
CXR readout, particularly in emergency settings, where time spent on CXR interpretation
and the accuracy of responses is often of vital importance.

Owing to the high number of CXR examinations performed daily in hospitals around
the world, there is a large amount of data available for developing robust AI algorithms.
AI-based tools have been shown to facilitate the detection of numerous health-threatening
conditions, as well as to prioritize the reporting of patients with critical findings [1,2]. In
this narrative review, we provide an overview of the different AI tools used for CXR inter-
pretation and their performance in the emergency setting for the study of: pneumothorax,
pneumonia, COVID-19, heart failure and pleural effusion.
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1.1. A Quick Introduction to AI

Artificial intelligence (AI) can be defined as technology that mimics human cognitive
processes, such as learning, reasoning, and problem-solving. As, in conventional radiol-
ogy, diagnosis is primarily qualitative, AI-powered assessment could make a significant
contribution in this field, reducing the variability in image interpretation and improving
diagnostic accuracy [1].

AI applications in radiology are driven by the idea that medical images are a set of data
that can be computed by a machine to extract useful information [3]. Therefore, increasing
the data storage capacity and computing power is a prerequisite for the development of
AI-based tools. However, it is not just a question of making the evaluations routinely
expressed by the radiologist faster and more precise, but also of extracting information not
visible to the human eye to improve the clinical managment [4]. The systematic application
of a quantitative approach (essentially AI-driven) to the problem of interpreting biomedical
images is at the base of the so-called radiomics paradigm [4,5].

Machine learning (ML) is a branch of AI that applies concepts and tools from other
disciplines, primarily statistics and programming, to build algorithms aimed at the auto-
mated detection of meaningful patterns in data, a field closely related to data mining [6]. In
radiology, ML can be used to extract information from imaging data [4].

The process of developing ML-based tools embodies several phases, among which the
main ones are the training and validation phase [6]. In general, the training phase requires
the exposure to a set of data, or cases, which can be variably labeled (supervised learning)
or unlabeled (unsupervised learning) [6].

In supervised learning, the simplest form of ML, the system simulates the human
cognitive process of “learning by examples”. This type of ML is suitable for very general
classification tasks in which new elements need to be labeled according to some predefined
categories [7]. Labeled data points might be obtained from human experts that annotate
(“label”) data with their corresponding label values (for example, a chest X-ray could be
positive for pneumonia “yes = 1” or negative “no = 0”). These methods exploit a training set
that consists of tuples (x,y) made of inputs (x), for which we know the corresponding label
values, which therefore represent the output (y). The supervised ML algorithm searches for
a hypothesis (f) that maps the relationship (x→ y) between the data, imitating the human
annotator, which allows it to predict the label solely based on the features of a data point.

While radiologists mainly evaluate qualitative features, such as increased or reduced
radiopacity, comparing them to a subjective reference standard, ML features are low-level
properties, or metrics, of a data point that can be computed or measured easily. There are
hand-crafted features (manually defined by data scientists) and automatically extracted
features (usually through deep-learning algorithms, see further). The problem of choosing
which features to select to build more accurate models is one of the most challenging
parts in the radiomic workflow. Even if reproducible features are not necessarily clinically
informative, successful AI models must be built upon reproducible and robust features [8].

In unsupervised learning, the system analyzes and extracts significant features from
unlabeled data by forming groups or identifying relationships between subgroups [6]. This
type of ML is suitable for clustering or associative tasks [7].

At the basis of each ML approach are models that can be trained and tested in data
analysis [6]. A model is a theoretical hypothesis that maps a possible relationship between
data and it is usually based on statistical assumptions that are computationally feasible,
meaning that they can be translated easily into the programming code to perform au-
tomated data analysis [6]. Through automation, it is possible to test the feasibility of a
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model for a certain dataset and compare the performances of different models [6]. Several
mapping hypotheses can be used to infer predictions of an amount of interest that satisfies
some predefined requirement, as in supervised learning, or to ensure some rules of internal
consistency between clusters, as in unsupervised learning. Some models may outperform
the others in representing the desired relationship, leading to more accurate predictions.
The testing phase, which follows the training phase, is necessary to assess the fitness of the
model in mapping the desired relationship (if existing) between the data [4].

Artificial neural networks are a particular learning paradigm inspired by the biological
network of the human brain [9]. Their operating principle is not based on statistical hy-
potheses generated a priori, but on the peculiarities of their structure and on computational
properties of the units that compose them. In an artificial neural network, each node
represents a cell that operates on the input information, according to certain rules, to obtain
an output that it transmitted to the next neuron to be further processed. The computation
performed by a single unit is influenced by its interconnections and their weight, which
provide a measure of how much each input “counts” in the neuron. In this way, the flow of
information is passed through the network while shaping the network itself. The global
function (for example image recognition) is obtained through the coordinated activity of
smaller units each performing an elementary computational function [9].

Complex artificial neural networks, called Convolutional Neural Networks (CNNs),
have been developed and found to be particularly suitable for image analysis and recogni-
tion tasks. Deep learning (DL) is a domain of AI that takes advantage of complex artificial
neural networks such as CNNs to discover intricate patterns in data. DL networks feature
many intermediate layers, where each layer represents increasing levels of abstraction, to
the extent that it is unclear exactly how processing the intermediate layers contributes to
the overall result [10]. This is also known as the black box phenomenon and contributes to
the problem of interpretability of the results of AI tools.

DL models are built to capture the full image context and learn the correlations
between the local features, resulting in a superior performance in various radiological tasks,
such as interpreting radiographic exams.

1.2. Open Datasets

ML and DL algorithms are trained with datasets and are dependent on the number and
quality of the training data. There is a constantly increasing number of publicly available
CXR datasets that can be used for image classification and retrieval tasks. Some of the
biggest and most commonly used open datasets are listed in Table 1.
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Table 1. The table summarizes the characteristics of the main CXR datasets such as the number of images, number of labels, and labeling technique. The dataset
containing more images is the CheXpert with 14 labels. In the last two columns, we have listed the main strengths and weaknesses of the different datasets.

Dataset Name Country Images Studies Labels Labels’ Technique Format Limitations Strengths

MIMIC-CXR [11] Israel 371,920 65,383 14 Natural Language Processing JPEG and DICOM Absence patient demographic data Number of cases

CheXpert [12] USA 224,316 65,240 14 Natural Language Processing and
radiologist consensus on CXR JPEG No statistical test to assess the difference

between radiologists and the model

Introduction of pre-negation
and post-negation stage for
classification of uncertainty

ChestX-ray14 [13] USA 112,120 30,805 14 NLP and Radiologist interpretation of
CXR

PNG

Many findings are not included in
radiology reports.

Number of labelsLabe disambiguation failure
(“emphysema” in case of subcutaneous

emphysema) [14]

PLCO [15] USA 185,421 56,071 12 Radiologist interpretation of CXR TIFF Chest Xray made for a lung cancer
screening program Number of cases

PadChest [16] Spain 160,868 67,625 193
Natural Language Processing (73%) and
Radiologists’ report interpretation (27%) DICOM

Under-reporting bias: not all the features
are listed in the report

Number of labels
The severity of medical condition is not

currently captured in the labels
Selection bias including only CXR with

available reports

BRAX [17] Brazil 40,967 19,351 14 NLP, radiologists’ report interpretation
and Radiologist interpretation of CXR DICOM and PNG Absence of other metadata

(gender and race)
1000 reports were randomly
reviewed by two radiologists

Indiana University
dataset [18] USA 7470 3955 177 Radiologist interpretation of CXR and

Natural Language Processing DICOM Number of patients Frontal and lateral CXR and
number of features

Ped-Pneumonia [19] USA 5856 5232 2 Radiologist interpretation of CXR JPEG Number of features Pediatric cases

RSNA Pneumonia
[20] USA 30,000 1 Radiologist interpretation of CXR DICOM Only pneumonia 4527 cases were read by

3 radiologists



Diagnostics 2023, 13, 216 5 of 18

2. Worklist Prioritization

The automatic notification of critical findings is one of the most interesting AI applica-
tions in emergency radiology. With the increased demand for imaging studies, delaying the
communication of key data to the treating physician can delay critical care and compromise
therapeutic efficacy, particularly in urgent scenarios [21].

The priority assigned by the emergency doctor who first examines the patient deter-
mines the sequence in which the imaging exams are reported; unfortunately, the precedence
is not always consistent with the abnormalities observed. AI-based models may detect and
prioritize emergency CXR findings in real time, reduce the report response times for key
findings, and optimize therapeutic pathways.

A notification system developed by GE Medical System and Zebra Medical Vision
for the evaluation of pneumothorax on CXR demonstrated a significant reduction in
the time required for the diagnosis. Three experienced radiologists evaluated 588 CXR
with the HealthPNX prioritization software with an average diagnosis time of 8.05 min
versus 68.98 min without the software. The time needed to assess the radiograph and send
a notification was only 22.1 s [22].

Annarumma et al. created and tested a CNN-based tool to simulate an automatic
triage for adult CXRs according to the urgency of the imaging findings. The use of the
algorithms resulted in a theoretical reduction in the reporting delay for critical studies,
from 11.2 to 2.7 days [23]. Another AI tool developed by Kim et al. allowed the reduction
of the time-to-report for CXRs of critical and urgent cases (from 3371.0 to 640.5 s and from
2127.1 to 1840.3 s, respectively) [24].

In the setting of the COVID-19 pandemic, Tricarico et al. [25] developed an automated
tool for the prioritization of patients with the suspicion of the COVID-19 disease based on
CXR analysis. This CNN-based system aimed to facilitate the workload in the emergency
department by fast-forwarding the testing of suspicious cases. The proposed architecture
was reviewed retrospectively on a dataset of cases collected throughout the first months of
the pandemic and showed significant improvements for the identification and prioritization
of COVID-19 patients. The system’s sensitivity and specificity were 78.23% and 64.2%,
respectively. In preliminary real-life testing, the method reached a correlation of 0.873.

3. Pneumothorax

Pneumothorax is a pathological condition in which the pleural cavity fills with air,
impairing oxygenation and ventilation. It occurs spontaneously or as a complication of
trauma, medical interventions, and infections. Due to the sheer variety of the underlying
etiologies and clinical scenarios, pneumothorax represents an important morbidity and
mortality factor. Some forms present with a severe progressive hemodynamic compromise,
with eventual cardiovascular collapse and respiratory failure if left untreated.

CXR allows for the timely diagnosis and objective quantifying of pneumothorax,
which is crucial for the selection of the optimal management strategy. AI could potentially
increase the sensitivity for pneumothorax identification and provide quantification through
volume segmentation, particularly in low-resource settings where experienced radiologists
might be lacking. Automated pneumothorax detection represents a challenging technical
task due to the variability of its appearances on CXR. However, a variety of AI solutions
have been proposed in recent years, powered by the rapid development of DL and the
availability of large CXR datasets.

In 2017, Wang et al. published a large ChestX-ray8 database with image-level labels
for eight chest conditions, including pneumothorax. A multilabel deep CNN model was
performed on the dataset and demonstrated an accuracy of 0.0816 for pneumothorax
detection, with an average false positive rate of only 0.2317 [26]. Smaller datasets have
also been used for the training of DL algorithms. For example, Blumenfeld et al. used a
dataset of 117 CXRs with pixel classification and reached a diagnostic accuracy of 0.95 for
pneumothorax detection [27].
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A model involving CNNs on frontal CXR demonstrated a sensitivity of 0.55, a speci-
ficity of 0.90, and an area under the curve (AUC) of 0.82 for the assessment of large and
moderate pneumothorax on internal testing, although the performance was lower on
external testing (AUC = 0.75) [28].

In a pneumothorax segmentation competition organized in 2019 by the Society for
Imaging Informatics in Medicine, the winning team achieved a Dice score of 0.8679 by using
a deep neural network ensemble and extensive data pre-processing and augmentation [29].
Wang et al. proposed a construct of several modified U-Net convolutional network models,
which were validated at the 2019 segmentation competition and reached an area under
the curve of 0.9795 and a Dice score of 0.8883 [30]. Another model based on the U-Net
CNN architecture showed an accuracy of 97.8% and sensitivity of 69.2%, which was less
precise compared to that of an experienced radiologist, but did not differ significantly
(p = 0.11). For patients with >21.6% of pneumothorax, the model predicted the need for
thoracostomy [31].

In another study, using a fully convolutional network algorithm trained on a large
dataset with pixel-level labels, the authors reached 93.45% diagnostic accuracy and high
segmentation accuracy with a mean pixel-wise accuracy (MPA) of 0.93 ± 0.13 and dice
similarity coefficient of 0.92 ± 0.14 [32].

Several authors have proposed pneumothorax detection algorithms based on ResNet
artificial neural networks. Gooßen et al. demonstrated an AUC of 0.96 for a ResNet-50
model [33].

A Deep ResNet-50 model successfully detected pneumothorax with a combined Dice
score of 0.82 and allowed for the segmentation of pneumothorax lesions, with a Dice score
ranging between 0.72 and 0.79 [34]. In a recent study, two-stage ResNet algorithms trained
and validated on a large dataset demonstrated an accuracy of 94.4% and an area under the
curve of 97.3% for the detection of pneumothorax [35].

Another CNN-based model correctly recognized pneumothorax and tension pneu-
mothorax cases with an AUC of 0.979 and 0.987, respectively [36].

Yi et al. compared the performance of an algorithm based on ResNet-152 deep CNN
with that of first-year radiology residents. Although the model performed faster than the
first-year radiology residents, with 1980 and 2 images assessed per minute, respectively,
its AUC was significantly lower (0.841 vs. 0.942 and 0.905 (p < 0.01)). The deep CNN
identified 9.7% of the pneumothoraxes missed by at least one of the residents [37]. While
DL algorithms are not sufficiently robust to independently assess CXR for pneumothorax,
recent developments have highlighted their potential role as supportive tools. A multicenter
cohort study demonstrated that the AI-aided interpretation of CXR by radiologists showed
significant improvement of AUROC for pneumothorax [38].

4. Pneumonia

Pneumonia constitutes a major health hazard despite the advances in its diagnosis
and management. A variety of agents can give rise to pneumonia, which translates into the
heterogeneity of its epidemiology, signs and symptoms, presentation on diagnostic tests,
and clinical course. Pediatric pneumonia is an ongoing global healthcare challenge, which
accounts for 14% of all deaths of children under five years old, according to the World
Health Organization.

CXR is the first imaging test performed for pneumonia diagnosis. Moreover, the
correct interpretation of CXR allows for differentiating between viral and bacterial etiology
of pneumonia, with added value for patient management. This is particularly important
in developing countries, which account for a large percentage of childhood morbidity
and mortality from pneumonia, but have limited access to other diagnostic tests. Not
surprisingly, the diagnosis of pneumonia via CXR, particularly in the pediatric setting, has
attracted significant interest among AI researchers, with a variety of proposed models.

The multilabel ChestX-ray8 project, which was described before, demonstrated an
accuracy of 0.75 for the detection of pneumonia, with an average false positive rate of
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0.0691 [26]. A transferable CNN, which demonstrated efficiency in classifying age-related
macular degeneration and diabetic macular edema, showed an accuracy of 92.8% and
an AUC of 96.8% when applied and trained on the pediatric CXR dataset for pneumonia
detection. Moreover, the model was able to reliably differentiate between viral and bacterial
pneumonia (accuracy 90.7%, AUC 94.0%) [39].

Similarly, a customized VGG16 model reached 96.2% diagnostic accuracy and 93.6%
classification accuracy for distinguishing between bacterial and viral pneumonia, respec-
tively. It also integrated a novel strategy for visualizing the algorithm region of interest on
CXR for improved transparency of deep learning inner workings and behavior [40].

Gu et al. developed a full CNN for the segmentation of the lung regions followed by
deep CNN for classification, which was evaluated on an internal pediatric CXR dataset
with an accuracy of 0.80 and sensitivity of 0.77 [41]. A CNN model by Okeke et al. showed
an accuracy of 0.93 for the detection of pneumonia on pediatric CXR [42]. Another CNN
reached a similar accuracy, of 96-97%, in the Kaggle pneumonia dataset [43]. A CNN
model by Liang et al. showed 96.7% accuracy for the detection of pneumonia in pediatric
patients [44].

Rahman et al. assessed four pre-trained CNN models (AlexNet, ResNet18, DenseNet201,
and SqueezeNet) on a large CXR dataset and demonstrated the superior performance of
DenseNet201, which detected pneumonia with an accuracy of 0.98 and differentiated be-
tween viral and bacterial etiologies with an accuracy of 0.95 [45]. In a study by Toğaçar et al.,
a CNN algorithm with a linear discriminant analysis feature yielded an accuracy of 99.41%
for the detection of pneumonia on CXR [46], whereas the novel deep separable residual
learning model reached 98.8% accuracy and 0.99 AUC values [47].

A systematic review and meta-analysis by Li et al. demonstrated pooled AUC of
0.99 (95% CI: 0.98–100) across 15 studies assessing the performance of DL algorithms
for pneumonia detection on CXR. The pooled sensitivity and specificity were 0.98 and
0.94, respectively. Moreover, it showed a pooled AUC of 0.95 for differentiating between
bacterial and viral pneumonia on CXR. However, it was noted that the included studies
lacked performance in comparison with healthcare professionals [48].

In a recent study by Kwon et al., an ensemble CNN model demonstrated an AUC of
0.983 for detecting pneumonia on CXR and showed a predictive value in differentiating
cases that were improving and those that worsened over seven days of follow-up (p = 0.001),
highlighting the potential role of AI in directing management strategies as well as refining
diagnosis [49].

5. COVID-19

The outbreak of the COVID-19 pandemic gave rise to a global race toward the devel-
opment of reliable and accurate diagnostic tools [50]. CXR has been one of the first tools
extensively used to screen patients for COVID-19 pneumonia considering its wide availabil-
ity, considerable prognostic value, and low costs [51,52]. However, interpreting CXR in a
COVID-19 setting can be challenging due to its indistinct radiological characteristics, which
include consolidation and hazy increased opacities [53]. AI demonstrated the potential to
assist radiologists in differentiating COVID-19-positive cases on CXR. The initial lack of
wide datasets has been one of the major obstacles to building AI-driven disease detection
models. Additionally, CNN training takes a substantial amount of time because of the
computational demands and memory constraints. Transfer learning offers an alternative
development method that can overcome this issue by using pre-trained models. Utilizing
pre-trained networks, such as InceptionV3, VGGNet, InceptionResNetV2, ResNet, etc., the
CXR-based identification and detection of COVID-19 has been developed with benchmark
accuracies reaching 99% [54].

Baltazar et al. conducted a retrospective clinical analysis on 1171 clinically verified CXR
pictures from 821 cohorts that were then made accessible in open-access repositories. Among
the five optimized DL architectures, InceptionV3 demonstrated the best performance for
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COVID-19 pneumonia detection with 86% sensitivity, 99% specificity, 91% positive predictive
value, and an AUC of 0.99 in differentiating COVID-19 from negative CXR [55].

Nillmani et al. propose 16 types of segmentation-based classification deep learning-
based systems for the automatic detection of COVID-19. The best performing segmentation-
based classification model was UNet+Xception, which exhibited the accuracy, precision,
recall, F1-score, and AUC of 97.45%, 97.46%, 97.45%, 97.43%, and 0.998 (p-value < 0.0001),
respectively [56].

A classifier ensemble strategy using the Choquet fuzzy integral was suggested by
Dey et al. It divides CXR scans into three categories: confirmed COVID-19, common
pneumonia, and healthy lungs. Using two dense layers and one softmax layer, they
extracted characteristics from the CXR pictures and classified them using the pre-trained
convolutional neural network models. The accuracy provided by the suggested approach
is 99% [57].

The approach presented by Nasiri et al. combines the MobileNet and DenseNet169
Deep Neural Networks to extract the characteristics of patient’s X-ray images. They subse-
quently used the chosen characteristics as input to the classification algorithm LightGBM
(Light Gradient Boosting Machine). The ChestX-ray8 dataset, which comprises 1125 X-ray
images, was used to evaluate the performance of the suggested approach. In the two-class
(COVID-19, Healthy) and multi-class (COVID-19, Healthy, Pneumonia) classification tasks,
they respectively achieved accuracies of 98.54% and 91.11% [58].

Ezzoddin et al. proposed a similar approach using DenseNet169 to extract the features
of the patients’ CXR images and LightGBM algorithm in order to classify them. The
evaluation of the ChestX-ray8 dataset reached accuracies of 99.20% and 94.22% in the
two-class (i.e., COVID-19 and No-findings) and multi-class (i.e., COVID-19, Pneumonia,
and No-findings) [59].

In two other studies, Nasiri et al. employed an approach using the DenseNet169 Deep
Neural Network (DNN) to extract the features of X-ray images taken from the patients’
chests. In one of the studies, the features were chosen by a feature selection method, i.e.,
analysis of variance (ANOVA), to reduce the computation and time complexity while
overcoming the curse of dimensionality to improve the accuracy. Finally, the extracted
features were given as input to the Extreme Gradient Boosting (XGBoost) algorithm in
order to perform the classification task. The experiments showed an accuracy of 98.72%
and 98.23% for two-class classification (COVID-19, No-findings) and 89.7% to 92% accuracy
for multiclass classification (COVID-19, No-findings, and Pneumonia) [60,61].

Other studies have investigated the possibility of determining and classifying images
according to the estimated degree of disease severity [62].

Cohen et al. used a DenseNet model to generate a severity score based on CXR
imaging. Images from a public COVID-19 database were scored retrospectively in terms of
the extent of lung involvement and the degree of opacity. A neural network model that
was pre-trained on large (non-COVID-19) CXR datasets was used to construct features
for COVID-19 images. As a result, training a regression model on a subset of the outputs
from this pre-trained model predicted the geographic extent score with a 1.14 and the lung
opacity score with a 0.78 mean absolute error, respectively. The model allowed us to assess
the severity of COVID-19 lung infections, which can be used for tracking the effectiveness
of the treatment and for escalating or de-escalating care [63]. Jiao et al. evaluated the ability
to predict the severity of COVID-19 disease utilizing the CXR as input to an EfficientNet
deep neural network together with clinical data. They reported that when CXR was added
to clinical data for severity prediction, the AUC increased from 0.82 to 0.84 on internal
testing and from 0.73 to 0.79 on external testing. When deep-learning features were added
to the clinical data for the progression prediction, the concordance index increased from
0.76 to 0.80 on internal testing and from 0.70 to 0.75 on external testing, concluding that
data inferred from CXR through AI applications can augment clinical data in predicting
the risk of progression to critical illness in patients with COVID-19 [64].
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Khan et al. developed a new CNN architecture, STM-RENet, to interpret radiographic
patterns from X-ray images. They proposed a new convolutional block STM that imple-
ments the region and edge-based operations both separately and jointly. The learning
capacity of STM-RENet was further enhanced by developing a new CB-STM-RENet that
exploited channel boosting and learned textural variations to effectively screen the X-ray
images. The suggested model performed significantly better than typical CNNs on three
datasets, particularly the CoV-NonCoV-15k dataset, with a high detection rate (97%), and
accuracy (96.53%) [65].

It is also worthwhile to mention some of the real-world applications of AI systems:
Mustaq et al. [66] compared the performance of a deep learning AI-based system (qXR v2.1
c2, Qure.ai Technologies) to the RALE score, a radiographic score with strong inter-observer
agreement that has been validated to quantify the severity and prediction outcomes in
ARDS patients (Figure 1) [67]. This algorithm was initially created for use on TB patients and
Mustaq et al. applied it to 694 patients, concluding that a Qure AI score of ≥30 or a RALE
score of ≥12 on the CXR at the emergency department presentation was independent of,
and equivalent to, the predictors of bad outcomes. Hasani et al. [68] applied an Automated
Detection System utilizing X-ray Images (COV-ADSX), which detects COVID-19 using
a deep neural network and XGBoost. The accuracy of the model utilized in COV-ADSX
based on the ChestX-ray8 dataset was 98.23% in only 10 s, allowing the expert to receive a
response rapidly while waiting for the PCR result.

By assisting in difficult decision-making, AI has been proven to have the potential
to play a pivotal role in the fight against COVID-19. AI algorithms can be trained to
automatically detect and classify various features of the disease on CXRs with high accuracy.
This could potentially save time and resources in the demanding pandemic setting. There
are still some challenges that need to be addressed before AI can be widely used for
COVID-19 diagnosis. The principal studies are summarized in Table 2.

Table 2. Accuracy of most recent studies for COVID-19 diagnosis using artificial intelligence and CXR.

Study Type of Images
Dataset Used

(C-COVID-19, N-Normal,
P-Pneumonia)

Method Accuracy (%)

Baltazar et al. (2021) [55] Chest X-ray N:3593 InceptionV3 96C:629
Nillmani et al. (2022) [56] Chest X-ray UNet+Xception 97.45

Dey et al. (2021) [57] Chest X-ray
N:739

Choquet fuzzy integral
based ensemble

99C:1072
P:3100

Nasiri et al. (2022) [58] Chest X-ray ChestX-ray8 MobileNet and
DenseNet169+LightGBM

98.54 (two class)
91.11 (multi-class)

Ezzoddin et al. (2022) [59] Chest X-ray ChestX-ray8 DenseNet169+LightGBM 99.20 (two class)
94.22 (multi-class)

Nasiri et al. (2022) [60] Chest X-ray ChestX-ray8 DenseNet169+XGBoost
98.23–98.72 (two-class)

89.7–92 (multi-class)

Cohen et al. (2020) [63] Chest X-ray N: 88079
DenseNet -

C: 94

Jiao et al. (2021) [64] Chest X-ray N+C: 1834 EfficientNet+Clinical Data

Data inferred from CXR
through AI applications can

augment clinical data in
predicting the risk of

progression
Khan et al. (2022) [65] Chest X-ray CoV-NonCoV-15k dataset CB-STM-RENet 96.53
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6. Heart Failure

In the context of an increasingly aged patient population, heart failure is one of the
major causes of admission to the emergency department. Once again, CXR is one of the
first-line tools in the assessment of patients in this setting [69].

Cardiopathic patients may be not compliant and are often bedridden. As a result, CXR is
often limited to anterior-posterior projection with the consequent projective enlargement of
the heart. In addition, their thorax may present multiple devices, such as electrocardiogram
electrodes, pacemakers, or implantable cardioverter-defibrillator, which overlap the lung
fields and increase the possibility of erroneous findings [70]. In this context, CXR reporting
can become challenging, and a supportive tool could be useful. The Cardio-Thoracic Ratio
(CTR) is the most evaluated parameter in these patients, referred to as the ratio between the
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maximum transverse cardiac diameter and the maximum horizontal thoracic diameter, with
cardiomegaly defined as a value higher than 0.50 [71]. An automatic CTR measurement could
be a simple and helpful tool to accelerate routine workflow [72]. Precise segmentation is the
first step needed for an automatic DL-based calculation of CTR. CardioNet is an automatic
segmentation model based on the CNN architecture that can recognize and segment the lungs
and heart and generate an intuitive map from CXR, of varying quality, with an accuracy of
98.9%. CardioNet has been trained on 248 images augmented through cropping, horizontal
flipping, and translating the initially available images.

A recent clinical evaluation has been performed to compare four DL models (AlbuNet,
SegNet, VGG-11, and VGG-16) to find which one would show the highest percentage of
automatic results of the cardiac size accepted by users with a measurement variation within
±1.8% of the human-operating range. VGG-16 gave the highest-grade result (68.9%), but the
combined AlbuNet + VGG-11 model yielded excellent grades in 77.8% of the images in the
evaluation dataset, a coefficient of variation of 1.55%, and reduced the CTR measurement
time by almost ten-fold (1.07 ± 2.62 s vs. 10.6 ± 1.5 s) compared with manual operation [73].
Alveolar edema is another sign of heart failure, visible as bilateral perihilar lung shadowing,
also known as “bat wing opacities” or “butterfly opacities”. This sign is the result of the
hemodynamic pulmonary congestion caused by heart failure that brings high pulmonary
capillary pressure and the abnormal transfer of fluid from the vascular to the extravascular
compartments of the lungs (interstitium and alveolar spaces) [74]. Blood flow circulation
alterations and inflammation result in the abnormal accumulation of fluid, respectively,
transudate and exudate, seen as lung opacities on CXR. Despite some radiological similarities,
these distinct diseases require different treatments, and early diagnosis of cardiogenic edema
is therefore the key to improving patient outcomes.

A reliable AI algorithm should be able to distinguish the most common causes of acute
respiratory failure in an emergency, mainly congestive edema and pneumonia [75].

Considering that ML is more efficient in the distinction between localized lesions
and lesions with global symmetrical patterns [76], unilateral consolidation pneumonia is
easier to identify than diffuse bilateral pulmonary edema. On this basis, Liong-Rung et al.
have created an ambitious project using deep CNN models to recognize pneumonia and
pulmonary edema in CXR images of older patients. Although the presence of medical
devices in the training dataset has brought a decreased predictive performance with an
accuracy reduction, from 79.1% to 73.4%, they tried to include those images anyway,
attempting to post-process them by cropping, unfortunately, without favorable results [75].
However, they deserve credit for experimenting with DL tools on sub-optimal radiograms
in complicated circumstances, those in which radiologists would truly appreciate artificial
support. Indeed, the study revealed that using images with explicit signs of edema or
pneumonia and without the interference of device overlap for training deep learning
models can produce accuracy above 80% in differential diagnosis, while an accuracy of
approximately 70% has been achieved in the presence of interference. Lastly, normal CXRs
of patients without pneumonia or pulmonary edema had an F1 score over 95% [75].

If CNN models could suit CXR feature recognition, the current scientific literature con-
tains a wide selection of encouraging applications that include more features, including regard-
ing heart failure. For example, Cicero et al. investigated five radiological signs—cardiomegaly,
pleural effusion, pulmonary edema, pneumothorax, and consolidation—using the GoogLeNet
CNN, trained on a total of 35038 images and tested on a set of 2443 radiographs.

The sensitivity, specificity, and AUC, respectively, were 91%, 91%, and 0.962 for pleural
effusion, 82%, 82%, and 0.868 for pulmonary edema, 81%, 80%, and 0.875 for cardiomegaly.

The best results were achieved in classifying a study as normal with an overall sensi-
tivity and specificity of 91% and an AUC of 0.964 [77].

Moreover, another CNN, CheXNeXt, was developed a few years ago to detect the
presence of 14 different pathologies in chest radiographs, including cardiomegaly and
pleural effusion. In 2018, the model was compared with nine expert radiologists and
three senior radiology residents. CheXNeXt did not achieve radiologist-level performance
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on three pathologies (cardiomegaly, emphysema, hiatal hernia), it performed better than
radiologists in detecting atelectasis and there were no statistically significant differences in
AUCs for the other ten pathologies, including pleural effusion [76].

7. Pleural Effusion

Pleural effusion is a medical condition characterized by the pathological accumulation
of fluid between the two pleural leaflets. Usually, it is used as a generic term to describe
any abnormal accumulation of fluid in the pleural cavity, also because most effusions are
diagnosed by CXR, which cannot distinguish between different types of fluids.

Recently, and with increasing interest, the world of diagnostic imaging has embraced
the use of artificial intelligence, testing its applications in a wide variety of contexts [78].

A few papers have been published to validate AI tools in the diagnosis and/or quan-
tification of pleural effusion via CXR. Zhou et al. [79] developed and validated a DL system
for the detection and semi-quantitative analysis of cardiomegaly, pleural effusion, and
pneumothorax. They included two datasets: one for detection and one for segmentation.
The first dataset (used for detection) consisted of 2838 CXRs from 2638 patients contain-
ing findings positive for cardiomegaly, pneumothorax, and pleural effusion; the second
dataset (used for segmentation) was from two publicly available datasets, containing 704
CXRs. Based on the accurate detection and segmentation, semiquantitative indexes were
calculated. The detection models achieved high accuracy in detecting cardiomegaly, pneu-
mothorax, and pleural effusion. Moreover, the authors believed that semiquantitative
analysis could reduce the work of radiologists, improve the objective accuracy of the
quantitative measurement, and be a reasonable option to assist clinical diagnosis.

Huang et al. [80] developed a DL system to quantify the severity of pleural effusion in
the CXR of patients with chronic obstructive pulmonary disease (COPD). For this purpose,
they used the MIMIC-CXR dataset, dividing the patients within it as “with” or “without”
COPD. The label of pleural effusion severity was obtained from the extracted COPD
radiology reports and classified into four categories: no effusion, small effusion, moderate
effusion, and large effusion. The selected reports were re-tagged by a radiologist without
knowing their previous tags as a verification cohort; 15,620 CXRs with clearly marked
pleural effusion severity were obtained (no effusion, 5685; small effusion, 4877; moderate
effusion, 3657; and large effusion, 1401). The highest accuracy rate of the optimized model
was 73.07. The micro-average AUCs of the test and validation cohorts were 0.89 and 0.90,
respectively, and their macro-average AUCs were 0.86 and 0.89, respectively.

Niehues et al. [81] created a DL model used specifically for bedside CXRs to detect
clinically relevant findings to help emergency and intensive care physicians to focus on
patient care, using the reference standards established by computed tomography (CT) and
numerous radiologists. They retrospectively collected 18,361 bedside CXRs of patients
treated at a level 1 medical center who had undergone a chest CT within 24 h from
the CXR. A DL algorithm was developed to identify eight findings on bedside CXRs
(cardiac congestion, pleural effusion, air-space opacification, pneumothorax, central venous
catheter, thoracic drain, gastric tube, and tracheal tube/cannula). In case of a disagreement
between the CXR and CT, human-in-the-loop annotations were used. The AUC for cardiac
congestion, pleural effusion, air-space opacification, pneumothorax, central venous catheter,
thoracic drain, gastric tube, and tracheal tube/cannula were 0.90, 0.95, 0.85, 0.92, 0.99, 0.99,
0.98, and 0.99, respectively, showing a similar performance to expert radiologists.

8. Limits and Future Perspective

AI applications for thoracic disorders have shown promising outcomes in terms of
enhancing the existing clinical systems and prognostic prediction reasoning. According to
a recent study that compared the opinions of thoracic radiologists and computer scientists,
15.6% of computer scientists thought that the radiologist’s position will be obsolete in
10–20 years [82]; despite this, the stakeholders’ opinion is that this scenario will be unlikely,
although there is great emphasis put on radiologists’ education and training in the AI [83].
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The use of open datasets had a significant impact on the development of AI algorithms,
but the absence of standardized and well-defined criteria also led to the creation of flawed
datasets. This needs to be addressed to increase the performance of AI models through
high-quality training. As a result, it is critical to understand the limitations of the datasets
for their effective use; the key limitations are summarized in Table 3.

Table 3. This Table lists the main limitations related to the datasets used to develop AI algorithms.

Datasets Limit Features

Dataset shift DOI [84] A primary cause of AI system failure: when a machine-learning system underperforms due to a mismatch between
the data set with which it was designed and the data on which it is deployed, this is known as dataset shift.

Annotations [85]

How to annotate the massive volume of medical images required by deep learning models while maintaining quality
because of the medical expertise required, large-scale crowd-sourced hand-annotation, such as ImageNet is not viable.
Shin et al., for example, developed a model to detect a disease from a CXR training CNNs with 17 distinct illness
annotation patterns and controlled vocabulary phrases (Medical Subject Headings (MeSH) to label the different
patterns [78].

Significance [86]

The clinically relevant image labels that must be established can sometimes be challenging, in the case of “hedging
statement”, for example, is difficult to say if the label is correct when we find in a report “possibly due to
emphysema”. The correctness, meaning, and clinical significance of the labels can all be negatively impacted,
especially if the dataset generation process is not well described and the labels created are not extensively reviewed.
These issues may be minimized by using an experienced visual inspection of the label classes, as well as extensive
documentation of the creation process.

Radiologist reports [87,88] The absence of structured reports makes the application of machine learning decision support systems complex.

Confounding factors [16] Catheters, devices, tubes, image quality, and patient position.

Another key aspect would be the integration of AI education into the post-graduation
programs for radiology residents. The possibility of increasing performance through
personalized learning is the primary motivator for AI-augmented radiological precision
education [89]. According to a 2018 poll, 71% of radiologists do not actively use AI. How-
ever, 87% of respondents intend to study and 67% are eager to assist in the development
and training of such algorithms [90]. Gaube et al. [91] affirm that observers were typically
not opposed to preferring AI guidance over human suggestions, showing that when the
improvement of radiologists’ performance with AI assistance was lacking, it was likely
driven by their confidence in their own opinion rather than their reluctance to trust in the
AI-algorithm.

Imaging research is seeing an increase in the number of articles offering novel diagnostic,
classification, and prediction tools based on ML that outperform the previous techniques.
However, few studies have been conducted to assess the applicability of these models and
the tangible advantages they offer to clinical practice in the real-world setting [92]. When
such models are evaluated in other patient cohorts or institutions, they demonstrate a lack of
reproducibility. Moreover, it is difficult to compare the performance of different ML models.
This is due to one of the primary obstacles to effective AI application today: a lack of empirical
data confirming the efficacy of AI-based interventions in prospective clinical trials. The
existing empirical research is limited and primarily focuses on AI in the general workforce
rather than its impact on patient outcomes [93]. Among 516 eligible studies evaluated by
Kim et al., only 5% performed external validation and none of these adopted the three design
features (diagnostic cohort design, inclusion of multiple institutions, and prospective data
collection) [94]. Another critical issue is that most of the existing radiological DL models
only incorporate imaging information, without accounting for the background clinical data.
We need research on DL models capable of integrating multimodal data, such as clinical
and genetic information [95]. The integration of these data has already shown potential for
improving prognostic models for other pathologies. For example, Xu et al. used bidirectional
deep neural network (BiDNN) DL architecture to combine RNA-Seq and DNA methylation
data from a group of gastric cancer patients to identify different prognostic levels [96]. In a
more recent study by Cheerla et al., a C-index of 0.78 was found in a pancreatic cancer survival
prediction model that used clinical, mRNA, miRNA, and whole-slide imaging data [97].
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Emergency departments are a crucial training scenario for determining the benefits and
usability of AI-based solutions. In this case, AI assistance might enhance both the performance
of a single radiologist and the organization’s management [98].

Last but not the least, the ethical implications of AI integration should be considered
before they can see widespread integration into clinical practice. When it comes to AI
applications that attempt to enhance patient outcomes, the issue of responsibility becomes
considerably more important, particularly when problems and errors occur. At present, it
is unclear who should bear responsibility if the system fails. One of the possible solutions
includes a joint effort by governments and industries to define the criteria of transparency
and accountability, which aspects of the incoming data are influencing the outputs, and
utilizing that to deduce what is happening within the “black box” [78]. As described above,
an emergency setting is an essential testing ground for the usability and advantages of
AI-based solutions. In this scenario, AI systems might assist radiologists with long and
highly repetitive activities, minimizing diagnostic mistakes in situations where workload,
expectations, and the risk of error are high [98]. Effective AI integration might free up
resources that could be committed to other tasks, such as patient communication, that have
been overburdened as the workload has increased [99].

9. Conclusions

We have provided an overview of AI applications for CXR in the emergency setting.
We believe that AI will transform the healthcare system, notably, in the imaging sector.

Radiologists should know the AI technologies that are currently available and use them
when appropriate to improve their diagnostic accuracy and treatment planning in the
emergency setting.

Author Contributions: Conceptualization, M.C. (Michaela Cellina); Methodology, M.C. (Maurizio
Cè); Literature research, E.C. and G.O.; Data Curation, V.A.; Writing—Original Draft Preparation, M.C.
(Michaela Cellina), M.C. (Maurizio Cè), G.I., V.A., E.C., C.M., G.O., N.K. and G.D.P.; Writing—Review
& Editing, M.C. (Michaela Cellina), M.C. (Maurizio Cè), N.K. and G.I.; Supervision, S.P. and C.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Li, D.; Pehrson, L.M.; Lauridsen, C.A.; Tøttrup, L.; Fraccaro, M.; Elliott, D.; Zając, H.D.; Darkner, S.; Carlsen, J.F.; Nielsen, M.B.

The Added Effect of Artificial Intelligence on Physicians’ Performance in Detecting Thoracic Pathologies on CT and Chest X-Ray:
A Systematic Review. Diagnostics 2021, 11, 2206. [CrossRef]

2. Bizzo, B.C.; Almeida, R.R.; Alkasab, T.K. Artificial Intelligence Enabling Radiology Reporting. Radiol. Clin. N. Am. 2021, 59,
1045–1052. [CrossRef] [PubMed]

3. Cellina, M.; Pirovano, M.; Ciocca, M.; Gibelli, D.; Floridi, C.; Oliva, G. Radiomic Analysis of the Optic Nerve at the First Episode
of Acute Optic Neuritis: An Indicator of Optic Nerve Pathology and a Predictor of Visual Recovery? Radiol. Med. 2021, 126,
698–706. [CrossRef] [PubMed]

4. Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard,
R.; Dekker, A.; et al. Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. Eur. J.
Cancer 2012, 48, 441–446. [CrossRef] [PubMed]

5. Moore, M.M.; Slonimsky, E.; Long, A.D.; Sze, R.W.; Iyer, R.S. Machine Learning Concepts, Concerns and Opportunities for a
Pediatric Radiologist. Pediatr. Radiol. 2019, 49, 509–516. [CrossRef]

6. Jung, A. Machine Learning: The Basics; Springer: Singapore, 2022.
7. Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial Intelligence in Radiology. Nat. Rev. Cancer 2018,

18, 500–510. [CrossRef]
8. Teng, X.; Zhang, J.; Ma, Z.; Zhang, Y.; Lam, S.; Li, W.; Xiao, H.; Li, T.; Li, B.; Zhou, T.; et al. Improving Radiomic Model Reliability

Using Robust Features from Perturbations for Head-and-Neck Carcinoma. Front. Oncol. 2022, 12, 974467. [CrossRef]
9. Sandino, C.M.; Cole, E.K.; Alkan, C.; Chaudhari, A.S.; Loening, A.M.; Hyun, D.; Dahl, J.; Imran, A.-A.-Z.; Wang, A.S.; Vasanawala,

S.S. Upstream Machine Learning in Radiology. Radiol. Clin. N. Am. 2021, 59, 967–985. [CrossRef]

http://doi.org/10.3390/diagnostics11122206
http://doi.org/10.1016/j.rcl.2021.07.004
http://www.ncbi.nlm.nih.gov/pubmed/34689872
http://doi.org/10.1007/s11547-020-01318-4
http://www.ncbi.nlm.nih.gov/pubmed/33392980
http://doi.org/10.1016/j.ejca.2011.11.036
http://www.ncbi.nlm.nih.gov/pubmed/22257792
http://doi.org/10.1007/s00247-018-4277-7
http://doi.org/10.1038/s41568-018-0016-5
http://doi.org/10.3389/fonc.2022.974467
http://doi.org/10.1016/j.rcl.2021.07.009


Diagnostics 2023, 13, 216 15 of 18

10. Cellina, M.; Cè, M.; Khenkina, N.; Sinichich, P.; Cervelli, M.; Poggi, V.; Boemi, S.; Ierardi, A.M.; Carrafiello, G. Artificial Intellgence
in the Era of Precision Oncological Imaging. Technol. Cancer Res. Treat. 2022, 21, 153303382211417. [CrossRef]

11. Johnson, A.E.W.; Pollard, T.J.; Greenbaum, N.R.; Lungren, M.P.; Deng, C.; Peng, Y.; Lu, Z.; Mark, R.G.; Berkowitz, S.J.; Horng, S.
MIMIC-CXR-JPG, a Large Publicly Available Database of Labeled Chest Radiographs. arXiv 2019, arXiv:1901.07042.

12. Irvin, J.; Rajpurkar, P.; Ko, M.; Yu, Y.; Ciurea-Ilcus, S.; Chute, C.; Marklund, H.; Haghgoo, B.; Ball, R.; Shpanskaya, K.; et al.
CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. Proc. AAAI Conf. Artif. Intell.
2019, 33, 590–597. [CrossRef]

13. Rajpurkar, P.; Irvin, J.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Langlotz, C.; Shpanskaya, K.; et al. CheXNet:
Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. arXiv 2017, arXiv:1711.05225.

14. Oakden-Rayner, L. Exploring Large-Scale Public Medical Image Datasets. Acad. Radiol. 2020, 27, 106–112. [CrossRef] [PubMed]
15. Zhu, C.S.; Pinsky, P.F.; Kramer, B.S.; Prorok, P.C.; Purdue, M.P.; Berg, C.D.; Gohagan, J.K. The Prostate, Lung, Colorectal, and

Ovarian Cancer Screening Trial and Its Associated Research Resource. JNCI J. Natl. Cancer Inst. 2013, 105, 1684–1693. [CrossRef]
[PubMed]

16. Bustos, A.; Pertusa, A.; Salinas, J.-M.; de la Iglesia-Vayá, M. PadChest: A Large Chest x-Ray Image Dataset with Multi-Label
Annotated Reports. Med. Image Anal. 2020, 66, 101797. [CrossRef] [PubMed]

17. Reis, E.P.; de Paiva, J.P.Q.; da Silva, M.C.B.; Ribeiro, G.A.S.; Paiva, V.F.; Bulgarelli, L.; Lee, H.M.H.; Santos, P.V.; Brito, V.M.; Amaral,
L.T.W.; et al. BRAX, Brazilian Labeled Chest x-Ray Dataset. Sci. Data 2022, 9, 487. [CrossRef]

18. Demner-Fushman, D.; Kohli, M.D.; Rosenman, M.B.; Shooshan, S.E.; Rodriguez, L.; Antani, S.; Thoma, G.R.; McDonald, C.J.
Preparing a Collection of Radiology Examinations for Distribution and Retrieval. J. Am. Med. Inform. Assoc. 2016, 23, 304–310.
[CrossRef]

19. Kermany, D.; Zhang, K.; Goldbaum, M. Large Dataset of Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images.
Physiccs 2018, 172, 1122–1131. [CrossRef]

20. Shih, G.; Wu, C.C.; Halabi, S.S.; Kohli, M.D.; Prevedello, L.M.; Cook, T.S.; Sharma, A.; Amorosa, J.K.; Arteaga, V.; Galperin-
Aizenberg, M.; et al. Augmenting the National Institutes of Health Chest Radiograph Dataset with Expert Annotations of Possible
Pneumonia. Radiol. Artif. Intell. 2019, 1, e180041. [CrossRef]

21. Baltruschat, I.; Steinmeister, L.; Nickisch, H.; Saalbach, A.; Grass, M.; Adam, G.; Knopp, T.; Ittrich, H. Smart Chest X-Ray Worklist
Prioritization Using Artificial Intelligence: A Clinical Workflow Simulation. Eur. Radiol. 2021, 31, 3837–3845. [CrossRef]

22. Adams, S.J.; Henderson, R.D.E.; Yi, X.; Babyn, P. Artificial Intelligence Solutions for Analysis of X-Ray Images. Can. Assoc. Radiol.
J. 2021, 72, 60–72. [CrossRef]

23. Annarumma, M.; Withey, S.J.; Bakewell, R.J.; Pesce, E.; Goh, V.; Montana, G. Automated Triaging of Adult Chest Radiographs
with Deep Artificial Neural Networks. Radiology 2019, 291, 196–202. [CrossRef]

24. Kim, Y.; Park, J.Y.; Hwang, E.J.; Lee, S.M.; Park, C.M. Applications of Artificial Intelligence in the Thorax: A Narrative Review
Focusing on Thoracic Radiology. J. Thorac. Dis. 2021, 13, 6943–6962. [CrossRef] [PubMed]

25. Tricarico, D.; Calandri, M.; Barba, M.; Piatti, C.; Geninatti, C.; Basile, D.; Gatti, M.; Melis, M.; Veltri, A. Convolutional Neural
Network-Based Automatic Analysis of Chest Radiographs for the Detection of COVID-19 Pneumonia: A Prioritizing Tool in the
Emergency Department, Phase I Study and Preliminary “Real Life” Results. Diagnostics 2022, 12, 570. [CrossRef] [PubMed]

26. Wang, X.; Peng, Y.; Lu, L.; Lu, Z.; Bagheri, M.; Summers, R.M. ChestX-Ray8: Hospital-Scale Chest X-Ray Database and Benchmarks
on Weakly-Supervised Classification and Localization of Common Thorax Diseases. In Proceedings of the 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017;
pp. 3462–3471.

27. Blumenfeld, A.; Greenspan, H.; Konen, E. Pneumothorax Detection in Chest Radiographs Using Convolutional Neural Networks.
In Proceedings of the Medical Imaging 2018: Computer-Aided Diagnosis, Houston, TX, USA, 10–15 February 2018; Mori, K.,
Petrick, N., Eds.; SPIE: Bellingham, WA, USA, 2018; p. 3.

28. Taylor, A.G.; Mielke, C.; Mongan, J. Automated Detection of Moderate and Large Pneumothorax on Frontal Chest X-Rays Using
Deep Convolutional Neural Networks: A Retrospective Study. PLoS Med. 2018, 15, e1002697. [CrossRef] [PubMed]

29. Moses, D.A. Deep Learning Applied to Automatic Disease Detection Using Chest X-rays. J. Med. Imaging Radiat. Oncol. 2021, 65,
498–517. [CrossRef]

30. Wang, X.; Yang, S.; Lan, J.; Fang, Y.; He, J.; Wang, M.; Zhang, J.; Han, X. Automatic Segmentation of Pneumothorax in Chest
Radiographs Based on a Two-Stage Deep Learning Method. IEEE Trans. Cogn. Dev. Syst. 2022, 14, 205–218. [CrossRef]

31. Kim, D.; Lee, J.-H.; Kim, S.-W.; Hong, J.-M.; Kim, S.-J.; Song, M.; Choi, J.-M.; Lee, S.-Y.; Yoon, H.; Yoo, J.-Y. Quantitative
Measurement of Pneumothorax Using Artificial Intelligence Management Model and Clinical Application. Diagnostics 2022, 12,
1823. [CrossRef]

32. Wang, Q.; Liu, Q.; Luo, G.; Liu, Z.; Huang, J.; Zhou, Y.; Zhou, Y.; Xu, W.; Cheng, J.-Z. Automated Segmentation and Diagnosis of
Pneumothorax on Chest X-Rays with Fully Convolutional Multi-Scale ScSE-DenseNet: A Retrospective Study. BMC Med. Inform.
Decis. Mak. 2020, 20, 317. [CrossRef]

33. Gooßen, A.; Deshpande, H.; Harder, T.; Schwab, E.; Baltruschat, I.; Mabotuwana, T.; Cross, N.; Saalbach, A. Deep Learning for
Pneumothorax Detection and Localization in Chest Radiographs. arXiv 2019, arXiv:1907.07324.

34. Wang, H.; Gu, H.; Qin, P.; Wang, J. CheXLocNet: Automatic Localization of Pneumothorax in Chest Radiographs Using Deep
Convolutional Neural Networks. PLoS ONE 2020, 15, e0242013. [CrossRef] [PubMed]

http://doi.org/10.1177/15330338221141793
http://doi.org/10.1609/aaai.v33i01.3301590
http://doi.org/10.1016/j.acra.2019.10.006
http://www.ncbi.nlm.nih.gov/pubmed/31706792
http://doi.org/10.1093/jnci/djt281
http://www.ncbi.nlm.nih.gov/pubmed/24115361
http://doi.org/10.1016/j.media.2020.101797
http://www.ncbi.nlm.nih.gov/pubmed/32877839
http://doi.org/10.1038/s41597-022-01608-8
http://doi.org/10.1093/jamia/ocv080
http://doi.org/10.17632/rscbjbr9sj.3
http://doi.org/10.1148/ryai.2019180041
http://doi.org/10.1007/s00330-020-07480-7
http://doi.org/10.1177/0846537120941671
http://doi.org/10.1148/radiol.2018180921
http://doi.org/10.21037/jtd-21-1342
http://www.ncbi.nlm.nih.gov/pubmed/35070379
http://doi.org/10.3390/diagnostics12030570
http://www.ncbi.nlm.nih.gov/pubmed/35328122
http://doi.org/10.1371/journal.pmed.1002697
http://www.ncbi.nlm.nih.gov/pubmed/30457991
http://doi.org/10.1111/1754-9485.13273
http://doi.org/10.1109/TCDS.2020.3035572
http://doi.org/10.3390/diagnostics12081823
http://doi.org/10.1186/s12911-020-01325-5
http://doi.org/10.1371/journal.pone.0242013
http://www.ncbi.nlm.nih.gov/pubmed/33166371


Diagnostics 2023, 13, 216 16 of 18

35. Tian, Y.; Wang, J.; Yang, W.; Wang, J.; Qian, D. Deep Multi-instance Transfer Learning for Pneumothorax Classification in Chest
X-ray Images. Med. Phys. 2022, 49, 231–243. [CrossRef] [PubMed]

36. Hillis, J.M.; Bizzo, B.C.; Mercaldo, S.; Chin, J.K.; Newbury-Chaet, I.; Digumarthy, S.R.; Gilman, M.D.; Muse, V.V.; Bottrell, G.; Seah,
J.C.Y.; et al. Evaluation of an Artificial Intelligence Model for Detection of Pneumothorax and Tension Pneumothorax in Chest
Radiographs. JAMA Netw. Open 2022, 5, e2247172l. [CrossRef] [PubMed]

37. Yi, P.H.; Kim, T.K.; Yu, A.C.; Bennett, B.; Eng, J.; Lin, C.T. Can AI Outperform a Junior Resident? Comparison of Deep Neural
Network to First-Year Radiology Residents for Identification of Pneumothorax. Emerg. Radiol. 2020, 27, 367–375. [CrossRef]

38. Ahn, J.S.; Ebrahimian, S.; McDermott, S.; Lee, S.; Naccarato, L.; Di Capua, J.F.; Wu, M.Y.; Zhang, E.W.; Muse, V.; Miller, B.; et al.
Association of Artificial Intelligence–Aided Chest Radiograph Interpretation With Reader Performance and Efficiency. JAMA
Netw. Open 2022, 5, e2229289. [CrossRef]

39. Kermany, D.S.; Goldbaum, M.; Cai, W.; Valentim, C.C.S.; Liang, H.; Baxter, S.L.; McKeown, A.; Yang, G.; Wu, X.; Yan, F.; et al.
Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell 2018, 172, 1122–1131.e9. [CrossRef]

40. Rajaraman, S.; Candemir, S.; Kim, I.; Thoma, G.; Antani, S. Visualization and Interpretation of Convolutional Neural Network
Predictions in Detecting Pneumonia in Pediatric Chest Radiographs. Appl. Sci. 2018, 8, 1715. [CrossRef]

41. Gu, X.; Pan, L.; Liang, H.; Yang, R. Classification of Bacterial and Viral Childhood Pneumonia Using Deep Learning in Chest
Radiography. In Proceedings of the 3rd International Conference on Multimedia and Image Processing—ICMIP 2018, Guiyang,
China, 16–18 March 2018; ACM Press: New York, NY, USA, 2018; pp. 88–93.

42. Stephen, O.; Sain, M.; Maduh, U.J.; Jeong, D.-U. An Efficient Deep Learning Approach to Pneumonia Classification in Healthcare.
J. Healthc. Eng. 2019, 2019, 1–7. [CrossRef]

43. Sirazitdinov, I.; Kholiavchenko, M.; Mustafaev, T.; Yixuan, Y.; Kuleev, R.; Ibragimov, B. Deep Neural Network Ensemble for
Pneumonia Localization from a Large-Scale Chest x-Ray Database. Comput. Electr. Eng. 2019, 78, 388–399. [CrossRef]

44. Liang, G.; Zheng, L. A Transfer Learning Method with Deep Residual Network for Pediatric Pneumonia Diagnosis. Comput.
Methods Programs Biomed. 2020, 187, 104964. [CrossRef]

45. Rahman, T.; Chowdhury, M.E.H.; Khandakar, A.; Islam, K.R.; Islam, K.F.; Mahbub, Z.B.; Kadir, M.A.; Kashem, S. Transfer
Learning with Deep Convolutional Neural Network (CNN) for Pneumonia Detection Using Chest X-Ray. Appl. Sci. 2020, 10,
3233. [CrossRef]
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