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CHEVALLEY COHOMOLOGY FOR KONTSEVICH’S GRAPHS

DIDIER ARNAL, ANGELA GAMMELLA AND MOHSEN MASMOUDI

We introduce the Chevalley cohomology for the graded Lie algebra of poly-

vector fields on R
d . This cohomology occurs naturally in the problem of

construction and classification of formalities on the space R
d . Considering

only graph formalities, that is, formalities defined with the help of graphs

as in the original construction of Kontsevich, we define (as the first and

third authors did earlier for the Hochschild cohomology) the Chevalley co-

homology directly on spaces of graphs. More precisely, observing first a

noteworthy property for Kontsevich’s explicit formality on R
d , we restrict

ourselves to graph formalities with that property. With this restriction, we

obtain some simple expressions for the Chevalley coboundary operator; in

particular, we can write this cohomology directly on the space of purely

aerial, nonoriented graphs. We also give examples and applications.

1. Introduction

In this article, we study formalities on the space R
d , which are defined as fol-

lows. Let Tpoly(R
d)[1] be the space of polyvector fields on R

d graded by |α| =
degree(α)= k−2 if α is a k-vector field (the [1] stands for this choice of translation
on degrees). Similarly, Dpoly(R

d)[1]) will denote the polydifferential operators on
R

d graded by |D| = m −2 if D is an m-differential operator. We view both spaces
as formal graded manifolds; see [Kontsevich 1997; 2003]. A formality is a formal
nonlinear mapping F between Tpoly(R

d)[1] and Dpoly(R
d)[1], intertwining their

natural vector fields Q and Q′.
The monomial functions α1 .α2 . . . . .αn on Tpoly(R

d) are elements of the space
Sn(Tpoly(R

d)[1]) of symmetric n-polyvector fields on Tpoly(R
d)[1] (this means that

α2 .α1 = (−1)|α1||α2|α1 .α2). The manifold Tpoly(R
d)[1] is equipped with the formal

bilinear vector field Q = Q2, defined with the help of the Schouten bracket [ , ]S:

Q2(α1 .α2)= (−1)(|α1|−1)|α2|[α1, α2]S.

Similarly, Dpoly(R
d)[1] is equipped with the formal vector field

Q′ = Q′
1 + Q′

2,

201



202 D. ARNAL, A. GAMMELLA AND M. MASMOUDI

defined by

Q′
1(D1)= −dH D1, Q′

2(D1 . D2)= (−1)(|D1|−1)|D2|[D1, D2]G .

Here [ , ]G is the Gerstenhaber bracket and dH denotes the usual Hochschild
coboundary operator: if D is an m-differential operator,

dH D( f1, . . . , fm+1)

= f1 D( f2, . . . , fm+1)− D( f1 f2, . . . , fm+1)+ ·· · + (−1)m D( f1, . . . , fm) fm+1

A formality F is then given by a sequence of mappings

Fn : Sn
(
Tpoly(R

d)[1]
)
→ Dpoly(R

d)[1],

homogeneous of degree 0 and satisfying the formality equation

dH (Fn)(α1 . . . . .αn)= 1

2

∑

I⊔J={1,...,n}
|I |6=0, |J |6=0

εα(I, J )Q′
2

(
F|I |(αI ) . F|J |(αJ )

)

− 1

2

∑

k 6=ℓ
εα(kℓ, 1 . . . k̂ℓ . . . n)Fn−1

(
Q2(αk .αℓ) .α1 . . . . . α̂kαℓ . . . . .αn

)
.

Here, if I = {i1 < · · ·< iℓ}, the notation αI means αi1 . . . . .αiℓ .
We shall impose moreover the condition that F1 is the canonical mapping F

(0)
1

from Tpoly(R
d) to Dpoly(R

d) defined by

F
(0)
1 (ξ1 ∧ . . .∧ ξn)( f1, . . . , fn)= 1

n!
∑

σ∈Sn

ε(σ )

n∏

i=1

ξσ(i)( fi ),

for any vector field ξk and any function fi .
Now choose a coordinate system (xt) on R

d . M. Kontsevich [2003] has built
explicitly a formality U for R

d , using families of graphs drawn on configuration
spaces. A graph Ŵ has aerial and terrestrial vertices. The aerial vertices are labeled
p1, . . . , pn and are elements of the Poincaré half-plane

H = {z ∈ C : Im z > 0}.

The terrestrial vertices q1< · · ·<qm are on the real line. The edges of Ŵ are arrows
starting from an aerial vertex and ending in a terrestrial or aerial vertex; there are
no arrows of the form −→

pi pi and no multiple arrows. If we fix a total ordering O on
the edges of Ŵ, we get an oriented graph (Ŵ, O). We say that O is compatible if,
for all i , the arrows starting from pi precede those starting from pi+1. We denote
by GOn,m the set of oriented graphs (Ŵ, O) with n labeled aerial vertices and m

labeled terrestrial vertices, and such that O is compatible.
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Consider such an oriented graph (Ŵ, O) ∈ GOn,m . Suppose there are ki edges
starting from the vertex pi (1≤ i ≤n). Kontsevich [2003] defines a natural operator
B(Ŵ,O) assigning an m-differential operator B(Ŵ,O)(α1 ⊗ · · · ⊗ αn) to an n-uple
(α1, . . . , αn) of polyvector fields αi . This operator vanishes unless, for each i , αi

belongs to T
ki −1

poly (R
d) (αi is a ki -polyvector field). We first consider all the multi-

indexes (t1, . . . , t|k|) with |k| =
∑

ki and 1 ≤ tr ≤ d for all 1 ≤ r ≤ |k|. We denote
by end(a) the set of edges ending at the vertex a; if these edges are ei1, . . . , eiℓ ,
we let ∂end(a) be the operator

∂end(a) =
∂ l

∂xti1
. . . ∂xtiℓ

.

Then, we denote by strt(pi ) the ordered set ei
j1
< · · ·< ei

jki
of edges starting from

pi and, if αi is a ki -vector field, by αstrt(pi )

i the following component of αi :

α
strt(pi )

i = α
t j1 ...t jki

i .

Finally, if αi is a ki -vector field for each i , we set

B(Ŵ,O)(α1 ⊗ · · · ⊗αn)( f1, . . . , fm)=
∑

1≤t1,...,t|k|≤d

n∏

i=1

∂end(pi )α
strt(pi )

i

m∏

j=1

∂end(q j ) f j .

B(Ŵ,O) will be called the graph operator associated with (Ŵ, O).
The explicit formality U of Kontsevich can now be written as a sum U =

∑
n Un

with

Un =
∑

m≥0

∑

(Ŵ,O)∈GOn,m

w(Ŵ,O)B(Ŵ,O),

where the coefficient w(Ŵ,O), the weight of (Ŵ, O), is an integral on a compactified
configuration space. To be precise, for 2n + m − 2 ≥ 0, let Conf(n,m) be the
space of (n+m)-tuples consisting of n distinct points pi in H and m distinct points
q j on the real line ∂H. Consider on Conf(n,m) the action of the group G of
transformations z 7→ az + b (a > 0 and b real), and form the quotient space

Cn,m = Conf(n,m)/G.

Kontsevich associates with each oriented graph (Ŵ, O) the form

ω(Ŵ,O) =
1

k!

n∧

i=1

(
d8ei

1
∧ · · · ∧ d8ei

ki

)
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on Cn,m , where {ei
1 < ei

2 < · · · < ei
ki
} denotes the ordered set strt(pi ) formed by

the ki edges starting from pi , k! := k1! . . . kn! and, if ei
ℓ = −→

pi a ,

8ei
ℓ
=8−→

pi a = 1

2π
Arg

a − pi

a − p̄i

.

The weight w(Ŵ,O) is then defined as the value of the integral ω(Ŵ,O) on the con-
nected component C+

n,m of Cn,m for which q1 < · · ·< qm .
In this work, we are looking for graph formalities, that is, formalities on the

space R
d of the form F =

∑
n Fn , where the Fn are homogeneous mappings (of

degree 0) of the form

Fn =
∑

m≥0

∑

(Ŵ,O)∈GOn,m

c(Ŵ,O)B(Ŵ,O),

with real coefficients c(Ŵ,O). We shall use the notation Fn = Bγn
, where γn is the

linear combination

γn =
∑

m≥0

∑

(Ŵ,O)∈GOn,m

c(Ŵ,O)(Ŵ, O).

Now assume we have found F1, . . . ,Fn−1 (with F1 = F
(0)
1 = U1) such that the

formality equation holds up to order n − 1. The next term Fn , if it exists, must be
a solution of an equation

dH ◦ Fn = En,

that is,

dH (Fn(α1 . . . . .αn))= En(α1 . . . . .αn)= En(α{1,...,n}),

where En(α{1,...,n}) is a Hochschild cocycle. The Hochschild cohomology is local-
ized in Tpoly(R

d)[1]; more precisely, the total skewsymmetrization a◦ En(α{1,...,n})
of En(α{1,...,n}) is a polydifferential operator of order 1, . . . , 1, that is, the image
under F

(0)
1 of a polyvector field. Moreover, there exists an operator An such that

En(α{1,...,n})= (a ◦ En + dH ◦ An)(α{1,...,n}).

Now put

ϕn = F
−1
1 ◦ a ◦ En,

that is,

ϕn(α{1,...,n})= F
−1
1

(
a(En(α{1,...,n}))

)
;

then ϕn : Sn
(
Tpoly(R

d)[1]
)
→ Tpoly(R

d)[1] is homogeneous of degree |ϕn| = 1.
In Section 2, we define the Chevalley coboundary operator ∂ on Tpoly(R

d). We
show that the mapping ϕn described above is a Chevalley cocycle, and, if it is a
coboundary (ϕn = ∂φn−1), we can add to Fn−1 a Hochschild coboundary so that
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a(En) vanishes and thus find a Fn for which the formality equation holds up to
order n.

In Section 3, we establish a noteworthy property for the Kontsevich weights. For
any graph Ŵ (with ki edges starting from pi ), denote by 1 the purely aerial graph
obtained by removing the legs −→

pi q j and the feet q j of Ŵ, and by ℓi the number of
aerial edges starting from pi . We prove that

a

( ∑

(Ŵ,O)∈GO
(1)
n,m

w(Ŵ,O)B(Ŵ,O)

)
=

∑

(1,O1)∈GO
(0)
n

w(1,O1)

1

m!
∑

(Ŵ,O)∈GO
(1)
n,m

(Ŵ,O)⊃(1,O1)

ℓ!
k!ε(Ŵ)B(Ŵ,O).

Here GO
(1)
n,m denotes the subspace of GOn,m formed by the oriented graphs having

exactly one leg for each foot, GO
(0)
n is the set of purely aerial oriented graphs

(1, O1) with n aerial vertices and O1 compatible and ε(Ŵ) is an explicit sign
depending only on Ŵ.

This property suggests that we study what we call K -graph formalities. A K -

graph formality up to order n is a graph formality F at order n − 1 such that
ϕn = F

−1
1 ◦ a ◦ En has the form

ϕn =
∑

(1,O1)∈GO
(0)
n

c(1,O1)C(1,O1)

with real coefficients c(1,O1) and where

C(1,O1) =
∑

m≥0

1

m!
∑

(Ŵ,O)∈GO
(1)
n,m

(Ŵ,O)⊃(1,O1)

ℓ!
k!ε(Ŵ)B(Ŵ,O).

In Section 4 we give some simple expressions of our Chevalley coboundary
operator. Then we restrict ourselves to K -graph formalities and study the Chevalley
cohomology related to the question of building such formalities.

In Section 5 we show that the coboundary operator ∂ can be written directly on
the aerial part of the graphs.

We devote Section 6 to explicit computations and applications. In particular, we
prove the triviality of the cohomology for small values of n and give the restriction
of the cohomology for linear formalities.

2. Chevalley cohomology and formalities

We start by defining a graded Chevalley cohomology in a general algebraic set-
ting — that is, for cochains C : Sn(g[1])→ M[1], where g is a graded Lie algebra
and M a graded g-module. In fact two Chevalley coboundary operators are nat-
urally associated with the formality equation for R

d . The first, ∂ ′, is obtained
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by endowing Dpoly(R
d) with a Tpoly(R

d)-graded module structure; cochains are
mappings C : Sn

(
Tpoly(R

d)[1]
)

→ Dpoly(R
d)[1]. The other one, ∂ , is obtained

by considering Tpoly(R
d) as a graded module over itself; cochains are mappings

C : Sn
(
Tpoly(R

d)[1]
)

→ Tpoly(R
d)[1]. Using both ∂ and ∂ ′, we show that the

obstructions to formalities can be interpreted as cocycles for ∂ .

2.1. Chevalley cohomology. Let (g, [ , ]) be a graded Lie algebra and M a graded
module over g. For reasons of homogeneity, we prefer to work with g[1] and M[1].
Thus, we replace [ , ] and the action of g on M respectively by [ , ]′ and [ , ]M,
defined for homogeneous α, β in g[1] of degrees |α|, |β| and for m in M[1] of
degree |m| by

[α, β]′ = (−1)(|α|+1)|β|[α, β],
[α,m]M = (−1)(|α|+1)|m|α.m.

The space Cn(g,M) of n-cochains consists of mappings C from Sn(g[1]) to M[1].
The Chevalley coboundary ∂C of an n-cochain C , homogeneous of degree |C |, is
the (n+1)-cochain defined by

∂C(α1 . . . . .αn+1)

=
n+1∑

i=1

(−1)|C ||αi |εα(i, 1 . . . ı̂ . . . n + 1)
[
αi ,C(α1 . . . . α̂i . . . .αn+1)

]
M

− 1

2

∑

i 6= j

εα(i j, 1 . . . ı̂ . . . , n + 1)(−1)|C |C
(
[αi , α j ]′ .α1 . . . α̂iα j . . . .αn+1

)
.

Here the αi are homogeneous elements of g, |αi | denotes the degree of αi in g[1]
and for any permutation σ of {1, . . . , n}, εα(σ ) is the sign of σ in the graded sense.
We shall denote by Cn

[q](g,M) the subspace of Cn(g,M) formed by the n-cochains
of degree q and by H n

[q](g,M) the corresponding cohomology group. Note that ∂

sends Cn
[q](g,M) into Cn+1

[q+1](g,M).

Extending usual techniques to the graded case (See [Gammella 2001] for an
explicit computation), it is possible to prove:

Lemma 2.1. The operator ∂ is a cohomology operator, that is, ∂2 = ∂ ◦ ∂ = 0.

We now return to the graded Lie algebras
(
Tpoly(R

d), [ , ]S

)
and

(
Dpoly(R

d), [ , ]G

)
,

where [ , ]S is the Schouten bracket and [ , ]G the Gerstenhaber bracket. Let us
first make our conventions for these spaces and brackets precise.
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Let α be a k-vector field and {ei } the canonical basis of R
d . We put

α =
∑

j1,..., jk

α j1... jk e j1 ⊗ · · · ⊗ e jk =
∑

j1< j2<···< jk

α j1... jk e j1 ∧ · · · ∧ e jk

= 1

k!
∑

j1... jk

α j1... jk e j1 ∧ · · · ∧ e jk .

For any k1-vector field α1 and k2-vector field α2 (the degree of αi is ki − 1 in
Tpoly(R

d)), we define first a polyvector field α1 •α2 with components

α1 •αi1···k1+k2−1

2 = 1

k1! k2!
∑

σ∈Sk1+k2−1

(
ε(σ )

k1∑

ℓ=1

(−1)ℓ−1

×
d∑

s=1

α
iσ(1)...iσ(ℓ−1)siσ(ℓ)...iσ(k1−1)

1 ∂sα
iσ(k1)...iσ(k1+k2−1)

2

)
.

Now, [α1, α2]S can be written as

[α1, α2]S = (−1)k2(k1−1)α1 •α2 − (−1)k2−1α2 •α1.

(This choice for the Schouten bracket is denoted [ , ]′S in [Arnal et al. 2002] and
[Manchon and Torossian 2003].)

On the other hand, for any m1-differential operator D1 and any m2-differential
operator D2 (the degree of Di is mi −1 in Dpoly(R

d)), we may write [D1, D2]G in
the form

[D1, D2]G = D1 ◦ D2 − (−1)(m1−1)(m2−1)D2 ◦ D1,

where

D1 ◦ D2( f1, . . . , fm1+m2−1)=
m1∑

j=1

(−1)(m2−1)( j−1)D1
(

f1, . . . , f j−1,D2( f j , . . . , f j+m2−1), f j+m2, . . . , fm1+m2−1
)
.

Recall the canonical mapping F
(0)
1 from Tpoly(R

d) into Dpoly(R
d): each k-vector

field α can be viewed as a k-differential operator F
(0)
1 (α) of order 1, . . . , 1:

(
F
(0)
1 (α)

)
( f1, . . . , fk)= 〈α, d f1 ∧ · · · ∧ d fk〉 = 1

k!α
i1···k∂i1 f1 . . . ∂ik

fk .

Now consider the action of Tpoly(R
d) given by

α.D = a ◦
[
F
(0)
1 (α), D

]
G

for α ∈ Tpoly(R
d) and D ∈ Dpoly(R

d),
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where a denotes the usual skewsymmetrization of differential operators and [ , ]G

is the Gerstenhaber bracket. This action defines a Tpoly(R
d)-graded module struc-

ture on Dpoly(R
d). Indeed, one can prove:

Proposition 2.2. The following equalities hold for any D1, D2, D in Dpoly(R
d),

any k1-vector field α1 and k2-vector field α2 in Tpoly(R
d):

(i) a ◦ [D1, D2]G = a ◦ [D1, a ◦ D2]G ;

(ii) F
(0)
1 ([α1, α2]S)= a ◦ [F(0)

1 (α1),F
(0)
1 (α2)]G ;

(iii) a ◦
[
F
(0)
1 ([α1, α2]S), D

]
G

= a ◦
[
F
(0)
1 (α1), a ◦ [F(0)

1 (α2), D]G

]
G

−(−1)(k1−1)(k2−1)a ◦
[
F
(0)
1 (α2), a ◦ [F(0)

1 (α1), D]G

]
G

.

From (iii) it follows that

[α1, α2]S.D = α1.(α2.D)− (−1)(k1−1)(k2−1)α2.(α1.D),

and thus Dpoly(R
d) is a Tpoly(R

d)-module.

Now endow Dpoly(R
d) with the Tpoly(R

d)-graded structure described above. If
C :

∧n
(
Tpoly(R

d)
)
= Sn

(
Tpoly(R

d)[1]
)
→ Dpoly(R

d)[1] is a homogeneous mapping
of degree |C |, we can define its Chevalley coboundary ∂ ′C . The latter can be
written using the vector fields Q and Q′, associated respectively with Tpoly(R

d)

and Dpoly(R
d):

∂ ′C(α1 . . . . .αn+1)

=
n+1∑

i=1

(−1)|C ||αi |εα(i, 1 . . . ı̂ . . . n + 1)a ◦ Q′
2

(
F
(0)
1 (αi ) .C(α1 . . . . α̂i . . . .αn+1)

)

− 1

2

∑

i 6= j

εα(i j, 1 . . . ı̂ . . . n + 1)(−1)|C |C
(
Q2(αi .α j ) .α1 . . . α̂iα j . . . .αn+1

)
.

To simplify the writing, we will sometimes write αi instead of F
(0)
1 (αi ).

At the same time, considering Tpoly(R
d) as a graded module over itself, one

can define the Chevalley cohomology for Tpoly(R
d). If C : Sn

(
Tpoly(R

d)[1]
)

→
Tpoly(R

d)[1] is an n-cochain, homogeneous of degree |C |, its coboundary ∂C is

∂C(α1 . . . . .αn+1)

=
n+1∑

i=1

(−1)|C ||αi |εα(i, 1 . . . ı̂ . . . n + 1)Q2
(
αi .C(α1 . . . . α̂i . . . .αn+1)

)

− 1

2

∑

i 6= j

εα(i j, 1 . . . ı̂ . . . n + 1)(−1)|C |C
(
Q2(αi .α j ) .α1 . . . α̂iα j . . . .αn+1

)
.
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Remark. For any ϕ : Sn
(
Tpoly(R

d)[1]
)
→ Tpoly(R

d)[1], we have

∂ ′(F(0)
1 ◦ϕ)= F

(0)
1 ◦ ∂ϕ.

2.2. Obstruction to formalities. The two Chevalley coboundary operators ∂ and
∂ ′ enable us to reformulate the formality equation. Indeed, suppose we want to con-
struct a formality F from Tpoly(R

d) to Dpoly(R
d). We thus need to solve recursively

the formality equation (see [Kontsevich 1997; Arnal et al. 2002] for notations)

dH (Fn)(α1 . . . . .αn)= 1

2

∑

I⊔J={1,...,n}
|I |≥1,|J |≥1

εα(I, J )Q′
2

(
F|I |(αI ) . F|J |(αJ )

)

− 1

2

∑

k 6=ℓ
εα(kℓ, 1 . . . k̂ℓ . . . n)Fn−1

(
Q2(αk .αℓ) .α1 . . . . . α̂kαℓ∂ . . . .αn

)
,

where dH is the Hochschild coboundary operator.
Now impose the condition that the first component F1 be F

(0)
1 . Assume there are

mappings F2, . . . ,Fn−1, homogeneous of degree 0, and satisfying the formality
equation up to order n −1. Denote by En the right-hand side of the equation at the
order n. Then En is a Hochschild cocycle: dH En = 0 (see [Arnal and Masmoudi
2002] for instance). Thus

En = a ◦ En + dH C,

where a ◦ En is a differential operator of order 1, . . . , 1 and En is a coboundary if
and only if a ◦ En = 0. But

a ◦ En(α1 . . . . .αn)= ∂ ′aFn−1(α1 . . . . .αn)+ aRn(α1 . . . . .αn),

where

Rn(α1 . . . . .αn)= 1

2

∑

I⊔J={1,...,n},|I |≥2,|J |≥2

εα(I, J )Q′
2

(
F|I |(αI ) . F|J |(αJ )

)
.

It follows directly from this expression that Rn and a ◦ Rn both have degree 1:
|Rn| = |a ◦ Rn| = 1. Moreover,

Theorem 2.3. The skewsymmetrization a ◦ En of En can be identified through the

inverse mapping of F1 with a ∂-cocycle. If this cocycle is exact, we can find F
′
n−1

and F
′
n , homogeneous of degree 0, such that F2, . . . ,Fn−2,F

′
n−1,F

′
n satisfy the

formality equation up to order n.

Proof. The proof proceeds in three steps.
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Step 1. First we check that a ◦ Rn is a cocycle for ∂ ′:

∂ ′aRn(α1 . . . . .αn+1)

=
n+1∑

i=1

(−1)|αi |εα(i, 1 . . . ı̂ . . . n + 1)aQ′
2

(
αi . aRn(α1 . . . . . α̂i . . . . .αn+1)

)

+ 1

2

∑

i 6= j

εα(i j, 1 . . . ı̂ . . . n + 1)aRn

(
Q2(αi .α j ) .α1 . . . . . α̂iα j . . . . .αn+1

)

= 1

2

n+1∑

i=1

(
(−1)|αi |εα(i, 1 . . . ı̂ . . . n + 1)

×
∑

I⊔J={1...ı̂ ...n+1}
|I |≥2,|J |≥2

εα′(I, J )aQ′
2

(
αi . aQ′

2(F|I |(αI ) . F|J |(αJ ))
))

+ 1

4

∑

i 6= j

(
εα(i j, 1 . . . ı̂ . . . n + 1)

×
∑

I⊔J={0,1...ı̂ ...n+1}
|I |≥2,|J |≥2

εα′′(I, J )aQ′
2

(
F|I |(αI ) . F|J |(αJ )

))

= 1
2 (I) + 1

4 (II),

where we have set α0 := Q2(αi .α j ), εα′ := εα\{αi } and εα′′ := ε(α∪{α0})\{αi ,α j }.
The term (I) above equals

n+1∑

i=1

∑

I⊔J={1...ı̂ ...n+1}
|I |≥2,|J |≥2

(−1)(|αI |+|αJ |)|αi |εα(i, I, J )aQ′
2

(
aQ′

2(F|I |(αI ) . F|J |(αJ )) .αi

)
.

By Proposition 2.2, aQ′
2 satisfies the graded Jacobi identity; thus (I) equals

−
n+1∑

i=1

∑

I⊔J={1...ı̂ ...n+1}
|I |≥2,|J |≥2

(−1)|αJ |(|αI |+|αi |)εα(i, I, J )aQ′
2

(
aQ′

2(F|J |(αJ ) .αi ) .F|I |(αI )
)

−
∑

I⊔J={1...ı̂ ...n+1}
|I |≥2,|J |≥2

εα(i, I, J )aQ′
2

(
aQ′

2(αi . F|I |(αI )) . F|J |(αJ )
)

= −2
∑

I⊔J={1...ı̂ ...n+1}
|I |≥2,|J |≥2

εα(i, I, J )aQ′
2

(
aQ′

2(αi . F|I |(αI )) . F|J |(αJ )
)
.
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Similarly, the second term, (II), is equal to

∑

i 6= j

εα(i j, 1 . . . ı̂ . . . n + 1)
∑

I⊔J={0,1...ı̂ ...n+1}
|I |≥2,|J |≥2

εα′′(I, J )aQ′
2

(
F|I |(αI ) . F|J |(αJ )

)

=
∑

i 6= j

∑

I=I1⊔{0}
I1⊔J={1...ı̂ ...n+1}

εα(i j, I1, J )aQ′
2

(
F|I |(Q2(αi .α j ) .αI1) . F|J |(αJ )

)

+
∑

i 6= j

( ∑

J=J1⊔{0}
I⊔J1={1...ı̂ ...n+1}

εα(i j, 1 . . . ı̂ . . . n + 1)εα′′(I, {0}, J1)

× aQ′
2

(
F|I |(αI ) . F|J |(Q2(αi .α j ) .αJ1)

))

=
∑

i 6= j

( ∑

I=I1⊔{0}
I1⊔J={1...ı̂ ...n+1}

εα(i j, I1, J )aQ′
2

(
F|I |(Q2(αi .α j ) .αI1) . F|J |(αJ )

)

+
∑

J=J1⊔{0}
I⊔J1={1...ı̂ ...n+1}

εα(i j, I, J1)(−1)(|αi |+|α j |+1)|αJ |

× aQ′
2

(
F|I |(αI ) . F|J |(Q2(αi .α j ) .αJ1)

))

= 2
∑

i 6= j

∑

I=I1⊔{0}
I1⊔J={1...ı̂ ...n+1}

εα(i j, I1, J )aQ′
2

(
F|I |(Q2(αi .α j ) .αI1) . F|J |(αJ )

)
.

Putting (I) and (II) together, we get

∂ ′(aRn)(α1 . . . . .αn+1)= 1
2 (I) + 1

4 (II)

=
∑

I ′⊔J={1...n+1}
|J |≥2,|I ′|≥3

εα(I
′, J )

( ∑

i∈I ′
(I ′=I⊔{i})

εα{i}⊔I
(i, I )aQ′

2

(
aQ′

2(αi . F|I |(αI )) . F|J |(αJ )
)

+ 1

2

∑

i 6= j∈I ′,I ′=I1⊔{i j}
I=I1⊔{0}

εα{i j}∪I1
(i j, I1)aQ′

2

(
F|I |(Q2(αi .α j ) .αI1) . F|J |(αJ )

))
.

Now, Proposition 2.2 and the definition of ∂ ′ yield
(∗)
∂ ′(aRn)(α1 . . . . .αn+1)= −

∑

I ′⊔J={1...n+1}
|J |≥2, |I ′|≥3

εα(I, J )aQ′
2

(
∂ ′aF|I ′|−1(αI ′) . F|J |(αJ )

)
.

On the other hand, since the formality equation holds up to order n − 1, we have

∂ ′aFp−1 + aRp = a(E p)= a(dH (Fp))= 0 for p ≤ n − 1.
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But |I ′| ≤ n − 1 for all I ′ in the expression (∗); thus

−∂ ′aF|I ′|−1(αI ′)= aR|I ′|(αI ′)= 1

2

∑

S⊔T =I ′
|S|≥2,|T |≥2

εαS⊔T
(S, T )aQ′

2(F|S|(αS) .F|T |(αT )).

Finally, (∗) becomes

∂ ′(aRn)(α1 . . . . .αn+1)

= 1

2

∑

S⊔T ⊔J={1...n+1}
|S|≥2,|T |≥2,|J |≥2

εα(S ∪ T, J )εαS⊔T
(S, T )

× aQ′
2

(
aQ′

2(F|S|(αS) . F|T |(αT )) . F|J |(αJ )
)

= 1

2

∑

S⊔T ⊔J={1...n+1}
|S|≥2,|T |≥2,|J |≥2

εα(S, T, J )aQ′
2

(
aQ′

2(F|S|(αS) . F|T |(αT )) . F|J |(αJ )
)
.

Thanks to the Jacobi identity, the quantity on the last line vanishes. Hence ∂ ′(aRn)

and ∂ ′(aEn) both vanish.

Step 2. Put

ϕn = F
−1
1 ◦ a ◦ En.

Since

∂ ′(a ◦ En)= ∂ ′
F1(ϕn)= F1(∂ϕn)= 0,

ϕn is a cocycle for ∂ .

Step 3. Assume that ϕn = ∂φn−1, where φn−1 : Sn−1
(
Tpoly(R

d)[1]
)
→ Tpoly(R

d)[1].
Of course, dH F1(φn−1)= 0. Therefore, the mappings F

′
2 = F2, . . . , F

′
n−2 = Fn−2,

F
′
n−1 =Fn−1−F1◦φn−1 satisfy the formality equation up to order n−1. Moreover,

the Hochschild cocycle E ′
n corresponding to these F

′
p satisfies

a ◦ E ′
n = a ◦ En − ∂ ′(F1 ◦φn−1)= a ◦ En − F1(∂φn−1)= 0.

We are now able to find F
′
n such that E ′

n = dH F
′
n . This ends the proof. �

3. Skewsymmetrization

The aim of this section is to prove a noteworthy property of Kontsevich’s weights
and the definition of K -graph formalities.

3.1. Skewsymmetrization and 1-graphs. Consider an m-differential operator D

on R
d , vanishing on constants. We can decompose D as

D = D(1) + D(>1),
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where D(1) has order 1 in each of its arguments and D(>1) has order greater than 1
in at least one of its arguments. The skewsymmetrization a(D) of D, defined by

a(D)( f1, . . . , fm)= 1

m!
∑

σ∈Sm

ε(σ )D
(

fσ−1(1), . . . , fσ−1(m)

)
,

satisfies a(D)= a(D(1))+ a(D(>1)), and therefore

a(D)(1) = a(D(1)).

We assume D is defined with the help of graphs:

D(α1,...,αn) =
∑

Ŵ

cŴBŴ(α1 ⊗ · · · ⊗αn),

where the cŴ are real. To compute a(D)(1), we need only consider

D
(1)
(α1,...,αn)

=
∑

Ŵ∈G(1)

cŴBŴ(α1 ⊗ · · · ⊗αn),

where G(1) denotes the family of 1-graphs, that is, graphs having exactly one leg
for each foot.

However, as in [Kontsevich 2003], to define BŴ we need to choose a total or-
dering O on the set E(Ŵ) of edges of Ŵ. To be precise, we first choose a labeling
on the aerial vertices of Ŵ, say p1, . . . , pn . Then we put away the arrows starting
from p1, from p2, and so on, and finally from pn . We get a total ordering of E(Ŵ)

compatible with the ordering p1 < p2 < · · · < pn in the sense that the arrows
starting from pi precede those starting from pi+1.

From now on, we denote by GOn,m the set of oriented graphs (Ŵ, O) with n

labeled aerial vertices, m labeled terrestrial vertices and compatible ordering O ,
and by GO

(1)
n,m the subset of GOn,m formed by the oriented 1-graphs. Our earlier

notation
∑

cŴBŴ actually means
∑

Ŵ

cŴBŴ =
∑

(Ŵ,O)∈GOn,m

c(Ŵ,O)B(Ŵ,O) and
∑

Ŵ∈G(1)

cŴBŴ =
∑

(Ŵ,O)∈GO
(1)
n,m

c(Ŵ,O)B(Ŵ,O).

3.2. A noteworthy property of Kontsevich weights.

Kontsevich weights. Let (Ŵ, O) be an oriented graph in GO
(1)
n,m with aerial vertices

p1 < · · · < pn . We denote by ki the number of edges starting from pi , by Ui the
ordered set of legs starting from pi , and by Vi the ordered set of aerial edges starting
from the same point. Let ℓi be the number of elements in Vi , Ui has mi = ki − ℓi

elements. By the definition of GO
(1)
n,m , the number of legs is exactly the number of

terrestrial vertices; that is, m =
∑n

i=1 mi .
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Given (Ŵ, O), it will be helpful to consider the permutation sO defined by

sO : E(Ŵ) 7→ V1 ∪ · · · ∪ Vn ∪ U1 ∪ · · · ∪ Un.

After this permutation we get a new (and no longer compatible) ordering O ′ on
E(Ŵ) such that all the legs are put at the end, and we can define a permutation τO

of the legs of (Ŵ, O ′) by putting first the leg ending at q1, then the leg ending at
q2, and so on, with the the leg ending at qm last. We extend the permutation τO to
V1 ∪ . . . Vn ∪ U1 ∪ · · · ∪ Un by setting τO(v) = v for all v in

⋃
Vi . Finally, note

1 the aerial graph obtained from Ŵ by cutting the legs and the feet and by O1 the
(compatible) ordering on 1 induced by O .

Let GO
(0)
n be the set of oriented, purely aerial graphs (1, O1) with n vertices.

With these notations, the Kontsevich weight associated with (Ŵ, O) can be writ-
ten as

w(Ŵ,O) =
1

k!ε(sO)ε(τO)

∫

C+
n,0

|ℓ|∧

r=1

d8e1r

∫
q1<···<qm oriented

by dq1∧···∧dqm

m∧

j=1

d8−−→
pi j

q j
,

where k! = k1! . . . kn!, |ℓ| :=
∑
ℓi , V1 ∪ · · · ∪ Vn := {e11 < · · ·< e1|ℓ|} and i j stands

for the unique index i such that the leg arriving on q j is exactly −→
pi q j .

The Kontsevich weight of (1, O1) is just

w(1,O1) =
1

ℓ!

∫

C+
n,0

|ℓ|∧

r=1

d8e1r
,

(ℓ! = ℓ1! . . . ℓn!). Thus

w(Ŵ,O) = w(1,O1)

ℓ!
k!ε(sO)ε(τO)

∫
q1<···<qm oriented

by dq1∧···∧dqm

m∧

j=1

d8−−→
pi j

q j
.

The Sm action on GO
(1)
n,m . Let σ be an element in the permutation group Sm . With

any graph (Ŵ, O) in GO
(1)
n,m , we associate a new graph (σ (Ŵ), σ (O)). We keep for

σ(Ŵ) the vertices of Ŵ. But, if E(Ŵ)= {e1 < · · ·< e|k|}, we put E(σ (Ŵ))= {e′
1 <

· · ·< e′
|k|}, where e′

r := er if er is an aerial edge and e′
r := −−−→

pi qσ( j) if er = −→
pi q j is a

leg (see Figure 1). In this way we get a free action of Sm on GO
(1)
n,m .

Lemma 3.1. For all σ in Sm and all (Ŵ, O) in GO
(1)
n,m ,

B(σ (Ŵ),σ (O))(α)( f1, . . . , fm)= B(Ŵ,O)(α)( fσ(1), . . . , fσ(m)) fi ∈ C∞(Rd).

Proof. Let r j be the label of the leg arriving on q j in (Ŵ, O). In (σ (Ŵ), σ (O)), this
leg has the same label r j , but it ends at qσ( j). The aerial edges are kept unchanged.
The result follows easily. �
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q1 q2 q3 q4 q5

p1 p2

i3 i1 i2 i5 i6

i4

q1 q2 q3 q4 q5

p1 p2

i3 i1 i2 i5i6

i4

Figure 1. Left: (Ŵ, O). Right: (σ (Ŵ), σ (O)) with σ = (2345).

Lemma 3.2. Let σ be in Sm and (Ŵ, O) in GO
(1)
n,m . Then

ε(sσ(O))= ε(sO) and ε(τσ(O))= ε(σ )ε(τO).

Proof. When building (σ (Ŵ), σ (O)), we get a bijective mapping from E(Ŵ) to
E(σ (Ŵ)), say σ̃ . In fact, sσ(O) = σ̃ ◦ sO ◦ σ̃−1. Thus ε(sσ(O))= ε(sO).

Now let qai
1
, . . . , qai

mi
be the feet of the legs starting from pi . By definition, τO

is the permutation

−−→
p1qa1

1
,

−−→
p1qa1

2
, . . . ,

−−−→
pnqan

mn
7→ −−→

pi1q1, . . . ,
−−→
pim

qm .

We may write

τ−1
O : (1, . . . ,m) 7→ (a1

1, . . . , an
mn
).

By the definition of (σ (Ŵ), σ (O)),

τ−1
σ(O) : (1, . . . ,m) 7→

(
σ(a1

1), . . . , σ (a
n
mn
)
)
.

Thus τ−1
σ(O) ◦ τO = σ . The result follows. �

A noteworthy property.

Proposition 3.3. We keep our notations. In particular, for any (Ŵ, O) in GO
(1)
n,m

and any (1, O1) in GO
(0)
n , we denote by w(Ŵ,O) and w(1,O1) the corresponding

weights. Then

a

( ∑

(Ŵ,O)∈GO
(1)
n,m

w(Ŵ,O)B(Ŵ,O)(α)

)

=
∑

(1,O1)∈GO
(0)
n

w(1,O1)

∑

m≥0

1

m!
∑

(Ŵ,O)⊃(1,O1)

(Ŵ,O)∈GO
(1)
n,m

ℓ!
k!ε(sO)ε(τO)B(Ŵ,O)(α).

Proof. Skewsymmetrizing and using Lemma 3.1, we get
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a

( ∑

(Ŵ,O)∈GO
(1)
n,m

w(Ŵ,O)B(Ŵ,O)(α)

)
( f1 ⊗ · · · ⊗ fm)

= 1

m!
∑

σ∈Sm

ε(σ )
∑

(Ŵ,O)∈GO
(1)
n,m

w(Ŵ,O)B(Ŵ,O)(α)( fσ−1(1) ⊗ · · · ⊗ fσ−1(m))

= 1

m!
∑

σ∈Sm

ε(σ )
∑

(Ŵ,O)∈GO
(1)
n,m

w(Ŵ,O)B(σ−1(Ŵ),σ−1(O))(α)( f1 ⊗ · · · ⊗ fm)

= 1

m!
∑

σ∈Sm

ε(σ )
∑

(Ŵ,O)∈GO
(1)
n,m

w(σ (Ŵ),σ (O))B(Ŵ,O)(α)( f1 ⊗ · · · ⊗ fm).

By definition,

w(σ (Ŵ),σ (O)) = ε(sσ(O))ε(τσ(O))
ℓ!
k!

∫

C+
n,0

|ℓ|∧

r=1

d8e1r

∫
q1<···<qm oriented

by dq1∧···∧dqm

m∧

j=1

d8−−→
pi ′

j
q j
,

where i ′
j stands for the unique index i ′ such that the leg arriving on q j is exactly−→

p′
i q j . Now

∧m
j=1 d8−−→

pi ′
j
q j

= ε(σ )
∧m

j=1 d8−−−−→
pi j

qσ( j)
; then, by Lemma 3.2,

w(σ (Ŵ),σ (O)) =
ℓ!
k!ε(sO)ε(τO)

∫

C+
n,0

|ℓ|∧

r=1

d8e1r

∫
q1<···<qm oriented

by dq1∧···∧dqm

m∧

j=1

d8−−−−→
pi j

qσ( j)
.

With the new variables q ′
j = qσ( j), we get

w(σ (Ŵ),σ (O)) =
ℓ!
k!w(1,O1)ε(sO)ε(τO)

∫

Dσ

m∧

j=1

d8−−→
pi j

q ′
j

where Dσ is the domain q ′
σ−1(1) < · · ·< q ′

σ−1(m)
oriented by dq ′

1 ∧· · ·∧dq ′
m . Thus

a

( ∑

(Ŵ,O)∈GO
(1)
n,m

w(Ŵ,O)B(Ŵ,O)(α)

)

= 1

m!
∑

σ∈Sm

∑

(Ŵ,O)∈GO
(1)
n,m

w(1,O1)

ℓ!
k!ε(sO)ε(τO)

∫

Dσ

m∧

j=1

d8−−→
pi j

q ′
j
B(Ŵ,O)(α)

=
∑

(1,O1)∈GO
(0)
n

w(1,O1)

1

m!
∑

(Ŵ,O)∈GO
(1)
n,m

(Ŵ,O)⊃(1,O1)

ℓ!
k!ε(sO)ε(τO)

( ∑

σ∈Sm

∫

Dσ

m∧

j=1

d8−−→
pi j

q ′
j

)
B(Ŵ,O)(α)

=
∑

(1,O1)∈GO
(0)
n

w(1,O1)

1

m!
∑

(Ŵ,O)∈GO
(1)
n,m

(Ŵ,O)⊃(1,O1)

ℓ!
k!ε(sO)ε(τO)B(Ŵ,O)(α). �
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3.3. K -graph formalities. Consider the explicit Kontsevich formality U=
∑

n Un

on R
d . If (Ŵ, O) is an oriented graph with O not compatible, we write, as in [Arnal

et al. 2002],

B(Ŵ,O) = ε(σ(O,O0))B(Ŵ,O0),

where O0 is any compatible orientation on Ŵ and σ(O,O0) stands for the permutation
of E(Ŵ) obtained by changing (Ŵ, O) into (Ŵ, O0). We also put

ω′
(Ŵ,O) =

k!
|k|!ω(Ŵ,O) and w′

(Ŵ,O) =
∫

C+
n,m

ω′
(Ŵ,O),

where k! = k1! . . . kn! and |k| =
∑

ki if ki is the number of edges emanating from
the vertex pi of Ŵ, and ω(Ŵ,O) = d8e1 ∧ · · · ∧ d8e|k| if E(Ŵ)= {e1 < · · ·< e|k|}.

We denote by GO ′
n,m the set of oriented graphs (Ŵ′, O ′), with O ′ not necessarily

compatible. Then

Un =
∑

m≥0

∑

(Ŵ′,O ′)∈GO ′
n,m

w′
(Ŵ′,O ′)B(Ŵ′,O ′).

We write the formality equation for U as

Fn = En − dH (Un)= 0.

Rewriting the proof of the formality theorem by Kontsevich, one can see that Fn

looks like a sum over the faces F of the boundary ∂C+
n,m of C+

n,m (see [Arnal et al.
2002] for details):

Fn =
∑

m≥0

∑

F⊂∂C+
n,m

∑

(Ŵ′,O ′)∈GO ′
n,m

w′F
(Ŵ′,O ′)B(Ŵ′,O ′),

where w′F
(Ŵ′,O ′) is the integral over F of the closed 2-form ω′

(Ŵ′,O ′).
That Fn = 0 then follows directly from the Stokes formula. In particular, we

have a(En)= 0.
Now, we saw that a(En) = a(En

(1)). Thus, for a fixed face F of ∂C+
n,m , the

corresponding term in a(En) is a sum over 1-graphs of the form

a

( ∑

(Ŵ′,O ′)∈GO ′(1)
n,m

w′F
(Ŵ′,O ′)B(Ŵ′,O ′)

)
.

Each term of this sum satisfies our relation

a

( ∑

(Ŵ′,O ′)∈GO ′(1)
n,m

w′F
(Ŵ′,O ′)B(Ŵ′,O ′)(α)

)

=
∑

(1,O1)

wF
(1,O1)

1

m!
∑

GO
(1)
n,m∋(Ŵ,O)⊃(1,O1)

ℓ!
k!ε(sO)ε(τO)B(Ŵ,O)(α),
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where wF
(1,O1)

=
∫

F
ω(1,O1). Let’s prove this:

A face is of either type 1 or type 2 (see [Kontsevich 2003] or [Arnal et al. 2002]).
We consider only the faces such that w′F

(Ŵ′,O ′) can be different from 0.

(i) If the face F has type 1: Two vertices pi , p j of Ŵ′, related by exactly one
edge, are collapsing and the face is F = C{pi ,p j } ×C+

{p,p1,..., p̂i p j ,...,pn};{q1,...,qm}. We

parametrize C+
n,m by

ρ = |p j − pi |
Im pi

, p′
j = p j − pi

|p j − pi |
p′

r = pr − Re pi

Im pi

q ′
s = qs − Re pi

Im pi

.

With the signs computed in [Arnal et al. 2002], we can write

w′F
(Ŵ′,O ′) = −

∫

C2

d8−→
pi p j

∫

C+
n−1,m

ω′
(Ŵ2,O2)

,

where Ŵ2 is the graph obtained from Ŵ′ by gluing together pi and p j at the point p

and suppressing the edge −→
pi p j . This weight w′F

(Ŵ′,O ′) corresponds to a limit when
ρ tends to zero. In fact, if we put

C+
n,m(ε)= C+

n,m ∩ {(p, q) : ρ = ε},

we get

w′F
(Ŵ′,O ′) = lim

ε→0

k!
|k|!

∫

C+
n,m(ε)

ω(Ŵ′,O ′) := lim
ε→0

w′F
(Ŵ′,O ′)(ε).

This limit vanishes for graphs (Ŵ′, O ′) whose vertices pi and p j are linked by two
edges or no edges at all. We can thus also consider these graphs in our sum. Then

a

( ∑

(Ŵ′,O ′)∈GO ′(1)
n,m

w′F
(Ŵ′,O ′)B(Ŵ′,O ′)(α)

)
= lim
ε→0

a

( ∑

(Ŵ′,O ′)∈GO ′(1)
n,m

w′F
(Ŵ′,O ′)(ε)B(Ŵ′,O ′)(α)

)
.

Passing to compatible orderings, we obtain

a

( ∑

(Ŵ′,O ′)∈GO ′(1)
n,m

w′F
(Ŵ′,O ′)B(Ŵ′,O ′)(α)

)
= lim
ε→0

a

( ∑

(Ŵ,O)∈GO
(1)
n,m

wF
(Ŵ,O)(ε)B(Ŵ,O)(α)

)
.
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By Proposition 3.3, we get, as announced,

a

( ∑

(Ŵ′,O ′)∈GO ′(1)
n,m

w′F
(Ŵ′,O ′)B(Ŵ′,O ′)(α)

)

= lim
ε→0

1

m!
∑

(1,O1)∈GO
(0)
n

wF
(1,O1)

(ε)
∑

(Ŵ,O)∈GO
(1)
n,m

(Ŵ,O)⊃(1,O1)

l!
k!ε(sO)ε(τO)B(Ŵ,O)(α)

= 1

m!
∑

(1,O1)∈GO
(0)
n

wF
(1,O1)

∑

(Ŵ,O)∈GO
(1)
n,m

(Ŵ,O)⊃(1,O1)

ℓ!
k!ε(sO)ε(τO)B(Ŵ,O)(α).

(ii) If F has type 2: Since our graphs (Ŵ′, O ′) have exactly one leg for each foot, F

is isomorphic to C+
n1,m1

×C+
n2,m2

with n2 > 0 and n1 > 0. This case corresponds to
the subcase 1 of [Arnal et al. 2002]. Suppose that pi1, . . . , pin1

and qℓ+1, . . . , qℓ+m

are collapsing on q ∈ R. Denote by p j the first aerial vertex of Ŵ′ that is not a pis
,

and impose the condition p j =
√

−1. The other parameters are then fixed and we
get a parametrization of our configuration space C+

n,m by variables ar , bs, qt (see
the notation of [Arnal et al. 2002]). We put ai1 = q, b = Im pi1 , and

p′
ik

= pik
− q

b
(2 ≤ k ≤ n1), q ′

ℓ+r = qℓ+r − q

b
(1 ≤ r ≤ m1).

That is, pik
= b p′

ik
+qb and qℓ+r = q ′

ℓ+r +qb, and when b tends to zero, the pik

and the qℓ+r tend to q . We finally set

C+
n,m(ε)= {(p, q) ∈ C+

n,m : b = ε}.

We get

w′F
(Ŵ′,O ′) = lim

ε→0

k!
|k|!

∫

C+
n,m(ε)

ω(Ŵ′,O ′) = lim
ε→0

w′F
(Ŵ′,O ′)(ε).

If Ŵ′ has a bad edge, the weight w′F
(Ŵ′,O ′) vanishes. We can thus consider also these

graphs in our sum. Now, a computation similar to that of (i) gives the result.

From now on, for any aerial oriented graph (1, O1) in GO
(0)
n , denote by C(1,O1)

the operator C(1,O1) : T ⊗n
poly(R

d)→ Dpoly(R
d)(1) ≃ Tpoly(R

d) defined by

C(1,O1)(α1 ⊗· · ·⊗αn)=
∑

m≥0

1

m!
∑

(Ŵ,O)∈GO
(1)
n,m

(Ŵ,O)⊃(1,O1)

ℓ!
k!ε(sO)ε(τO)B(Ŵ,O)(α1 ⊗· · ·⊗αn),

where ε(sO) and ε(τO) have the same meaning as above.
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Remark. The definition of C(1,O1) can be extended naturally to the space GO ′(0)
n

of aerial graphs (1′, O ′
1) with O ′

1 not necessarily compatible just by putting

C(1′,O ′
1)

=
∑

m≥0

1

m!
∑

(Ŵ,O)∈GO
(1)
n,m

(Ŵ,O)⊃(1,O1)

ℓ!
k!ε(sO ′)ε(τO ′)B(Ŵ′,O ′).

We will need to use this extension in Section 5.

Summing up:

Proposition 3.4. Consider the explicit Kontsevich formality U on R
d . The formal-

ity equation can be read as

Fn = En − dH Un = 0,

and the skewsymmetrization of En has the form

a ◦ En =
∑

m≥0

∑

F face of ∂C+
n,m

∑

(Ŵ′,O ′)∈GO ′(1)
n,m

w′F
(Ŵ′,O ′)B(Ŵ′,O ′),

where w′F
(Ŵ′,O ′) =

∫
F∈∂C+

n,m
ω′
(Ŵ′,O ′). Then, for each face F ,

a

( ∑

(Ŵ′,O ′)∈GO ′(1)
n,m

w′F
(Ŵ′,O ′)B(Ŵ′,O ′)(α)

)
=

∑

(1,O1)∈GO
(0)
n

wF
(1,O1)

C(1,O1)(α).

This proposition suggests that we define:

Definition 3.5. A mapping ϕ from Tpoly(R
d)⊗n to Dpoly(R

d)(1) ≃ Tpoly(R
d) is

called a K -graph mapping if it can be written

ϕ =
∑

(1,O1)∈GO
(0)
n

c(1,O1)C(1,O1)

with real coefficients c(1,O1). Such a mapping is homogeneous of degree s if
c(1,O1) = 0 for all 1 such that # E(1)+ s 6= 2n − 2.

Definition 3.6. A K -graph formality F at order n is a graph formality up to order
n − 1 such that ϕn = F

−1
1 ◦ a ◦ En is a K -graph mapping.

4. Symmetrization

4.1. Expressions for ∂ . If B is an n-linear mapping B : Tpoly(R
d)⊗n → Tpoly(R

d),
we define SB by setting

SB(α1 ⊗ · · · ⊗αn)= 1

n!
∑

σ∈Sn

εα(σ )B(ασ(1) ⊗ · · · ⊗ασ(n)),
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and say that B is symmetric if SB = B. Any symmetric mapping can be viewed
as a map ϕ : Sn(Tpoly(R

d))→ Tpoly(R
d). With this symmetrization operator S, the

expression of the Chevalley coboundary operator can be conveniently simplified:

Proposition 4.1. Let ϕ : Sn(Tpoly(R
d)[1]) → Tpoly(R

d)[1] be an n-cochain for ∂ ,
homogeneous of degree |ϕ|. Then we can write

∂ϕ = S(∂̃ϕ),

where ∂̃ϕ is given by

∂̃ϕ(α1 ⊗ · · · ⊗αn+1)= (n + 1)
(
ϕ(α1 ⊗ · · · ⊗αn) •αn+1

+ (−1)|ϕ||α1|α1 •ϕ(α2 ⊗ · · · ⊗αn+1)+ (−1)|ϕ|+1nϕ(α1 •α2 ⊗α3 ⊗ · · · ⊗αn+1)
)
,

or else by an expression imitating the Hochschild coboundary operator :

∂̃ϕ(α1 ⊗ · · · ⊗αn+1)= (n + 1)

(
ϕ(α1 ⊗ · · · ⊗αn) •αn+1

+ (−1)|ϕ|+1
n+1∑

k=2

(−1)
∑k−2

s=1 |αs |ϕ(α1 ⊗ · · · ⊗αk−1 •αk ⊗ · · · ⊗αn+1)

+ (−1)|ϕ||α1|α1 •ϕ(α2 ⊗ · · · ⊗αn+1)

)
.

Proof. By the definition of ∂ , we have

∂ϕ(α1 . . . . .αn+1)= (1)+ (2)+ (3),

with

(1)=
n+1∑

i=1

εα(1 . . . ı̂ . . . n+1, i)ϕ(α1 . . . . α̂i . . . .αn+1) •αi ,

(2)=
n+1∑

i=1

(−1)|ϕ||αi |εα(i, 1 . . . ı̂ . . . n+1)αi •ϕ(α1 . . . . α̂i . . . .αn+1),

(3)=
∑

i 6= j

(−1)|ϕ|+1εα(i j, 1 . . . ı̂ . . . n+1)ϕ(αi •α j .α1 . . . α̂iα j . . . .αn+1).

Now, put

ψ1(α1 ⊗ · · · ⊗αn+1)= (n+1)ϕ(α1 ⊗ · · · ⊗αn) •αn+1,

ψ2(α1 ⊗ · · · ⊗αn+1)= (−1)|ϕ||α1|(n+1)α1 •ϕ(α2 ⊗ · · · ⊗αn+1),

ψ3(α1 ⊗ · · · ⊗αn+1)= (−1)|ϕ|+1(n+1)nϕ(α1 •α2 ⊗ · · · ⊗αn+1),

ψ ′
3(α1 ⊗ · · · ⊗αn+1)= (−1)|ϕ|+1

n+1∑

k=2

(
(−1)

∑k−2
s=1 |αs |

×ϕ(α1 ⊗ · · · ⊗αk−1 •αk ⊗ · · · ⊗αn+1)
)
.
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First

Sψ1(α1 . . . . .αn+1)= (n+1)

(n+1)!
∑

σ∈Sn+1

εα(σ )ϕ(ασ(1) . . . . .ασ(n)) •ασ(n+1)

= (n+1)

(n+1)!

n+1∑

i=1

∑

σ :σ(n+1)=i

εα(σ )ϕ(ασ(1) . . . . .ασ(n)) •αi

= (n+1)

(n+1)!

n+1∑

i=1

∑

τ :τ(i)=i

εα(τ ◦ σi )ϕ(ατ(σi (1)) . . . . .ατ(σi (n))) •αi .

Here σi is the permutation of Sn+1 sending (1, . . . , n+1) to (1, . . . ı̂ . . . , n+1, i).
And, denoting by τ̄ the restriction of τ to {1, . . . ı̂ . . . , n+1}, we easily get

Sψ1(α1 . . . . .αn+1)

= n+1

(n+1)!

n+1∑

i=1

∑

τ̄∈Sn

εα\{αi }(τ̄ )εα(σi )ϕ(ατ̄ (1) . . . . .ατ̄ (n+1)) •αi

= (n+1)

(n+1)!n!
n+1∑

i=1

εα(1 . . . ı̂ . . . n+1, i)ϕ(α1 . . . . α̂i . . . .αn+1) •αi = (1).

With exactly the same argument, we obtain

Sψ2(α1 . . . . .αn+1)= (2).
Now,

Sψ3(α1 . . . . .αn+1)

=
∑

σ∈Sn+1

1

(n+1)!(−1)|ϕ|+1εα(σ )(n+1)nϕ(ασ(1) •ασ(2) ⊗ασ(3) ⊗ · · · ⊗ασ(n+1))

=
∑

i 6= j

∑

σ :σ(1)=i,σ (2)= j

(
εα(σ )

1

(n+1)!(−1)|ϕ|+1(n+1)n

ϕ(αi •α j ⊗α1 ⊗ασ(3) ⊗ · · · ⊗ασ(n+1))
)

=
∑

i 6= j

∑

τ :τ(i)=i,τ ( j)= j

(
εα(τ )

1

(n+1)!εα(σi j )(−1)|ϕ|+1(n+1)n

ϕ(αi •α j ⊗ατ(σi j (3)) . . . · · · ⊗ατ(σi j (n+1)))
)
,

where σi j is the permutation of Sn+1 sending (1, . . . , n+1) to (i j, 1 . . . ı̂ . . . n+1).
Now, if τ̄ denotes the restriction of τ to {1, . . . ı̂ . . . , n+1}, we get

Sψ3(α1 . . . . .αn+1)

=
∑

i 6= j

(−1)|ϕ|+1

(n − 1)!
∑

τ̄ :τ(i)=i,τ ( j)= j

(
εα(σi j )εα(τ̄ )

ϕ(αi •α j ⊗ατ̄ (1) ⊗ · · · α̂iα j · · · ⊗ατ̄ (n+1))
)
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=
∑

i 6= j

(−1)|ϕ|+1εα(i j, 1 . . . ı̂ . . . n+1)ϕ(αi •α j . . . . α̂iα j . . . .αn+1)= (3).

Finally,

Sψ ′
3(α1 . . . . .αn+1)

= (n+1)

(n+1)!
∑

σ∈Sn+1

(−1)|ϕ|+1
n+1∑

k=2

(−1)
∑k−2

s=1 |αs |(εα(σ )

ϕ(ασ(1) ⊗ · · · ⊗ασ(k−2) ⊗ασ(k−1) •ασ(k) ⊗ · · · ⊗ασ(n+1))
)

= (−1)|ϕ|+1

n!

n+1∑

k=2

∑

i 6= j

∑

σ :σ(k−1)=i, σ (k)= j

(−1)
∑k−2

s=1 |αs |(εα(σ )
ϕ(ασ(1) · · · ⊗αi •α j ⊗ · · · ⊗ασ(n+1))

)
.

Let σ k
i j be the permutation

σ k
i j : (1 . . . n+1) 7→ (1, . . . , k − 2, i, j, k − 1, k, . . . , n+1).

Then

(−1)|ϕ|+1Sψ ′
3(α1 . . . . .αn+1)

= 1

n!
∑

2≤k≤n+1
i 6= j

(
(−1)

∑k−2
s=1 |αs |εα(σ

k
i j )(n − 1)!
ϕ(α1 ⊗ · · · ⊗α(k−2) ⊗αi •α j ⊗ · · · ⊗αn+1)

)

= 1

n

∑

2≤k≤n+1
i 6= j

(
(−1)

∑k−2
s=1 |αs |εα(σi j )εα(ρ

k
i j )ϕ(αi •α j ⊗α1 ⊗· · ·⊗αn+1)(−1)ai jk

)
,

with ai jk = (|αi |+ |α j |+1)
(∑k−2

s=1 |αs |
)
. Here σi j = (i j1 . . . ı̂ . . . n+1) and ρk

i j is
the permutation

ρk
i j : (i j1 . . . ı̂ . . . n+1) 7→ (1, . . . , k − 2, i, j, k − 1, k, . . . , n+1);

thus we have used the composition σ k
i j = ρk

i j ◦ σi j . Now, since

εα(ρ
k
i j )= (−1)(|αi |+|α j |)(

∑k−2
s=1 |αs |),

we get

Sψ ′
3(α1 . . . . .αn+1)=

∑

i 6= j

(−1)|ϕ|+1εα(σi j )ϕ(αi •α j ⊗α1 ⊗ · · · ⊗αn+1)= (3).

This ends the proof. �
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q1 q2 q3 q4 q5

p1 p2

i3 i1 i2 i5 i6

i4

q1 q2 q3 q4 q5

p1 p2

i1 i5 i6 i3 i4

i2

Figure 2. Left: (Ŵ, O). Right: (σ (Ŵ), σ (O)) with σ = (12).

4.2. Symmetrization on graphs. We now want to describe the symmetrization di-
rectly on the space of graphs. Since we are mainly interested in K -graph for-
malities, we will restrict ourselves to linear combinations of graphs for which the
associated operator is a K -graph mapping (see Section 3.3).

The Sn action on GOn,m and GO
(0)
n . There is a natural action of Sn on GOn,m

and GO
(0)
n , which we now define. Let σ be a permutation in Sn . Let (Ŵ, O) be

in GOn,m ; for the moment, denote by Pi the set strt(pi ), ordered by O . Let σŴ
be the permutation of the ordered set E(Ŵ) of edges of Ŵ sending P1 ∪ · · · ∪ Pn

to Pσ(1) ∪ · · · ∪ Pσ(n). We denote by εŴ(σŴ) the sign of σŴ and by σ(Ŵ, O) :=
(σ (Ŵ), σ (O)) the graph with aerial vertices p′

1 = pσ(1), . . . , p′
n = pσ(n) oriented

by σŴ(E(Ŵ)) (see Figure 2). We apply the same definition to aerial graphs in
GO

(O)
n . Clearly, σ sends GOn,m (and GO

(0)
n ) onto itself.

This Sn action on GO
(1)
n,m is entirely different from the action of Sm defined in

Section 3. But there is an analog of Lemma 3.1:

Lemma 4.2. For all σ in Sn , all (Ŵ, O) in GO
(1)
n,m and all polyvector fields αi ,

B(σ (Ŵ),σ (O))(α1 ⊗ · · · ⊗αn)= B(Ŵ,O)(ασ(1) ⊗ · · · ⊗ασ(n)).

Proof. With our notations,

B(Ŵ,O)(ασ(1)⊗· · ·⊗ασ(n))( f1, . . . , fm)=
∑

1≤it1 ...it|k|≤d

n∏

i=1

∂end(pi )α
Pi

σ(i)

m∏

j=1

∂end(q j ) f j .

Since the permutation σŴ does not affect the order inside each Pi , we have

B(Ŵ,O)(ασ(1)⊗·· ·⊗ασ(n))( f1, . . . , fm)=
∑

1≤it1 ...it|k|≤d

n∏

i=1

∂end(pσ(i))α
Pσ(i)
σ(i)

m∏

j=1

∂end(q j ) f j

=
∑

1≤it1 ...it|k|≤d

n∏

i ′=1

∂end(p′
i )
αi ′ Pi ′

m∏

j=1

∂end(q j ) f j

= Bσ(Ŵ,O)(α1⊗·· ·⊗αn)( f1, . . . , fm). �
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Symmetrization for K -graph mappings.

Definition 4.3. Let

(δ, Oδ)=
∑

(1,O1)∈GO
(0)
n

c(1,O1)(1, O1)

be a linear combination of aerial graphs with n vertices. We say that (δ, Oδ) is
symmetric if

c(σ (1),σ (O1)) = ε1(σ1)c(1,O1) for all (1, O1) and σ ∈ Sn.

Proposition 4.4. If (δ, Oδ) =
∑

(1,O1)∈GO
(0)
n

c(1,O1)(1, O1) is symmetric, so is

the corresponding K -graph mapping

C(δ,Oδ) =
∑

(1,O1)∈GO
(0)
n

c(1,O1)C(1,O1).

Proof. Let σ be in Sn and let α1, . . . , αn be n polyvector fields on R
d . By Lemma

4.2 and using the fact that δ is symmetric, we have

C(δ,Oδ)(ασ(1) ⊗ · · · ⊗ασ(n))

=
∑

(1,O1)

c(1,O1)

∑

m≥0

1

m!
∑

(Ŵ,O)⊃(1,O1)

ℓ!
k!ε(sO)ε(τO)B(σ (Ŵ),σ (O))(α1⊗· · ·⊗αn)

=
∑

σ−1(1,O1)

c(σ−1(1),σ−1(O1))

∑

m≥0

1

m!
∑

σ−1(Ŵ,O)⊃σ−1(1,O1)

ℓ!
k!ε(sσ−1(O))ε(τσ−1(O))B(Ŵ,O)(α1 ⊗ · · · ⊗αn)

=
∑

(1,O1)

ε1(σ1)c(1,O1)

∑

m≥0

1

m!
∑

(Ŵ,O)⊃(1,O1)

ℓ!
k!ε(sσ−1(O))ε(τσ−1(O))B(Ŵ,O)(α1 ⊗ · · · ⊗αn).

Extending σ1 to E(Ŵ) in the obvious way, we can write

τO ◦ sO = σ1 ◦ τσ−1(O) ◦ sσ−1(O) ◦ σ−1
Ŵ .

Thus

Cδ(ασ(1) ⊗ · · · ⊗ασ(n))

=
∑

(1,O1)

c(1,O1)

∑

m≥0

1

m!
∑

(Ŵ,O)⊃(1,O1)

εŴ(σŴ)
l!
k!ε(sO)ε(τO)B(Ŵ,O)(α1 ⊗ · · · ⊗αn).
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Since each εŴ(σŴ) clearly coincides with the sign εα(σ ) of σ , we get

Cδ(ασ(1) ⊗ · · · ⊗ασ(n))= εα(σ )Cδ(α1 ⊗ · · · ⊗αn).

This proves the result. �

5. Chevalley cohomology for graphs

We will now prove that, on K -graph mappings, the Chevalley coboundary operator
can be nicely reduced to an operator acting on purely aerial graphs.

5.1. Purely aerial and compatible oriented graphs. For any (1, O1) in GO
(0)
n

with vertices p1 < · · · < pn , we still write ℓi = # strt1(pi ). We also put |1| =∑
ℓi = |ℓ|.
Fix two indexes i 6= j . We say that an aerial graph (1′, O1′) in GO ′(0)

n+1 (with
O1′ not necessarily compatible) with vertices p′

1< · · ·< p′
n+1 reduces to (1, O1)

in the indexes i, j if the two following assertions hold:

(i) The vertices p′
i and p′

j of 1′ are linked by only the edge
−→
p′

i p′
j .

(ii) the new graph (1′
i j , O1′

i j
), obtained by gluing together the vertices p′

i , p′
j

of 1′, by suppressing the edge
−→
p′

i p′
j and considering the induced ordering,

coincides with (O,1).

We say that (1′,O1′) reduces properly to (1,O1) in the indexes i, j if (1′,O1′)

reduces to (1, O1) in the same indexes and in addition

inf
(
# strt1

′
(p′

i )+ # end1
′
(p′

i ), # strt1
′
(p′

j )+ # end1
′
(p′

j )
)
> 1.

In the situations above we write

(1′, O1′)→i, j (1, O1) and (1′, O1′)→prop
i, j (1, O1),

respectively. We use the same notation for graphs (Ŵ, O) in GO
(1)
n,m .

Definition 5.1. If (1, O1) is an aerial oriented graph in GO
(0)
n , we define the

coboundary ∂(1, O1) of (1, O1) by

∂(1, O1)= (−1)|1|+1
∑

i 6= j

∑

(1′,O1′ )→prop
i, j (1,O1)

ε(1′, O1′,1, O1)(1
′, O1′).

Here ε(1′, O1′,1, O1) is the sign of the permutation of E(1′), that consists in
putting first the edge

−→
p′

i p′
j , then the other edges starting from p′

i (with the ordering
induced by O1′), then the edges starting from p′

j (also with the induced ordering),
and finally all the remaining edges (with the ordering given by O1).
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We extend ∂ by linearity to all combinations (δ, Oδ)=
∑

(1,O1)
c(1,O1)(1, O1).

Note that the restriction of ∂ to symmetric combinations of graphs is an operator
of cohomology.

More precisely:

Proposition 5.2. With the same notations as above and for any symmetric combi-

nation of graphs (δ, Oδ), we have

∂(C(δ,Oδ))= C∂(δ,Oδ).

Proof. First, C(1,O1) is a linear combination of m-differential operators B(Ŵ,O)(α),
for certain ki -vector fields αi :

m − 2 =
∣∣B(Ŵ,O)(α1 ⊗ · · · ⊗αn)

∣∣ =
n∑

i=1

|αi | + |B(Ŵ,O)| =
n∑

i=1

ki − 2n + |B(Ŵ,O)|,

where | | stands for the degree in Tpoly(R
d)[1] and Dpoly(R

d)[1]. Now, since the
graphs (Ŵ, O) occurring in C(1,O1) are 1-graphs, we have ki = ℓi + mi for each i

and m =
∑n

i=1 mi . Thus

|B(Ŵ,O)| =
n∑

i=1

ℓi = |1| mod 2.

Now, by the definition of ∂ on operators,

∂C(1,O1)(α1 . . . . .αn+1)

=
n+1∑

j=1

εα(1 . . . ̂ . . . n+1, j)C(1,O1)(α1 . . . . α̂ j . . . .αn+1) •α j

+
n+1∑

i=1

(−1)|1||αi |εα(i, 1 . . . ı̂ . . . n+1)αi • C(1,O1)(α1 . . . . α̂i . . . .αn+1)

+
∑

i 6= j

(−1)|1|+1εα(i j, 1 . . . ı̂ . . . n+1)C(1,O1)(αi •α j .α1 . . . α̂iα j . . . .αn+1)

= (i) + (ii) + (iii).

We first consider the term (iii). We have

C(1,O1)(αi •α j . . . . α̂iα j . . . .αn+1)

=
∑

m≥0

1

m!
∑

GO
(1)
n,m∋(Ŵ,O)⊃(1,O1)

ℓ!
k!ε(sO)ε(τO)B(Ŵ,O)(αi •α j . . . . α̂iα j . . . .αn+1).
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Now, we can write (see [Arnal et al. 2002] for details)

B(Ŵ,O)(αi •α j .α1 . . . .αn+1)=
∑

(Ŵ′,O ′)→i, j (Ŵ,O)

(−1)ℓŴ′−1 B(Ŵ′,O ′)(α1 . . . . .αn+1),

where ℓŴ′ denotes the position of the edge
−→
p′

i p′
j in Ŵ′, and the sign (−1)ℓŴ′−1 comes

directly from the definition of •.
Next consider a graph (Ŵ′, O ′) that reduces to (Ŵ, O) in the indexes i, j . We

permute the edges as follows: we put first the edge
−→
p′

i p′
j , then the other edges

starting from p′
i , then the edges starting from p′

j , and finally we put all the legs at
the end in order of their feet. This gives a sign that can be written as

εα(i j, 1 . . . ı̂ . . . n+1)(−1)ℓŴ′−1ε(sO)ε(τO).

Starting from (Ŵ′, O ′), one can also place the legs at the end in order of their feet,
preceded by the aerial edges starting from p′

i and those starting from p′
j , and then

by the aerial edge
−→
p′

i p′
j at the first position. If we denote by 1′ the aerial part of

Ŵ′ and by ℓ1′ the position of the edge
−→
p′

i p′
j in 1′, the resulting sign is

ε(sO ′)ε(τO ′)ε(1′,1)(−1)ℓ1′−1.

These two permutations of the edges of Ŵ′ obviously coincide; thus

εα(i j, 1 . . . ı̂ . . . n+1)(−1)ℓŴ′−1ε(sO)ε(τO)= ε(sO ′)ε(τO ′)ε(1′,1)(−1)ℓ1′−1.

It follows that

C(1,O1)(αi •α j . . . . α̂iα j . . . .αn+1)

=
∑

m≥0

1

m!
∑

(Ŵ,O)∈GO
(1)
n,m

(Ŵ,O)⊃(1,O1)

εα(i j1 . . . n+1)

( ∑

(Ŵ′,O ′)→
i, j
(Ŵ,O)

ℓ!
k!ε(sO ′)ε(τO ′)(−1)ℓ1′−1

ε(1′,1)B(Ŵ′,O ′)(α1 . . . . .αn+1)

)

= εα(i j, 1 . . . n+1)
∑

m≥0

1

m!

( ∑

(1′,O1′ )→i, j (1,O1)

(−1)ℓ1′−1ε(1′,1)

∑

(Ŵ′,O ′)⊃(1′,O1′ )

ℓ!
k!ε(s

′
O)ε(τ

′
O)B(Ŵ′,O ′)(α1 . . . . .αn+1)

)

= εα(i j, 1 . . . n+1)
∑

(1′,O1′ )→i, j (1,O1)

(−1)ℓ1′−1ε(1′,1)C(1′,O1′ )(α1 . . . . .αn+1).
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Finally,

(iii) = (−1)|1|+1
∑

(1′,O1′ )→i, j (1,O1)

(−1)ℓ1′−1ε(1′,1)C(1′,O1′ )(α1 . . . . .αn+1)

= (−1)|1|+1
∑

(1′,O1′ )→i, j (1,O1)

ε(1′, O1′,1, O1)C(1′,O1′ )(α1 . . . . .αn+1).

Now let (δ, Oδ) =
∑

c(1,O1)(1, O1) be a symmetric combination of graphs
and put

C(δ,Oδ) = (i)δ + (ii)δ + (iii)δ.

We have to prove that −
(
(i)δ + (ii)δ

)
coincides with the nonproper terms of (iii)δ,

that is, with
∑

(1,O1)

c(1,O1)(−1)|1|+1
∑

i 6= j

∑

(1′,O1′ )→nonprop
i, j (1,O1)

(−1)ℓ1′−1ε(1′, O1′)(1′, O1′).

Consider first the term

(ii)δ=
∑

(1,O1)

c(1,O1)

∑

i=1n

(−1)|1||αi |εα(i, 1 . . . n+1)αi•C(1,O1)(α1 . . . α̂i . . . αn+1).

We identify C(1,O1)(α) with a polyvector field, and put

C(1,O1)(α1 . . . α̂i . . . αn+1)=
(
C(1,O1)(α1 . . . α̂i . . . αn+1)

)r1...rm
∂r1 ∧ · · · ∧ ∂rm

.

Thus

αi • C(1,O1)(α1 . . . α̂i . . . αn+1)

=
∑

j 6=i

∑

l≤ki

(−1)l−1α
i1...s···ki −1

i

(
C(1,O1)(α1 . . . ∂s(α j ) . . . α̂i . . . αn+1)

)r1...rm

∂i1 ∧ · · · ∂ik1−1 ∧ ∂r1 ∧ · · · ∧ ∂rm
.

Let σ be the permutation ( j1 . . . ı̂ . . . n+1) and (1σ , O1σ ) be the aerial graph
obtained by relabeling the vertices of 1 in the ordering given by σ . Then

C(1,O1)(α1 . . . ∂s(α j ) . . . α̂i . . . αn+1)= C(1σ ,O1σ )(∂s(α j )α1 . . . α̂iα j . . . αn+1).

But (δ, Oδ) is symmetric; thus

c(1σ ,O1σ ) = c(1,O1)εα( j, 1 . . . ı̂ . . . n+1).

Hence,

(ii)δ =
∑

(1,O1)

∑

i 6= j

(−1)|1||αi |εα(i j1 . . . n+1)c(1,O1)

∑

ℓ≤ki

(−1)ℓ−1α
i1...s...iki −1

i

(
C(1,O1)(∂sα jα1 . . . α̂iα j . . . αn+1)

)r1...rm
∂i1 ∧ · · · ∧ ∂iki −1 ∧ ∂r1 ∧ · · · ∧ ∂rm

.
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It is now easy to see that −(ii)δ coincides with certain nonproper terms of (iii)δ —
more precisely, with those corresponding to the graphs 1′ with

(1′, O1′)→i, j (1, O1) and
(
# strt1

′
(p′

i )+ # end1
′
(p′

i )
)
= 1.

(In this case, ℓ1′ = 1.) In the same way, one can check that −(i)δ coincides with the
remaining nonproper terms of (iii)δ, that is, with the nonproper terms corresponding
to the case

(1′, O1′)→i, j (1, O1) and (# strt1
′
(p′

j )+ # end1
′
(p′

j ))= 1.

The result follows. �

5.2. Purely aerial and nonoriented graphs. We say that a graph is nonoriented
if there is an ordering only on the aerial vertices but no ordering on the edges of
the graph. We are now interested in translating our cohomology on nonoriented
graphs. Let1 be an aerial nonoriented graph with n vertices p1< · · ·< pn . We still
write ℓi = strt1(pi ) and ℓ!= ℓ1! . . . ℓn!. We order the edges of1 lexicographically:

−→
ab ≤ −→

a′b′ if and only if (a = a′ and a < b′) or (a < a′).

This yields a compatible ordering on 1, called the standard ordering. We denote
by (1, Ostd

1 ) the resulting oriented graph.
Now put

1= 1

ℓ!
∑

O1:(1,O1)∈GO
(0)
n

ε(σ(Ostd
1 ,O1)

)(1, O1).

By the definition of ∂ on compatible oriented graphs, we have:

∂1= 1

ℓ!

( ∑

O1:(1,O1)∈GO
(0)
n

ε(σ(Ostd
1 ,O1)

)(−1)|1|+1

∑

i 6= j

∑

(1′,O1′ )→prop
i, j (1,O1)

ε(1′, O1′,1, O1)(1
′, O1′)

)
.

Note that the sign

ε̃(1,1′) := ε(Ostd
1 , O1)ε(1

′, O1′,1, O1)ε(O
std
1′ , O1′)

does not depend on O1 or O ′
1. This yields a very simple expression for the

coboundary ∂1 of 1:

∂1= 1

ℓ!
∑

i 6= j

∑

1′⊃1
ε̃(1′,1)1′.

We extend ∂ to linear combination of graphs δ =
∑

1 c11.
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Now, if 1 is a nonoriented graph with vertices p1 < · · · < pn and if σ is a
permutation in Sn , we denote by σ(1) the nonoriented graph with vertices pσ(1)<

· · · < pσ(n). A linear combination δ =
∑

1 c11 of nonoriented graphs with n

labeled vertices is said to be symmetric if for any σ in Sn , we have c1 = cσ(1).
Our operator ∂ restricted to symmetric δ is clearly a cohomology operator.

More precisely, for an aerial nonoriented graph 1, let

C1 = 1

ℓ!
∑

O1:(1,O1)∈GO
(0)
n

ε(σ(Ostd
1 ),O1)

)C(1,O1).

Extend this definition by linearity to all linear combinations. Then, by computa-
tions similar to those we did before for oriented graphs, we can prove:

Proposition 5.3. For any symmetric combination δ =
∑

1 c1C1 of graphs with n

labeled vertices, we have

∂(Cδ)= C∂(δ).

5.3. Examples. Let11 be the graph with only one vertex p1. Let α1 be a k1-vector
field. Then

C11(α1)= 1

(k1!)2
∑

GO
(1)
n,m∋(Ŵ,O)⊃11

ε(sO)ε(τO)B(Ŵ,O)(α1).

There is only one graph occurring in this sum, namely the graph Ŵ with one aerial
vertex p1, k1 terrestrial vertices q1, . . . , qk1 and k1 edges −→

p1q1, . . . ,
−−→
p1qk1 . For

any σ in Sk1 , denote by (Ŵ, Oσ ) the graph Ŵ endowed with the ordering given by
−−−→
p1qσ(1) . . .

−−−−→
p1qσ(k1). Clearly,

C11(α1)= 1

(k1!)2
∑

σ∈Sk1

ε(σ )B(Ŵ,Oσ )(α1)= F
(0)
1 (α1)≃ α1,

and C11 just corresponds to the identity mapping.
Now let 12 be the aerial graph with two vertices p1 < p2 and one edge −→

p1 p2.
Let α1 be a k1-vector field and α2 a k2-vector field. Then

C12(α1 ⊗α2)= 1

(k1 + k2 − 1)!
∑

(Ŵ,O)⊃12

(Ŵ,O)∈GO
(1)
n,m

1

k1! k2!
ε(sO)ε(τO)B(Ŵ,O)(α1 ⊗α2).

There are exactly (k1+k2−1)!/
(
(k1−1)! k2!

)
graphs Ŵ containing12 and having

exactly (k1−1) legs starting from p1 and k2 legs starting from p2. For each of them,
we choose a compatible ordering. There are k1! k2! possibilities to do it. Thus, there
are exactly k1(k1+k2−1)! compatible oriented graphs (Ŵ, O) occurring in C12 . For
each of these graphs, ε(sO) corresponds to the permutation of Sk1 that consists in
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putting the aerial edge of (Ŵ, O) at the first position and ε(τO) corresponds to the
permutation of Sk1+k2−1 that consists in putting the legs in the order of the feet.
There is thus k1(k1 + k2 − 1)! terms in C12 , each of which looks like

1

(k1 + k2 − 1)! k1! k2!
ε(sO)ε(τO)B(Ŵ,O) =

1

(k1 + k2 − 1)! k1! k2!
(−1)ℓ−1ε(σ )

α
iσ(1)...iσ(ℓ−1)siσ(ℓ)...iσ(k1−1)

1 ∂s(α
iσ(k1)...iσ(k1+k2−1)

2 )∂iσ(1) ⊗ · · · ⊗ ∂is(k1+k2−1) .

Thus

C12(α1 ⊗α2)= F
(0)
1 (α1 •α2)≃ α1 •α2.

Now consider the aerial graph1−
2 with two vertices p1< p2 and one edge −→

p2 p1.
In the same way as above, one can see that

C1−
2
(α1 ⊗α2)= (−1)k1k2α2 •α1.

In other words, C12+1−
2

coincides with Q2.
The identity map Id and Q2 are thus easy examples of K -graph mappings, and

the fact that Q2 is the Chevalley coboundary of Id can be checked directly on the
graphs. Indeed, we have with our notations:

∂11 = ε̃(12,11)12 + ε̃(12
−,11)12

− =12 +1−
2 .

Hence,

Q2 = C12+1−
2

= C∂11 = ∂C11 = ∂ Id .

6. Triviality of the cohomology for small n

Our first example proves that the first cohomology group H 1 is trivial, since, for
n = 1, there is only one purely aerial graph, namely 11.

Now suppose n = 2. There is one graph 1 with two vertices and with degree 0
|1| = 0, the nonconnected symmetric graph denoted 11 ×11 without any edges.
Its coboundary does not vanish; in the obvious notation, we have

∂(11 ×11)= S
(
(1+

2 +1−
2 )×11 +11 × (12

2 +1−
2 )

)
6= 0.

In degree 1 (|1| = 1), there is only one symmetrized graph, 1+
2 +1−

2 . Our second
example shows that this graph is a coboundary.

Finally, there is no graph with degree larger than 1; indeed, the number of edges
for a graph with 2 vertices is at most 2, but there is only one graph1 with |1| = 2,
the graph 12,2 given by

✙ ✯p1 p2
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But the symmetrization of this graph is 12,2 − 12,2 = 0. Thus the second
cohomology group H 2 vanishes.

It is possible to prove with elementary arguments that H 3 = 0 too. For that, we
consider the different cases, |1| = 0, . . . , 6, then we define the order of a graph in
the following way:

We define the order oi of a vertex pi as the pair (ℓi , ri ) of number ℓi of edges
starting from pi and the number ri of edges ending at pi , we shall say that o= (ℓ, r)
is smaller than o′ = (ℓ′, r ′) and note o<o′ if and only if ℓ+r<ℓ′+r ′ or ℓ+r =ℓ′+r ′

and ℓ < ℓ′.
We define then the order o(1) of a graph 1 as o(1) = (o1, . . . , on) if 1 has

n vertices. The order o(δ) of a linear combination δ =
∑

c11 of graphs is the
maximum of o(1) for c1 6= 0 for the lexicographic ordering. We define the symbol
of δ by

symb δ =
∑

o(1)=o(δ)

c1C1.

Case 1 : |1| = 0. There is only one graph, disconnected and symmetric: the graph
11 ×11 ×11. It is not a cocycle since

∂(11 ×11 ×11)= S
(
(1+

2 +1−
2 )×11 ×11

)
6= 0.

Case 2 : |1| = 1. There is, up to the ordering of vertices, only one symmetrized,
disconnected graph: δ = S(1+

2 ×11). This graph is a coboundary:

∂(11 ×11)= 1
3 S

(
(1+

2 +1−
2 )×11

)
= 2

3δ.

Case 3 : |1| = 2. There is, up to the ordering of vertices, a disconnected graph
12,2 × 11 and three connected graphs, listed below. (We choose the ordering
of vertices that maximizes the order, and for a given order maximizes, for the
lexicographic ordering, the set E(1) of edges of graphs 1.)

13,2,1 with E(13,2,1)= { −→
p1 p2,

−→
p1 p3},

13,2,2 with E(13,2,2)= { −→
p2 p1,

−→
p1 p3},

13,2,3 with E(13,2,3)= { −→
p2 p1,

−→
p3 p1}.

After symmetrization, we get S(12,2 ×11)= 0, S(13,2,1))= S(13,2,3)= 0 and

symb S(13,2,2)= 1
613,2,2, o(S(13,2,2))=

(
(1, 1), (1, 0), (0, 1)

)
.

When we compute ∂(S(D)), we have to consider the blow-up of each vertex of
each graph in S(1). If the vertex p has order o = (ℓ, r), we get a few graphs with
two vertices p′ and p” at the place of p; these vertices have order o′ = (ℓ′, r ′),
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o” = (ℓ”, r”), with conditions

ℓ′ + r ′ ≥ 2, ℓ′′ + r ′′ ≥ 2, ℓ′ + ℓ′′ = ℓ+ 1, r ′ + r ′′ = r + 1.

Then we look for o(∂1). If r > 0, the maximal possible order among those (o′, o”)
is

(
(ℓ+ 1, r − 1), (0, 2)

)
; if r = 0, it is

(
(ℓ, r), (1, 1)

)
=

(
(ℓ, 0), (1, 1)

)
.

Thus o(∂(S(D3,2,2)))≤
(
(2, 0), (0, 2), (1, 0), (0, 1)

)
; more precisely,

symb ∂(S(13,2,2))= 1
61

′, E(1′)= { −→
p1 p2,

−→
p1 p4,

−→
p3 p2},

and, since there is only one graph in the symbol,

o(∂(S(13,2,2)))=
(
(2, 0), (0, 2), (1, 0), (0, 1)

)
.

No vector in this case is a cocycle; ∂ is an one-to-one mapping.

Case 4: |1| = 3. From now on, all our graphs are connected. Repeating the
argument of the preceding case, we get the following results:

They are, up to a permutation of vertices, four graphs:

13,3,1 with E(13,3,1)= { −→
p1 p2,

−→
p1 p3,

−→
p2 p1},

13,3,2 with E(13,3,2)= { −→
p1 p2,

−→
p2 p1,

−→
p3 p1},

13,3,3 with E(13,3,3)= { −→
p1 p2,

−→
p1 p3,

−→
p2 p3},

13,3,4 with E(13,3,4)= { −→
p1 p2,

−→
p2 p3,

−→
p3 p1}.

Their symmetrizations do not vanish:

o(S(13,3,1))=
(
(2, 1), (1, 1), (0, 1)

)
,

o(∂(S(13,3,1)))=
(
(3, 0), (1, 1), (0, 2), (0, 1)

)
,

o(S(13,3,2))=
(
(1, 2), (1, 1), (1, 0)

)
,

o(∂(S(13,3,2)))=
(
(2, 1), (1, 1), (0, 2), (0, 1)

)
,

o(S(13,3,3))=
(
(2, 0), (1, 1), (0, 2)

)
,

o(∂(S(13,3,3)))=
(
(2, 0), (2, 0), (0, 2), (0, 2)

)
,

o(S(13,3,4))=
(
(1, 1), (1, 1), (1, 1)

)
,

o(∂(S(13,3,4)))=
(
(2, 0), (1, 1), (1, 1), (0, 2)

)
.

Then ∂ is still a one-to-one mapping on that space of graphs.

Case 5: |1| = 4. They are, up to a permutation of vertices, four graphs:
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13,4,1 with E(13,4,1)= { −→
p1 p2,

−→
p1 p3,

−→
p2 p1,

−→
p3 p1},

13,4,2 with E(13,4,2)= { −→
p1 p2,

−→
p1 p3,

−→
p2 p1,

−→
p2 p3},

13,4,3 with E(13,4,3)= { −→
p1 p2,

−→
p1 p3,

−→
p2 p1,

−→
p3 p2},

13,4,4 with E(13,4,4)= { −→
p1 p2,

−→
p2 p1,

−→
p3 p1,

−→
p3 p2}.

Their symmetrizations do not vanish:

o(S(13,4,1))=
(
(2, 2), (1, 1), (1, 1)

)
,

o(∂(S(13,4,1)))=
(
(3, 1), (1, 1), (1, 1), (0, 2)

)
,

o(S(13,4,2))=
(
(2, 1), (2, 1), (0, 2)

)
,

o(∂(S(13,4,2)))=
(
(3, 0), (2, 1), (0, 2), (0, 2)

)
,

o(S(13,4,3))=
(
(2, 1), (1, 2), (1, 1)

)
,

o(∂(S(13,4,3)))=
(
(3, 0), (1, 2), (1, 1), (0, 2)

)
,

o(S(13,4,4))=
(
(1, 2), (1, 2), (2, 0)

)
,

o(∂(S(13,4,4)))=
(
(2, 1), (1, 2), (2, 0), (0, 2)

)
.

Then ∂ is still a one-to-one mapping on that space of graphs.

Case 6: |1| = 5. Up to a permutation of vertices, this space contains only one
graph:

13,5,1 with E(13,5,1)= { −→
p1 p2,

−→
p1 p3,

−→
p2 p1,

−→
p2 p3,

−→
p3 p1}.

Its symmetrization does not vanish,

o(S(13,5,1))=
(
(2, 2), (2, 1), (1, 2)

)
,

o(∂(S(13,6,1)))=
(
(3, 1), (2, 1), (1, 2), (0, 2)

)
.

Then ∂ is still a one-to-one mapping on that space of graphs.

Case 7: |1| = 6. In this last case, there is only one graph:

13,6,1 with E(13,6,1)= { −→
p1 p2,

−→
p1 p3,

−→
p2 p1,

−→
p2 p3,

−→
p3 p1,

−→
p3 p2}.

But its symmetrization does vanish.

This proves:

Proposition 6.1. The three first spaces H 1, H 2 and H 3 of the Chevalley cohomol-

ogy for graphs vanish.
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7. Canonical cocycles for the linear case

We first recall the construction of the relevant cocycles for the cohomology of the
Lie algebra of vector fields X(Rd) associated to the Lie derivative of smooth func-
tions; see for instance [De Wilde and Lecomte 1983] for an explicit presentation
of this cohomology.

A basis of the Lie algebra
∧inv(

gl(d,R)
)

of multilinear, skewsymmetric, invari-
ant forms on gl(d,R) is given by

ζ ( j1) ∧ · · · ∧ ζ ( jq ) with jk odd and j1 < j2 · · ·< jq < 2d,

where the ζ ( j) are the mappings

ζ ( j)(A1, . . . , A j )= a
(

Tr(A1 . . . A j )
)
.

Then, for each odd n, the linear form θ defined on
∧n

X(Rd) by

θ(ξ1, ξ2, . . . , ξn)= ζ (n)
(
Jac(ξ1), . . . , Jac(ξn)

)

is a cocycle for the coboundary operator associated to the Lie derivative:

dθ(ξ0 . . . . . ξn)=
n∑

i=0

(−1)i Lξi
θ(ξ0 . . . . . ξ̂i . . . . . ξn)

+ 1

2

∑

i 6= j

(−1)i+ jθ
(
[ξi , ξ j ] . ξ0 . . . ξ̂iξ j . . . . ξn

)
.

This cocycle is not a coboundary; see [De Wilde and Lecomte 1983].
Let 9 be an n-cochain on Tpoly(R

d) with values in the space Tpoly(R
d)−1 (that

is, in C∞(Rd)), and let ψ be its restriction to X(Rd). Then the restriction of ∂9 to
X(Rd) is exactly dψ .

For instance, we consider the “wheel without an axis”, the graph1 of this form:

✛
�

�
�✠

❄

✲

❅
❅

❅❘

✻
❅

❅
❅■

�
�

�✒
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Denote by δ its symmetrization, which defines a cochain 9 = Cδ. By construc-
tion, on vector fields ξi , we get

ψ(ξ1 . . . . . ξn)=9(ξ1 . . . . . ξn)= Cd(ξ1 . . . . . ξn)

= 1

n!
∑

σ∈Sn

ε(σ )∂in
ξ

i1
σ(1)∂i1ξ

i2
σ(2) . . . ∂in−1ξ

in

σ(n)

= θ(ξ1 . . . . . ξn).

Thus

C∂δ(ξ0 . . . . . ξn)= ∂Cδ(ξ0 . . . . . ξn)= ∂9(ξ0 . . . . . ξn)

= dθ(ξ0 . . . . . ξn)= 0.

We now restrict ourselves to the space of linear polyvector fields. This is a
subalgebra of Tpoly(R

d) equipped with the Schouten bracket; thus we can restrict
our coboundary operator to cochains defined on this subalgebra. We get a new
operator ∂lin. Our previous computation tells us that the graphs happening in ∂δ
are of the following forms:

✛
�

�
�✠

❄

✲

❅
❅

❅❘

✻
❅

❅
❅■

�
�

�✒

✛
�

�
�✠

❄

✲

❅
❅

❅❘

❅
❅

❅■

❄

�
�

�✒

For linear polyvector fields, only the first case appears. Then B∂lin(δ)(α0 .. . ..αn)

vanishes if one of the α j is not a vector field. And

B∂linδ(ξ0 . . . . . ξn)= C∂δ(ξ0 . . . . . ξn)= 0.

Since the mapping γ 7→ Bγ is one-to-one, ∂linδ = 0.
Now, suppose δ is a coboundary d = ∂linβ. Then β has n −1 vertices and n −1

edges. At each vertex there ends exactly one edge. If there is a vertex p from
which no edge emanates, denote by

−→
p′p the edge ending at p. Since the graphs

in β can be deduced from the graphs ∂linβ only by proper reduction, there is no
reduction at the vertex p, and in ∂linβ there remains a unique edge

−→
p′p . But there

is no such graph in δ, so we can eliminate in β all the graphs with a vertex without
emanating edges (we consider only “nonhanded” graphs). Now from each vertex
of a graph in β, there is exactly one edge starting. As previously, the restriction of
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∂β to the vector fields coincides with ∂linβ, and

dCβ(ξ0 . . . . . ξn)= ∂Cβ(ξ0 . . . . . ξn)= C∂β(ξ0 . . . . . ξn)

= C∂linb(ξ0 . . . . . ξn)= Cδ(ξ0 . . . . . ξn)= θ(ξ0 . . . . . ξn).

This is impossible.

Thus any “wheel without an axis” 1 having an odd number of vertices gives
rise to a canonical true cocycle for ∂lin.

Remark. Suppose we want to build a linear formality F from the space of lin-
ear polyvector fields to the space of multidifferential operators. As we saw in
Section 2, the obstruction to such a construction is a mapping ϕ, of degree 1, with
n ≥ 4 arguments. Such a mapping corresponds to purely aerial graphs with n

vertices and 2n − 3 edges; in the linear case, we should have 2n − 3 ≤ n, which is
impossible. Every linear formality at order n can be extended to a linear formality.

References

[Arnal and Masmoudi 2002] D. Arnal and M. Masmoudi, “Cohomologie de Hochschild des graphes
de Kontsevich”, Bull. Soc. Math. France 130:1 (2002), 49–69. MR 2003k:53122 Zbl 1028.46099

[Arnal et al. 2002] D. Arnal, D. Manchon, and M. Masmoudi, “Choix des signes pour la formalité
de M. Kontsevich”, Pacific J. Math. 203:1 (2002), 23–66. MR 2003k:53123 Zbl 01818958

[De Wilde and Lecomte 1983] M. De Wilde and P. B. A. Lecomte, “Cohomology of the Lie algebra
of smooth vector fields of a manifold, associated to the Lie derivative of smooth forms”, J. Math.

Pures Appl. (9) 62:2 (1983), 197–214. MR 85j:17017 Zbl 0481.58032

[Gammella 2001] A. Gammella, Déformations sur les variétés de Poisson et cohomologies appro-

priées, Ph.D. thesis, Université de Metz, 2001.

[Kontsevich 1997] M. Kontsevich, “Formality conjecture”, pp. 139–156 in Deformation theory and

symplectic geometry (Ascona, 1996), edited by D. Sternheimer et al., Math. Phys. Stud. 20, Kluwer
Acad. Publ., Dordrecht, 1997. MR 98m:58044

[Kontsevich 2003] M. Kontsevich, “Deformation quantization of Poisson manifolds”, Lett. Math.

Phys. 66:3 (2003), 157–216. MR 2062626

[Manchon and Torossian 2003] D. Manchon and C. Torossian, “Cohomologie tangente et cup-
produit pour la quantification de Kontsevich”, Ann. Math. Blaise Pascal 10:1 (2003), 75–106.
MR 2004f:53106 Zbl 1051.53072

Received December 20, 2002. Revised January 10, 2004.

DIDIER ARNAL

INSTITUT DE MATHÉMATIQUES DE BOURGOGNE

UNIVERSITÉ DE BOURGOGNE

U.F.R. SCIENCES ET TECHNIQUES B.P. 47870
F-21078 DIJON CEDEX

FRANCE

arnald@u-bourgogne.fr



CHEVALLEY COHOMOLOGY FOR KONTSEVICH’S GRAPHS 239

ANGELA GAMMELLA

angela.gamella@wanadoo.fr

MOHSEN MASMOUDI

DÉPARTEMENT DE MATHÉMATIQUES

UNIVERSITÉ DE METZ

ILE DU SAULCY 57045
METZ CEDEX 01
FRANCE

masmoudi@poncelet.sciences.univ-metz.fr



PACIFIC JOURNAL OF MATHEMATICS
Vol. 218, No. 2, 2005

LIE ALGEBRAS AND GROWTH IN BRANCH GROUPS

LAURENT BARTHOLDI

We compute the structure of the Lie algebras associated to two examples

of branch groups, and show that one has finite width while the other, the

Gupta–Sidki group, has unbounded width and Lie algebra of Gelfand–

Kirillov dimension log 3/ log(1 +
√

2).

We then draw a general result relating the growth of a branch group,

of its Lie algebra, of its graded group ring, and of a natural homogeneous

space we call parabolic space, namely the quotient of the group by the stabi-

lizer of an infinite ray. The growth of the group is bounded from below by

the growth of its graded group ring, which connects to the growth of the Lie

algebra by a product-sum formula, and the growth of the parabolic space is

bounded from below by the growth of the Lie algebra.

Finally we use this information to explicitly describe the normal sub-

groups of G, the Grigorchuk group. All normal subgroups are character-

istic, and the number bn of normal subgroups of G of index 2n is odd and

satisfies lim sup bn/nlog2 3 = 5log2 3, lim inf bn/nlog2 3 = 2
9
.

1. Introduction

The first purpose of this paper is to describe explicitly the Lie algebra associated
to the Gupta–Sidki group Ŵ̈ [Gupta and Sidki 1983], and show in this way that this
group is not of finite width (Corollary 3.9). We shall describe in Theorem 3.8 the
Lie algebra as a graph, somewhat similar to a Cayley graph, in a formalism close
to that introduced in [Bartholdi and Grigorchuk 2000a].

We shall then consider another group, Ŵ, and show in Corollary 3.14 that al-
though many similarities exist between Ŵ̈ and Ŵ, the Lie algebra of Ŵ does have
finite width.

These results follow from a description of group elements as branch portraits,
exhibiting the relation between the group and its Lie algebra. They lead to the

The author acknowledges support from the Swiss National Fund for Scientific Research and the
Hebrew University of Jerusalem.
MSC2000: 20F14, 20F40, 17B70, 16P90, 20E08.
Keywords: Lie algebra, growth of groups, lower central series.
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notion of infinitely iterated wreath algebras, similar to wreath products of groups
[Bartholdi ≥ 2005].

We shall show in Theorem 4.4 that, in the class of branch groups, the growth of
the homogeneous space G/P (where P is a parabolic subgroup) is larger than the
growth of the Lie algebra L(G). This result parallels a lower bound on the growth
of G by that of its graded group ring ❦G (Proposition 1.10).

Finally, we shall describe all the normal subgroups of the first Grigorchuk group,
using the same formalism as that used to describe the lower central series. We con-
firm the description by Ceccherini et al. [2001] of the low-index normal subgroups
of G. It turns out that all nontrivial normal subgroups are characteristic, and have
finite index a power of 2. Call bn the number of normal subgroups of index 2n

(Finite-index, not necessarily normal subgroups always have index a power of 2;
this follows from G being a 2-torsion group.) Then there are 3k + 2 subgroups of
index 25·2k+1 and 2

9 3k +1 subgroups of index 22k+2; these two values are extreme,
in the sense that bn/nlog2 3 has lower limit 5− log2 3 and upper limit 2

9 . Also, bn is
odd for all n (see Corollaries 5.4 and 5.5).

1.1. Philosophy. One can hardly exaggerate the importance of Lie algebras in the
study of Lie groups. Lie subgroups correspond to subalgebras, normal subgroups
correspond to ideals; simplicity, nilpotence and other properties match perfectly.
This is due to the existence of mutually-inverse functions exp and log between a
group and its algebra, and the Campbell–Hausdorff formula expressing the group
operation in terms of the Lie bracket.

In the context of (discrete) p-groups and Lie algebras of characteristic p, the
correspondence is not so perfect. First, in general, there is no exponential, and the
best one can consider is the degree-1 truncations

exp x = 1 + x + O(x2),

log(1 + x)= x + O(x2);

more terms would introduce denominators that in general are not invertible; and
no reasonable definition of convergence can be imposed on Fp. As a consequence,
the group has to be subjected to a filtration to yield a Lie algebra. Then there is no
perfect bijection between group and Lie-algebra objects.

However, the numerous results obtained in the area show that much can be
gained from consideration of these imperfect algebras. To name a few, the theory
of groups of finite width is closely related to the classification of finite p-groups
(see [Leedham-Green 1994; Shalev and Zelmanov 1992]) and the theory of pro-
p-groups is intimately Lie-algebraic; see [Shalev 1995a], [Shalev 1995b, §8] and
[Klaas et al. 1997] with its bibliography. The solution to Burnside’s problems by
Efim Zelmanov relies also on Lie algebras. The results by Lev Kaloujnine on the
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p-Sylow subgroups of Spn , even if in principle independent, can be restated in
terms of Lie algebras in a very natural way (see Theorem 3.4).

In this paper, I argue that questions of growth, geometry and normal subgroup
structure are illuminated by Lie-algebraic considerations.

1.2. Notation. We shall always write commutators as [g, h] = g−1h−1gh, conju-
gates as gh = h−1gh, and the adjoint operators Ad(g)= [g,−] and ad(x)= [x,−]
on the group and Lie algebra respectively. Sn is the symmetric group on n letters,
and An is the alternate subgroup of Sn . Polynomials and power series are all writ-
ten over the formal variable h̄, as is customary in the theory of quantum algebras.
The Galois field with p elements is written Fp. The cyclic group of order n is
written Cn .

The lower central series of G is {γn(G)}, the lower p-central series is {Pn(G)},
the dimension series is {Gn}, the Lie dimension series is {Ln(G)}, and the derived
series is G(n), and in particular G ′ = [G,G] — the definitions shall be given below.

For H ≤ G, the subgroup of H generated by n-th powers of elements in H is
written ℧n(H), and H×n denotes the direct product of n copies of H , avoiding the
ambiguous H n . The normal closure of H in G is H G .

Finally, ∗ stands for anything — something a speaker would abbreviate as “blah,
blah, blah” in a talk. It is used to mean either that the value is irrelevant to the rest
of the computation, or that it is the only unknown in an equation and therefore does
not warrant a special name.

1.3. N-series. We first recall a classical construction of Magnus [1940], described
for instance in [Lazard 1954] and [Huppert and Blackburn 1982, Chapter VIII].

Definition 1.1. Let G be a group. An N-series is a series {Hn} of normal subgroups
with H1 = G, Hn+1 ≤ Hn and [Hm, Hn] ≤ Hm+n for all m, n ≥ 1. The associated
Lie ring is

L(G)=
∞

⊕

n=1

Ln,

with Ln = Hn/Hn+1 and the bracket operation Ln ⊗ Lm → Lm+n induced by
commutation in G.

For p a prime, an Np-series is an N -series {Hn} such that ℧p(Hn) ≤ Hpn , and
the associated Lie ring is a restricted Lie algebra over Fp:

LFp(G)=
∞

⊕

n=1

Ln,

with the p-mapping Ln → Lpn induced by raising to the power p in Hn .

We recall that L is a restricted Lie algebra (see [Jacobson 1941] or [Strade
and Farnsteiner 1988, Section 2.1]) if it is over a field ❦ of characteristic p, and
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there exists a mapping x 7→ x [p] such that ad x [p] = ad(x)p, (αx)[p] = α px [p] and
(x + y)[p] = x [p] + y[p] +

∑p−1
i=1 si (x, y), where the si are obtained by expanding

ad(x ⊗ h̄ + y ⊗ 1)p−1(a ⊗ 1)=
∑p−1

i=1 si (x, y)⊗ i h̄i−1 in L ⊗ ❦[h̄]. Equivalently:

Proposition 1.2 (Jacobson). Let (ei ) be a basis of L such that, for some yi ∈ L, we
have ad(ei )

p = ad(yi ). Then L is restricted; more precisely, there exists a unique
p-mapping such that e[p]

i = yi .

The standard examples of an N -series are the lower central series, {γn(G)}∞n=1,
given by γ1(G)= G and γn(G)= [G, γn−1(G)], and the lower exponent-p central
series or Frattini series given by P1(G)= G and

Pn(G)= [G, Pn−1(G)] ℧p(Pn−1(G)).

The Frattini series differs from the lower central series in that its successive quo-
tients are all elementary p-groups.

The standard example of an Np-series is the dimension series, also known as
the p-lower central, Zassenhaus [1940], Jennings [1941], Lazard [1954] or Brauer
series, given by G1 = G and Gn =[G,Gn−1] ℧p(G⌈n/p⌉), where ⌈n/p⌉ is the least
integer no less than n/p. It can alternatively be described, by a result of Lazard
[1954], as

Gn =
∏

i ·p j ≥n

℧p j (γi (G)),

or as
Gn = {g ∈ G | g − 1 ∈̟ n},

where ̟ is the augmentation (or fundamental) ideal of the group algebra FpG.
Note that this last definition extends to characteristic 0, giving a graded Lie algebra
LQ(G) over Q. In that case, the subgroup Gn is the isolator of γn(G):

Gn =
√

γn(G)=
{

g ∈ G | 〈g〉 ∩ γn(G) 6= {1}
}

.

A good reference for these results is [Passi 1979, Chapter VIII].
We mention finally for completeness another Np-series, the Lie dimension series

Ln(G)= {g ∈ G | g − 1 ∈̟ (n)},

where ̟ (n) is the n-th Lie power of ̟ ≤ ❦G, given by ̟ (1) =̟ and ̟ (n+1) =
[̟ (n),̟ ] = {xy − yx | x ∈̟ (n), y ∈̟ }. As shown in [Passi and Sehgal 1975],

Ln(G)=
∏

(i−1)·p j ≥n

℧p j (γi (G))

if ❦ is of characteristic p, and

Ln(G)=
√

γn(G)∩ [G,G]

if ❦ is of characteristic 0.
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In the sequel we will only consider the N -series {γn(G)} and {Pn(G)} and the
Np-series {Gn} of dimension subgroups. We reserve the symbols L and LFp for
their respective Lie algebras.

Definition 1.3. Let {Hn} be an N -series for G. The degree of g ∈ G is the maximal
n ∈ N ∪ {∞} such that g belongs to Hn .

Recall that the rank of an abelian group A is the minimal number of elements
that generate A. A series {Hn} has finite width if there is a constant W such that
ℓn := rank[Hn : Hn+1] ≤ W for all n. A group has finite width if its lower central
series has finite width; this definition comes from [Klaas et al. 1997].

Definition 1.4. Let a = {an} and b = {bn} be sequences of real numbers. We write
a - b if there is an integer C > 0 such that an < CbCn+C + C for all n ∈ N, and
write a ∼ b if a - b and b - a.

In the sense of this definition, a group has finite width if and only if {ℓn} ∼ {1}.
Question 1. If the rank of γn(G)/γn+1(G) is bounded, does it follow that the
rank of Gn/Gn+1, Pn(G)/Pn+1(G) or Ln(G)/Ln+1(G) is bounded? How about a
converse?

More generally, say an N -series {Hn} has finite width if rank(Hn/Hn+1) is
bounded over n ∈ N. If G has a finite-width N -series intersecting to {1}, are
all N -series of G of finite width?

I do not know the answer to these natural questions.
The following result is well-known, and shows that sometimes the Lie ring L(G)

is actually a Lie algebra over Fp.

Lemma 1.5. Let G be a group generated by a set S. Let L(G) be the Lie ring
associated to the lower central series.

(1) If S is finite, Ln is a finite-rank Z-module for all n.

(2) If there is a prime p such that all generators s ∈ S have order p, then Ln is
a vector space over Fp for all n. It follows that the Frattini series (for that
prime p) and the lower central series coincide.

Proof. First, L1 is generated by S, the image of S in G/G ′. Since L is generated
by L1, in particular Ln is generated by the finitely many (n−1)-fold products of
elements of S; this proves the first point.

Actually, far fewer generators are required for Ln; in the extremal case when G
is a free group, a basis of Ln is given in terms of “standard monomials” of degree
n. See Section 3.2 or [Hall 1950].

For the second claim, assume more generally that s p ∈ G ′ for all s ∈ S, so that
G/G ′ is an Fp-vector space. We use the identity [x, y]p ≡ [x, y p] mod γ3〈x, y〉,
due to Philip Hall. Let g = [x, y] be a generator of γn(G), with x ∈ G and y ∈
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γn−1(G). Then y p ∈ γn(G) by induction, so g p ∈ γn+1(G) and Ln is an Fp-vector
space. �

Anticipating, we note that the groups Ŵ̈ and Ŵ we shall consider satisfy these
hypotheses for p = 3, and G satisfies them for p = 2.

1.4. Growth of groups and vector spaces. Let G be a group generated by a finite
set S. The length |g| of an element g ∈ G is the minimal number n such that g
can be written as s1 . . . sn with si ∈ S. The growth series of G is the formal power
series

growth(G)=
∑

g∈G

h̄|g| =
∑

n≥0

fn h̄n,

where fn = #{g ∈ G | |g|= n}. The growth function of G is the ∼-equivalence class
of the sequence { fn}. Note that although growth(G) depends on S, this equivalence
class is independent of the choice of S.

Let X be a transitive G-set and x0 ∈ X be a fixed base point. The length |x | of
an element x ∈ X is the minimal length of a g ∈ G moving x0 to x . The growth
series of X is the formal power series

growth(X, x0)=
∑

x∈X

h̄|x | =
∑

n≥0

fn h̄n,

where fn ={x ∈ X | mingx0=x |g|= n}. The growth function of X is the equivalence
class under ∼ of the sequence { fn}. It is again independent of the choice of x0 and
of generators of G.

Let V =
⊕

n≥0 Vn be a graded vector space. The Hilbert–Poincaré series of V
is the formal power series

growth(V )=
∑

n≥0

vn h̄n =
∑

n≥0

dim Vn h̄n.

We return to the dimension series of G. Consider the graded algebra

FpG =
∞

⊕

n=0

̟ n/̟ n+1.

Here a fundamental result connecting LFp(G) and FpG:

Theorem 1.6 [Quillen 1968]. FpG is the restricted enveloping algebra of the Lie
algebra LFp(G) associated to the dimension series.

The Poincaré–Birkhoff–Witt Theorem then gives a basis of FpG consisting of
monomials over a basis of LFp(G), with exponents at most p − 1. Therefore:



LIE ALGEBRAS AND GROWTH IN BRANCH GROUPS 247

Proposition 1.7 [Jennings 1941]. Let G be a group, and let
∑

n≥1 ℓn h̄n be the
Hilbert–Poincaré series of LFp(G). Then

growth(FpG)=
∞
∏

n=1

(

1 − h̄ pn

1 − h̄n

)ℓn

.

Approximations from analytical number theory [Li 1996] and complex analysis
then give:

Proposition 1.8 [Bartholdi and Grigorchuk 2000a, Proposition 2.2; Petrogradsky
1999, Theorem 2.1]. Let G be a group and expand the power series

growth(LFp(G))=
∑

n≥1

ℓn h̄n and growth(FpG)=
∑

n≥0

fn h̄n.

(1) { fn} grows exponentially if and only if {ℓn} does, and

lim sup
n→∞

ln ℓn

n
= lim sup

n→∞

ln fn

n
.

(2) If ℓn ∼ nd , then fn ∼ en(d+1)/(d+2)
.

The Lie algebras we consider have polynomial growth, i.e., finite Gelfand–
Kirillov dimension. This notion is more commonly studied for associative rings
[Gelfand and Kirillov 1966]:

Definition 1.9. The Gelfand–Kirillov dimension of a graded Lie algebra L=
⊕

Ln

is

dimG K (L)= lim sup
n→∞

log (dim L1 + · · · + dim Ln)

log n
.

If ℓn ∼ nd , then L has Gelfand–Kirillov dimension d+1. However, the converse
is not true, since the sequence log(ℓ1 + · · · + ℓn)/ log n need not converge. If the
group G has finite width, its algebra L(G) has Gelfand–Kirillov dimension 1.

Note also that if A is any algebra generated in degree 1, then dimG K (A) = 0
or dimG K (A) ≥ 1. Furthermore, George Bergman [1978] has shown that if A is
associative, then dimG K (A)= 1 or dimG K (A)≥ 2; see [Krause and Lenagan 1985,
Theorem 2.5] for a proof. Victor Petrogradsky [1997] showed that there exist Lie
algebras of any Gelfand–Kirillov dimension ≥ 1.

Finally, we recall a connection between the growth of G and that of FpG. We
use the notation

∑

fn h̄n ≥
∑

gn h̄n to mean fn ≥ gn for all n ∈ N.

Proposition 1.10 [Grigorchuk 1989, Lemma 8]. Let G be a group generated by a
finite set S. Then

growth(G)

1 − h̄
≥ growth(❦G).
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2. Branch groups

Branch groups were introduced by Rostislav Grigorchuk [2000], where he devel-
oped a general theory of groups acting on rooted trees. We shall content ourselves
with a restricted definition; recall that G ≀ Sd is the wreath product G×d

⋊ Sd ,
the action of Sd on the direct product induced by the permutation action of Sd on
6 = {1, . . . , d}.

Definition 2.1. A group G is a regular branch group if for some d ∈ N there is

(1) an embedding ψ : G →֒ G ≀Sd such that the image of ψ(G) in Sd acts transi-
tively on 6. Define for n ∈ N the subgroups StabG(n) of G by StabG(0)= G,
and inductively

StabG(n)= ψ−1(StabG(n − 1)×d)

where StabG(n −1)×d is seen as a subgroup of G ≀Sd . One requires then that
⋂

n∈N
StabG(n)= {1};

(2) a subgroup K ≤ G of finite index with ψ(K )≤ K ×d .

To avoid ambiguous bracket notations, we write the decomposition map

ψ(g)= ≪g1, . . . , gd≫π,

with π expressed as a permutation in disjoint cycle notation.
We shall abbreviate “regular branch group” to “branch group”, since all branch

groups in this paper are actually regular branch. We shall usually omit d from the
description, and say that “G branches over K ”.

Lemma 2.2. If G is a branch group, then G branches over a subgroup K of G
such that K is normal in G, and K ×d is normal in ψ(K ).

Proof. Let G be branch over L of finite index, and set K =
⋂

g∈G Lg, the core of
L . Then obviously L ⊳ G; and since (L×d)ψg ≤ ψ(K g) for all g ∈ G, we have,
writing ψ(g)= ≪g1, . . . , gd≫π ,

K ×d ≤
⋂

g∈G

(Lg1π × · · · × Lgdπ )=
⋂

g∈G

(L×d)ψg ≤ K ,

and (K ×d)ψ(g) = K g1π × · · · × K gdπ = K ×d , so K ×d ⊳ψ(G). �

Let G be a branch group, with d , 6 and K as in the definition. The rooted tree
on 6 is the free monoid 6∗, with root the empty sequence ∅; it is a metric space
for the distance

dist(σ, τ )= |σ | + |τ | − 2 max {n ∈ N | σn = τn}.
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The natural action of G is an action on 6∗ defined inductively by

(2–1) (σ1σ2 . . . σn)
g = (σ1)

π (σ2 . . . σn)
gσ1 for σ1, . . . , σn ∈6,

where ψ(g) = ≪g1, . . . , gd≫π . By the condition
⋂

StabG(n) = {1}, this action
is faithful and G is residually finite. Note that StabG(n) is the fixator of 6n in this
action.

Note that the action (2–1) gives a geometrical meaning to the branch structure of
G that closely parallels the structure of the tree 6∗. Indeed one may consider G as
a group acting on the tree6∗; then the choice of a vertex σ of6∗ and of a subgroup
J of K determines a subgroup Lσ of K , namely the group of tree automorphisms
of 6∗ that fix 6∗ \ σ6∗ and whose action on σ6∗ is that of an element of J on
6∗. The choice of a subgroup Jσ for all σ ∈ 6∗ determines a subgroup M of K ,
namely the closure of the Lσ associated to σ and Jσ when σ ranges over 6∗.

This geometrical vision can also give pictorial descriptions of group elements:

Definition 2.3. Suppose G branches over K ; let T be a transversal of K in G, and
let U be a transversal of ψ−1(K ×d) in K . The branch portrait of an element g ∈ G
is a labeling of 6∗, as follows: the root vertex ∅ is labeled by an element of T U ,
and all other vertices are labeled by an element of U .

Given g ∈ G, write first g = kt with k ∈ K and t ∈ T , then write

k = ψ−1(k1, . . . , kd)u∅,

and inductively kσ = ψ−1(kσ1, . . . , kσd)uσ for all σ ∈ 6∗. Label the root vertex
by tu∅ and then label each vertex σ 6= ∅ by uσ .

There are uncountably many branch portraits, even for a countable branch group.
We therefore introduce the following notion:

Definition 2.4. Let G be a branch group. Its completion G is the inverse limit

proj lim
n→∞

G/ StabG(n).

This is also the closure in Aut6∗ of G seen through its natural action (2–1).

Since G is closed in Aut6∗ it is a profinite group, and thus is compact, and
totally disconnected. If G has the congruence subgroup property [Grigorchuk
2000], meaning that all finite-index subgroups of G contain StabG(n) for some
n, then G is also the profinite completion of G.

Lemma 2.5. Let G be a branch group and G its completion. Then Definition 2.3
yields a bijection between the set of branch portraits and G.

We shall often simplify notation by omitting ψ from subgroup descriptions, as
in statements like StabG(n)≤ StabG(n − 1)×d .
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2.1. The Grigorchuk group G. We shall consider more carefully three examples
of branch groups in the sequel. The first example of a branch group was considered
by Grigorchuk in 1980, and has appeared innumerable times in recent mathemat-
ics — the entire chapter VIII of [de la Harpe 2000] is devoted to it. It is defined as
follows: it is a 4-generated group G (with generators a, b, c, d), its map ψ is given
by

ψ : G →֒ (G × G)⋊ S2,

a 7→ ≪1, 1≫(1, 2), b 7→ ≪a, c≫, c 7→ ≪a, d≫, 7→ ≪1, b≫,

and its subgroup K is the normal closure of [a, b], of index 16. Grigorchuk [1980;
1983] proved that G is an intermediate-growth, infinite-torsion group. Its lower
central series was computed in [Bartholdi and Grigorchuk 2000a], along with a
description of its Lie algebra. We shall reproduce that result using a more general
method.

2.2. The Gupta–Sidki group Ŵ̈. This 2-generated group was introduced by Narain
Gupta and Said Sidki in [Gupta and Sidki 1983], where they proved it to be an infi-
nite torsion group. Later Sidki obtained a complete description of its automorphism
group [Sidki 1987], along with information on its subgroups. It is a branch group
with generators a, t , its map ψ is given by

ψ : Ŵ̈ →֒ (Ŵ̈× Ŵ̈× Ŵ̈)⋊ A3,

a 7→ ≪1, 1, 1≫(1, 2, 3), t 7→ ≪a, a−1, t≫,

and its subgroup K is Ŵ̈′, of index 9.
It was recently proved in [Bartholdi 2000] that Ŵ̈ has intermediate growth, which

increases its analogy with the Grigorchuk group mentioned above. An outstanding
question was whether Ŵ̈ has finite width. Ana Cristina Vieira [1998; 1999] com-
puted the first 9 terms of the lower central series and showed that there are all of
rank at most 2. We shall shortly see, however, that Ŵ̈ has unbounded width.

The following lemma is straightforward:

Lemma 2.6. Ŵ̈′/(Ŵ̈′ × Ŵ̈′ × Ŵ̈′) is isomorphic to C3 × C3, generated by c = [a, t]
and u = [a, c].

Note finally that the notations in [Sidki 1987] are slightly different: his x is our
a, and his y is our t . In [Vieira 1998] her y[1] is our u, and more generally her g1

is our ✵(g) and her g[1] is our ✷(g). In [Bartholdi and Grigorchuk 2002], where a
great deal of information on Ŵ̈ is gathered, the group is called Ŵ.

2.3. The Fabrykowski–Gupta group Ŵ. This other group is at first sight close to
Ŵ̈: it is also a branch group, generated by two elements a, t . Its map ψ is given
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by

ψ : Ŵ →֒ (Ŵ×Ŵ×Ŵ)⋊ A3,

a 7→ ≪1, 1, 1≫(1, 2, 3), t 7→ ≪a, 1, t≫,

and its subgroup K is Ŵ′, of index 9.
This group was first considered in [Fabrykowski and Gupta 1991], where its

growth was studied. In [Bartholdi and Grigorchuk 2002] it was proved that it is a
branch group, and that its subgroup L = 〈at, ta〉 has index 3 and is torsion-free.
In [Bartholdi 2000] another proof of the subexponential growth of Ŵ is given.

3. Lie algebras

We now describe the Lie algebras associated to the groups G, Ŵ̈ and Ŵ defined in
the previous section. We start by considering a group G, and make the following
hypotheses on G, which will be satisfied by G, Ŵ̈ and Ŵ:

(1) G is finitely generated by a set S;

(2) there is a prime p such that all s ∈ S have order p.

Under these conditions, it follows from Lemma 1.5 that γn(G)/γn+1(G) is a finite-
dimensional vector space over Fp, and therefore that L(G) is a Lie algebra over Fp

that is finite at each dimension. Clearly the same property holds for the restricted
algebra LFp(G).

We propose the following notation for such algebras:

Definition 3.1. Let
L =

⊕

n≥1

Ln

be a graded Lie algebra over Fp, and choose a basis Bn of Ln for all n ≥ 1. For
x ∈ Ln and b ∈ Bn denote by 〈x |b〉 the b-coefficient of x in the basis Bn .

The Lie graph associated to these choices is an abstract graph. Its vertex set is
⋃

n≥1 Bn , and each vertex x ∈ Bn has degree n. Its edges are labeled as αx , with
x ∈ B1 and α ∈ Fp, and may only connect a vertex of degree n to a vertex of degree
n + 1. For all x ∈ B1, y ∈ Bn and z ∈ Bn+1, there is an edge labeled 〈[x, y]|z〉x
from y to z.

If L is a restricted algebra of Fp, there are additional edges, labeled α · p with
α ∈ Fp, from vertices of degree n to vertices of degree pn. For all x ∈ Bn and
y ∈ Bpn , there is an edge labeled 〈x p|y〉 · p from x to y.

Edges labeled 0x are naturally omitted. Edges labeled 1x are simply written x .

There is some analogy between this definition and that of a Cayley graph —
this topic will be developed in Section 4. The generators (in the Cayley sense) are
simply chosen to be the ad(x) with x running through B1, a basis of G/[G,G].
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A presentation for the L can also be read off its Lie graph. For every n, consider
the set W of all words of length n over B1. For a path π in the Lie graph, define its
weight as the product of the labels on its edges. Each w ∈ W defines an element
of Ln , by summing the weights of all paths labeled w in the Lie graph. Let Rn

be the set of all linear dependence relations among these words. Then L admits a
presentation by generators and relations as

L = 〈B1 | R1,R2, . . . 〉.

We give a few examples of Lie graphs. First, if G is abelian, its Lie graph has
rank(G) vertices of weight 1 and no other vertices. If G is the quaternion group
Q8 = {±1,±i,± j,±k}, its Lie ring is an algebra over F2, and the Lie graph of
L(Q8)= LF2(Q8) is

i
j

  A
AA

AA
AA

A

−1

j

i
??~~~~~~~~

3.1. The infinite dihedral group. As another example, let G be the infinite dihe-
dral group D∞ = 〈a, b | a2, b2〉. Then γn(G)=

〈

(ab)2
n−1 〉

for all n ≥ 2, and its Lie
ring is again a Lie algebra over F2, with Lie graph

a
b

!!D
DD

DD
DD

D

(ab)2
a,b // (ab)4

a,b // (ab)8
a,b //

b

a

=={{{{{{{{

The lower 2-central series of G is different: G2n = G2n+1 = · · · = G2n+1−1 =
γn+1(G), so the Lie graph of LF2(G) is

a
b

!!D
DD

DD
DD

D

(ab)2
·2 // (ab)4

·2 // (ab)8
·2 //

b

a

=={{{{{{{{
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3.2. The free group. Consider, as an example producing exponential growth, the
free group Fr and its Lie algebra L; this is a free Lie algebra of rank r . Using
Theorem 1.6 and Möbius inversion, we get

dimQ

(

γn(Fr )/γn+1(Fr )⊗ Q
)

= #{u ∈ M | deg u = n} =
1

n

∑

d|n
µn/drd - rn,

where µ is the Möbius function; therefore growth(QFr )≤ 1/(1 − r h̄). Recall that

growth(Fr )=
1 + h̄

1 − (2r − 1)h̄
,

so the group growth rate can be strictly larger than the algebra growth rate in
Proposition 1.10.

It is an altogether different story to find explicitly a basis of L. Pick a basis X
of Fr ; its image in L1

∼= Zr is a generating set of L, still written X . A Hall set is
a linearly ordered set of nonassociative words M with X ⊂ M and

[u, v] ∈ M if and only if u < v ∈ M and (u ∈ X or u = [p, q], q ≥ v);

furthermore one requires [u, v]<v. Note that an order on the nonassociative words
uniquely defines a corresponding Hall set.

There are many examples of Hall sets, and for each Hall set M the set {u ∈ M |
|u| = r} is a basis of the abelian group γn(Fr )/γn+1(Fr ). For example, the Hall
basis [Hall 1950] is the linearly ordered set M having as maximal elements X in an
arbitrary order, and such that u < v in M whenever deg u > deg v. It contains then
all [x, y] with x, y ∈ X and x > y; then all

[

[u, v], w
]

whenever [u, v] < w ≤ v

and u, v, w ∈ M.
Another basis, more computationally efficient (it is a Lie algebra equivalent

of Gröbner bases), is the Lyndon–Shirshov basis [Širšov 1962; Lothaire 1990;
Reutenauer 1993]. It is defined as follows: order X arbitrarily; on the free monoid
X∗ put the lexicographical ordering: u ≤ uv, and uxv < uyw for all u, v, w ∈ X∗

and x < y ∈ X . A nonempty word w ∈ X∗ is a Lyndon–Shirshov word if for any
nontrivial factorization w = uv we have w < v. If furthermore we insist that v
be <-minimal, then u and v are again Lyndon–Shirshov words. For a Lyndon–
Shirshov word w, define its bracketing B(w) inductively as follows: if w ∈ X then
B(w)=w. If w = uv with v minimal then B(w)= [B(u), B(v)]. Then {B(w)} is
a basis of L.

From our perspective, an optimal basis B would consist only of left-ordered
commutators, and be prefix-closed, i.e., be such that [u, x] ∈ B implies u ∈ B; then
indeed the Lie algebra structure of an arbitrary Lie algebra would be determined
ad(u) for all u ∈ B, and therefore would be a tree in the case of a free Lie algebra.
Kukin announced in [Kukin 1978] a construction of such bases, but his proof does
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not appear to be altogether complete [Blessenohl and Laue 1993], and the problem
of construction of a left-ordered basis seems to be considered open.

3.3. The lamplighter group. As another example, consider the lamplighter group
G = C2 ≀ Z, with a generating C2 and t generating Z. Define the elements

an =
n−1
∏

i=0

a(−1)i(n−1
i )t

i = at−1a−(n−1)t−1 . . . a(−1)n−1
tn−1

of G. The Lie algebra LF2(G) is as follows:

a
t // a2

t // a3
t // a4

t // a5
t // a6

t // a7
t // a8

t // a9
t //

t

a

??~~~~~~~~
·2

// t2

a

>>||||||||

·2
// t4

a

>>||||||||

·2
// t8

a

>>||||||||

·2
//

Note that LF2(G) has bounded width, while G has exponential growth! This shows
that in Proposition 1.10 the group growth rate can be exponential while the algebra
growth rate is polynomial.

3.4. The Nottingham group. As a final example, we give the Lie graph of the
Nottingham group’s Lie algebra [Jennings 1954; Camina 2000]. Recall that for
odd prime p the Nottingham group J (p) is the group of all formal power series

h̄ +
∑

i>1

ai h̄
i ∈ Fp[[h̄]],

with composition (i.e., substitution) as binary operation. The lower central series
is given by

Jn = {h̄ +
∑

i>
⌈

np−1
p−1

⌉

ai h̄
i },

and a basis of L is { fi = h̄(1+ h̄i )}i≥1, where fi has degree
⌊

((p−1)i +1)/p
⌋

. As
a basis of J1/J2, we take B1 = {x = h̄ + h̄2 + h̄3, y = h̄ + h̄3}. The commutations
are given by

[ fi , x] = (i − 1) fi+1, [ fi , y] =











−2 fi+2 if i ≡ 0 mod p

− fi+2 if i ≡ 1 mod p

0 otherwise,

.

This gives a Lie graph with a diamond structure [Caranti 1997]:
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1 2 3 · · · p − 2 p − 1 p p + 1 p + 2

x

−y

��<
<<

<<
<<

< f p+1

−y

""D
DD

DD
DD

D

f3
2x // f4 // f p−1

−2x // f p

−x
<<zzzzzzzz

−2y ""D
DD

DD
DD

D f p+3
2x // f p+4 //

y

x

AA��������
f p+2

x

<<zzzzzzzz

3.5. The tree automorphism group’s pro- p-Sylow ❆✉t p(6
∗). We start by con-

sidering a typical example of branch group. Let p be prime; write p′ = p − 1
for notational simplicity. Let 6 be the p-letter alphabet {1, . . . , p}, and let xn , for
n ∈ N, be the p-cycle permuting the first p branches at level n + 1 in the tree 6∗.
Therefore x0 acts just below the root vertex, and xn+1 = ≪xn, 1, . . . , 1≫ for all n.

For all n ∈N we define Gn =Autp(6
∗) as the group generated by {x0, . . . , xn−1},

and G =〈x0, x1, . . . 〉. Clearly G = inj lim Gn , while its closure is G = proj lim Gn .
Note that Gn is a p-Sylow of Spn , and G is a pro-p-Sylow of Aut(6∗).

Lemma 3.2. G = G ≀ C p; therefore G is a regular branch group over itself .

Proof. The subgroup 〈x1, x2, . . . 〉 of G is isomorphic to G through xi 7→ xi−1, and
its p conjugates under powers of x0 commute, since they act on disjoint subtrees.

�

Lev Kaloujnine [1948] described the lower central series of Gn , using his notion
of a tableau. Our purpose here shall be to describe the Lie algebra of Gn (and
therefore G and G) using our more geometric approach. Let us just mention that
in Kaloujnine’s theory of tableaux his polynomials xe1

1 . . . x
en
n correspond to our

❡1 . . . ❡n(x0).

Lemma 3.3. For u, v ∈ G and X, Y ∈ {✵, . . . ,♣′}n we have

[X (u), Y (v)] ≡ (X1 + Y1 −♣′) . . . (Xn + Yn −♣′)([u, v])
∏n

i=1(−1)p′−Yi (
Xi

p′−Yi
)
,

modulo terms in
[

[X (u), Y (v)],G
]

.

Proof. The proof follows by induction, and we may suppose n = 1 without loss of
generality. Multiplying by terms in

[

[X (u), Y (v)],G
]

, we may assume Y (v) by
some element acting only on the last Y1 subtrees below the root vertex. Then

[X (u), Y (v)] ≡ [≪u, . . . , u(−1)X1
, 1, . . . , 1≫,≪1, . . . , 1, v, . . . , v(−1)Y1 ≫]

= ≪[u, 1], . . . , [u(−1)p′−Y1( p
p′−Y1

)
, v], . . . ,
[u(−1)X1

, v
(−1)X1( p

X1
)], . . . , [1, v]≫

≡ (X + Y −♣′)([u, v])(−1)p′−Y1( p
p′−Y1

)
. �
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Theorem 3.4. Consider the following Lie graph: its vertices are the symbols X for
all words X ∈ {✵, . . . ,♣′}∗, including the empty word λ. Their degrees are given
by

deg X1 . . . Xn = 1 +
n

∑

i=1

X i pi−1.

For all m > n ≥ 0 and all choices of X i , there is an arrow labeled ✵n from

♣′n Xn+1 . . . Xm

to

✵n(Xn+1 + ✶)Xn+2 . . . Xm,

and an arrow labeled ✵m from ♣′n to ✵n✶✵m−n−1.
Then the resulting graph is the Lie graph of L(G) and of LFp(G).
The subgraph spanned by all words of length up to n − 1 is the Lie graph of

L(Gn) and of LFp(Gn).

Proof. We interpret X in the Lie graph as X (x0) in G. The generator xn is then
✵n(x0). By Lemma 3.3, the adjoint operators ad(xn) correspond to the arrows

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

✵n

�
�
�
�

λ //
✶✵n−1

�
�
�
�

λ // ♣′✵n−1

�
�
�

✵ //
✵✶✵n−2

�
�
�
�

λ //
✶✶✵n−2

�
�
�
�

λ // ♣′✶✵n−2

�
�
�

λ //
♣′2✵n−2

�
�
�

✵
2
//
✵2✶✵n−3

�
�
�
�
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Figure 1. The beginning of the Lie graph of L(G) for G the p-
Sylow of Aut(6∗).
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labeled ✵n . The arrows connect elements whose degree differ by 1, so the degree
of the element X (x0) is deg X as claimed.

The power maps g 7→ g p are all trivial on the elements X (x0), so the Lie algebra
and restricted Lie algebra coincide.

The elements X (x0) for |X | ≥ n belong to StabG(n), hence are trivial in Gn . �

3.6. The Grigorchuk group G. We give an explicit description of the Lie algebra
of G, and compute its Hilbert–Poincaré series. These results were obtained in
[Bartholdi and Grigorchuk 2000a], and partly before in [Rozhkov 1996].

Set x = [a, b]. Then G is branch over K = 〈x〉G, and K/(K × K ) is cyclic of
order 4, generated by x .

Extend the generating set of G to a formal alphabet

S =
{

a, b, c, d,
{

b
c

}

,
{ c

d

}

,
{

d
b

}}

.

Define the transformation σ on words in S∗ by

σ(a)= a
{

b
c

}

a, σ (b)= d, σ (c)= b, σ (d)= c,

extended to subsets by

σ
{ x

y
}

=
{

σ x
σ y

}

.

Note that for any fixed g ∈ G, all elements h ∈ StabG(1) such that ψ(h)=≪g, ∗≫
are obtained by picking a letter from each set in σ(g). This motivates the definition
of S.

Theorem 3.5. Consider the following Lie graph: its vertices are the symbols X (x)
and X (x2), for words X ∈ {✵, ✶}∗. Their degrees are given by

deg X1 . . . Xn(x)= 1 +
n

∑

i=1

X i 2
i−1 + 2n,

deg X1 . . . Xn(x
2)= 1 +

n
∑

i=1

X i 2
i−1 + 2n+1.

There are four additional vertices: a, b, d of degree 1, and [a, d] of degree 2.
Define the arrows as shown below, where an arrow labeled

{ x
y
}

or x,y stands
for two arrows, labeled x and y, and the arrows labeled c are there to expose the
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symmetry of the graph (indeed c = bd is not in our chosen basis of G/[G,G]):

a
b,c // x a

c,d // [a, d]

b
a // x d

a // [a, d]

x
a,b,c // x2 x

c,d // ✵(x)

[a, d] b,c // ✵(x) ✵∗ a // ✶∗

✶n(x)
σ n

{ c
d

}

// ✵n+1(x) ✶n(x)
σ n

{

b
d

}

// ✵n(x2)

✶n✵∗
σ n

{ c
d

}

// ✵n✶∗ if n ≥ 1.

Then the resulting graph is the Lie graph of L(G). A slight modification gives
the Lie graph of LF2(G): the degree of X1 . . . Xn(x2) is then 2 deg X1 . . . Xn(x);
and the 2-mappings are given by

X (x)
·2−→ X (x2),

✶n(x2)
·2−→ ✶n+1(x2).

The subgraph spanned by a, t , X1 . . . X i (x) for i ≤ n − 2 and X1 . . . X i (x2) for
i ≤ n − 4 is the Lie graph associated to the finite quotient G/ StabG(n).

Figure 2 describes as Lie graphs the top of the Lie algebras associated to G.
Note the infinite path, labeled by

{ c
d

}

aσ(
{ c

d

}

a)σ 2(
{ c

d

}

a) . . .

=
{ c

d

}

a
{

b
c

}

a
{

b
c

}

a
{

b
d

}

a
{

b
c

}

a
{

b
d

}

a
{

b
c

}

a
{ c

d

}

a
{

b
c

}

a . . . ;

it is the same as the labeling of the parabolic space of G — see Section 4 and
[Bartholdi and Grigorchuk 2002].

The proof requires the computation, given a term N of a central series and a
generator s ∈ {a, b, c, d}, of [N , x] modulo [N ,G,G]. We do slightly better in the
following lemma — this will be useful in Section 5, where we describe all normal
subgroups of G. For that purpose we introduce a symbol ✵

✶
(x)= ✵(x)✶(x)−1. We

then have

✵(x)= ≪x, 1≫, ✶(x)= ≪x, x−1≫,
✵

✶
(x)= ≪1, x≫.
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Figure 2. The beginning of the Lie graphs of LF2(G) (left) and
L(G) (right).
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Lemma 3.6. Assume N is a normal subgroup containing the left-hand operand of
the commutators below. Then modulo [N ,G]′ we have

[✵X, a] = ✶X, [✶X, a] = ✶X2,

[✵X, b] = ✵[X, a], [✶X, b] = ✵[X, a] + ✵

✶
[X, c],

[✵X, c] = ✵[X, a], [✶X, c] = ✵[X, a] + ✵

✶
[X, d],

[✵X, d] = 1, [✶X, d] = ✵

✶
[X, b],

[x, a] = x2, [x2, a] = x4 = ✶(x2 + ✶x),

[x, b] = x2, [x2, b] = ✶(x2 + ✶x),

[x, c] = ✵(x)+ x2, [x2, c] = ✵(x2 + ✵x)+ ✶(x2 + ✶x),

[x, d] = ✵(x), [x2, d] = ✵(x2 + ✵x).

Proof. Direct computation, using the decompositions ψ(b) = (a, c) = ✵(a) · ✵
✶
(c)

etc. and linearizing. �

Proof of Theorem 3.5. The proof proceeds by induction on length of words, or,
what amounts to the same, on depth in the lower central series.

First, the assertion is checked “manually” up to degree 3. The details of the
computations are the same as in [Bartholdi and Grigorchuk 2000a].

We claim that for all words X, Y with deg Y (x) > deg X (x) we have Y (x) ∈
〈X (x)〉G, and similarly Y (x2) ∈ 〈X (x2)〉G. The claim is verified by induction on
deg X .

We then claim that for any nonempty word X , either ad(a)X (∗)= 0 (if X starts
with ✶) or ad(v)X (∗)= 0 for v ∈ {b, c, d} (if X starts with ✵). Again this holds by
induction.

We then prove that the arrows are as described above; this follows from Lemma
3.6. For instance,

ad(σ n { c
d

}

)✶n✵∗ =















(

ad(σ n
{

d
b

}

)✶n−1✵∗, ad(
{ a

1

}

)✶n−1✵∗
)

= ✵ ad(σ n−1
{ c

d

}

)✶n−1✵∗ = ✵n✶∗ if n ≥ 2,
(

ad(
{

b
c

}

)✵∗, ad(a)✵∗
)

= ✵✶∗ if n = 1.

Finally we check that the degrees of all basis elements are as claimed. For that
purpose, we first check that the degree of an arrow’s destination is always one more
than the degree of its source. Then fix a word X (∗) and consider the largest n such
that X (∗) belongs to γn(G). There is an expression of X (∗) as a product of n-place
commutators on elements of G \ [G,G], and therefore in the Lie graph there is a
family of paths starting at some element of B1 and following n −1 arrows to reach
X (∗). This implies that the degree of X (∗) is n, as required.
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The modification giving the Lie graph of LF2(G) is justified by the fact that
in L(G) we always have deg X (x2) ≤ 2 deg X (x), so the element X (x2) appears
always last as the image of X (x) through the square map. The degrees are modified
accordingly. Now X (x2)= X✶(x2), and 2 deg X✶(x) ≥ 4 deg X (x), with equality
only when X = ✶n . This gives an additional square map from ✶n(x2) to ✶n+1(x2),
and requires no adjustment of the degrees. �

Corollary 3.7. Define the polynomials

Q2 = −1 − h̄,

Q3 = h̄ + h̄2 + h̄3,

Qn(h̄)= (1 + h̄)Qn−1(h̄
2)+ h̄ + h̄2 for n ≥ 4.

Then Qn is a polynomial of degree 2n−1 − 1, and the first 2n−3 − 1 coefficients of
Qn and Qn+1 coincide. The termwise limit Q∞ = limn→∞ Qn therefore exists.

The Hilbert–Poincaré series of L(G/ StabG(n)) is 3h̄ + h̄2 + h̄Qn , and the
Hilbert–Poincaré series of L(G) is 3h̄ + h̄2 + h̄Q∞.

The Hilbert–Poincaré series of LF2(G) is 3 + (2h̄ + h̄2)/(1 − h̄2).
As a consequence, G/ StabG(n) is nilpotent of class 2n−1, and G has finite

width.

Proof. Consider the sequence of coefficients of Qn . They are, in condensed form,

1, 220
, 120

, 221
, 121

, . . . , 2n−4, 1n−4, 1n−2.

The i-th coefficient is 2 if there are X (x) and Y (x2) of degree i in G/ StabG(n),
and is 1 if there is only X (x). All conclusions follow from this remark. �

3.7. The Gupta–Sidki group Ŵ̈. We now give an explicit description of the Lie
algebra of Ŵ̈, and compute its Hilbert–Poincaré series.

Introduce the sequence of integers

α1 = 1, α2 = 2, αn = 2αn−1 +αn−2 for n ≥ 3,

and set βn =
∑n

i=1 αi . One has

αn =
1

2
√

2

(

(1 +
√

2)n − (1 −
√

2)n
)

,

βn =
1

4

(

(1 +
√

2)n+1 + (1 −
√

2)n+1 − 2
)

.

The first few values are

n 1 2 3 4 5 6 7 8

αn 1 2 5 12 29 70 169 398
βn 1 3 8 20 49 119 288 686
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Theorem 3.8. In Ŵ̈ write c=[a, t] and u =[a, c]=✷(t). Consider the following Lie
graph: its vertices are the symbols X1 . . . Xn(x) with X i ∈ {✵, ✶, ✷} and x ∈ {c, u}.
Their degrees are given by

deg X1 . . . Xn(c)= 1 +
n

∑

i=1

X iαi +αn+1,

deg X1 . . . Xn(u)= 1 +
n

∑

i=1

X iαi + 2αn+1.

There are two additional vertices, labeled a and t , of degree 1.
Define the arrows as follows:

a
−t // c c

t // ✵(c)

t
a // c c

a // u

u
t // ✶(c)

✵∗ a // ✶∗ ✶∗ a // ✷∗

✷∗ t //
✵ whenever ∗ t−→#

✷(c)
t // ✶(u) ✶(c)

−t // ✵(u)

✶✵∗
−t // ✵✶∗ ✶✶∗

−t // ✵✷∗

✷✵∗ t // ✶✶∗ ✷✶∗ t // ✶✷∗

(The last three lines can be replaced by the rules ✷∗ t−→✶# and ✶∗ −t−→✵# for all

arrows ∗ a−→#.)
Then the resulting graph is the Lie graph of L(Ŵ̈). It is also the Lie graph of

LF3(Ŵ̈), with the only nontrivial cube maps given by

✷n(c)
·3−→ ✷n✵✵(c), ✷n(c)

·3−→ ✷n✶(u).

The subgraph spanned by a, t , the X1 . . . X i (c) for i ≤n−2 and the X1 . . . X i (u)
for i ≤ n − 3 is the Lie graph associated to the finite quotient Ŵ̈/ StabŴ̈(n).

Proof. We perform the computations in the completion of Ŵ̈, still written Ŵ̈. With
Lemma 2.5 in mind, Ŵ̈′ is the subgroup generated by all X (c) and X (u), for X ∈
{✵, ✶, ✷}∗.
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Figure 3. The beginning of the Lie graph of L(Ŵ̈). The generator
ad(t) is shown by plain arrows, and the generator ad(a) is shown
by dotted arrows. The left column indicates the dimensions of Ln .
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We claim inductively that if X i ≥ Yi at all positions i , then X (c) ∈ 〈Y (c)〉Ŵ̈, and
similarly for u. Therefore some terms may be neglected in the computations of
brackets.

Now we compute ad(x)y for x, y ∈ {a, t, c, u}. Here ≡ means some terms of
greater degree have been neglected:

[a, ✵∗] = ✶∗, [a, ✶∗] = ✷∗, [a, ✷∗] = 1 by definition,

[t, ✵∗] = [≪a, a−1, t≫,≪∗, 1, 1≫] = ≪[a, ∗], 1, 1≫ = ✵[a, ∗]

≡ [≪a−1, t, a≫,≪∗, 1, 1≫] = −✵[a, ∗], so [t, ✵∗] = 1,

[t, ✶∗] = [≪a, a−1, t≫,≪∗, ∗−1, 1≫] ≡ −✵[a, ∗],

[t, ✷∗] = [≪a, a−1, t≫,≪∗, ∗, ∗≫] ≡ ✶[a, ∗] + ✵[t, ∗].

All asserted arrows follow from these equations.
Finally, we prove that the degrees of X (c) and X (u) are as claimed, by remark-

ing that deg c = 3 and deg u = 4, that deg ad(s)∗ ≥ deg(∗) for s = a, t and all
words ∗ (so the claimed degrees smaller of equal to their actual value), and that
each word of claimed degree n appears only as ad(s)∗ for words ∗ of degree at
most n − 1 (so the claimed degrees are greater or equal to their actual value).

The last point to check concerns the cube map; we skip the details. �

Corollary 3.9. Define the polynomials

Q1 = 0,

Q2 = h̄ + h̄2,

Q3 = h̄ + h̄2 + 2h̄3 + h̄4 + h̄5,

Qn = (1 + h̄αn−αn−1)Qn−1 + h̄αn−1(h̄−αn−2 + 1 + h̄αn−2)Qn−2 for n ≥ 3.

Then Qn is a polynomial of degree αn , and the polynomials Qn and Qn+1 coincide
on their first 2αn−1 terms. Thus the coefficientwise limit Q∞ = limn→∞ Qn exists.

The largest coefficient in Q2n+1 is 2n , at position 1
2(α2n+1+1), so the coefficients

of Q∞ are unbounded. The integers k such that h̄k has coefficient 1 in Q∞ are
precisely the βn + 1.

The Hilbert–Poincaré series of L(Ŵ̈/ StabŴ̈(n)) is h̄ + Qn , and the Hilbert–
Poincaré series of L(Ŵ̈) is h̄ + Q∞. The same holds for the Lie algebras

LF3(Ŵ̈/ StabŴ̈(n)) and LF3(Ŵ̈).

As a consequence, Ŵ̈/ StabŴ̈(n) is nilpotent of class αn , and Ŵ̈ does not have
finite width.
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Proof. Define polynomials

Rn =
∑

w∈{✵,✶,✷}n

h̄degw(c) +
∑

w∈{✵,✶,✷}n−1

h̄degw(u) + h̄.

One checks directly that the polynomials Rn satisfy the same initial values and
recurrence relation as Qn , hence are equal. All convergence properties also follow
from the definition of Rn .

The words of degree 1
2(α2n+1 + 1) are (✵✶)n−1✵(c), (✵✶)n−2✵✷(u), and all the

words that can be obtained from these by iterating the substitutions ✵✵✶ 7→ ✶✷✵,
✶✵✶ 7→ ✷✷✵, ✵✵✷ 7→ ✶✷✶, ✶✵✷ 7→ ✷✷✶ along with ✵✶ 7→ ✷✵ and ✵✷ 7→ ✷✶ at the
beginning of the word. This gives 2n words in total, half of the form X (c) and half
X (u).

There is a unique word of degree βn + 1, and that is ✶n(c).
Note that these last two claims have a simple interpretation: there are 2n−1 ways

of writing 1
2(α2n+1)− 1 − αn+1 in base α using only the digits 0, 1, 2; there is a

unique way of writing βn in base α using these digits. �

We note as an immediate consequence that

[

Ŵ̈ : γβn+1(Ŵ̈)
]

= 3(3
n+1)/2,

so that the asymptotic growth of ℓn = dim γn(Ŵ̈)/γn+1(Ŵ̈) is polynomial of degree
d = log 3/ log(1 +

√
2)− 1:

Corollary 3.10. The Gelfand–Kirillov dimension of L(Ŵ̈) is log 3/ log(1+
√

2)−1.

We then deduce:

Corollary 3.11. The growth of Ŵ̈ is at least en
log 3

log(1+
√

2)+log 3 ∼= en0.554
.

Proof. Apply Proposition 1.10 to the series
∑

nd h̄n , which is comparable to the
Hilbert–Poincaré series of L(Ŵ̈). �

Turning to the derived series, we may also improve the general result Ŵ̈(k) ≤
γ2k (Ŵ̈) to the following:

Theorem 3.12. For all k ∈ N we have

Ŵ̈(k) ≤ γαk+1(Ŵ̈).

Proof. Clearly true for k = 0, 1; then a direct consequence of Ŵ̈(k) = γ5(Ŵ̈)
×3k−2

(obtained in [Vieira 1998]) and γα j (Ŵ̈)
×3 ≤ γα j+1(Ŵ̈) for j = 3, . . . , k. �
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3.8. The Fabrykowski–Gupta group Ŵ. We now give an explicit description of
the Lie algebra of Ŵ, and compute its Hilbert–Poincaré series.

Theorem 3.13. In Ŵ write c = [a, t] and u = [a, c] ≡ ✷(at). For words X =
X1 . . . Xn with X i ∈ {✵, ✶, ✷} define symbols X1 . . . Xn(c) (representing elements
of Ŵ) by

✐✵(c)= ✐✵(c)/✐(u),

✐✷m+1✶n(c)= ✐
(

✷m+1✶n(c) · ✵✶m✵n(u)(−1)n),

✐X(c)= ✐X(c) for all other X.

Consider the following Lie graph: its vertices are the symbols X(c) and X (u).
Their degrees are given by

deg X1 . . . Xn(c)= 1 +
n

∑

i=1

X i 3
i−1 +

1

2
(3n + 1),

deg X1 . . . Xn(u)= 1 +
n

∑

i=1

X i 3
i−1 + (3n + 1).

There are two additional vertices, labeled a and t , of degree 1.
Define the arrows as follows, for all n ≥ 1:

a
−t // c t

a // c

c
−t // ✵(c) c

a // u

u
−t // ✶(c) ✷n(c)

−t // ✵n+1(c)

✵∗ a // ✶∗ ✶∗ a // ✷∗

✷n✵∗ t // ✵n✶∗ ✷n✶∗ t // ✵n✷∗

X1 . . . Xn(c)
−(−1)

∑

Xi t// (X1−1) . . . (Xn−1)(u)

Then the resulting graph is the Lie graph of L(Ŵ).
The subgraph spanned by a, t , the X1 . . . X i (c) for i ≤n−2 and the X1 . . . X i (u)

for i ≤ n − 3 is the Lie graph associated to the finite quotient Ŵ/ StabŴ(n).

Proof. The proof is similar to that of Theorems 3.5 and 3.8, but a bit more tricky.
Again we perform the computations in the completion of Ŵ, still written Ŵ. Again
Ŵ′ is the subgroup generated by all X(c) and X (u), for X ∈ {✵, ✶, ✷}∗.
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Figure 4. The beginning of the Lie graph of L(Ŵ). The generator
ad(t) is shown by plain arrows, and the generator ad(a) is shown
by dotted arrows. The left row indicates the dimensions of Ln .
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We claim inductively that if X i ≥ Yi at all positions i , then X (c) ∈ 〈Y (c)〉Ŵ, and
similarly for u. Therefore some terms may be neglected in the computations of
brackets.

Now we compute ad(x)y for x, y ∈ {a, t, c, u}. Here ≡ means some terms of
greater degree have been neglected:

[a, ✵∗] = ✶∗, [a, ✶∗] = ✷∗, [a, ✷∗] = 1 by definition,

[t, ✵∗] ≡ [≪1, t, a≫,≪∗, 1, 1≫] = 1,

[t, ✶∗] = [≪a, 1, t≫,≪∗, ∗−1, 1≫] = ✵[a, ∗]

≡ [≪1, t, a≫,≪∗, ∗−1, 1≫] ≡ −✵[t, ∗],
[t, ✷∗] = [≪a, 1, t≫,≪∗, ∗, ∗≫] ≡ ✵[a, ∗] + ✵[t, ∗] + ✶[t, ∗].

Note that in the last line the “negligible” term ✶[t, ∗] has been kept; this is necessary
since sometimes the ✵[t, ∗] term cancels out.

Now we check each of the asserted arrows against the relations described above.
First the a arrows are clearly as described, and so are the t arrows on X (u); for
instance,

ad(t)✷n✶∗(u)= ✵ ad(a)✷n−1✶∗(u)+ ✵ ad(t)2n−1✶∗(u)+ ✶ ad(t)✷n−1✶∗(u)
≡ ✵n( ad(a)✶∗(u)+ ad(t)✶∗(u)

)

≡ ✵n✷∗(u),

which holds by induction on the length of ∗. Next, the t arrows on X(c) agree; for
instance,

ad(t)✷✶n(c)= ✵ ad(a)✶n(c)+ ✵ ad(t)✶n(c)+ ✶ ad(t)✶n(c)

= ✵✷✶n−1(c)+ (−1)n · ✵n+1(u)+ (−1)n · ✶✵n(u)
)

= ✵✷✶n−1(c)+ (−1)n · ✶✵n(u) by induction on n,

ad(t)✷n(c)= ad(t)✷
(

✷n−1(c) · ✵✶n−2(u)
)

≡ ✵✶n−1(u)+ ✵
(

− ✵n(c)− ✶n−1(u)
)

+ ✶
(

− ✵n(c)− ✶n−1(u)
)

≡ −✵n+1(c)− ✶n(u).

All other cases are similar. Note how the calculation for ✷✶n(c) explains the defini-
tion of X(c): both ✵✷✶n−1(c) and ✵n+1(u) have degree smaller than d =deg ✷✶n(c)
in L(Ŵ), but they are linearly dependent in γd−1(Ŵ)/γd(Ŵ).

Finally, we prove that the degrees of X (c) and X (u) are as claimed, by remark-
ing that deg c = 3 and deg u = 4, that deg ad(s)∗ ≥ deg(∗) for s = a, t and all
words ∗ (so the claimed degrees smaller of equal to their actual value), and that
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each word of claimed degree n appears only as ad(s)∗ for words ∗ of degree at
most n − 1 (so the claimed degrees are greater or equal to their actual value). �

Corollary 3.14. Define the integers αn = 1
2(5 · 3n−2 + 1) and the polynomials

Q2 = 1,

Q3 = 1 + 2h̄ + h̄2 + h̄3 + h̄4 + h̄5 + h̄6,

Qn(h̄)= (1 + h̄ + h̄2)Qn−1(h̄
3)+ h̄ + h̄αn−2 for n ≥ 4.

Then Qn is a polynomial of degree αn −2, and the first 3n−2 +1 coefficients of Qn

and Qn+1 coincide. The termwise limit Q∞ = limn→∞ Qn therefore exists.
The Hilbert–Poincaré series of L(Ŵ/ StabŴ(n)) is 2h̄ + h̄2 Qn , and the Hilbert–

Poincaré series of L(Ŵ) is 2h̄ + h̄2 Q∞.
As a consequence, Ŵ/ StabŴ(n) is nilpotent of class αn , and Ŵ has finite width.

Proof. Consider the sequence of coefficients of 2h̄+ h̄2 Qn . They are, in condensed
form,

2, 1, 230
, 130

, 231
, 131

, . . . , 23n−3
, 13n−3

, 1(3
n−1+1)/2.

The i-th coefficient is 2 if there are X(c) and Y (u) of degree i in Ŵ/ StabŴ(n), and
is 1 if there is only X(c). All conclusions follow from this remark. �

In quite the same way as for Ŵ̈, we may improve the general result Ŵ(k)≤γ2k (Ŵ):

Theorem 3.15. The derived series of Ŵ satisfies Ŵ′ = γ2(Ŵ) and Ŵ(k) = γ5(Ŵ)
×3k−2

for k ≥ 2. We have

Ŵ(k) ≤ γ2+3k−1(Ŵ) for all k ∈ N.

Proof. It is a general fact for a 2-generated group Ŵ that Ŵ′′ ≤ γ5(Ŵ). Since
[c, ✵(c)] ≡ ✵(u)−1 and [c, u] ≡ ✷(c)−1 (modulo γ6(Ŵ)), we have [γ2(Ŵ), γ3(Ŵ)]
= γ5(Ŵ) and therefore Ŵ′′ = γ5(Ŵ).

Next, γ5(Ŵ) = γ3(Ŵ)
×3 · ✷(c), so Ŵ(3) = [γ3(Ŵ), c]×3 = γ×3

5 , and the claimed
formula holds for all Ŵ(k) by induction. Finally γ2+3 j−2(Ŵ)×3 ≤ γ2+3 j−1(Ŵ) for all
j = 3, . . . , k. �

We omit altogether the proofs of the next two results, since they are completely
analogous to that of Theorem 3.13.

Theorem 3.16. Keep the notations of Theorem 3.13. Define furthermore symbols
X1 . . . Xn(u) (representing elements of Ŵ) by

✷n(u)= ✷n(u) · ✷n−1✵(c) · ✷n−2✵✶(c) · · · ✷✵✶n−2(c),

X(u)= X (u) for all other X.
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Consider the following Lie graph: its vertices are the symbols X(c) and X(u).
Their degrees are given by

deg X1 . . . Xn(c)= 1 +
n

∑

i=1

X i 3
i−1 +

1

2
(3n + 1),

deg ✷n(u)= 3n+1,

deg X1 . . . Xn(u)= max

{

1 +
n

∑

i=1

X i 3
i−1 + (3n + 1),

1

2
(9 − 3n)+ 3

n
∑

i=1

X i 3
i−1

}

.

There are two additional vertices, labeled a and t , of degree 1.
Define the arrows as follows, for all n ≥ 1:

a
−t // c t

a // c

c
−t // ✵(c) c

a // u

u
−t // ✶(c) ✷n(c)

−t // ✵n+1(c)

✵∗ a // ✶∗ ✶∗ a // ✷∗

✷n✵∗ t // ✵n✶∗ ✷n✶∗ t // ✵n✷∗

X1 . . . Xn(c)
−(−1)

∑

Xi t // (X1−1) . . . (Xn−1)(u)

c
·3 // ✵✵(c) 2n(u)

·3 // 2n+1(u)

∗✵(c) ·3 // ∗✷(u) if 3 deg ∗✵(c)= deg ∗✷(u)

Then the resulting graph is the Lie graph of LF3(Ŵ).
The subgraph spanned by a, t , the X1 . . . X i (c) for i ≤n−2 and the X1 . . . X i (u)

for i ≤ n − 3 is the Lie graph of the Lie algebra LF3(Ŵ/ StabŴ(n)).
As a consequence, the dimension series of Ŵ/ StabŴ(n) has length 3n−1 (the

degree of 2n(u)), and Ŵ has finite width.

Proposition 1.8 then implies:

Corollary 3.17. The growth of Ŵ is at least e
√

n .

4. Parabolic space

In the natural action of a branch group G on the tree 6∗, consider a “parabolic
subgroup” P , the stabilizer of an infinite ray in 6∗. (The terminology comes from
geometry, where a parabolic subgroup is the stabilizer of a point on the boundary
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of an appropriate G-space.) Such a parabolic subgroup may be defined directly
as follows: let ω = ω1ω2 · · · ∈ 6∞ be an infinite sequence. Set Pω0 = G and
inductively set

Pωn = ψ−1(G × · · · × Pωn−1 × · · · × G),

with the Pωn−1 in position ωn . Set Pω =
⋂

n≥0 Pωn .
In the natural tree action (2–1) of G on 6∗ or on 6∞ its boundary, Pωn is the

stabilizer of the point ω1 . . . ωn , and Pω is the stabilizer of the infinite sequence ω.
The following facts easily follow from the definitions:

Lemma 4.1.
⋂

ω∈6∞ Pω= 1. The index of Pωn in G is dn , and that of Pω is infinite.

Definition 4.2. Let G be a branch group. A parabolic space for G is a homoge-
neous space G/P , where P is a parabolic subgroup.

Suppose now that G is finitely generated by a set S.

Proposition 4.3 [Bartholdi and Grigorchuk 2000b]. Suppose that the length | · | on
the branch group G is such that, for certain constants λ,µ and for all g ∈StabG(1),
one has |gi | < λ|g| + µ, where we have written ψ(g) = (g1, . . . , gd). Then all
parabolic spaces of G have polynomial growth of degree at most log1/λ(d).

Theorem 4.4. Let G be a finitely generated branch group. There exists a constant
C such that, for any x0 ∈ G,

C growth(G/P, x0 P)

1 − h̄
≥

growth L(G)

1 − h̄
.

Proof. Assume G acts on a d-regular tree, and write as before d ′ = d − 1. The
proof relies on an identification of the Lie action on group elements and the natural
action on tree levels. We first claim that for any u ∈ K and W ∈ {✵

✶
, . . . , ❞′}∗

deg W (u)≥ deg(✵|W |(u))+ dG/P(✵
|W |,W ),

where d(W, X) is the length of a minimal word moving W to X in the tree 6∗.
Therefore the growth of L(G) and G/P may be compared just by considering

the degrees of elements of the form ✵n(u) for some fixed u ∈ K ; indeed the other
W (u)will contribute a smaller growth to the Lie growth series than the correspond-
ing vertices to the parabolic growth series, and the N finitely many values u may
take in a branch portrait description will be taken care of by the constant C .

Now there is a constant ℓ∈N such that ✵ℓ+m(u) has greater degree than (❞′)m(u)
for all m ∈ N. Indeed there exists k ∈ K and ℓ ∈ N such that [k, u] = ✵ℓ(u), and
then [✵mk, ❞′m(u)] = ✵ℓ+m(u), proving the claim.

We may now take C = ℓN . The Lie growth series is the sum over all n ∈ N and
coset representatives u ∈ T of the power series counting the growth of W (u) over
words W of length n. There are N choices for u, and for given u at most ℓ of these
power series overlap. �
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Note that this result is valid even if the action on the rooted tree is not cyclic,
i.e., even if in the decomposition map G → G ≀ A the finite group A is not cyclic.
If A is not nilpotent, the Lie algebra L is no longer isomorphic to G, so the best
we can hope for is an inequality bounding the growth of L by that of G/P .

5. Normal subgroups

Using the notion of a branch portrait, it is not too difficult to determine the exact
structure of normal subgroups in a branch group. Consider a p-group G and its
p-Lie algebra L over Fp. Normal subgroups of G correspond to ideals of L, just
as subgroups of G correspond to subalgebras of L; and the index of H ≤ G is
pdim L/M, where the subgroup H corresponds to the subalgebra M. This corre-
spondence is not exact, and we shall neither use it nor make it explicit; however it
serves as a motivation for relating subgroup growth and the study of Lie algebras.
In all cases, sufficient knowledge of L, as well as its finiteness of width, allow an
explicit description of the normal subgroup lattice of G.

We focus on the first and most important example, G, for which we obtain an
explicit answer. The computations presented here clearly extend, mutatis mutandis,
to any regular branch group.

Set W = {✵, ✶}∗, and order words X ∈ W by reverse shortlex: the rank of
X1 . . . Xn is

#X1 . . . Xn = 1 +
n

∑

i=1

X i 2
i−1 + 2n.

(Note that #X = deg X (x) according to the definition in Section 3.6.) We write <
the order induced by rank.

Theorem 5.1. The nontrivial normal subgroups of G are as follows:

• there are respectively 1, 7, 7, 1 subgroups of index 1, 2, 4, 8 corresponding to
the lifts to G of subgroups of G/[G,G] = C×3

2 ;

• there are 12 other subgroups of G not contained in K : six of index 8, namely
〈[a, c], dab〉G, 〈c〉G, 〈x, cad〉G, 〈b〉G, 〈[a, d], bac〉G, and 〈d, x2〉G; four of
index 16, namely 〈[a, c]〉G, 〈[a, d], x2〉G, 〈d〉G, and 〈[a, d], x2d〉G; and two
of index 32, namely 〈[a, d]x2〉G and 〈[a, d]〉G;

• all normal subgroups N ⊳ G contained in K are of the form

(∗) W (A; B1, . . . , Bm; C) :=
〈

A(x)B1(x
2) . . . Bm(x

2),C(x2)
〉G
,

for words A, Bi ,C ∈ W. There are functions M(A,{Bi },C) and S(A,{Bi },C)
(defined in the proof ), with values in W, such that there is a unique description
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of N in the form (∗) satisfying

B1 < B2 < · · ·< Bm ≤ S(A, {Bi },C) < C ≤ M(A, {Bi }).

The index of N is 2#A+#S(A,{Bi },C). The groups can furthermore be subdivided
into three types:

I: C ≤ ✵|A| and A ≤ ✵|C |✶✵. Then all Bi are optional, i.e., there are 2m

groups with these A and C , obtained by choosing any subset of the Bi ’s;
II: C > ✵|A| and C ≤ ✵|A|+1. Then A = B1✶ and all other Bi ’s are optional;
III: A =✵n and some Bi =✵n−1. Then in fact an alternate description exists,

obtained by suppressing A and Bi from the description.

Note that we have only described finite-index subgroups of G. Since G is just-
infinite, all its nontrivial normal subgroups have finite index.

We depict the top of the lattice in Figure 5, which shows all normal subgroups of
index at most 213 (there are never more than 7 subgroups of a given lesser index).

The first few subgroups of K are described in Table 1, sorted by their index in G,
and identified by their type in {(I), (II), (III)}. We write λ for the empty sequence.
An argument [Bi ] means that term is optional, and therefore stands for two groups,
one with that term and one without.

Among the remarkable subgroups are: K ×2n = 〈✵n(x)〉G, written Kn in [Bar-
tholdi and Grigorchuk 2002]; the subgroup K ×2n

℧2(K )×2n−1 = 〈✵n(x), ✵n−1(x2)〉,
written Nn in the same reference; and StabG(n)=

〈

✵n−3(✶(x)x2), ✵n−2(x2)
〉

.
The lattice of normal subgroups of G is described in Figure 5. Even though I

do not understand completely the lattice’s structure, some remarks can be made:
the lattice has a fractal appearance; all its nodes have 1 or 3 descendants, and 1 or
3 ascendants. Large portions of it have a grid-like structure. This can be explained
by the construction N  N × N of normal subgroups, lending the lattice some
self-similarity.

Proof of Theorem 5.1. The first two assertions are checked directly as follows. Let
F be the set of finite-index subgroups of G not in K . Consider the finite quotient
Q = G/ Stab6(G), and the preimage P of G defined as

P =
〈

a, b, c, d
∣

∣ a2, b2, c2, d2, bcd, σ i (ad)4, σ i (adacac)4 (i = 0 . . . 5)
〉

.

Clearly the image of F in Q is at most as large as F, and the preimage of F in P is at
least as large as F. Now we use the algorithms in GAP [GAP 2002] computing the
top of the lattice of normal subgroups for finite groups (Q) and finitely presented
groups (P). The number of subgroups not contained in K agree in P and Q, so
give the structure of the lattice not below K in G.

Let now N be a normal subgroup of G, contained in K . If N is nontrivial,
then it has finite index [Grigorchuk 2000, Corollary to Proposition 9]. It is easy to
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Index Count Description

24 1 W (λ; ; λ)I = K

25 1 W (✵; ; λ)I
26 3 W (✶; ; λ)I W (✵; [λ];✵)I
27 3 W (✵✵; ; λ)I W (✶; [λ];✵)I
28 5 W (✶✵; ; λ)I W (✵✵; ;✵)I

W (✶; λ, [✵];✶)II W (∞; λ,✵;✶)III
29 5 W (✶✵; ;✵)I W (✵✵; [✵];✶)I W (✶; λ, [✶];✵✵)II
210 7 W (✵✶; ;✵)I W (✶✵; [✵];✶)I W (✵✵; [✵], [✶];✵✵)I
211 5 W (✶✶; ;✵)I W (✵✶; [✵];✶)I W (✶✵; [✶];✵✵)I
212 7 W (✵✵✵; ;✵)I W (✶✶; [✵];✶)I W (✵✶; [✵], [✶];✵✵)I
213 7 W (✶✵✵; ;✵)I W (✵✵✵; [✵];✶)I W (✶✶; [✶];✵✵)I

W (✵✶;✵, [✵✵];✶✵)II
214 13 W (✵✶✵; ;✵)I W (✶✵✵; [✵];✶)I W (✵✵✵; ;✵✵)I

W (✶✶;✶, [✵✵];✶✵)II W (✵✶;✵, [✵✵], [✶✵];✵✶)II
W (∞;✶, 0✵;✶✵)III W (∞;✵, [✶], 0✵;✵✶)III

215 9 W (✵✶✵; ;✶)I W (✶✵✵; ;✵✵)I W (✵✵✵; [✵✵];✶✵)I
W (✶✶;✶, [✶✵];✵✶)II W (✵✶;✵, [✵✶];✶✶)II W (∞;✶, 1✵;✵✶)III

216 13 W (✵✶✵; ;✵✵)I W (✶✵✵; [✵✵];✶✵)I W (✵✵✵; [✵✵], [✶✵];✵✶)I
W (✶✶;✶, [✵✶];✶✶)II W (✵✶;✵, [✵✶], [✶✶];✵✵✵)II

217 11 W (✶✶✵; ;✵✵)I W (✵✶✵; [✵✵];✶✵)I W (✶✵✵; [✶✵];✵✶)I
W (✵✵✵; [✵✵], [✵✶];✶✶)I W (✶✶;✶, [✶✶];✵✵✵)II

218 19 W (✵✵✶; ;✵✵)I W (✶✶✵; [✵✵];✶✵)I W (✵✶✵; [✵✵], [✶✵];✵✶)I
W (✶✵✵; [✶✵], [✵✶];✶✶)I W (✵✵✵; [✵✵], [✵✶], [✶✶];✵✵✵)I

Table 1. Normal subgroups of index up to 218 in G, contained in K .

see that N contains C(x2) and D(x) for some words C, D, using for instance the
congruence property [Grigorchuk 2000, Proposition 10]; therefore the generators
of N may be chosen as
{

A1(x) · · · An(x)B1(x
2) · · · Bm(x

2), A′
1(x) · · · A′

n′(x)B ′
1(x

2) · · ·
B ′

m′(x2), . . . ,C(x2), D(x)
}

,

with A( j)
i < D and B( j)

i < C for all i, j .
Taking the commutators of these generators with the appropriately chosen gen-

erator among {a, b, c, d}, we shift the ranks of the A-terms up by 1, and multiplying
a generator by another we may get rid of all generators except C(x2) and the one
with A1 of smallest rank.
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We therefore consider all subgroups W (A; B1, . . . , Bm; C), and seek conditions
on A, {Bi } and C so that to each normal subgroup in K there corresponds a unique
expression of the form W (A; B1, . . . , Bm; C).

Let first C be minimal such that C(x2) ∈ N ; then take A minimal such that for
some B1 < · · · < Bm < C we have A(x)B1(x2) · · · Bm(x2) ∈ N . Take also B ′

1
minimal such that B ′

1(x
2) · · · B ′

m′(x2) ∈ N for some B ′
i .

Define the functions M, S : W×2W ×W → W as follows (M stands for “mono-
mial” and S stands for “squares”): Consider A(x)B1(x2) . . . Bm(x2) as an ele-
ment of LF2(G), truncated at degree C . Successive commutations with generators
s ∈ {a, b, c, d}, according the the rules of Lemma 3.6, give rise to other elements of
LF2(G). We stress that we use the complete computations of commutators, and not
just those in the filtered Lie algebra. Define M(A, {Bi }) as the minimal word D
such that D(x2) that arises in this process; if no such word occurs, M(A, {Bi },C)=
C . Define S(A, {Bi }) as the minimal B ′

m′ such that B ′
1(x

2) · · · B ′
m′(x2) occurs in

this process; if no such product occurs, S(A, {Bi },C)= C − 1.
Now, since M(A, {Bi },C)(x2)∈ N , we necessarily have C ≤ M(A, {Bi }). Also,

all Bi of degree at least B ′
m′ can be replaced by terms of lower degree B ′

1, . . . , B ′
m−1.

This proves the claimed inequalities. Conversely, if there existed another descrip-
tion A(x)B̃1(x2) . . . B̃m(x2) ∈ N for another choice of B̃’s, then by dividing we
would obtain a product of Bi (x2) in N , contradicting Bm< S(A, {Bi },C). The data
(A; B1, . . . , Bm; C) subjected to the theorem’s constraints therefore correspond
bijectively to N ’s.

The index of N can be computed in LF2(G). Seeing elements of N as inside L,
a vector-space complement of N is spanned by all Ã(x) of rank less than A, and
all B̃(x2) of rank less than S(A, {Bi },C).

We consider finally three cases: first assume C ≤ ✵|A| and |B1| ≥ |A|−1. Then
C(x2) gives ✵|C |+1(x2)✵|C |+2(x) by commutation with σ |A|(d), which itself gives
✵|C |✶✵(x) by commutation with a, so we may suppose A ≤ ✵|C |1✵. Various Bi ’s
can be added, giving the description (I).

Now assume C>✵|A|. Then since A(x)would produce ✵|A|(x2) by commutation
with an appropriate conjugate of σ |A|(b), we must have A = B1✶ so that the same
commutation vanishes, giving the description (II).

Finally assume C ≤ ✵|A| and |B1| < |A| − 1. Then necessarily A = ✵n; taking
appropriate commutations we see that the normal subgroup in question contains
✵n(x)✵n−1(x2). We may then replace the generator A(x)B1(x2) . . . Bm(x2) by
✵n−1(x2)B1(x2) . . . Bm(x2), and obtain the description (III). �

Corollary 5.2. Let N be a normal subgroup of G. Then N/[N ,G] is an elementary
2-group of rank 1 or 2, unless it is N = G (of rank 3).

Corollary 5.3. Every normal subgroup of G is characteristic.
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Proof. The automorphism group of G is determined in [Bartholdi and Sidki 2003]:
it also acts on the binary tree, and is

Aut G = 〈G, ✶ j✵[a, d] for all j ∈ N〉.

It then follows that [K ,Aut G] = 〈✵(x), x2〉G is a strict subgroup of K ; and hence
[N ,Aut G]< N for any normal subgroup that is generated by expressions in W (x)
and W (x2) for words W ∈ {✵, ✶}∗. The theorem asserts that all normal subgroups
of G below K have this form; it then suffices to check, for instance using the
algorithms in GAP, that the finitely many normal subgroups of G not in K are
characteristic. �

Corollary 5.4. The number bn of normal subgroups of G of index 2n starts as
follows, and is asymptotically nlog2 3. More precisely, we have lim inf bn/nlog2(3) =
5− log2 3 ≈ 0.078 and lim sup bn/nlog2 3 = 2

9 ≈ 0.222.

index 2n 20 21 22 23 24 25 26 27 28 29 210 211

|{N ⊳ G}| 1 7 7 7 5 3 3 3 5 5 7 5

212 213 214 215 216 217 218 219 220 221 222 223

7 7 13 9 13 11 19 11 13 11 19 15

224 225 226 227 228 229 230 231 232 233 234

25 21 37 23 31 23 37 25 37 31 55

Proof. The number of subgroups of index 2n behaves in a somewhat erratic way,
but is greater when n is of the form 2k + 2, so that there is a maximal number of
choices for A and C , and is smaller when n is of the form 5 · 2k + 1. We compute
the numbers Fk and fk of normal subgroups of G contained in K of index 2n , with
respectively n = 2k + 2 and n = 5 · 2k + 1, yielding the upper and lower bounds.
The computations are simplified by the fact that for these two values of n there are
only subgroups of type I.

We start with the upper bound, when n = 2k +2. First, for k = 2, the subgroups
of index 2n are W (✵; ; ✵), W (✵; λ; ✵) and W (✶; ; λ), giving F2 = 3. Then, for
k > 2, the subgroups can of index 2n can be described as follows:

(1) W (A✶✵; B✵; C✵) for all W (A✵; B; C) counted in Fk−1, except when C =
✵k−3, when no subgroup appears in Fk , and when C = ✵k−2, when C✵ should
be replaced by ✵k−3✶;

(2) W (A✵; B✶; C✶) for all W (A; B; C) counted in Fk−1, except when C = ✵k−3,
when no subgroup appears in Fk , and when C = ✵k−2, when C✶ should be
replaced by ✵k−1;

(3) W (A✵; {A} ∪ B✶; C✶), with the same qualifications as above;

(4) W (✵k−2✶; ; ✵k−2).
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It follows that Fk = 3(Fk−1 − 1)+ 1, so Fk = 2
9 3k + 1 for all k ≥ 2.

For the lower bound, we have f0 = F2 = 3; and for k > 0, when n = 5 · 2k + 1,
the subgroups can of index 2n can be described as follows:

(1) W (A✶✶; B✵; C✵) for all W (A✶; B; C) counted in fk−1;

(2) W (A✵✶; B✶; C✶) for all W (A✶; B; C) counted in fk−1;

(3) W (A✵✶; {A✵} ∪ B✶; C✶), with the same qualifications as above;

(4) W (✶k✵; ; ✵k+1) and W (✶k✵; ✶k; ✵k+1).

It follows that fk = 3( fk−1 − 2)+ 2, so Fk = 3k + 2 for all k ≥ 0.
In summary, the number of normal subgroups of index 2n oscillates between

3log2((n−1)/5)+2 and 2
9 3log2(n−2)+1 for n ≥ 6 (when all normal subgroups of G are

contained in K ). These bounds give respectively

5− log2 3(n − 1)log2 3 and
2

9
(n − 2)log2 3. �

Note also the following curiosity:

Corollary 5.5. The number of normal subgroups of index r of G is odd for all r’s
a power of 2, and even (in fact, 0) for all other r .

(The same congruence phenomenon holds for the group C2 ∗ C3, as observed by
Thomas Müller [1996].)

Proof. The proof follows from the description of Theorem 5.1. Assume r = 2k . To
determine the parity of the number of subgroups of index r , it suffices to consider
which W (A; B; C) expressions have no choices for B. These are precisely the
W (A; ; ✵n)I with 2n+1 < #A ≤ 5 ·2n , the W (✵n✶✵; ; C)I with 2n < #C ≤ 2n+1 and
the W (∞; ✶n,C − 1; C)III with 2n+1 + 1< #C ≤ 3 · 2n + 1.

Now these last two families yield a subgroup for precisely the same values of k,
namely those satisfying 6 ·2 j +2 ≤ k ≤ 7 ·2 j +1, and therefore contribute nothing
modulo 2. The first family contributes a subgroup for all k. �

5.1. Normal subgroups in Ŵ̈. The normal subgroup growth of Ŵ̈ is much larger.
As a crude lower bound, consider the quotient A = γk(Ŵ̈)/γk+1(Ŵ̈), where we take
k = 1

2(α2n+1+1). It is abelian of rank 2n; indeed, the index of γk(Ŵ̈) is 332n−1−2n−1+1,

and that of γk+1(Ŵ̈) is 332n−1+2n−1+1.
In the vector space F3

j , there are roughly 3(
j
2) subspaces; so A has about 34n

subgroups S = N/γk+1(Ŵ̈), each of them giving rise to a subgroup N of index
roughly 39n

.
It then follows that the number of normal subgroups of Ŵ̈ of index 3n is at least

3nlog3 2
, a function intermediate between polynomial and exponential growth. More

precise estimations of the normal subgroup growth of Ŵ̈ will be the topic of a future
paper.
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PEAK-INTERPOLATING CURVES FOR A(�) FOR

FINITE-TYPE DOMAINS IN C
2

GAUTAM BHARALI

Let � be a bounded, weakly pseudoconvex domain in C
2, having smooth

boundary. A(�) is the algebra of all functions holomorphic in � and con-

tinuous up to the boundary. A smooth curve C ⊂ ∂� is said to be complex-

tangential if Tp(C) lies in the maximal complex subspace of Tp(∂�) for each

p ∈ C. We show that if C is complex-tangential and ∂� is of constant

type along C , then every compact subset of C is a peak-interpolation set

for A(�). Furthermore, we show that if ∂� is real-analytic and C is an

arbitrary real-analytic, complex-tangential curve in ∂�, compact subsets of

C are peak-interpolation sets for A(�).

1. Statement of the main result

Let � be a bounded domain in C
n , and let A(�) be the algebra of functions contin-

uous on � and holomorphic in �. Recall that a compact subset K ⊂ ∂� is called
a peak-interpolation set for A(�) if given any f ∈ C(K ), f 6≡ 0, there exists a
function F ∈ A(�) such that F |K = f and |F(ζ )| < supK | f | for every ζ ∈ �\ K .

We are interested in determining when a smooth submanifold M ⊂ ∂� is a peak-
interpolation set for A(�). When � is a strictly pseudoconvex domain having C

2

boundary and M is of class C
2, the situation is very well understood; see [Henkin

and Tumanov 1976; Nagel 1976; Rudin 1978]. In the strictly pseudoconvex setting,
M is a peak-interpolation set for A(�) if and only if M is complex-tangential,
meaning that Tp(M) ⊂ Hp(∂�) for all p ∈ M . (Here and in what follows, for any
submanifold M ⊆ ∂�, Tp(M) will denote the real tangent space to M at the point
p ∈ M , while Hp(∂�) will denote the maximal complex subspace of Tp(∂�).)

Very little is known, however, when � is a weakly pseudoconvex of finite type.
(There are several notions of type for domains in C

n , n ≥ 2, but they all coincide
for pseudoconvex domains in C

2. See Section 2 below.) In view of a result by
Henkin and Tumanov [1976] or a similar result by Nagel and Rudin [1978], it is still
necessary for M to be complex-tangential. It was recently shown [Bharali 2004]
that for bounded (weakly) convex domains � ⊂ C

n with real-analytic boundaries,

MSC2000: primary 32A38, 32T25; secondary 32C25, 32D99.
Keywords: complex-tangential, finite type domain, interpolation set, pseudoconvex domain.
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complex-tangential submanifolds M ⊂ ∂� are peak-interpolation sets. However,
showing even that any smooth compact complex-tangential arc in ∂� is a peak-
interpolation set for A(�), for a general smoothly bounded weakly pseudoconvex
domain of finite type, is a difficult problem. This is because doing so would nec-
essarily imply that every point in ∂� is a peak point for A(�). Whether or not this
is true for general pseudoconvex domains of finite type is an extremely difficult
open question in the theory of functions in several complex variables, but this fact
is certainly known for smoothly bounded finite type domains in C

2 [Bedford and
Fornæss 1978; Fornæss and McNeal 1994; Fornæss and Sibony 1989], and we will
use it in one of our results below. In this paper we show, among other things, that
when � is a bounded domain in C

2, ∂� is real-analytic and C ⊂ ∂� is a real-
analytic curve, it suffices that C be complex-tangential for every compact subset
of C to be a peak-interpolation set for A(�).

More precisely, our main result is:

Theorem 1.1. Let � be a bounded pseudoconvex domain in C
2 having smooth

boundary, and let C ⊂ ∂� be a smooth curve.

(i) Let ∂� be of class C
∞ and � be of finite type. If C is complex-tangential,

and if ∂� is of constant type along C , then each compact subset of C is a

peak-interpolation set for A(�).

(ii) Let � have real-analytic boundary and let C ⊂∂� be a real-analytic complex-

tangential curve. Then each compact subset of C is a peak interpolation set

for A(�).

In (ii) above, we do not assume that ∂� is of constant type along C .

2. Some notation and introductory remarks

We begin by defining the notion of type.

Definition 2.1. Let � ⊂ C
2 be a bounded domain having a smooth boundary. Let

p ∈ ∂�. The type of p, denoted by τ(p), is the maximum order of contact that the
germ of a 1-dimensional complex variety through p can have with ∂� at p. The
point p is said to be of finite type if τ(p) < ∞. The domain � is said to be of
finite type if there is an N ∈ N such that τ(p) ≤ N for each p ∈ ∂�.

Remark 2.2. Let � ⊂ C
2 be a smoothly bounded pseudoconvex domain. Suppose

p ∈ ∂� has type τ(p)= N and there are local holomorphic coordinates (U ; ζ1, ζ2),
near p, relative to which p = 0 and relative to which U ∩ ∂� is defined by

(2–1) ρ(ζ ) = A(ζ1) + O
(

v2
2, |ζ1||v2|

)

− u2,

where ζk := uk + ivk , and A(ζ1) = O(|ζ1|2). Then:
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(1) N is the leading order in ζ1 of A.

(2) N is an even number, because � is pseudoconvex.

These are consequences of a computation on smoothly bounded pseudoconvex
domains in C

2 of finite type at p ∈ ∂�, given in [Fornæss and Stensønes 1987,
Lecture 28]. Examining this calculation, we can infer that:

(3) Suppose Φ = (φ1, φ2) : (U, p) → (C2, 0) is a smooth change of coordinate
such that ∂φ1 and ∂φ2 vanish to infinite order at p, and such that (U ∩ ∂�)

(with respect to these new coordinates) has a defining function of the form
(2–1), where we have written ζ j = φ j (z1, z2) for j = 1, 2. Then conclusions
(1) and (2) above continue to hold.

We now present some notation. For a C
2 function φ defined in some open set

in C
n , we set

∂ jφ =
∂φ

∂z j

, ∂φ =
∂φ

∂z j

,

∂2
jkφ =

∂2φ

∂z j∂zk

, ∂2
jk

φ =
∂2φ

∂z j∂zk

, ∂2
k

φ =
∂2φ

∂z j∂zk

.

If F is a smooth function defined in a neighborhood of 0 ∈ R
N , we define (bor-

rowing our notation from [Bloom 1978a])

In(F) := the leading homogeneous polynomial
in the Taylor expansion of F around 0,

ord(F) := the degree of In(F).

In what follows, B(p; r) will denote the open Euclidean ball in C
2 centered at

p ∈ C
2 and having radius r , while D(a; r) will denote the open disc in C centered

at a ∈ C and having radius r . Several parameters occur in our analysis and the inde-
pendence of the quantitative estimates in the results below from these parameters
will be of some concern. We will express such estimates via the notation X . Y —
meaning that there is a constant C > 0, independent of all parameters, such that
X ≤ CY .

A standard approach [Henkin and Tumanov 1976; Rudin 1978] to proving that
C ⊂ ∂�, with C , ∂� smooth, is a peak-interpolation set makes use of Bishop’s
theorem:

Theorem [Bishop 1962]. Let � be a bounded domain in C
n . A compact subset

K ⊂ ∂� is a peak-interpolation set for A(�) if and only if |µ|(K ) = 0 for every

annihilating measure µ ⊥ A(�).
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In this theorem, an annihilating measure is a regular, complex Borel measure
on � which, viewed as a bounded linear functional on C(�), annihilates A(�).
A variation of the aforementioned approach — needed in the proof of our main
theorem — involves showing that if for any p ∈ C there is a small neighborhood
Vp ∋ p such that for each bump function χ ∈ C

∞
c (Vp; [0, 1]) with int

(

χ−1{1}
)

∩C

being an open arc in C , there is a sequence of functions {hk}k∈N such that

(i) {hk}k∈N ⊂ A(�) and is uniformly bounded on �;

(ii) lim
k→∞

hk(z) = 0 for all z ∈ � \ (C ∩ Vp);

(iii) lim
k→∞

hk(z) = χ(z) for all z ∈ C ∩ Vp.

We explain in the next section why Theorem 1.1(i) follows from the existence of
such a {hk}k∈N.

The key step in our proof is to show that if C is as described in Theorem 1.1(i),
then for each p ∈ C we can find a small neighborhood Vp ∋ p such that for any
U ⋐ Vp for which C ∩U is an arc, there is a smooth function G in Vp that is almost
holomorphic with respect to C ∩Vp and peaks on C ∩U . Further, one requires that
this almost holomorphic peak function must approach the value 1 at a controlled
rate. We show that

(2–2) |G(z)| ≤ 1 − C dist[z, C ∩ Vp]2M for all z ∈ � ∩ Vp.

Here 2M represents the type of ∂� along C . The above result is strongly reminis-
cent of [Noell 1985, Lemma 2.1]. In that lemma, if C — where C is not necessarily

complex-tangential, but ∂� is of type 2M along C — has the property that at each
p ∈ C there is a holomorphic function, smooth up to ∂�, that peaks on a small
closed sub-arc of C passing through p, then we can find a holomorphic peak func-
tion, smooth up to ∂�, that satisfies the estimate (2–2). In our situation we do
not, of course, have holomorphic functions that peak locally along C . However,
we can use some of Noell’s ideas (which in turn rely on an estimate from [Bloom
1978a]) and exploit the complex-tangency of C to construct an almost-holomorphic

local peak function that satisfies good estimates. This construction is presented in
Section 4.

We complete the proof of Theorem 1.1 in Section 5. Part (i) of the theorem will
follow from the construction of the family {hk}k∈N described above. Each hk is,
near C , a holomorphic correction of the k-th power of G (G as introduced above).
This correction is achieved by solving an appropriate ∂-equation in �, and the
estimate (2–2) is used to show that hk satisfies the three properties listed above.
Theorem 1.1(ii) will follow from the fact that in the real-analytic setting ∂� is of
constant type along C except for a discrete set of points in C . Using part (i) of the
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theorem and the fact that each point in this discrete set is a peak point for A(�),
we deduce part (ii).

3. A technical lemma

In this section, we present an abstract lemma that is instrumental to the proof of
our main theorem.

Definition 3.1. Given an open set V ⊂ R
N , a bump function f in V is a function

belonging to C
∞
c (V ; [0, 1]) such that int

(

f −1{1}
)

6= ∅.

Lemma 3.2. Let � be a bounded domain in C
2 having smooth boundary and let

C be a smooth curve in ∂�. Assume that for each p ∈ C , there exists a small

neighborhood Vp of p such that for each bump function χ ∈ C
∞
c (Vp; [0, 1]) for

which int
(

χ−1{1}
)

∩ C is an arc, we can find a sequence of functions {hk}k∈N ⊂
A(�) (depending on χ) satisfying

(i) {hk}k∈N ⊂ A(�) is uniformly bounded on �;

(ii) lim
k→∞

hk(z) = 0 for all z ∈ � \ (C ∩ Vp);

(iii) lim
k→∞

hk(z) = χ(z) for all z ∈ C ∩ Vp.

Then C is a countable union of peak-interpolation sets for A(�).

Remark 3.3. A form of this lemma is true if � is a bounded domain in C
n and

C is replaced by M ⊂ ∂�, where M is a smooth submanifold of ∂� ∩ U , U

being an open subset of C
n . However, to be able to derive the conclusion of the

lemma in this new setting with dimR(M)> 1, one would have to produce, for every

bump function χ ∈ C
∞
c (Vp; [0, 1]) (not merely those for which int

(

χ−1{1}
)

∩ M is
nice), an h ∈ A(�) such that {hk : k ∈ N} would satisfy conditions (i)–(iii) above.
Being able to find such an h could be rather difficult if dimR(M) > 1, because
int

(

χ−1{1}
)

∩ M could be structurally quite complicated in this situation. We add
that if ∂� is strictly pseudoconvex, a less exacting form of the above lemma —
see, for instance, [Henkin and Tumanov 1976, Lemma 6] — suffices to infer peak-
interpolation in higher dimensions.

Proof of Lemma 3.2. Fix p ∈ C . We may assume that C ∩ Vp is an arc in C . Let
K be any compact subset of C ∩ Vp and let µ be any annihilating measure. Then

K = (C ∩ Vp) \∐

k∈N
Ak,

where each Ak is an open sub-arc of C ∩ Vp. If we could show that µ(Ak) = 0
for each k and that µ(C ∩ Vp) = 0, we could conclude by the additivity of µ that
µ(K ) = 0.

Let C ⊂ C ∩ Vp be any closed sub-arc of C . Let {Dν}ν∈N be a shrinking family
of compact subsets of C

2 such that
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(a) Dν+1 ⊂ int(Dν),

(b)
⋂

ν∈N
Dν = C,

(c) Dν ⊆ Vp,

(d) C ∩ Dν is an arc.

Let χν ∈ C
∞
c (Vp; [0, 1]) be a bump function with

χν |Dν+1 ≡ 1 and supp χν ⊆ Dν .

Finally, define {hk,ν}k∈N to be the sequence of functions corresponding to χν given
by the hypothesis of this lemma.

Choose any µ ⊥ A(�). By the bounded convergence theorem,

0 = lim
k→∞

∫

�

hk,ν dµ =
∫

C∩Vp

χν dµ.

Another passage to the limit yields µ(C)= 0, and this is true for any µ⊥ A(�). As
µ is a regular measure, this shows that µ(A) = 0 for any open sub-arc A ⊂ C ∩Vp;
in particular µ(C ∩ Vp) = 0. Let Vp be any neighborhood of p such that Vp ⋐ Vp.
In view of our remarks in the first paragraph of this proof we have just shown that
|µ|(C ∩ Vp) = 0 for any µ ⊥ A(�). By Bishop’s theorem, C ∩ Vp is a peak-
interpolation set for A(�). Letting p vary over a countable dense subset of C , we
have the desired result. �

4. Constructing an almost holomorphic function that peaks locally on C

Let p ∈ ∂�. In this section, we will study ∂� near p with respect to a convenient
system of local coordinates that are almost holomorphic with respect to C (near p),
where � and C are as in Theorem 1.1(i). The following lemma asserts the existence
of local coordinates having the desired properties:

Lemma 4.1. Let � be a bounded domain in C
2 having smooth boundary and let

C ⊂ ∂� be a complex-tangential curve. Let p ∈ C . There is a neighborhood ω ∋ p

and a C
∞-diffeomorphism Φ : (ω, p) → (C2, 0) which is almost holomorphic with

respect to (C ∩ ω) and such that, writing (ζ1, ζ2) := Φ(z1, z2), we have:

(1) Φ(C ∩ ω) ⊂ {(ζ1, ζ2) : im(ζ1) = ζ2 = 0}.
(2) Φ(∂� ∩ ω) is defined by a defining function of the form

ρ(ζ ) = A(ζ1) + B(ζ1)v2 + R(ζ1, v2) − u2,

where ζk = uk + ivk for k = 1, 2, A(ζ1) = O(|ζ1|2), R(ζ1, v2) = O(|v2|2),
and

A(u1) = B(u1) = 0 and ∇ A(u1) = ∇ B(u1) = 0 for all u1 near 0.
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Proof. Without loss of generality, we may let p be the origin, and assume that,
near p, ∂� is defined by

r(z1, z2) = h(z1, im z2) − Re z2,

where h(0) = 0 and ∇h(0) = 0.

Let ω be a neighborhood of p =0 and let M⊂ ∂� be the smooth 2-manifold of ω

formed by the integral curves to the vector-field −J(∇r) passing through (C ∩ω).
M is totally real. Let

γ = (γ1, γ2) : (B(0; ε), (u1, u2) = 0) → ((M ∩ ω), p = 0)

parametrize M near p = 0 in such a way that, for each c, Image(γ |{u2=c}) is an
integral curve to the unit section of T (M) ∩ H(∂�)|M, with

Image(γ |{u2=0}) = C ∩ ω and
∂γ (0, 0)

∂u2
= −J(∇r)(0, 0).

Shrinking ω if necessary, we construct a diffeomorphism Φ : (ω, p = 0) → (C2, 0)

of class C
∞ that is almost holomorphic with respect to (M ∩ ω), by defining

Φ−1(ζ1, ζ2) =
(

Ŵ1(ζ1, −iζ2), Ŵ2(ζ1, −iζ2)
)

:= η(ζ1, ζ2),

where ζk := uk + ivk for k = 1, 2 and Ŵk is an almost holomorphic extension of γk

for k = 1, 2. By construction,

(4–1)
Φ(M ∩ ω) ⊂ {(ζ1, ζ2) : v1 = u2 = 0},
Φ(C ∩ ω) ⊂ {(ζ1, ζ2) : v1 = ζ2 = 0}.

Now, Φ(∂� ∩ ω) is defined by

ρ(ζ1, ζ2) = r ◦ Φ−1(ζ1, ζ2).

We expand ρ around the origin in a Taylor series. We make use of the fact that Ŵk

are almost holomorphic with respect to {(ζ1, ζ2)| v1 = v2 = 0} to get

ρ(ζ ) = 2 Re

( 2
∑

j=1

∂r

∂z j

(η(0, 0))
(∂Ŵ j

∂ζ1
(0, 0)ζ1 + (−i)

∂Ŵ j

∂ζ2
(0, 0)ζ2

)

)

+ O(|ζ |2).

Using the fact that

∂Ŵ j

∂ζk

(0, 0) =
∂γ j

∂uk

(0, 0) for j, k = 1, 2,
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we get

ρ(ζ ) = 2 Re

( 2
∑

j=1

∂r

∂z j

(γ (0, 0))
∂γ j

∂u1
(0, 0)ζ1

+ (−i)

2
∑

j=1

∂r

∂z j

(γ (0, 0))
∂γ j

∂u2
(0, 0)ζ2

)

+ O(|ζ |2)

= 2 Re

(

(−i)

2
∑

j=1

∂r

∂z j

(γ (0, 0))
∂γ j

∂u2
(0, 0)ζ2

)

+ O(|ζ |2)

= −u2 + O(|ζ |2).

The second equality follows from the complex-tangency of Image
(

γ ( · , 0)
)

, which
implies

2
∑

j=1

∂r

∂z j

(γ (u1, 0))
∂γ j

∂u1
(u1, 0) = 0 for all u1 ∈ (−ε, ε),

and the last equality follows from the normalization condition on ∂γ (0, 0)/∂u2.
We see that the only term in the expansion above that has first order in either ζ1 or
ζ2 is −u2. Hence, the hypersurface Φ(∂� ∩ ω) is tangent at 0 to the hyperplane
H :=

{

(ζ1, ζ2)∈ C
2 |u2 =0

}

. Thus, we can find, near 0∈ C
2, a defining function —

and for convenience of notation, we will continue to call it ρ — having the form

(4–2) ρ(ζ ) = A(ζ1) + B(ζ1)v2 + R(ζ1, v2) − u2,

where A(ζ1) = O(|ζ1|2) and R(ζ1, v2) = O(|v2|2). Then, since Φ(C ∩ ω) is con-
tained in Φ(∂� ∩ ω), setting v1 = ζ2 = 0 in (4–2), we get

(4–3) A(u1) = 0 for all (u1, 0) ∈ Φ(C ∩ ω).

And since Φ(M ∩ ω) ⊂ Φ(∂� ∩ ω), setting v1 = u2 = 0 in (4–2), we see that
B(u1)v2 + O(|v2|2) = 0 for all (u1, v2) belonging to a small neighborhood 0. Thus

(4–4) B(u1) = 0 for all (u1, 0) ∈ Φ(C ∩ ω).

By construction, (∇ρ)(u1, v2) is a normal vector to Φ(M ∩ ω) for all (u1, v2) ∈
Φ(M∩ω). This implies that T(u1,v2)

(

Φ(∂�∩ω)
)

= H for all (u1, v2) ∈ Φ(M∩ω).
Computing (∇ρ)(u1, v2), we see that ∇ A(u1) + ∇ B(u1)v2 = 0 for all (u1, v2) in
a neighborhood of 0. Thus

(4–5) ∇ A(u1) = ∇ B(u1) = 0 for all (u1, 0) ∈ Φ(C ∩ ω).

By (4–3), (4–4) and (4–5), we have the desired result. �

We now state the key lemma of this paper. It concerns the construction of an
almost holomorphic peak function of the type discussed in Section 2.



PEAK-INTERPOLATING CURVES FOR FINITE-TYPE DOMAINS IN C
2 291

Proposition 4.2. Let � be a bounded pseudoconvex domain in C
2 of finite type,

and let ∂� be of class C
∞. Let C ⊂ ∂� be a complex-tangential curve of class

C
∞, and let ∂� be of constant type 2M along C . Let p ∈ C . There exists a

neighborhood V ≡ V (p) of p and a uniform constant C > 0, and for any open

set U ⋐ V such that C ∩ U is an arc, there is a neighborhood V1 ≡ V (p, U ) of p

satisfying C ∩ V1 = C ∩ V and a function G ∈ C
∞(V1) — G depending on p and

U — that satisfies

(1) G−1{1} = C ∩ U ;

(2) ∂G vanishes to infinite order on V ∩ C ;

(3) |G(z)| ≤ 1 − C dist[z, C ∩ V ]2M for each z ∈ � ∩ V1.

Proof. Let ω ∋ p and Φ : (ω, p) → (C2, 0) be the change of coordinate described
in Lemma 4.1. Let Φ(∂� ∩ ω) be defined by

(4–6) ρ(ζ1, ζ2) = A(ζ1) + B(ζ1)v2 + R(ζ1, v2) − u2.

Consider a point (x0, 0) ∈ Φ(C ∩ ω) and let

(4–7) ̺x0(ζ
∗
1 , ζ2) = Ax0(ζ

∗
1 ) + Bx0(ζ

∗
1 )v2 + Rx0(ζ

∗
1 , v2) − u2

represent the expansion of ρ in (4–6) around (x0, 0), where ζ ∗
1 := ζ1 − x0.

Claim 1. Shrinking ω if necessary, there is a c > 0 such that

(4–8) A(u1 + iv1) ≥ cv2M
1 , for all ζ1 such that ζ ∈ Φ(ω).

As A(x0) = B(x0) = 0 and ∇ A(x0) = ∇ B(x0) = 0 for each (x0, 0) ∈ Φ(∂�∩ω),
the right-hand side of (4–7) represents a defining function of the form (2–1). By
Remark 2.2(3), the function Ax0 in (4–7) must vanish to order 2M at 0, whereby the
function A in (4–6) must vanish precisely to order 2M at each (u1, 0)∈Φ(∂�∩ω).
Now write

(4–9) A(u1 + iv1) = aJ (u1)v
J
1 + O(|v1|J+1),

where J is the least positive integer k such that ak 6≡ 0 near u1 = 0. By our remarks
above, it is clear that J ≤ 2M . But, if J < 2M , then if ũ1 is such that aJ (ũ1) 6= 0,
then A vanishes to order < 2M at u1 + iv1 = ũ1, which contradicts our remarks
above. Thus, J = 2M in (4–9) and

A(u1 + iv1) = a2M(u1)v
2M
1 + O(|v1|2M+1).

and a2M(0) 6= 0. Now recall that Φ is almost-holomorphic with respect to (M∩ω).
If, in fact, (u1 + iv1, u2 + iv2) were holomorphic coordinates, the pseudoconvexity
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of � would have implied that

α : (u1, v1) 7→ a2M(u1)v
2M
1 is subharmonic,

1α(u1, v1) > 0 off {v1 = 0}, and (u1, v1) close to 0.

This would have implied that a2M(u1) > 0 for u1 close to 0 (the second statement
above follows from an obvious calculation). In our present situation, the coor-
dinates (u1 + iv1, u2 + iv2) differ from holomorphic ones by terms vanishing to
arbitrarily high order along (C ∩ ω). From the last two facts, we can conclude,
after shrinking ω if necessary, that

a2M(u1) > 0 for all (u1, 0) ∈ Φ(∂� ∩ ω).

From this final fact, we deduce (4–8). Hence the claim.

Claim 2. We can find ω1 ⋐ ω and a uniform constant T > 0 such that

(4–10) B(ζ1)
2 ≤ T A(ζ1) for all ζ ∈ Φ(� ∩ ω1).

To see this, we use a procedure originating in [Bloom 1978a, Section 3]. Write
q = (x0, 0) ∈ Φ(C ∩ ω). The positivity of the Levi form for ∂� on the complex
tangent vectors implies that, were (u1 + iv1, u2 + iv2) holomorphic coordinates,
there would be a δ > 0 such that the function L induced by the Levi form

L : D(x0; δ) × (−δ, δ) → R

defined by

L = |∂2̄ρ|2 ∂2
11̄

ρ + |∂1̄ρ|2 ∂2
22̄

ρ − 2Re
(

∂1ρ ∂2̄ρ ∂2
1̄2

ρ
)

would be nonnegative (notice that L is independent of u2). In our present situation,
however, L(u1, v2) ≥ 0 for all (u1, v2) ∈ Φ(M ∩ ω).

Write

L(ζ1, v2) = L
(0)(ζ1) + v2L

(1)(ζ1) + v2
2L

(2)(ζ1) + O(|v2|3).

It has been shown in [Bloom 1978a] that if ord B < ord A, then

(4–11)
In(L(0)) = 1

4 In(∂2
11̄

A), ord L
(0) = ord A − 2,

In(L(1)) = 1
4 In(∂2

11̄
B), ord L

(1) = ord B − 2.

If already 2 ord B ≥ ord A, then (4–10) would follow trivially. Thus, assume that
2 ord B < ord A. Write r = ord B. We have

1

λ2r−2
L(λ(u1 + i0), λrv2) ≥ 0
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for all (u1, v2) ∈ (x0 − δ, x0 + δ) × (−δ, δ) and λ ∈ R+. But from (4–11) and our
assumption, we get

(4–12) lim
λ→0+

1

λ2r−2
L(λu1, λ

rv2) =
v2

4
In(∂2

11̄
B)(ζ1).

Write
B(u1 + iv1) = bJ (u1)v

J
1 + O(|v1|J+1),

where J is the least positive integer k such that bk 6≡ 0 near u1 = 0. By Lemma
4.1(2), J ≥ 2, whence In(B) is nonharmonic near 0. So, as v2 occurs linearly in
the right-hand side of (4–12), it is impossible that

1
4v2 In(∂2

11̄
B)(u1) ≥ 0, for all (u1, v2) ∈ (x0 − δ, x0 + δ) × (−δ, δ).

This results in a contradiction. So 2 ord B ≥ ord A, which, in conjunction with the
positivity of A, namely (4–8), yields (4–10).

Finally, define H : Φ(� ∩ ω1) → C by

H(ζ ) = ζ2 − αζ 2
2 ,

for α > 0 chosen appropriately large. We choose α as follows: Observe that

1
2 A(ζ1) + B(ζ1)v2 + R(ζ1, v2) + 1

6αv2
2

=
(

T
√

2
v2 +

B(ζ1)√
2T

)2

+
1

2T

(

T A(ζ1) − B(ζ1)
2) −

T 2

2
v2

2 + R(ζ1, v2) +
α

6
v2

2 .

The first two terms of the right-hand side are positive, in view of (4–10). So we
shrink ω1 appropriately and choose α > 0 so large that

(4–13) 1
2 A(ζ1) + B(ζ1)v2 + R(ζ1, v2) + 1

6αv2
2 ≥ 0, for all ζ ∈ Φ(� ∩ ω1).

Now consider:

Case (i): u2 ≥ 0. Let ε1 > 0 be so small that B(p; ε1) ⊂ ω1 and

(u2 − αu2
2) ≥ 1

2 u2 for ζ ∈ Φ
(

� ∩ B(p; ε1)
)

.

Then, for all such ζ , we have

(4–14)

Re H(ζ ) = (u2 − αu2
2) + αv2

2

≥ 1
2 u2 + αv2

2 = 1
4 u2 + 1

2αv2
2 + 1

4(u2 + 2αv2
2)

≥ 1
4 u2 + 1

2αv2
2 + 1

4

(

(A(ζ1) + B(ζ1)v2 + R(ζ1, v2)) + 2αv2
2

)

= 1
4 u2 + 1

8 A(ζ1) + 1
2αv2

2 + 1
4

(1
2 A(ζ1) + B(ζ1)v2 + R(ζ1, v2) + 2αv2

2

)

& u2
2 + v2

2 + A(ζ1), using (4–13).
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Case (ii): u2 < 0. Let ε2 > 0 be so small that B(p; ε2) ⊂ ω1 and that (u2 −αu2
2) ≥

2u2 for ζ ∈ Φ(� ∩ B(p; ε2)). Then, for all such ζ , we have (arguing exactly as
before)

(4–15)

Re H(ζ ) ≥ −u2 + 1
2αv2

2 + 3
(

u2 + 1
6αv2

2

)

≥ −u2 + 3
2 A(ζ1) + 1

2αv2
2 + 3

(1
2 A(ζ1) + B(ζ1)v2 + R(ζ1, v2) + 1

6αv2
2

)

& u2
2 + v2

2 + A(ζ1), using (4–13).

Now let ε0 = min(ε1, ε2). From (4–8), (4–14) and (4–15) we see that there is a
uniform constant κ > 0 such that

(4–16) Re H(ζ ) ≥ κ(u2
2 + v2

2 + v2M
1 )

≥ κ dist
[

ζ, Φ
(

C ∩ B(p; ε0)
)]2M

for ζ ∈ Φ
(

� ∩ B(p; ε0)
)

.

Write Φ(C ∩U ) = (a, b), and without loss of generality, assume that a < 0 < b.
Define the function φ by

φ(u1) =











exp
(

1/(u1−a)
)

if u1 < a,

0 if a ≤ u1 ≤ b,

exp
(

−1/(u1−b)
)

if u1 > b.

Let r > 0 such that B(0; r) ⊃ Φ
(

B(p; ε0)
)

, and let R(σ ) be the rectangle

R(σ ) =
{

(u1 + iv1) ∈ C
∣

∣ |u1| < r, |v1| < σ
}

.

By an argument given in [Noell 1985, Lemma 2.1], there exists a smooth almost
holomorphic extension φ̃ of φ and a σ > 0 small enough that

(4–17) Re
(

φ̃(u1 + iv1)
)

≥ − 1
2κv2M

1 , u1 + iv1 ∈ R(σ ).

We set

V1(p, U ) = B(p; ε0) ∩ Φ−1(Image Φ ∩ (R(σ ) × C)
)

.

From (4–16) and (4–17), we infer that the function G(z)= (1−φ̃)◦Φ(z)−H◦Φ(z)

satisfies (1)–(3). �

5. The proof of Theorem 1.1

Statement (i). Let C be as in Theorem 1.1(i), and fix p ∈ C . Let V (p) be a
neighborhood of p as given by Proposition 4.2. We will use Lemma 3.2 to provide
a proof. Take Vp, in the notation of that lemma, to be V (p). In the notation of
Lemma 3.2, let χ ∈ C

∞
c (Vp; [0, 1]) be a bump function such that int

(

χ−1{1}
)

∩ C
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is an arc. Write U = int
(

χ−1{1}
)

. Now set V1 = V1(p, U ) and let G ∈ C
∞(V1) be

as given by Proposition 4.2.

Define
Gk(z) =

{

G(z)k χ(z) if z ∈ � ∩ V1,

0 if z ∈ � \ V1.
Also define

(5–1) fk(z) = ∂Gk(z) = k G(z)k−1 ∂G(z) χ(z) + G(z)k ∂χ(z).

For a (0, 1) form φ(z) = φ1(z)dz1 + φ2(z)dz2 defined on �, define

‖φ‖� := max
{

sup�|φ1(z)|, sup�|φ2(z)|
}

.

By construction,

(5–2) ‖Gk ∂χ‖� → 0 as k → ∞.

Notice that ∂G vanishes to infinite order wherever G(z) = 1. Thus, for j = 1, 2,

(5–3)
∣

∣k G(z)k−1 ∂ G(z) χ(z)
∣

∣ . k
(

1 − C dist[z, C∩Vp]2M
)k−1 ∣

∣∂ G(z)
∣

∣ → 0

uniformly as k → ∞.
From (5–2) and (5–3),

(5–4) ‖ fk‖� → 0 as k → ∞.

Now consider on � the ∂-equations

∂uk = fk .

We need Lipschitz estimates for the solution of the ∂-equation on pseudoconvex
domains in C

2 of finite type. Such estimates may be found in several places in
the literature; for instance, in the results of Chang, Nagel and Stein [Chang et al.
1992], which imply that

(5–5) ‖uk‖� ≤ ‖uk‖31/N (�) ≤ C∗‖ fk‖� ,

where N is a positive integer such that τ(p) ≤ N for each p ∈ ∂�, 31/N (�) is
the class of complex-valued Lipschitz functions on � of order 1/N , and C∗ > 0
is a constant depending only on �. From (5–4) and (5–5) we see that ‖uk‖� → 0,
whence, defining

hk(z) = Gk(z) − uk(z) for all z ∈ �,

we have a sequence of A(�) functions with

lim
k→∞

hk(z) = lim
k→∞

Gk(z) =
{

χ(z) if z ∈ C ∩ Vp,

0 if z ∈ � \ (C ∩ Vp).
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Notice that, by construction, the sequence {hk}k∈N is uniformly bounded. The
sequence {hk}k∈N ⊂ A(�) satisfies hypotheses (i)–(iii) in Lemma 3.2 for the bump
function χ ∈C

∞
c (Vp; [0, 1]) such that int

(

χ−1{1}
)

∩C is an arc. Thus we conclude,
using Lemma 3.2, that any compact subset of C is a peak-interpolation set for
A(�).

Statement (ii). In the present situation, � is a bounded domain having a real-
analytic boundary and C is a real-analytic complex-tangential curve. Let B be an
open ball in C

2 and let γ : (−2ε, 2ε)→ C be an injective real-analytic parametriza-
tion of C locally such that Image(γ |[−ε,ε]) = (C ∩ B). Let p ∈ (C ∩ B) be such
that

τ(p) = min
q∈C∩B

τ(q).

Write τ(p) = 2M .

Recall that

Hp ⊗ C(∂�) = H 1,0
p (∂�) ⊕ H 0,1

p (∂�),

where H ⊗ C(∂�) is the complexification of H(∂�), and that H 1,0
p (∂�) and

H 0,1
p (∂�) are the eigenspaces of the complex-structure map J corresponding to

+i and −i respectively. Without loss of generality, we may assume that there is an
open set U ⊃ B and a real-analytic section L of H 1,0(∂�)|U such that L(q) spans
H 1,0

q (∂�) and

L(q) ∈
{

v ∈ H 1,0
q (∂�) : ‖v‖ = 1

}

for each q ∈ (∂� ∩ U ). Now consider the real-analytic function L : S1 × I → R

defined by

L(ζ, t) =
∑

j+k=2M
1≤ j<2M

L j−1L
k−1〈[L , L], ∂ρ

〉

(γ (t)) ζ jζ k,

where I is an open interval around [−ε, ε], S1 is the unit circle in C and ρ is a
defining function of ∂�. Let t0 be such that γ (t0)= p. By [Bloom 1978b, Theorem
3.3], τ(p) = 2M implies that there exists a ζ0 ∈ S1 such that L(ζ0, t0) 6= 0. Then,
by the real-analyticity of L, we conclude that

{t ∈ [−ε, ε] : L(ζ0, t) = 0} is a finite set S ⊂ [−ε, ε].

Write S = {t1, . . . , tN }. Again by [Bloom 1978b, Theorem 3.3], ∂� is of constant
type 2M in each connected component of (C ∩B)\{γ1(t1), . . . , γ (tN )}. Therefore,
by Theorem 1.1(i),

(C ∩ B) \ {γ (t1), . . . , γ (tN )} is a countable union of peak-interpolation sets.
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Recall that � is a bounded domain with real-analytic boundary. By [Bedford and
Fornæss 1978], therefore, every point of ∂� is a peak point for A(�). So, each
γ (t j ), for j = 1, . . . , N , is a peak point for A(�). This, together with the fact
that (C ∩ B) \ {γ (t1), . . . , γ (tN )} is a countable union of peak-interpolation sets,
implies that C is a countable union of peak-interpolation sets for A(�), and that
each compact subset of C is a peak-interpolation set for A(�).
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BOUNDING THE BENDING OF A HYPERBOLIC 3-MANIFOLD

MARTIN BRIDGEMAN AND RICHARD D. CANARY

We obtain bounds on the total bending of the boundary of the convex core

of a hyperbolic 3-manifold. These bounds will depend on the geometry of

the boundary of the convex hull of the limit set.

1. Introduction

The boundary of the convex core of a hyperbolic 3-manifold is a hyperbolic surface

in its intrinsic metric. This surface is totally geodesic except along a lamination,

called the bending lamination. The bending lamination inherits a transverse mea-

sure that keeps track of how much the surface is bent along the lamination. The

length (or mass) of the bending lamination, regarded as a measured lamination,

records the total bending of the boundary of the convex core. For example, if the

boundary of the convex core is bent by an angle of θ along a single simple closed

geodesic of length L , then the length of the bending lamination is Lθ .

Our main result is an upper bound on the mass of the bending lamination, which

depends on a lower bound for the injectivity radius of the boundary of the convex

hull of the limit set. An upper bound on the mass of the bending lamination is also

implicit in the techniques developed by Bonahon and Otal [2001, Lemma 12].

If N =H
3/Ŵ is an orientable hyperbolic 3-manifold and Ŵ is a nonabelian group

of orientation-preserving isometries of H
3, the limit set LŴ of Ŵ is the smallest

closed nonempty Ŵ-invariant subset of ∂∞H
3 = Ĉ. The convex core C(N ) of N

is CH(LŴ)/Ŵ, where CH(LŴ) is the convex hull of LŴ in H
3. Notice that ρ0 is a

lower bound for the injectivity radius of the boundary ∂CH(LŴ) of the convex hull

of the limit set if and only if 2ρ0 is a lower bound for the length of a compressible

curve on the boundary of the convex core (i.e., a closed curve in ∂C(N ) that is

null-homotopic in C(N ) but not in ∂C(N )).

Theorem 1. There exist constants S and T such that if N is an orientable hy-

perbolic 3-manifold with finitely generated, nonabelian fundamental group and
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bending lamination βN and ρ0 ∈ (0, 1] is a lower bound for the injectivity radius

of the boundary ∂CH(LŴ) of the convex hull of the limit set, then

l∂C(N )(βN ) ≤
∣∣χ(∂C(N ))

∣∣
(

S log
1

ρ0
+ T

)
,

where l∂C(N )(βN ) is the length of βN and χ(∂C(N )) is the Euler characteristic of

the boundary of the convex core.

We also obtain a lower bound for the mass of the bending lamination in the

case that ∂C(N ) has a short compressible curve. This lower bound makes clear

that the dependence on the geometry of the convex hull of the limit set in our first

result cannot be removed and that the form of the estimate cannot be substantially

improved. Also, notice that if one passes to a degree-d cover of N , both the length

of the bending lamination and the Euler characteristic of the boundary of the convex

core get multiplied by d , while the convex hull of the limit set is the same, so any

upper bound must depend linearly on
∣∣χ(∂C(N ))

∣∣.
Theorem 2. Let N = H

3/Ŵ be an orientable hyperbolic 3-manifold with finitely

generated, nonabelian fundamental group. If ∂CH(LŴ) contains a closed geodesic

of length ρ ≤ 2 sinh−1 1, then

l∂C(N )(βN ) ≥ 4π log
4 sinh−1 1

ρ
.

If the boundary of the convex core is incompressible, Proposition 4.2 gives the

following stronger result:

Theorem 3. If N is an orientable hyperbolic 3-manifold with finitely generated,

nonabelian fundamental group and ∂C(N ) is incompressible in N , then

l∂C(N )(βN ) ≤ π3

sinh−1 1

∣∣χ(∂C(N ))
∣∣.

In related work, Epstein, Marden and Markovic (see, for example, [Epstein et al.

2004, Theorem 4.2] have studied the possible bending laminations of embedded

convex hyperbolic planes in H
3.

Thurston [1979] (see also [Kourouniotis 1985; Johnson and Millson 1987; Ep-

stein and Marden 1987]) studied the operation of obtaining a quasifuchsian group

by bending a Fuchsian group along a simple closed geodesic, or more generally

along a measured lamination. Theorem 3 may be used to quantify the observation

that if this geodesic is “long,” one may only bend by a “small” angle.

This paper is based on earlier work [Bridgeman 1998; Bridgeman and Canary

2003; Canary 2001], which explored the relationship between the boundary of the

convex core and the conformal boundary. In particular, we make central use of a
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result (repeated here as Lemma 3.1) that ensures the existence of a lower bound,

depending only on the injectivity radius of its basepoint, for the length of a geodesic

arc in ∂CH(LŴ) whose intersection with the bending lamination is at least 2π . We

will combine this estimate with a Crofton-like formula (Lemma 4.1) for the length

of the bending lamination to prove Theorem 1.

In Section 7, we will apply the results of [Bridgeman and Canary 2003] and

[Canary 2001] to obtain analogues of Theorems 1 and 2, which depend on the

geometry of the domain of discontinuity �(Ŵ) for the action of Ŵ on Ĉ.

2. Background

Let N = H
3/Ŵ be an orientable hyperbolic 3-manifold with nonabelian fundamen-

tal group. Then Ŵ acts properly discontinuously on the domain of discontinuity

�(Ŵ) = Ĉ − LŴ. The domain of discontinuity admits a canonical conformally

invariant hyperbolic metric p(z)|dz|, called the Poincaré metric. The quotient

surface ∂c N = �(Ŵ)/Ŵ, called the conformal boundary of N , is then naturally a

hyperbolic surface. The hyperbolic 3-manifold N is said to be analytically finite

if ∂c N has finite area in this metric. Ahlfors’ Finiteness Theorem [Ahlfors 1964]

asserts that N is analytically finite if Ŵ is finitely generated. All of our results hold

for analytically finite hyperbolic 3-manifolds.

If N is analytically finite then there is always a positive lower bound for the in-

jectivity radius on �(Ŵ). By Lemma 8.1 of [Bridgeman and Canary 2003], a lower

bound on the injectivity radius of �(Ŵ) implies a lower bound on the injectivity

radius of ∂CH(LŴ). In particular, if N is analytically finite then there is a positive

lower bound on the injectivity radius of ∂CH(LŴ). The boundary of the convex

hull of the limit set is a hyperbolic surface in its intrinsic metric and is totally

geodesic in the complement of a closed union βŴ of disjoint geodesics, called the

bending lamination of CH(LŴ). The bending lamination βN of the convex core

C(N ) is simply the projection of βŴ to ∂C(N ).

A measured lamination on a hyperbolic surface S consists of a closed subset λ

of S that is the disjoint union of simple geodesics, together with countably additive

invariant (with respect to projection along λ) measures on arcs transverse to λ. The

bending laminations βŴ and βN come equipped with bending measures on arcs

transverse to the lamination, which record the total bending along the arc. These

bending measures give βŴ and βN the structure of measured laminations. Real

multiples of simple closed geodesics are dense in the space ML(S) of all measured

laminations on a finite-area hyperbolic surface S. Moreover, the length of a simple

closed geodesic and the intersection number of two simple closed geodesics extend

naturally to continuous functions on ML(S) and ML(S)×ML(S) respectively. See

[Thurston 1979] or [Bonahon 2001] for fuller discussions of measured lamination
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spaces and [Thurston 1979] or [Epstein and Marden 1987] for a fuller discussion

of convex cores and bending laminations.

3. Local intersection number estimates

In [Bridgeman and Canary 2003] we obtained bounds on the intersection of a trans-

verse geodesic arc with the bending lamination. There we defined a function

F(x) = x

2
+ sinh−1

(
sinh(x/2)√

1 − sinh2(x/2)

)

and its inverse G(x) = F−1(x). The function F is monotonically increasing and

has domain (0, 2 sinh−1 1). The function G(x) has domain (0, ∞), has asymptotic

behavior G(x) ≍ x as x tends to 0, and G(x) approaches 2 sinh−1 1 as x tends to

∞. We define G∞ = 2 sinh−1 1 ≈ 1.76275.

Lemma 3.1 [Bridgeman and Canary 2003, Lemma 4.3]. Let N = H
3/Ŵ be an

analytically finite hyperbolic 3-manifold such that LŴ is not contained in a round

circle. Let α : [0, 1) → ∂CH(LŴ) be a geodesic path (in the intrinsic metric on

∂CH(LŴ)) with length l(α). If either

(1) l(α) ≤ G(inj∂CH(LŴ)(α(0))), or

(2) α([0, 1)) is contained in a simply connected component of ∂CH(LŴ) and

l(α) ≤ G∞,

then

i(α, βŴ) ≤ 2π.

A geodesic arc α is either transverse to βŴ or contained within βŴ, in which

case we define i(α, βŴ) = 0.

If α : [0, 1) → ∂C(N ) is a geodesic in the boundary of the convex core, consider

its lift α̃ : [0, 1) → ∂CH(LŴ). If we subdivide this lift into pieces to which Lemma

3.1 applies, as in the proof of [Bridgeman and Canary 2003, Proposition 5.1], we

obtain:

Corollary 3.2. Let N be an analytically finite hyperbolic 3-manifold. Let α :
[0, 1) → ∂C(N ) be a geodesic path with length l(α). If α is contained in an

incompressible component of ∂C(N ), let G = G∞. Otherwise, let ρα be a lower

bound on the injectivity radius of ∂CH(LŴ) at every point in α̃([0, 1)) and let

G = G(ρα). Then

i(α, βN ) ≤ 2π

⌈
l(α)

G

⌉
.
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Here ⌈x⌉, as usual, denotes the least integer greater than or equal to x .

We have so far avoided, for simplicity of exposition, discussing the case that the

limit set is contained in a round circle. In this case, the convex core is a totally

geodesic surface with geodesic boundary. It is natural to consider the boundary of

the convex core to be the double of the convex core (where one considers the two

sheets of the convex core to have opposite normal vectors.) With this convention,

the boundary of the convex core is still a finite-area hyperbolic surface with bound-

ary if our manifold is analytically finite. One can easily see, just as in the proof of

[Bridgeman and Canary 2003, Proposition 5.1], that Corollary 3.2 remains valid

in this situation.

4. A length formula

In order to prove Theorem 1 we first represent the length of the bending lamination

as the integral of the intersection number over all geodesics of a fixed length. Our

formula is similar to the Crofton formula for the area of a region in the plane. See

also [Bonahon 1988, Proposition 14].

Let S be a hyperbolic surface. If v ∈ T 1(S) is a unit tangent vector, let ᾱ(v) :
(0, ∞) → S be the unit-speed geodesic ray originating at the basepoint of v and in

the direction of v. Let αL(v) = ᾱ|(0,L) be the open geodesic segment of length L

emanating from the basepoint of v in the direction v.

Lemma 4.1. Let β be a measured lamination on a hyperbolic surface S of finite

area. Then

lS(β) = 1

4L

∫

T 1(S)

i(αL(v), β) d�(v),

where d� is the volume form on T1(S).

Proof. We define a function FL on the space ML(S) of measured laminations by

setting

FL(β) = 1

4L

∫

T1(S)

i(αL(v), β) d�(v).

As FL and lS are both continuous on ML(S) and real multiples of closed geodesics

are dense in ML(S), it suffices to prove that FL(β) = lS(β) for real multiples of

closed geodesics. Since FL(kβ) = k FL(β) and lS(kβ) = klS(β) for all β ∈ ML(S)

and all k > 0, we may assume that β is a single closed geodesic with unit transverse

measure.

Let C be the hyperbolic cylinder covering S corresponding to β and let β̃ be the

lift of β to C . If v ∈ T 1(S), then i(αL(v), β) is precisely the number of lifts of

αL(v) to C that intersect β̃. Let

U =
{
v ∈ T 1(C) | αL(v) intersects β̃

}
.
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Lifting the integral to C we see that

∫

T 1(S)

i(αL(v), β) d�(v) =
∫

U

d�(v).

The metric on C is given by

ds2 = dx2 + cosh2 x dl2,

where x is the perpendicular distance to the core geodesic and l is a length coor-

dinate along the core geodesic; see [Buser 1992, Example 1.3.2]. The hyperbolic

area element is d A = cosh x dx dl.

Let

N = {c ∈ C | 0 < d(β̃, c) < L }.
If v ∈ U , the basepoint p of v is in N . If p ∈ N , let Up denote the cone of tangent

vectors in U ∩ T 1
p (C). Let wp denote the unit vector tangent to the geodesic ray

through p perpendicular to β̃. Then Up consists of all vectors in T 1
p (C) making an

angle of at most θ(p) with wp, where

θ(p) = cos−1 tanh x

tanh L
.

Therefore, ∫

U

d�(v) =
∫

N

2 cos−1 tanh x

tanh L
d A.

Integrating over the core of the annulus we obtain

∫

N

2 cos−1 tanh x

tanh L
d A = 2lS(β)

∫ L

−L

cosh x cos−1 tanh x

tanh L
dx

= 4lS(β)

∫ L

0

cosh x cos−1 tanh x

tanh L
dx .

Therefore,

FL(β) = lS(β)

L

∫ L

0

cosh x cos−1 tanh x

tanh L
dx .

Substituting u = tanh x

tanh L
we obtain

FL(β) = lS(β) tanh L

L

∫ 1

0

cos−1 u

(1 − u2 tanh2 L)3/2
du.

We may then integrate by parts and evaluate the result to check that FL(β) has the

claimed form. �
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We now prove a version of Theorem 1 that is a direct application of Corollary 3.2

and Lemma 4.1. Recall that G(x)≍ x as x tends to 0. If ρ0 ≥ 1, this estimate is bet-

ter than the one provided by Theorem 1, but it is much weaker as ρ0 approaches 0,

since the upper bound provided by Proposition 4.2 is O
(
|χ(∂C(N ))|/ρ0

)
, while

the estimate provided by Theorem 1 is O
(
|χ(∂C(N ))| log(ρ−1

0 )
)
. Notice that The-

orem 3 is case (2) of Proposition 4.2.

Proposition 4.2. Let N = H
3/Ŵ be an analytically finite hyperbolic 3-manifold

with bending lamination βN .

(1) If ρ0 > 0 is a lower bound for the injectivity radius of ∂CH(LŴ), then

l∂C(N )(βN ) ≤ 2π3

G(ρ0)

∣∣χ(∂C(N ))
∣∣.

(2) If ∂C(N ) is incompressible in N , then

l∂C(N )(βN ) ≤ π3

sinh−1 1

∣∣χ(∂C(N ))
∣∣.

Proof. If ∂C(N ) is incompressible, we let G = G∞ = 2 sinh−1 1. If not, we let

G = G(ρ0). Corollary 3.2 implies that, for all v ∈ T 1(∂C(N )),

i(αL(v), βN ) ≤ 2π

⌈
L

G

⌉
≤ 2π

(
L

G
+ 1

)
.

Therefore, by Lemma 4.1,

l∂C(N )(βN ) ≤ π

2L

∫

T 1(∂C(N ))

(
L

G
+ 1

)
d� ≤ vol T 1(∂C(N ))

( π

2G
+ π

2L

)
.

The volume of the unit tangent bundle T 1(∂C(N )) is 4π2
∣∣χ(∂C(N ))

∣∣. Thus,

by letting L tend to infinity, we see that

l∂C(N )(βN ) ≤ 4π2
∣∣χ(∂C(N ))

∣∣
( π

2G

)
= 2π3

G

∣∣χ(∂C(N ))
∣∣.

�

5. Proof of Theorem 1

To obtain the sharper bound on the length of the bending lamination given by

Theorem 1, we must decompose ∂C(N ) using the Collar Lemma. We will use

the following explicit version of the Collar Lemma, which combines [Buser 1992,

Theorem 4.4.6] and [Yamada 1982, Lemma 7] (which guarantees that curves of

length at most 2 sinh−1 1 are simple).
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Collar Lemma. Let S be a finite-area hyperbolic surface of genus g with n punc-

tures. Let {ν1, . . . , νk} be the collection of all primitive closed geodesics on S of

length at most 2 sinh−1 1. Then:

(1) k ≤ 3g − 3 + n.

(2) {ν1, . . . , νk} is a disjoint collection of simple closed geodesics.

(3) There exists a disjoint collection {B1, . . . , Bk} of metric collar neighborhoods

of {ν1, . . . , νk} such that each Bi is isometric to the quotient of

[−w(νi ), w(νi )] × [0, lS(νi )]

by the identification map (t, 0) 7→ (t, lS(νi )) , where lS(νi ) is the length of νi ,

w(νi ) = sinh−1 1

sinh
(

1
2
lS(νi )

) ,

and the product has the metric

ds2 = dx2 + cosh2x dl2.

(4) If x ∈ Bi , then sinh injS(x) = sinh
(

1
2
lS(νi )

)
cosh d(x, νi ).

(5) If there is a curve through x ∈ S homotopic to νi of length at most 2 sinh−1 1,

then x ∈ Bi .

We now restate Theorem 1 for analytically finite hyperbolic 3-manifolds.

Theorem 1. There exist constants S and T such that if N =H
3/Ŵ is an analytically

finite hyperbolic 3-manifold with bending lamination βN and ρ0 ∈ (0, 1] is a lower

bound for the injectivity radius of the boundary ∂CH(LŴ) of the convex hull of the

limit set, then

l∂C(N )(βN ) ≤
∣∣χ(∂C(N ))

∣∣
(

S log
1

ρ0
+ T

)
,

where l∂C(N )(βN ) is the length of βN and χ(∂C(N )) is the Euler characteristic of

the boundary of the convex core.

Proof. As the proof is rather technical, we begin with a brief outline. We first

decompose ∂C(N ) into the set X of collars of short compressible geodesics and

its complement Y . We choose ǫ = sinh−1 1 and L = G(ǫ). By Lemma 4.1

l∂C(N )(βN ) = 1

4L

∫

T 1(S)

i(αL(v), βN ) d�(v)

= 1

4L

(∫

T 1(X)

i(αL(v), βN ) d�(v) +
∫

T 1(Y )

i(αL(v), βN ) d�(v)

)
.
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Lemma 3.1 implies that i(αL(v), βN ) ≤ 2π for v ∈ T 1(Y ), so, just as in the proof

of Proposition 4.2,
∫

T 1(Y )

i(αG(ǫ)(v), βN ) d� ≤ 2π vol T 1(Y ).

To handle the integral over T 1(X), we use Corollary 3.2, which implies that

i(αL(v), βN ) ≤ 2π

⌈
L

G(r(v))

⌉
,

where r(v) is a lower bound on the injectivity radius of ∂C(N ) at any point on

αL(v). If B is a component of X with core geodesic ν and v ∈ T 1(B), we observe

that

r(v) ≥ sinh−1

(
1

eG(ǫ)
sinh

lS(ν)

2
cosh d(v)

)

where d(v) is the distance from the basepoint of v to ν. Combining the resulting

bounds and integrating, we obtain an upper bound on the integral of i(αL(v), βN )

over T 1(B) in terms of the length of ν. Summing the resulting bounds over T 1(Y )

and all components of T 1(X) gives our result.

Let {ν1, . . . , νk} be the primitive closed geodesics of length at most 2 sinh−1 1

on ∂C(N ). Let {B1, . . . , Bk} be the collar neighborhoods of {ν1, . . . , νk} provided

by the Collar Lemma.

Let π : ∂CH(LŴ) → ∂C(N ) be the covering map from the boundary of the

convex hull to the boundary of the convex core. Set ǫ = sinh−1 1 and

Ṽ =
{

x ∈ ∂CH(LŴ)
∣∣ inj∂CH(LŴ)(x) ≤ ǫ

}
.

If x ∈ Ṽ , then x lies on a homotopically nontrivial curve nx of length at most 2ǫ.

Since there is a lower bound on the injectivity radius of ∂CH(LŴ), nx is homotopic

to a closed geodesic ν̃x of length at most 2ǫ. Then ν̃x projects to (a multiple of)

one of the curves {ν1, . . . , νk}, so π(x) lies in some collar neighborhood Bi and x

lies in a lift of Bi to ∂CH(LŴ). Let X denote the union of all collar neighborhoods

Bi containing some component of π(Ṽ ). Let Y = ∂C(N )− X . We may renumber

{B1, . . . , Bk} so that X =
⋃m

i=1 Bi for some m ≤ k. Notice that inj∂CH(LŴ)(y) > ǫ

for y ∈ π−1(Y ).

We choose L = G(ǫ) in the formula for l∂C(N )(βN ) in Lemma 4.1. We split the

integral into two integrals using the decomposition, so that

l∂C(N )(βN ) = 1

4G(ǫ)

(∫

T 1(X)

i(αG(ǫ)(v), βN ) d� +
∫

T 1(Y )

i(αG(ǫ)(v), βN ) d�

)
.

We first estimate the portion of the integral with domain T 1(Y ). If v has base-

point in Y and α̃G(ǫ)(v) is a lift of αG(ǫ)(v) to ∂CH(LŴ), then α̃G(ǫ)(v) originates
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at a point ỹ such that inj∂CH(LŴ)(ỹ) > ǫ and has length G(ǫ) < G(inj∂CH(LŴ)(ỹ)).

Therefore, Lemma 3.1 implies that i (̃αG(ǫ)(v), βŴ) ≤ 2π and hence that

i(αG(ǫ)(v), βN ) ≤ 2π.

Therefore

(1)

∫

T 1(Y )

i(αG(ǫ)(v), βN ) d� ≤
∫

T 1(Y )

2πd� ≤ 2π vol T 1(Y ).

We now estimate the portion of the integral with domain T 1(X). If X is empty,

we are done. Otherwise, let Bi be a component of X . Let v ∈ T1(Bi ) and di (v) be

the distance from νi to the basepoint bv of v.

We now derive a lower bound for the injectivity radius along the geodesic

αG(ǫ)(v) as a function of di (v). One can readily check that if S is a hyperbolic

surface, w, z ∈ S and δ = dS(z, w), then sinh injS(w) ≥ e−δ sinh injS(z). (This

follows, for example, from [Beardon 1983, Theorem 7.35.1].) Since, by the Collar

Lemma,

sinh injS(bv) = sinh
lS(νi )

2
cosh di (v),

we see that if x is any point on αG(ǫ)(v), then

sinh inj∂C(N )(x) ≥ 1

eG(ǫ)
sinh

lS(νi )

2
cosh di (v).

We define Ri : [0, w(νi )] → R by

Ri (t) = sinh−1

(
1

eG(ǫ)
sinh

lS(νi )

2
cosh t

)
.

The injectivity radius at any point of αG(ǫ)(v) is bounded from below by Ri (di (v)),

so if α̃G(ǫ)(v) is a lift of αG(ǫ)(v) to ∂CH(LŴ), the injectivity radius of ∂CH(LŴ)

at every point of α̃G(ǫ)(v) is also bounded from below by Ri (di (v)). Thus, by

Corollary 3.2,

i(αG(ǫ)(v), βN ) ≤ 2π

⌈
G(ǫ)

G(Ri (di (v)))

⌉
.

So

(2)

∫

T 1(Bi )

i(αG(ǫ)(v), βN ) d� ≤
∫

T 1(Bi )

2π

⌈
G(ǫ)

G(Ri (di (v)))

⌉
d�

≤ 2πG(ǫ)

∫

T 1(Bi )

1

G(Ri (di (v)))
d� + 2π vol T 1(Bi ).

Since the integral depends only on di (v),

∫

T 1(Bi )

1

G(Ri (di (v)))
d� ≤ 2π

∫ lS(νi )

0

∫ ω(νi )

−ω(νi )

1

G(Ri (|x |)) cosh x dx dl,
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where x and l are the coordinates on Bi provided by the Collar Lemma.

As Ri (|x |) < ǫ on Bi , we need only consider G on the domain [0, ǫ]. Since

t/G(t) tends to 1 as t tends to 0 and is continuous on (0, ǫ], there exists a constant

K1 > 0 such that t/G(t) ≤ K1 for all t ∈ (0, ǫ]. Therefore

∫

T 1(Bi )

1

G(Ri (di (v)))
d� ≤ 2π

∫ lS(νi )

0

∫ ω(νi )

−ω(νi )

K1 cosh x

Ri (|x |) dx dl.

Integrating over the core curve and making use of the symmetry about the core

geodesic, we see that

(3)

∫

T 1(Bi )

1

G(Ri (di (v)))
d� ≤ 4π K1lS(νi )

∫ w(νi )

0

cosh x

Ri (x)
dx .

Since sinh x/x is increasing on (0, ∞), sinh x/x ≤ K2 = sinh ǫ/ǫ for all x ∈
(0, ǫ]. Thus, for all x ∈ (0, w(νi )),

1

Ri (x)
≤ K2

sinh Ri (x)
.

Therefore,

(4)

∫ w(νi )

0

cosh x

Ri (x)
dx ≤

∫ w(νi )

0

K2eG(ǫ)

sinh(l(νi )/2)
dx ≤ w(νi )K2eG(ǫ)

sinh(l(νi )/2)
.

Combining inequalities (3) and (4) we see that

∫

T 1(Bi )

1

G(Ri (di (v)))
d� ≤ 4π K1l(νi )w(νi )K2eG(ǫ)

sinh(l(νi )/2)
.

Since sinh x ≥ x , we get

∫

T 1(Bi )

1

G(Ri (di (v)))
d� ≤ 8π K1K2eG(ǫ)w(νi ).

Applying the equality sinh−1 x = log(x +
√

x2 + 1), we see that

w(νi ) = sinh−1 1

sinh(l(νi )/2)
= log

1 + cosh(l(νi )/2)

sinh(l(νi )/2)
.

Thus

w(νi ) ≤ log

(
1 + cosh

l(νi )

2

)
+ log

1

sinh(l(νi )/2)

≤ log(1 + cosh ǫ) + log
2

l(νi )
.
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This yields

(5)

∫

T 1(Bi )

1

G(Ri (di (v)))
d� ≤ S0 log

2

l(νi )
+ T0,

where S0 = 8π K1K2eG(ǫ) and T0 = S0 log(1 + cosh ǫ).

Since X =
⋃m

i=1 Bi , we can combine inequalities (2) and (5) to obtain

∫

T 1(X)

i(αG(ǫ)(v), βN ) d� =
m∑

i=1

∫

T 1(Bi )

i(αG(ǫ)(v), βN ) d�

≤
m∑

i=1

2πG(ǫ)

(
S0 log

2

l(νi )
+ T0

)
+ 2π vol T 1(Bi ).

Since m is bounded above by the number of disjoint geodesics in ∂C(N ),

m ≤ 3
2

∣∣χ(∂C(N ))
∣∣.

Moreover, as ρ0 is a lower bound for the injectivity radius of ∂CH(LŴ), we have

ρ0 ≤ l(νi )/2 for all i . Therefore,

(6)

∫

T 1(X)

i(αG(ǫ)(v), βN ) d�

≤ 3πG(ǫ)
∣∣χ(∂C(N ))

∣∣
(

S0 log
1

ρ0

+ T0

)
+ 2π vol T 1(X).

Combining estimates (1) and (6) for the integral over T 1(X) and T 1(Y ), we get
∫

T 1(∂C(N ))

i(αG(ǫ)(v), βN ) d�

=
∫

T 1(X)

i(αG(ǫ)(v), βN ) d� +
∫

T 1(Y )

i(αG(ǫ)(v), βN ) d�

≤ 3πG(ǫ)
∣∣χ(∂C(N ))

∣∣
(

S0 log
1

ρ0

+ T0

)
+ 2π vol T 1(X) + 2π vol T 1(Y )

≤ 3πG(ǫ)
∣∣χ(∂C(N ))

∣∣
(

S0 log
1

ρ0

+ T0

)
+ 2π vol T 1(∂C(N )).

Recalling that

l∂C(N )(βN ) = 1

4G(ǫ)

∫

T 1(∂C(N ))

i(αG(ǫ)(v), βN ) d�

and that vol T 1(∂C(N )) = 4π2
∣∣χ(∂C(N ))

∣∣, we see that this implies that

l∂C(N )(βN ) ≤
∣∣χ(∂C(N ))

∣∣
(

S log
1

ρ0

+ T
)
,
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where

S = 3π S0

4
and T = 3πT0

4
+ 2π3

G(ǫ)
. �

Remark. One can evaluate the constants used in the proof to check that ǫ =
sinh−1 1 ≈ 0.8814, G(ǫ)= F−1(ǫ)≈ 0.8387, K1 = ǫ/G(ǫ)≈ 1.0509 (since t/G(t)

is increasing), and K2 = sinh ǫ/ǫ ≈ 1.1346. Therefore, S ≤ 164 and T ≤ 218.

6. A lower bound on the length of the bending lamination

If the boundary of the convex core contains a short compressible curve we obtain a

lower bound on the length of the bending lamination, having the same asymptotic

form as the upper bound obtained in Theorem 1. Notice that if N is Fuchsian, the

bending lamination has length zero, so no general lower bound is possible.

Theorem 2. Let N = H
3/Ŵ be an analytically finite hyperbolic 3-manifold. If

∂CH(LŴ) contains a closed geodesic of length ρ ≤ 2 sinh−1 1, then

l∂C(N )(βN ) ≥ 4π log
4 sinh−1 1

ρ
.

Proof. Let α̃ be the closed geodesic of length ρ on ∂CH(LŴ) and let ǫ = sinh−1 1.

Let α be the projection of α̃ to ∂C(N ). It follows from the Collar Lemma that

α is a multiple of a simple closed geodesic ν. Let B be the collar of ν provided

by the Collar Lemma. The collar B has width w ≥ sinh−1(1/ sinh(ρ/2)). Since

sinh−1 x = log(x +
√

x2 + 1),

w ≥ log
1 + cosh(ρ/2)

sinh(ρ/2)
≥ log

2

sinh(ρ/2)
.

Since sinh x/x is an increasing function on (0, ∞),

sinh
ρ

2
≤ sinh ǫ

ǫ

ρ

2
= ρ

2ǫ
,

so

w ≥ log
4ǫ

ρ
.

Any leaf of βN ∩ B that intersects α intersects it exactly once and runs from

one boundary component of B to the other and has length at least 2w. By [Lecuire

2002, Proposition 4] we have i(α, βN ) > 2π (see also [Bonahon and Otal 2001,

Proposition 7] for the case when βN is finite-leaved). Thus, the total (measured)

length of βN ∩ B is at least 2π(2w) = 4πw. Therefore

l∂C(N )(βN ) ≥ 4π log
4ǫ

ρ
,

as claimed. �
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7. Bounds depending on the geometry of �(Ŵ)

We observed in [Bridgeman and Canary 2003] that a lower bound on the injectivity

radius of the boundary of the convex hull implies a lower bound on the injectivity

radius of the domain of discontinuity, while in [Canary 2001] we saw that a short

geodesic in the domain of discontinuity implies the existence of an even shorter

geodesic in the boundary of the convex hull. Therefore, we can give versions of

Theorems 1 and 2 where the constants depend on the geometry of the domain of

discontinuity.

If N = H
3/Ŵ is an analytically finite hyperbolic 3-manifold, then [Bridgeman

and Canary 2003, Lemma 8.1] implies that

1
2
e−me−π2/(2r0)

is a lower bound for the injectivity radius of ∂CH(LŴ), where m = cosh−1 e2 and

r0 is a lower bound for the injectivity radius of the domain of discontinuity �(Ŵ)

of Ŵ. Therefore, we obtain the following version of Theorem 1, where S′ = 1
2
π2S

and T ′ = S log 2 + Sm + T .

Theorem 1′. There exist constants S′ and T ′ such that if N is an analytically finite

hyperbolic 3-manifold with bending lamination βN and r0 is a lower bound for the

injectivity radius of the domain of discontinuity �(Ŵ), then

l∂C(N )(βN ) ≤
∣∣χ(∂C(N ))

∣∣
(

S′

r0
+ T ′

)
,

where l∂C(N )(βN ) is the length of βN and χ(∂C(N )) is the Euler characteristic of

the boundary of the convex core.

Theorem 5.1 of [Canary 2001] implies that if �(Ŵ) contains a closed geodesic

of length r ≤ 1, then ∂CH(LŴ) contains a closed geodesic of length at most

4πe0.502 π

eπ2/(
√

er)
≤ .153 r.

Thus, we obtain the following version of Theorem 2, where P = 4π3/
√

e and

Q = 4π log
(
4πe0.502 π/ sinh−1 1

)
.

Theorem 2′. There exist positive constants P and Q such that if N = H
3/Ŵ is

an analytically finite hyperbolic 3-manifold, �(Ŵ) contains a closed geodesic of

length r ≤ 1, then

l∂C(N )(βN ) ≥ P

r
− Q.
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RELATIVE FAMILY GROMOV–WITTEN INVARIANTS AND

SYMPLECTOMORPHISMS

OLGUT, A BUS, E

We study the symplectomorphism groups Gλ = Symp0(M, ωλ) of a closed

manifold M equipped with a one-parameter family of symplectic forms ωλ

with variable cohomology class. We show that the existence of nontrivial ele-

ments in π∗(A, A
′), where (A, A

′) is a suitable pair of spaces of almost com-

plex structures, implies the existence of nontrivial elements in π∗−i (Gλ), for

i = 1 or 2. Suitable parametric Gromov–Witten invariants detect nontrivial

elements in π∗(A, A
′). By looking at certain resolutions of quotient singu-

larities we investigate the situation (M, ωλ)= (S2
×S2

×X, σF ⊕λσB ⊕ωarb),

with (X, ωarb) an arbitrary symplectic manifold. We find nontrivial ele-

ments in higher homotopy groups of GX
λ , for various values of λ. In partic-

ular we show that the fragile elements wℓ found by Abreu and McDuff in

π4ℓ(G
pt

ℓ+1) do not disappear when we consider them in S2
× S2

× X .

1. Introduction

Let (M2n, ω) be a 2n-dimensional compact symplectic manifold. The group of

symplectomorphisms Symp(M, ω) of M is a basic invariant that distinguishes

among different symplectic structures on M . It is an infinite-dimensional group

endowed with a natural C∞ topology.

Two natural questions arise in relation with Symp(M, ω):

(1) What can be said about the topological type of Symp(M, ω)?

(2) How does the topological type change as ω varies?

Research has been done in this direction by various authors [Abreu 1998; Lê

and Ono 2001; McDuff 2000; Seidel 1999; 1997] by using information on J -

holomorphic curves. We investigate these questions by defining relative parametric

GW invariants, which are sensitive to the topology of appropriate spaces of almost

MSC2000: primary 57R17; secondary 53D35, 53D45, 57S05.

Keywords: symplectomorphism group, Gromov–Witten invariant, almost complex structure.
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complex structures. The connection between the spaces of almost complex struc-

tures and the symplectomorphism groups is achieved by means of the following

fibration, introduced in [Kronheimer 1998] and used in [McDuff 2001]:

(1) Symp0(M, ω)
✲ Diff0 M

ψ→(ψ−1)∗ω✲ S[ω],

where S[ω] is the space of symplectic forms that can be joined to ω through a path

of cohomologous symplectic forms, Diff0 M is the connected component of the

identity inside the group of diffeomorphism and Symp0(M, ω) = Symp(M, ω)∩

Diff0 M . Now consider the space A[ω] of almost complex structures that are tamed

by some symplectic form in S[ω]. By [McDuff 2001], A[ω] is homotopy equivalent

to S[ω]. This yields the homotopy fibration

(2) Symp0(M, ω)
✲ Diff0 M ✲ A[ω].

Our strategy will be to define suitable pairs (A,A
′) of spaces of almost complex

structures, such that information on nontrivial homotopy groups in (A,A
′) extends

to information on Symp0(M, ω). We develop relative family GW invariants that

detect such nontrivial elements in π∗(A,A
′).

Outline of the methods. In Section 2 we define the invariants as follows: Consider

a smooth family of symplectic forms (ωλ)λ∈I , where the parameter λ varies in the

interval I in R in such a manner that the cohomology classes [ωλ] may also vary

along a line L inside H 2(M,R). For convenience we set Aλ := A[ωλ]. Consider

D ∈ H2(M,Z) and let A
c
λ,D ⊂ Aλ be the subspace of those almost complex struc-

tures J which do not admit J -holomorphic stable maps in the class D. Further

define AI =
⋃
λ∈I Aλ, and similarly let A

c
I,D be its subset consisting of

⋃
λ∈I A

c
λ,D .

By a similar argument as in [McDuff 2001], AI is homotopy equivalent with⋃
λ∈I S[ωλ] and hence is connected. We will assume that there is a special almost

complex structure ∗ = Jbasepoint that belongs to all the spaces A
c
λ,D . Consider

a family of almost complex structures (JB, ∂ JB, ∗) that represent an element in

π∗(AI ,A
c
I,D, ∗). We will define a homomorphism

(3) PGW
M,(JB ,∂ JB)
D,0,k :

k⊕

i=1

Hai (M,Q)k → Q

by counting Jb-holomorphic stable maps in class D, for all b ∈ B. This is well

defined because the class D is never represented as a Jb-holomorphic stable map

if b ∈ ∂B.

Theorem 1.1. (i) The PGW
M,(JB ,∂ JB)
D,0,k are symplectic deformation invariants and

depend only on the relative homotopy class of the triple (JB, ∂ JB, ∗).
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(ii) For a fixed choice of k, D and αi the map20,k,α1,...,αk
: π∗(AI ,A

c
I,D, ∗)→ Q

given by

2k,α1,...,αk

(
[(JB, ∂ JB)]

)
= PGW

M,(JB ,∂ JB)
D,0,k (α1, . . . , αk).

is a homomorphism.

The reason (i) holds is that the class D is never represented for a Jb with b ∈ ∂B.

In Section 3 we will exhibit some examples of nontrivial PGW. There we con-

sider the case where M = S2 × S2 × X for X an arbitrary symplectic mani-

fold and where ω = ωλ ⊕ ωarb with ωarb an arbitrary symplectic form on X and

ωλ = σF ⊕λσB , for σF , σB forms (of total area 1) on the fiber and base, and λ≥ 1.

The families (JB, ∂ JB) of almost complex structures are provided for S2 × S2 in

[Kronheimer 1998] and then further investigated in [Abreu and McDuff 2000]. One

has to look at a quotient singularity, C2/C2ℓ, where C2ℓ is the cyclic group of order

2ℓ acting diagonally by scalars on C2. The deformation space for the canonical

resolution of this singularity provides a 4ℓ− 2 family (JBℓ, ∂ JBℓ) ∈ (A[ℓ,ℓ+ǫ],Aℓ)

for which suitable PGWs are nontrivial.

The link between these examples and the corresponding groups of symplecto-

morphisms will be explained in Section 4. It explain there the extent to which the

known homotopy properties (see [Abreu and McDuff 2000]) of Symp0(S
2×S2, ωλ)

are reflected in the higher homotopy groups of

G X
λ := Symp0(S

2 × S2 × X, ωλ ⊕ωarb).

For every (M, ωλ) a general symplectic manifold, we set Gλ := Symp0(M, ωλ).

To be able to address the two questions posed at the beginning, one has to estab-

lish first a more precise language in which they make sense. One of the difficulties

is that in general there is no direct map Gλ → Gλ+ǫ . In the particular situation

M = S2 × S2 × pt, Abreu and McDuff [2000; McDuff 2001] find natural maps

G
pt
λ → G

pt
λ+ǫ , well defined up to homotopy, and prove:

Theorem 1.2 (Abreu and McDuff). (i) The homotopy type of G
pt
λ is constant on

all the intervals (ℓ−1, ℓ], with ℓ≥ 2 a natural number. Moreover, as λ passes

an integer ℓ≥ 2, the groups πi (G
pt
λ ), for i ≤ 4ℓ− 5, do not change.

(ii) There is an element wℓ ∈ π4ℓ−4(G
pt
λ )× Q when ℓ− 1 < λ ≤ ℓ that vanishes

for λ > ℓ.

To get around the fact that there is no map Gλ → Gλ+ǫ when dealing with a

general manifold M , we show that for any compact K ⊂ Gλ the inclusion 0× K ⊂
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Gλ extends to a map h that fits into the commutative diagram

(4)

[−ǫ, ǫ] × K
h✲ G :=

⋃
(Gλ × λ)⊂ Diff0 M × R

[−ǫ, ǫ]

pr1

❄
incl ✲ R

pr2

❄

Moreover, for any two such maps h and h′ coinciding on 0×K , there is, for ǫ′ small

enough, a homotopy H : [0, 1] × [−ǫ′, ǫ′] × K → G between h and h′ preserving

the fibers of the natural projections. Therefore, for any cycle ρ in Gλ, there are

extensions ρǫ in Gλ+ǫ that, for ǫ sufficiently small, are unique up to homotopy.

Hence they yield well defined elements in π∗(Gλ+ǫ).

It will therefore make sense to ask what will become of an element ρ ∈ π∗(Gλ)

inside π∗(Gλ+ǫ), for small ǫ. In this language an element θℓ∈π∗(Gℓ) is called frag-

ile if any extension θℓ+ǫ is null-homotopic in π∗(Gℓ+ǫ) for ǫ > 0. Also, we say that

a family ηℓ+ǫ ∈π∗(Gℓ+ǫ), 0<ǫ is new if there is no ηℓ∈π∗(Gℓ)whose extension is

ηℓ+ǫ . We consider the space Aℓ+ roughly given by Aℓ+ :=
(⋂

0<ǫ<ǫ0
Aℓ+ǫ

)
∪ Aℓ;

for the precise definition see (7). We say that an element α ∈ π∗(Aℓ+,Aℓ) is

persistent if it has nonzero image under the map π∗(Aℓ+,Aℓ)→ π∗(A[ℓ,ℓ+ǫ],Aℓ).

Our main theorem is the following:

Theorem 1.3. Assume that we have a persistent element 0 6= βℓ ∈ πk(Aℓ+,Aℓ, ∗).

Then we can construct an element θℓ ∈ πk−2(Gℓ) such that either

(A) θℓ ∈ πk−2(Gℓ) is a nonzero fragile element, or

(B) θℓ = 0 and there is ǫℓ> 0 such that we can construct a family of new elements

0 6= ηℓ+ǫ ∈ πk−1(Gℓ+ǫ), where 0< ǫ < ǫℓ.

Any fragile element is null-homotopic when viewed inside Diff0 M . Our meth-

ods do not allow us to decide in general whether or not the image of ηℓ+ǫ in

πk−1 Diff0 M is zero.

We show that the hypothesis of the theorem is satisfied when M = S2 × S2 × X .

We consider D = A − ℓF . Since
(
σF ⊕ ℓσB ⊕ ωarb

)
(A − ℓF) = 0 we get Aℓ ⊂

A
c
[ℓ,ℓ+ǫ], D . In this situation the (4ℓ−2)-dimensional elements (Bℓ, ∂Bℓ) obtained

in Section 3 are detected as nontrivial in π4ℓ−2(Aℓ+,Aℓ) and are persistent. In fact,

in general PGW invariants detect persistent elements. By varying the value of the

integer ℓ we obtain infinitely many values of λ for which higher-order homotopy

groups of G X
λ are nontrivial and we discuss in more detail the stability of the

elements wℓ provided by Theorem 1.2 inside G X
λ . We obtain:

Corollary 1.4. For any natural number ℓ ≥ 1, exactly one of the statements below

holds.
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(A) We can construct a nonzero fragile element wX
ℓ ∈ π4ℓ−4(G

X
ℓ ), which can be

identified with wℓ × id.

(B) There exists an ǫℓ > 0 for which we can construct a family of new elements

0 6= ηX
ℓ+ǫ ∈ π4ℓ−3(G

X
ℓ+ǫ), 0< ǫ < ǫℓ.

In particular this shows that the fragile elements obtained by Abreu and McDuff

for ℓ > 1 do not disappear when we consider them inside S2 × S2 × X . Either

0 6= wℓ × id ∈ π4ℓ−4(G
X
ℓ ) as in (A) or, if wℓ × id = 0 then it yields the associated

new 4ℓ− 3 dimensional elements 0 6= ηX
ℓ+ǫ in π4ℓ−3(G

X
ℓ+ǫ) for small ǫ > 0 — this

is case (B). For general X and for ℓ = 1 it is known by work of Lê and Ono that

(B) takes place, and moreover that 0 6= i∗(ηℓ+ǫ) ∈ π1(Diff0(S
2 × S2 × X)), where

i is the inclusion of a symplectomorphism group into the diffeomorphism group.

Also, for X = pt and ℓ > 1 we know by work of Abreu and McDuff that (A) takes

place.

We don’t know of any examples where case (B) takes place and i∗(ηℓ+ǫ)= 0 ∈

π∗(Diff0 M).

Our method has been inspired by the work of P. Kronheimer, who uses para-

metric Seiberg–Witten invariants in dimension 4, as well as by [McDuff 2000].

Similar work has been done in this direction in [Lê and Ono 2001]; by looking

at related but slightly different parametric GW invariants, these authors get results

about πk

(
Symp0(S

2 × S2 × X, ω1 ⊕ωarb)
)

when k = 1, 3. In Section 3 we could

consider C2/C2ℓ+1 instead and, by carrying out similar arguments, get the same

type of results for CP 2 # CP 2 × X .

2. Relative parametric GW invariants

General setting. Consider a compact manifold B with boundary and a smooth map

i : (B, ∂B)→ (AI ,A
c
I,D). Although the invariants can be defined in this generality,

for the applications we have in mind we will consider B to be an n-ball such that

i represents a relative homotopy class in π∗(AI ,A
c
I,D, ∗). We will often write

Jb := i(b) and JB = im i , and refer to im B in AI as JB . Consider also a smooth

family of symplectic forms ωB := (ωb)b∈B where ωb tames Jb. The ωb need not be

cohomologous, since the taming condition is an open condition. Our goal here is

to show how we can define parametric GW invariants relative to the boundary ∂ JB

of JB , invariants that count Jb-holomorphic maps for some b ∈ B. These will not

depend either on deformations of the family ωB or on the representative (JB, ∂ JB)

of a relative homotopy class in (AI ,A
c
I,D).

Consider the space M̃
∗

0,k(M, D, (JB, ∂ JB)) of tuples (b, f, x1, . . . , xk), where

f : S2 → M is a simple1 Jb-holomorphic map in class D, for some b ∈ B, and the

1We say that f :6 → M is simple if it is not the composite of a holomorphic branched covering

map (6, j)→ (6′, j ′) of degree greater than 1 with a J-holomorphic map 6′ → M .
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xi are pairwise distinct points on S2. We will consider

M
∗
0,k(M, D, (JB, ∂ JB))= M̃

∗

0,k(M, D, (JB, ∂ JB))/G,

where G = PSL(2,C) acts on the moduli space by reparametrizations of the do-

main. Denote the elements of M
∗
0,k(M, D, (JB, ∂ JB)) by [b, f, x1, . . . , xk].

In the best scenario, for a good choice of (JB, ∂ JB),

(P1) M̃
∗

0,k(M, D, (JB, ∂ JB)) is a manifold of dimension 2n+2c1(D)+2k+dim B,

and

(P2) M
∗
0,k := M

∗
0,k(M, D, (JB, ∂ JB)) is compact.

Then the image of the map

(5) ev : M
∗
0,k(M, D, (JB, ∂ JB))→ Mk

with ev([b, f, x1, . . . , xk]) := ( f (x1), . . . , f (xk)) will provide a cycle ev∗(M
∗
0,k)

in Mk which, by intersection with homology classes of complementary dimension

in Mk , gives the parametric Gromov–Witten invariants.

Definition and properties of PGW. As the regularity discussion below will make

clear, condition (P1) can always be achieved by the Sard–Smale theorem. How-

ever, even in situations when (P1) holds, (P2) is seldom true; the compactifi-

cation M0,k(M, D, (JB, ∂ JB)) of M
∗
0,k(M, D, (JB, ∂ JB)) contains both stable J -

holomorphic maps2 and nonsimple curves, which we sometimes call multiple cover

curves. These nonsimple curves could potentially produce strata of high dimension

in the compactification M0,k(M, D, (JB, ∂ JB)), and hence this space would not

necessarily carry a fundamental class.

In the situation B = pt, there are various procedures [Li and Tian 1998; Ruan

1999; Fukaya and Ono 1999] to build up a theory that would provide a virtual mod-

uli cycle, that is, an object carrying a fundamental class required for the definition

of the invariants.

Roughly speaking, locally one needs to consider here all the stable holomorphic

maps as well as small perturbations of them. There are then various procedures

to pass to a global object with the required properties. These go through without

essential changes if one considers parameter spaces with no boundary; see [Bryan

and Leung 2000; Ruan 1999].

In our situation we need to make sure that the boundary causes no problem. In

what follows denote by [ f, 6, x1, . . . , xk] the equivalence class of a stable map

( f, 6, x1, . . . , xk), where two maps are equivalent if they differ by an automor-

phism of the domain. The elements of M0,k(M, D, (JB, ∂ JB)) consist of such

2These are rational maps f : (6, x1, . . . , xk) → M with the most normal crossing singularities

and no infinitesimal automorphisms; see [Li and Tian 1998; Bryan and Leung 2000] for details.
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equivalence classes. The next result states that if we consider an appropriately

small open neighborhood of M0,k(M, D, (JB, ∂ JB)) consisting of almost holomor-

phic stable maps, its projection onto JB stays away from ∂ JB .

Lemma 2.1. For any compact set JB ∈ AI such that ∂ JB ⊂ A
c
I,D , there exist δ > 0

and ǫ(δ)> 0 for which there is no stable map ( f, 6, x1, . . . , xk) such that ∂̄J f = ν,

when d(J, ∂ JB) < δ and ν ∈ L p(30,1 ⊗J f ∗T M) with |ν| ≤ ǫ(δ).

Proof. We will prove this by assuming the opposite. Assume we have sequences

Ji , νi and fi such that d(Ji , ∂ JB)→ 0, |νi | = ǫi → 0 and each fi is a stable map in

class D with the property that ∂̄Ji
fi = νi . Since JB is compact we find a convergent

subsequence Ji whose limit J∞ is in ∂ JB . But by the Gromov compactness theorem

there is a subsequence of fi converging to a J∞ stable holomorphic map in class

D. This contradicts the fact that J∞ ∈ ∂ JB ⊂ A
c
I,D . �

With this lemma one shows, as in [Li and Tian 1998], that every moduli space

M0,k(M, D, (JB, ∂ JB)) carries a virtual fundamental cycle

[M]vir := [M0,k(M, D, (JB, ∂ JB))]
vir

of degree r = 2c1(D)+ 2k + 2n − 6 + dim B.

Moreover, if we take two homotopic maps i : (B, ∂B, ∗)→ (AI ,A
c
I,D, ∗) and

i ′ : (B ′, ∂B ′, ∗)→ (AI ,A
c
I,D, ∗) representing the same element in π∗ (A,A

c
D, ∗),

then the corresponding fundamental cycles given by [M0,k(M, D, (JB, ∂ JB))]
vir

and [M0,k(M, D, (JB ′, ∂ JB ′))]vir are oriented cobordant and hence the virtual fun-

damental class [M]vir is independent of the choice of (JB, ∗) within the same class

in π∗(AI ,A
c
I,D, ∗). Note that [M]vir is also invariant under symplectic deformation

of the family of taming symplectic forms (ωb)b∈B . We denote by FD(M, 0, k)

the space of all equivalences classes of stable maps [ f, 6, x1, . . . , xk] with total

homology D. To define relative parametric Gromov–Witten invariants we consider

evi : B × FD(M, 0, k)→ M given by

evi (b, [ f, 6, x1, . . . , xk])= f (xi ).

We then can define

PGW
M,(JB ,∂ JB)
D,0,k :

k⊕

i=1

Hai (M,Q)k → Q

by

PGW
M,(JB ,∂ JB)
D,0,k (α1, . . . , αk)= ev∗

1(α1)∧ · · · ∧ ev∗
k (αk)[M]vir

which are zero unless

(6)

k∑

i=1

ai = 2c1(D)+ 2k + 2n − 6 + dim B.
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Changing the orientation of B just changes the sign of the invariant.

Theorem 2.2. (i) The invariants PGW
M,(JB ,∂ JB)
D,0,k are symplectic deformation in-

variants and depend only on the relative homotopy class of (JB, ∂ JB).

(ii) For a fixed choice of k, D and αi the map20,k,α1,...,αk
: π∗(AI ,A

c
I,D, ∗)→ Q

given by

2k,α1,...,αk
([(JB, ∂ JB)])= PGW

M,(JB ,∂ JB)
D,0,k (α1, . . . , αk)

is a group homomorphism.3

Proof. Point (i) and the well definedness of 2 follow from the properties of PGW

listed above. To show that 2 is a homeomorphism, choose (B1, ∂B1, ∗), and

(B2, ∂B2, ∗) representing two maps from the standard n-ball with boundary to

(AI ,A
c
I,D, ∗), giving two elements β1 and β2 inside π∗(A,A

c
D∗). We choose

them in such a way that by their concatenation we represent the element β1 + β2

by a map j : (B, ∂B, ∗)→ (AI ,A
c
I,D, ∗) with j (B\∂B)= (B1\∂B1)∪(B2\∂B2),

so that j−1(AI \A
c
I,D) is included in the disjoint union of two open subdiscs in B.

Then the new virtual cycle corresponding to the classes β1 +β2 is a disjoint union

of the virtual neighborhoods corresponding to β1 and β2. But this implies that the

parametric invariants corresponding to the new class β1 + β2 are the sum of the

PGW corresponding to β1 and β2. Therefore 2 is a homomorpism. �

More on the relation between PGW and almost complex structures. We will now

see that PGW detects only certain kinds of relative homotopy classes of almost

complex structures. As before, we write Aλ = Aωλ . Set

(7) Aℓ+ = {J | there is ǫJ > 0 such that J ∈ Aℓ+ǫ for all 0< ǫ < ǫJ }

Then Aℓ ⊂ Aℓ+ by Lemma 4.1 below. Note that Aℓ+ may not be connected, but

Aℓ is and we will consider our basepoint ∗ = Jbasepoint ∈ Aℓ.

Definition 2.3. Consider a nontrivial element βℓ ∈ π∗(Aℓ+,Aℓ). We say that βℓ is

persistent if its image under the natural morphism

i∗ : π∗(Aℓ+,Aℓ, ∗)→ π∗(A[ℓ,ℓ+ǫ],Aℓ, ∗)

is nonzero for any arbitrary small ǫ.

Proposition 2.4. Assume there is an ℓ such that no J in Aℓ admits J-holomorphic

stable maps in class D. Consider an element 0 6= βℓ ∈ π∗(Aℓ+,Aℓ, ∗) obtained by

counting nontrivial parametric Gromov–Witten invariants in class D. Then βℓ is a

persistent element.

Proof. The proof follows directly from Theorem 2.2. �

3Except in the case of π1(AI ,A
c
I,D
, ∗), which is not a group.
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Computability of PGW. We will now get back to the two conditions we posed

at the beginning of the section, sufficient to imply that the image of the map (5)

is a cycle. Below we will provide sufficient hypotheses on the parameter space

(JB, ∂ JB, ∗) and on the class D such that (P1) and (P2) are satisfied, as well as

a criterion for how to check one of the hypothesis. It will follow for such a fam-

ily (JB, ∂ JB, ∗) the invariants PGW defined above are integer-valued and can be

obtained by intersecting the image of the cycle ev∗

(
M

∗
0,k(M, D, (JB, ∂ JB))

)
with

the classes (P D(α1), . . . , P D(αk)) in H∗(M)
k . Moreover, they can be obtained

by counting the number of Jb-holomorphic maps in class D with k marked points

which intersect generic cycles representing (P D(α1), . . . , P D(αk)) in f (zi ).

Parametric regularity. We now show that D-parametric regular families (JB, ∂ JB)

are ones for which (P1) is satisfied. We begin by explaining what D-parametric

regularity is and contrasting it with the usual D-regularity for J (see [McDuff and

Salamon 1994]). For this we need the following facts.

Let X = Map(6,M; D) be the space of somewhere injective4 smooth maps

f : 6 → M representing class D. This is an infinite-dimensional manifold with

T f X=C∞( f ∗T M). We will next consider the following generalized vector bundle

E → B × X, whose fiber at (b, f ) is the space Eb, f =�
0,1
Jb
( f ∗T M) of smooth Jb

antilinear forms with values in f ∗T M . In this vector bundle we consider a section

8 : B × X → E, given by

(8) 8(b, f )=
1

2
(d f + Jb ◦ d f ◦ j).

The zeros of 8 are precisely the Jb-holomorphic maps and thus the moduli space

M̃
∗

0,0(M, D, (JB, ∂ JB))=8−1(0),

is the intersection of im8 with the zero section of the bundle. Since we would

like M̃
∗

0,k(M, D, (JB, ∂ JB)) to be a manifold, we require that 8 be transversal to

the zero section. This means that the image of d8(b, f ) is complementary to

the tangent space Tb B ⊕ T f X of the zero section. But for any f which is Jb-

holomorphic, d8 is given by

d8(b, f ) : Tb B ⊕ C∞( f ∗T M) ✲ Tb B ⊕ T f X ⊕ Eb, f .

If we now consider the projection onto the vertical space of the bundle,

proj2 : Tb B ⊕ T f X ⊕ Eb, f
✲ Eb, f ,

4We say that a map f : σ → M is somewhere injective if d f (z) 6= 0 and f −1( f (z))= z for some

z ∈6. A simple J-holomorphic map is somewhere injective; see [McDuff and Salamon 1994].
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the transversality mentioned above translates into the fact that

(9) proj2 ◦d8(b, f ) : Tb B ⊕ C∞( f ∗T M) ✲ �
0,1
Jb
(6, f ∗T M)

is onto. We introduce the notation D8(b, f )= proj2 ◦d8(b, f ).

Definition 2.5. We say that a Jb-holomorphic map f is JB-parametric regular if

D8(b, f ) is onto.

Observation. The linearized operator is well defined if there is no pair (b, f ) with

f a Jb-holomorphic and b ∈ ∂B. This is precisely the condition we imposed on

(JB, ∂ JB) to give a relative cycle in (AI ,A
c
I,D).

Definition 2.6. Consider (JB, ωB) as above. We say that (JB, ∂ JB) is a D-

parametric regular family of almost complex structures if any Jb-holomorphic map

in class D is parametric regular. We denote by Jpreg(D) the set of all D-parametric

regular families (JB, ∂ JB)⊂ (AI ,A
c
I,D).

To apply the implicit function theorem and the Sard–Smale theorem, we must

work on Banach manifolds and hence complete all spaces under suitable Sobolev

norms. For example, one should work on spaces consisting of almost complex

structures of class C l , on X
k,p, with kp > 2, the space of maps whose k-th deriva-

tives are of class L p. Also, we should work on

E
p

f = L p(30,1 ⊗J f ∗T M)

rather that with�
0,1
J (6, f ∗T M). There are standard arguments [McDuff and Sala-

mon 1994] to show that one can transfer the following arguments from spaces of C l

objects (which are Banach manifolds) to spaces of C∞ objects (which are Fréchet

manifolds). For simplicity we will drop the superscripts l, k, p unless specifying

them is relevant.

Theorem 2.7. If JB ∈ Jpreg(D), the moduli space M̃
∗

0,0(M, D, (JB, ∂ JB)) is a

smooth open manifold of dimension 2n + 2c1(D)+ dim B, with a natural orienta-

tion.

Moreover, if one considers M̃
∗

0,0(M, D, (JB, ∂ JB))× (S2)k and takes away all

the diagonals of the type M̃
∗

0,0(M, D, (JB, ∂ JB))× diagi, j , one obtains precisely

M̃
∗

0,k(M, D, (JB, ∂ JB)). This will therefore be a manifold of dimension 2n +

2c1(D)+ dim B + 2k.

Let M̃
∗

0,0(M, D,AI ) be the universal moduli space consisting of pairs ( f, J ),

where J ∈ AI and f is J -holomorphic. It will be relevant for the results we have

in mind to point out the following characterization of parametric regularity.
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Proposition 2.8. Consider the diagram

(10)

M̃
∗

0,0(M, D,AI )

(B, ∂B)
i ✲ (AI ,A

c
I,D)

5

❄

Then JB ∈ Jpreg(A) if and only if i ⋔5.

Proof. For simplicity we will write D f,b = D8(b, f )|C∞( f ∗(T M)). By (9), the

surjectivity of D8(b, f ) is then equivalent to the surjectivity of the linear operator

Dφ|Tb B : Tb B → coker Db, f .

We will set i(b) = J . The tangent space TJ AI to AI consists of all sections

Y of the bundle End(T M, J ) whose fiber at p ∈ M is the space of linear maps

Y : Tp M → Tp M such that Y J + JY = 0; we will consider the map

R : TJ AI →�
0,1
J

(
6, f ∗T M

)

given by R(Y )= 1
2
Y ◦ d f ◦ j . The map

d5 : T f,J M̃
∗

0,0(M, D,AI )→ TJ AI

is given by d5(ξ, Y ) = Y , where the pair (ξ, Y ) is in T f,J M̃
∗

0,0(M, D,AI ) if and

only if

(11) D f,b(ξ)+ R(Y )= 0.

From this one can see that im D f,b = R(im d5). Since Db, f is elliptic and ker R ⊂

im d5, it follows that coker d5 has finite dimension. If we consider the map

F : X × AI → E, given by F( f, J ) = ∂̄J ( f ) then (see [McDuff and Salamon

1994]) the linearization at a zero ( f, J ) with f simple is onto. That is

DF( f, J )(ξ, Y )= D f ξ + R(Y )

is onto. This implies that coker D f is covered by R. We can show that there is an

induced map

R̃ : coker d5→ coker Db, f

which is isomorphism. We have D8|Tb B(Y )= R ◦ di , so

i ⋔5 ⇐⇒ di → coker d5 onto ⇐⇒ R̃ ◦ di → coker Db, f onto.

The proposition follows. �
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We call attention to a few key points. Parametric regularity is a generalization

of the usual regularity. Indeed, if we consider Jb = J to be constant for b in a

neighborhood around b0, the regularity of an almost complex structure J simply

says, following the diagram above, that d5 is surjective. If we now regard J within

an arbitrary family JB , this no longer needs to be the case. It will then suffice that

the cokernel of d5 is covered by the variation of J in the direction of B.

In fact, when we count rational maps, the criterion of parametric regularity de-

scribed below reduces the problem to the usual regularity in some suitable ambient

space.

More precisely, note that the regularity of a holomorphic map is a local statement

within B and it only concerns the almost complex structure data. Therefore, for

each b ∈ B̊, we can restrict our attention to a neighborhood of b, and without loss

of generality the following discussion can be made for smoothly trivial fibrations.

We say that a family (JB, ωB) descends from a fibration M → M̃ → B if there is

a diagram

(12)

M
i ✲ M̃

B

π

❄

such that the almost complex structure J̃ on M̃ yields, by restriction to each fiber

M ×b, the almost complex structure Jb on M , and such that the closed two-form ω̃

on M̃ also gives, by restriction to each fiber, the symplectic form ωb, which tames

Jb. Here we have chosen a trivialization of the fibration such that M̃ = B × M

smoothly and π is just the projection on the first factor. In the following theorem

we consider the family of parameters B to be a subset of Cm and we denote by z

the parameter.

Theorem 2.9. Let (Jz, ωz)z∈B⊂Cm be a family on M descending from the symplec-

tic fibration (M̃, J̃ , ω̃). Suppose that f : 6 → M is a J0-holomorphic map and

consider the composite map

f̃ = i ◦ f, f̃ :6 → M × 0 ⊂ M̃,

which is J̃ -holomorphic. If f̃ is regular, f is (Jz)-parametric regular. If 6 = S2,

the reverse statement also holds.

For the proof of the Theorem see the Appendix.

There exists a large subset of parametric regular families of almost complex

structures inside (AI ,A
c
I,D). This is because one can employ the Sard–Smale the-

orem [Smale 1965] and show that any map i : (B, ∂B)→ (AI ,A
c
I,D) in Proposition

2.8 can be perturbed to an i ′ such that i ′ ⋔5.
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Definition 2.10. We will say that (JB, ∂ JB) satisfies hypothesis H1 if it is a D-

parametric regular family of almost complex structures.

Compactness. Even in those situations when (P1) is easily achieved using Sard–

Smale, (P2) is seldom true. However, (P2) is true when k is either 0 or 1, and the

class D is Jb indecomposable for any b ∈ B. This means that no Jb-holomorphic

map in class D can decompose into a connected union of Jb-holomorphic spheres

C = C1 ∪ C2 ∪ · · · ∪ C N such that each C i represents the class Di and D =

D1 + · · · + DN . Then as a consequence of Gromov’s compactness theorem it

follows that M
∗
0,k := M

∗
0,k(M, D, (JB, ∂ JB)) is compact and hence in this situation

the image of ev : M
∗
0,k(M, D, (JB, ∂ JB))→ Mk is a cycle.

Definition 2.11. We will say that the hypothesis H2 is satisfied by (JB, ∂ JB) and

D if the class D is Jb indecomposable for every b ∈ B.

Note that if D is Jb-indecomposable and k ≥ 2 then in order to compactify the

image of the evaluation map one only needs to add the limits of sequences of J -

holomorphic maps for which two distinct marked points converge to each other.

Hence ev(M∗
0,k) will have boundary of codimension 2 or more and hence it will

carry a fundamental class.

3. Resolutions of singularities and relative PGW

Quotient singularities. We now give an overview of work of Kronheimer [1998]

and Abreu and McDuff [2000] on how to construct special families of almost com-

plex structures arising from the study of the total spaces of deformations for some

quotient singularities. At the end of the section we will explain how these families

serve our purpose of counting nontrivial PGWs. The local picture is as follows

[Kronheimer 1998]:

We consider the particular type of Hirzebruch–Jung singularity Y0 = C2/C2ℓ,

given by the diagonal action by scalars of C2ℓ on C2, where C2ℓ is the cyclic group

of order 2ℓ. This admits a resolution σ0 : Ỹ 0 → Y0, where Ỹ 0 is the total space of

the line bundle of degree −2ℓ over CP 1. The exceptional curve of the resolution,

we will call it E, is a curve of self-intersection −2ℓ and is the zero section of

Ỹ 0. This resolution admits a (2ℓ− 1)-complex-dimensional parameter family of

deformations Ỹt , t ∈ C2ℓ−1. With the exception of the case ℓ = 2 the total space

Ỹ =
⋃

Ỹ t of the family of deformations is the total space of the vector bundle

O(−1)2ℓ. More precisely, we consider the exact sequence of bundles

(13) O(−2ℓ) ✲ O(−1)2ℓ
r✲ O

2ℓ−1,

where r is given by evaluating at 2ℓ− 1 generic sections of the dual, Ỹ
∗
= O(1)2ℓ

of Ỹ . Since holomorphically O
2ℓ−1 is trivial, we can project it to its fiber C2ℓ−1
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and hence obtain a submersion q̃ : O(−1)2ℓ → C2ℓ−1 with Ỹ t = q̃−1(t). Also it

can be seen that Ỹ is diffeomorphic with Ỹ 0 × C2ℓ−1 and a choice of trivialization

provides a fiberwise diffeomorphism

(14) θ : Ỹ ====
C∞

Ỹ 0 × C
2ℓ−1,

where Ỹ 0 is the total space of the bundle O(−2ℓ). Now consider a 4ℓ-dimensional

basis of sections in the dual Ỹ
∗
. Here the space of holomorphic sections is given

by
⊕2ℓ

i=1 H 0(C P1,O(1))=̃(C2)2ℓ. Denote by Y the subspace of (C2)2ℓ consisting

of 2ℓ-tuples of vectors in C2 spanning either zero or a line. By evaluating all the

4ℓ section we obtain a map

σ : Ỹ ✲ Y ⊂ C
4ℓ

that contracts E to a point γ0 = σ(E). Moreover, γ0 is the only singular point of

Y and the morphism is one-to-one outside E . Define a map q : Y → C2ℓ−1 by

evaluating at the original 2ℓ− 1 generic sections. The diagram

(15)

Ỹ
σ ✲ Y

C
2ℓ−1

q̃

❄
id✲ C

2ℓ−1

q

❄

commutes. We can obtain a two-form τ on Y by pulling back a Kähler form from

C4ℓ. Via σ ∗ this can be seen as a two-form on Ỹ that restricts to a Kähler form τt

on each fiber Ỹ t if t 6= 0 but degenerates along E when t = 0. If we further push

forward through θ , these forms can be seen as a family of forms on Ỹ 0.

As in [Abreu and McDuff 2000], we can choose an appropriate compactification

of the local picture as follows:

Let B4ℓ−2 be the unit ball in C2ℓ−1. We have a family (Y t , J ℓt , τt)t∈B4ℓ−2 , where

each (Y t , J ℓt , τ
ℓ
t ), t 6= 0 is a Kähler manifold diffeomorphic with S2 × S2, and,

(Y 0, J ℓ0 ) is a complex manifold, also diffeomorphic with S2×S2 and τ0 degenerates

along E which represents the homology class A − ℓF . We take A = [S2
base] and

F = [S2
fiber]. The total space of the family has the following properties:

• The space Y = ∪t∈B4ℓ−2Y t is smoothly diffeomorphic to S2 × S2 × B4ℓ−2.

Moreover Y is a complex manifold with a complex structure J̃ ℓ which restricts

to each fiber Y t to the complex structure J ℓt . Also, Y has a closed (1, 1) form

τ which is satisfies all the properties of a Kähler form outside the zero fiber

and restricts at each fiber to the forms τt .

• The restriction of τ to Y 0 degenerates along the curve E representing the class

A − ℓF .
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Since the forms τt are obtained by restricting the closed form τ to fibers, it is

clear that they are all in the same cohomology class. From (τ0)|E = 0 we have

[τ0](A − ℓF) = 0, and hence [τ ℓt ] = [ωℓ] for all t ∈ B4ℓ−2, where, as in the

introduction, ωℓ = σF ⊕ ℓσB is a symplectic form on S2 × S2.

From (a) we see that there is a holomorphic projection π : Y → S2 × B4ℓ−2.

This is because every Y t is a ruled surface therefore it fibers over S2. If we denote

by α the area form on S2 we can construct a two-form

τ λ = τ + (λ− ℓ)π∗(α)

For λ > ℓ these forms are Kähler forms, and restricted to each Y t they yield sym-

plectic forms in the class [ωλ]. This proves that any J ℓt (including J ℓ0 ) is tamed

by a form isotopic to ωλ, as long as λ > ℓ. We now follow a similar procedure to

construct a family of symplectic forms ωt , for t ∈ B4ℓ−2, such that each ωt tames

J ℓt . We next change the forms τt by perturbing with a a positive factor of π∗(α)

only around t =0 and smooth with a cutoff function. With this procedure we obtain

symplectic forms ωt with variable cohomology classes.

In conclusion, we have pairs

(S2 × S2, J ℓt , ωt)t∈B4ℓ−2,

where ωt is a symplectic structure on S2×S2 that tames J ℓt . Moreover [ωt ]t∈S4ℓ−3 =

[ωℓ]. This gives a family of almost complex structures (which we denote Bℓ, by

abuse of notation) such that (Bℓ, ∂Bℓ) ∈ (A[ℓ,ℓ+ǫ], Aℓ) for any ǫ > 0. More im-

portantly, for cohomological reasons, only J ℓ0 admits almost holomorphic stable

curves in the class A − ℓF .

We then obtain a family of almost complex structures on (S2 × S2 × X) by

taking (J ℓt × Jarb), and by abuse of notation, we call this family also Bℓ. Thus we

have just produced on (S2 × S2 × X) pairs (Bℓ, ∂Bℓ)⊂ (A[ℓ,ℓ+ǫ], Aℓ), with ǫ > 0,

representing an element βℓ in π∗(A[ℓ,ℓ+ǫ], Aℓ). Moreover each Bℓ is contained in

Aℓ+ǫ for any small ǫ > 0.

From the choice of the J ’s we know that the only almost complex structure

admitting A − ℓF almost complex stable curves is J0 × Jarb.

The computation of PGW. Here we prove that (H1) and (H2) are satisfied for

the family (Bℓ, ∂Bℓ), and therefore the invariant is integer-valued and can be ob-

tained by counting holomorphic maps intersecting generic cycles of appropriate

dimension.

Claim 1. The family (Bℓ, ∂Bℓ) satisfies H1.

Proof. From the sequence (13) we see that the exceptional curve E , which is J̃ ℓ-

holomorphic, has normal bundle O(−1)2ℓ; therefore we can apply [McDuff and

Salamon 1994, Lemma 3.5.1, p. 38] for the integrable almost complex structure J̃ .
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If follows that E is J̃ ℓ-regular inside Y . If we now consider Y × X and J̃ ℓ × Jarb,

the curve E lies entirely inside Y and therefore the normal bundle inside Y × X

is O(−1)2ℓ × trivial, and therefore the curve is ( J̃ ℓ × Jarb)-regular. This splitting

and therefore regularity use the fact that the map E is of genus zero. Theorem 2.9

implies parametric regularity and therefore (H1) holds. �

Claim 2. The family (Bℓ, ∂Bℓ) satisfies H2.

Proof. This is proved by inspection. Only J ℓ0 × Jarb admits (A − ℓF)-stable maps,

and the only maps in this class are copies of the embedded map E in any fiber

S2 × S2 × pt. Hence there are no decomposable Jb-holomorphic maps. �

Remark. For other almost complex structures J on S2 × S2 × X one could have

decomposable J -holomorphic maps in the class A−ℓF . For an example, consider

M = S2 × S2 × CP n and ω = ω1+ǫ ⊕ωarb. If H denotes the hyperplane class in

CP n , we can take ωarb such that ω(A−F−H)>0 and get a symplectic embedding

of S2 into M , in the class A − F − H . We can choose an ω-tamed almost complex

structure J̃ on M that fibers over the base S2 × S2 and such that the class H has

a J̃ -holomorphic representative. Then the class A − F is J̃ -decomposable, where

the decomposition is given by a C with C = C1 ∪ C2 with [C1] = A − F − H and

[C2] = H .

We conclude that the invariants

PGW
S2×S2×X,(Bℓ,∂Bℓ)
A−ℓF,0,k :

k⊕

i=1

Hai (S2 × S2 × X,Q)k → Z

are integer-valued. We have two situations. First, if X = pt, the moduli space of

unparametrized curves has dimension 0, so we would count isolated curves. This

follows immediately from the equality c1(A−ℓF)=−4ℓ+2 (adjunction formula),

so that

dim M
∗
0,0(S

2 × S2, A − ℓF, (Bℓ, ∂Bℓ))= 2 × 2 + 2c1(A − ℓF)+ dim Bℓ − 6

= 4 − 4ℓ+ 4 + 4ℓ− 2 − 6 = 0.

Moreover, the invariant PGW
S2×S2×X,(Bℓ,∂Bℓ)
A−ℓF,0,0 ([pt]) equals 1 because it counts

E , the only Jb-map (where b ∈ Bℓ) in the class A − ℓF .

In the situation dim X =2n>0, we will count maps with one marked point. Then

c1(A−ℓF) is the same, since the holomorphic maps in class A−ℓF will be copies

of the curve E and hence will have the image entirely in the fibers S2 × S2 × pt ⊂

S2 × S2 × X . We therefore have

dimM
∗
0,1

(
S2×S2×X, A−ℓF,(Bℓ,∂Bℓ)

)
= 2×(2+n)+2c1(A−ℓF)+dim Bℓ−6+2

= 2n+2.



RELATIVE FAMILY GW INVARIANTS AND SYMPLECTOMORPHISMS 331

We consider a cycle in the homology class F lying in a fiber S2 × S2 ×pt inside

S2 × S2 × X . It easily follows that the only Jbℓ-holomorphic map with one marked

point that intersects this cycle transversely is a copy of the map E inside the fiber

S2 × S2 × pt. We obtain

PGW
S2×S2×X,(Bℓ,∂Bℓ)
A−ℓF,0,1 (P D([F]))= ±1,

where the sign depends on the orientation of the parameter space Bℓ. Applying

Theorem 2.2 we conclude that the morphism 2 in both situations is nontrivial and

therefore there is a nonzero element

(16) βℓ ∈ π4ℓ−2((A[ℓ,ℓ+ǫ], Aℓ)) for all ǫ > 0

represented by the cycle (Bℓ, ∂Bℓ)⊂ (Aℓ+ǫ,A
c
ℓ+ǫ,D).

4. Almost complex structures and symplectomorphism groups

Almost complex structures and symplectomorphisms; deformations along com-

pact subsets. We now give a quick overview of what can be said about the behavior

of spaces of almost complex structures and about the symplectomorphism groups

as the symplectic form varies along the line L .

If L happens to be a ray λω, λ > 0, then Gλ is independent of λ. Thus we may

as well assume L is not a ray.

If M = S2 × S2, much is known about the structure of Aλ; see [McDuff 2000].

For example, one can establish that there is a direct inclusion Aλ ⊂ Aλ′ , for λ<λ′.

Moreover, the homotopy type of the spaces Aλ changes only as λ strictly passes

an integer ℓ.

None of this is known to hold when M is an arbitrary symplectic manifold.

Nevertheless, as a consequence of the fact that taming is an open condition, we are

able to establish the following lemma, which we use in the proof of Theorem 2.9.

Lemma 4.1. (a) Let K ′ to be an arbitrary compact subset of Aλ. There is an

ǫK ′ > 0 such that K ′ is contained in Aλ+ǫ , for |ǫ|< ǫK ′ .

(b) Consider K an arbitrary compact set in Gλ. For G as in (4), there is an ǫK >0

and a map h : [−ǫK , ǫK ] × K → G|L such that the diagram

(17)

[−ǫK , ǫK ] × K
h ✲ G|L

[−ǫK , ǫK ]

pr1

❄
incl ✲ R

pr2

❄

commutes.
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For any two such maps h and h′ coinciding on 0 × K , there exists, for ǫ′ small

enough, a homotopy H : [0, 1] × [−ǫ′, ǫ′] × K → G|L between them that satisfies

(18)

[0, 1] × [−ǫ′, ǫ′] × K
H ✲ G|L

[−ǫ′, ǫ′]

pr1

❄
incl ✲ R

pr2

❄

Proof. Part (i) is an immediate consequence of the openness of the taming condi-

tion.

For the proof of (ii), let’s first notice that, since the symplectic condition is an

open condition, there is a convex open neighborhood U of ωλ inside the space of

2-forms such that any closed ω′ in U is still symplectic.

Moreover since K is compact there is an ǫ(K ) > 0 such that, for any gk ∈ K ,

g∗
kωλ+ǫ ∈ U for all 0 ≤ ǫ < ǫ(K ).

This is true because we can produce such an ǫ for an open set around each element

g ∈ K and hence find a global ǫ(K ) by following a standard compactness argument.

We will construct the elements h(ǫ, k) as follows. For t ∈ [0, 1] the forms

ωt
k,λ+ǫ := tg∗

kωλ+ǫ + (1 − t)ωλ+ǫ

are symplectic, since both g∗
kωλ+ǫ and ωλ+ǫ are inside the convex set U . Moreover,

since K ⊂ Gλ ⊂ Diff0 M , any gk is smoothly isotopic to the identity and hence

[g∗
kωλ+ǫ] = [ωλ+ǫ]. Therefore the forms ωt

k,λ+ǫ are cohomologous as we vary t .

We now apply Moser’s argument for the one-parameter family of symplectic forms

ωt
k,λ+ǫ and obtain a family of diffeomorphisms ξk,λ+ǫ,t having the property that

ξ∗
k,λ+ǫ,tω

t
k,λ+ǫ = ωλ+ǫ . We next define h(ǫ, k) := gk ◦ ξk,λ+ǫ,1. Then h has the

required properties.

For an arbitrary h : [−ǫ, ǫ] × K satisfying (17) we take the homotopy

F : [0, 1] × [−ǫ, ǫ] × K → R × Diff0 M

given by F(t, ǫ, k) := (ǫ, h(tǫ, k)).

This gives a homotopy between h and h0 : [−ǫ, ǫ] × K → R × Diff0 M , where

h0(ǫ
′, k)= h(0, k). We similarly obtain a homotopy F ′ between h′ and h0, where

h′ also satisfies (17). By concatenating one homotopy with the opposite of the other

we obtain a homotopy between h and h′, which we call G : [0, 1]×[−ǫ1, ǫ1]×K →

R × Diff0 M . We set gs,ǫ,k := G(s, ǫ, k) and follow the same procedure as before:

we restrict to a short interval [−ǫ′, ǫ′] such that, if we define

ωt
s,k,λ+ǫ := tg∗

s,ǫ,kωλ+ǫ + (1 − t)ωλ+ǫ,
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these maps are symplectic for all 0 ≤ |ǫ| < ǫ′ and t, s ∈ [0, 1]. This is possible

because ωt
s,k,λ = ωλ. Again, the diffeomorphisms gs,ǫ,k are smoothly isotopic to

the identity and, as above, we can apply Moser’s argument to the isotopic forms

ωt
s,k,λ+ǫ , to obtain diffeomorphisms ξs,k,λ+ǫ,t such that ξ∗

s,k,λ+ǫ,tω
t
s,k,λ+ǫ, = ωλ+ǫ .

If we define H(s, ǫ, k) := gs,ǫ,k ◦ξs,k,λ+ǫ,1, the map H has the required properties.

�

Definition 4.2. Let ρ : B → Gλ be a cycle in Gλ. An extension ρǫ of ρ is a smooth

family of cycles ρǫ : B → Gλ+ǫ defined for |ǫ| ≤ ǫ0 such that ρ0 = ρ and satisfying

(18). Using Lemma 4.1(i) we see that every cycle ρ has an extension.

Observation. Consider two extensions ρǫ1 , where 0 ≤ |ǫ| < ǫ1, and ρǫ2 , where

0 ≤ |ǫ| < ǫ2. By (18) there is an ǫ′ > 0 and a homotopy between ρǫ1 and ρǫ2
defined for all 0 ≤ ǫ ≤ ǫ′. Hence any extension provides well defined elements

in π∗(Gλ+ǫ) for small values of ǫ. Therefore each [ρ] ∈ π∗(Gλ) has an extension

[ρǫ] ∈ π∗(Gλ+ǫ) whose germ at ǫ = 0 is independent of the choices of ρ.

Definition 4.3. We say that a smooth family of elements [ρǫ] ∈ π∗(Gλ+ǫ), with

0< ǫ < ǫρ , is new if it is not the extension for ǫ > 0 of any element [ρ] ∈ π∗(Gλ).

In the next section we will use the same letter ρ to refer both to cycles as well

as to the homotopy class they represent.

Relation between almost complex structures and symplectomorphism groups;

proof of Theorem 1.3. We consider the long exact sequence of relative homotopy

groups of the pair (Aℓ+,Aℓ):

· · · ✲ πk(Aℓ+) ✲ πk(Aℓ+,Aℓ) ✲ πk−1(Aℓ) ✲ πk−1(Aℓ+) ✲ · · ·

Since by construction βℓ ∈ πk(Aℓ+,Aℓ) is nontrivial, one of the two following

cases can happen:

1. βℓ 7→ γℓ 6= 0 ∈ πk−1(Aℓ).

2. βℓ 7→ 0 ∈πk−1(Aℓ). In this situation, there is a nonzero element αℓ ∈πk(Aℓ+)

that maps to βℓ.

We analyze each case in turn:

Case 1. Consider the fibration (2), which yields Gℓ
✲ Diff0 M ✲ Aℓ, and

then the long exact sequence in homotopy,

· · · ✲ πk−1(Gℓ) ✲ πk−1(Diff0 M) ✲

✲ πk−1(Aℓ) ✲ πk−2(Gℓ) ✲ πk−2(Diff0 M) ✲ · · ·

Again, there are two possibilities:
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(i) γℓ → θℓ 6= 0 ∈ πk−2(Gℓ). In this situation, we have a nontrivial element

θℓ ∈ πk−2(Gℓ), such that θℓ 7→ 0 ∈ πk−2(Diff0 M). Then we are in case (A) of

Theorem 1.3.

This element is fragile. For assume it isn’t; then θℓ can be extended by θℓ+ǫ ,

which yields nontrivial classes in πk−2(Gℓ+ǫ). Then θℓ+ǫ 7→ 0 ∈ πk−2(Diff0 M)

as well. Therefore θℓ+ǫ appears as a boundary of an element γℓ+ǫ ∈ πk−1(Aℓ+ǫ),

which is homotopic to γℓ. But by construction and Lemma 4.1, we know that γℓ
is a contractible cycle inside Aℓ+ǫ . This contradicts the existence of γℓ+ǫ .

(ii) γℓ 7→0∈πk−2(Gℓ). Then γℓ is in the image of the morphism πk−1(Diff0 M)→

πk−1(Aℓ), so there is an element γ ′
ℓ ∈ πk−1(Diff0 M) such that 0 6= γ ′

ℓ 7→ γℓ.

In this situation, we can choose a cycle S ⊂ Aℓ representing γℓ ∈πk−1(Aℓ), and,

using Lemma 4.1, there is an ǫS > 0 such that S ⊂ Aℓ+ǫ for any ǫ ∈ (0, ǫS). Now

we claim that

0 = [S] ∈ πk−1(Aℓ+ǫ).

For, by hypothesis, S is the boundary of a cycle Bℓ such that Bℓ ⊂ Aℓ+ǫ for all

small ǫ > 0. Therefore we have a k-dimensional ball inside Aℓ+ǫ whose boundary

is S, which proves the claim. We therefore have πk−1(Diff0 M) ∋ γ ′
ℓ 7→ [S] = 0 ∈

πk−1(Aℓ+ǫ) on the top row of the commutative diagram

· · · ✲ πk−1(Gℓ+ǫ) ✲ πk−1(Diff0 M) ✲ πk−1(Aℓ+ǫ) ✲ πk−2(Gℓ+ǫ) ✲

· · · ✲ πk−1(Gℓ) ✲ πk−1(Diff0 M)

wwwwww
✲ πk−1(Aℓ)

i|k

✻
..........

✲ πk−2(Gℓ) ✲

while on the bottom row the same γ ′
ℓ maps to γℓ ∈ πk−1(Aℓ+ǫ). By the exactness

of the first row, γ ′
ℓ is in the image of the map πk−1 (Gℓ+ǫ)→ πk−1(Diff0 M), and

therefore we are able to produce an element 0 6= ηℓ+ǫ ∈πk−1(Gℓ+ǫ) such that ηℓ+ǫ
persists in the topology of the group of diffeomorphisms. Thus we are in case (B).

The elements we obtain here are new. This follows easily by assuming the

opposite. That is, if we consider that there is an element 0 6= ηℓ ∈ πk−1(Gℓ) whose

germ is given by ηℓ+ǫ , then the image of ηℓ in Diff0 M has to be γ ′
ℓ. But this

contradicts the fact that γ ′
ℓ 7→ γℓ 6= 0.

Case 2. In this situation we have a nontrivial element αℓ ∈ πk(Aℓ+). Then we

shall see that there is an ǫ such that for 0< δ < ǫ, αℓ has a representative C inside

Aℓ+δ, with 0 6= [C] ∈πk(Aℓ+δ). The proof of this follows from the construction of

αℓ. Namely, since βℓ 7→ 0 ∈ πk−1(Aℓ), there exists a k-dimensional disk D inside

Aℓ whose boundary is ∂Bℓ; by Lemma 4.1(i), this can be viewed inside Aℓ+δ for

small δ. We can now glue Bℓ and D along their boundary ∂Bℓ. In this manner we

get a cycle C ⊂ Aℓ+δ representing the class αℓ. We can therefore consider again
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the sequence

· · · ✲ πk(Gℓ+δ) ✲ πk(Diff0 M) ✲

✲ πk(Aℓ+δ) ✲ πk−1(Gℓ+δ) ✲ πk−1(Diff0 M) ✲ · · ·

Next we claim that [C] doesn’t lift to a nontrivial element in πk(Diff0 M). In-

deed, there is a map

(19) πk(Diff0 M) ✲ πk(Aλ)

for any λ, and as λ varies these maps vary homotopically in AI . If C did lift, the

map πk(Diff0 M)→ πk(Aℓ) would produce a cycle [B] ∈ Aℓ, which by means of

Lemma 4.1 could be viewed inside all Aℓ+ǫ for small ǫ and which moreover would

be homotopic to C inside A[ℓ,ℓ+ǫ]. Therefore [C] would map to 0 ∈ πk(Aℓ+,Aℓ),

contradicting its definition.

Since [C] cannot be in the image of the map πk(Diff0 M) → πk(Aℓ+δ), we

know that [C] must have nonzero image [C] 7→ηℓ+δ 6=0 in πk−1(Gℓ+δ). Moreover,

from the obvious properties of exact sequences again, ηℓ+δ → 0 through the natural

inclusion map πk−1(Gℓ+δ)→πk−1(Diff0 M). That these elements are new follows

again by assuming the opposite. If they formed the germ of an element ηℓ in

πk−1(Gℓ), then ηℓ would also be null-homotopic inside Diff0 M , so it would come

from a class [C ′] in πk(Aℓ). Moreover, C ′ would be homotopic with C inside

A[ℓ,ℓ+δ], therefore also in (A[ℓ,ℓ+δ],Aℓ), which is false given that C has to yield a

nontrivial element in πk(A[ℓ,ℓ+δ],Aℓ). Thus we are in case (B) of the theorem.

With this, we have exhausted all the possible cases given by the nontrivial PGW,

and the proof of Theorem 1.3 is complete. �

Now to prove Corollary 1.4, consider the manifold (S2 × S2 × X, ωλ⊕ωarb). As

seen in (16), the cycles (Bℓ, ∂Bℓ) satisfy the definition (7), so by Proposition 2.4

they give persistent elements in π4ℓ−2(Aℓ+,Aℓ). Therefore Theorem 1.3 applies

and the corollary holds.

Appendix: A proof of the criterion of parametric regularity, Theorem 2.9

Let T|
π−1(0)

M̃ be the tangent space along the preimage of 0 ∈ Cm . Denote by H the

subbundle of T|
π−1(0)

M̃ which is ω̃-orthogonal to the fiber {0}× M . We would like

H to coincide with the horizontal space of T M̃ with respect to the trivialization π

and to be J̃ -invariant. This can be arranged by deforming the form ω̃ so that near

the zero fiber {0} × M it is given by

ω̃ = ω0 +π∗(σbase),
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where σbase is a standard symplectic two-form on the holomorphic base B.Through-

out this deformation process J̃ is still ω̃-tamed.

Let g0 be a metric on M0 and ∇ the Levi-Civita connection on M associated with

it. Also let ∇st be the standard Levi-Civita connection on Cm , and set ∇̃ =∇×∇st ,

the product connection on M̃ ≃ Cm × M . The regularity of f̃ : 6 → M̃ is by

definition equivalent to the surjectivity of D f̃ , the linearization of ∂̄:

D f̃ : C∞( f̃ ∗T M̃) ✲✲ �
0,1

J̃
(6, f̃ ∗T M̃).

Using the connection ∇̃ we will derive formulas for D f̃ and express them in

terms of the linearization D8.

Since M̃ ≃ Cm × M and im f̃ ⊂ {0} × M , we have the relations

f̃ ∗(T M̃)= f̃ ∗
(
T M̃π−1(0)

)
= f̃ ∗(H ⊕ T M)= triv ⊕ f ∗(T M),

where by triv we denote the trivial m-dimensional complex bundle over 6. This

gives

(20) C∞( f̃ ∗T M̃)≃ C∞(triv)⊕ C∞( f ∗T M)

Since each fiber is J̃ -invariant and H is J̃ -invariant along π−1(0), we obtain

(21) �
0,1

J̃
(6, f̃ ∗T M̃)≃�

0,1
J

(
6, f ∗T M

)
⊕�

0,1

J̃
(6, H).

From (20) and (21) we obtain

D f̃ : C∞(triv)⊕ C∞( f ∗T M) ✲✲ �
0,1
J

(
6, f ∗T M

)
⊕�

0,1

J̃
(6, H),

and by considering the appropriate restrictions we obtain the operators

D1,vert :C
∞(triv)→�

0,1
J (6, f ∗T M),

D1,hor :C∞(triv)→�
0,1

J̃
(6,H),

D2,vert :C
∞( f ∗T M)→�

0,1
J (6, f ∗T M),

D2,hor :C∞( f ∗T M)→�
0,1

J̃
(6,H).

We sometimes write Dk = (Dk,vert, Dk,hor), for k = 1, 2.

To compute the formulas for these operators we use a general method found in

[Aebischer et al. 1994]: Consider ξ ∈ C∞(6, f̃ ∗T M̃) and F̃ξ : [0, 1] ×6 → M̃

given by F̃ξ (t, x) = exp∇̃
f̃ (x)(tξ(x)), for ξ sufficiently small. Let s : 6 → T6 be

a section and let s̃ be its lift to T ([0, 1] ×6). Denote by ∂/∂t the vector field in

T ([0, 1] ×6) corresponding to the parameter in [0, 1]. Define f̃ t(x) := F̃ξ (t, x).

For any x ∈ 6, define the path γ̃
ξ
x : [0, 1] → M̃ given by γ̃

ξ
x (t) = F̃ξ (t, x), the

image under F̃ξ of [0, 1]× x in M̃ . By the definition of F̃ξ , γ̃
ξ
x is a geodesic path

in M̃ relative to the connection ∇̃. Denote by τ
ξ
t,x : Tγx (t)M̃ → Tγx (0)M̃ the parallel

transport in M̃ along the curve γx := γ̃
ξ
x . To compute D f̃ (ξ)(s) in general, one
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needs to consider the expression 1
2
τ
ξ
t,x

(
d f̃ t(s)+ J̃ d f̃ t( js)

)
and take its derivative

with respect to t at t = 0:

(22) D f̃ (ξ)(s)=
1

2

∂

∂t

(
τ
ξ
t,x(d f̃ t(s)+ J̃ d f̃ t( js))

)
|t=0

We define Const to be the subspace of C∞(triv) made out of constant sections.

For the proof of the theorem, we are particularly interested in computing D1,hor

and the restriction of D1,vert to Const.

To simplify the notation, we denote by x the coordinate on6 and write the points

in Cm × M as (z1, . . . , zm, y), where z1 = w1 + iv1 and so on. For simplicity we

denote coordinate vector fields in Const by ∂wk
:= ∂/∂wk and so on. Since we are

going to work with an arbitrary choice of wk and vk we will refer to them simply

as ∂w, unless we need to be more specific.

Lemma 4.4. Let the notation be as above.

(i) D2,hor = 0.

(ii) D2,vert = D f .

(iii) D1,hor(ξ) = ∂̄Cm (ξ) for all ξ ∈ C∞(triv), where ∂̄Cm is the delbar operator in

Cm .

(iv) (D1,vert)(∂z)(s)= 1
2
(∂/∂z)(J (z))|z=0(d f ( js)) for ∂z a coordinate vector field

in Const ⊂ C∞(triv).

Proof. Since f̃ = f ◦ i ⊂ {0} × M we can naturally view any ξ ∈ C∞( f ∗T M) as

an element in C∞( f̃ ∗T M̃) with values in the vertical direction tangent to {0}× M .

We have

F̃ξ (t, x)= exp∇̃
f̃ (x)(tξ)= exp∇

f (x)(tξ),

with im F̃ ⊂ {0} × M . This implies that the d f̃ t(s) are also vertical vector fields

supported in {0} × M and, since J̃ keeps T ({0} × M) invariant, we have as well

that the J̃ d f̃ t( js) are vertical vector fields in {0} × M . Similarly, F̃
∗

ξ (∂/∂t) is a

vertical section in T M̃ supported in {0}×M and parallel transport along f̃ (x) with

respect to ∇̃ is the same as parallel transport with respect to ∇.

A direct application of (22) is that

(D f̃ ξ)(s)=
1

2

∂

∂t

(
τ
ξ
t,x d f̃ t(s)+ τ

ξ
t,x J̃ d ft( js)

)
|t=0

= (D f ξ)(s),

which proves (i). Relation (ii) follows immediately from the formula above, taking

into account that D f̃ ξ = D2,vert(ξ) and that im D f̃ |C∞ f ∗T M ⊂ �
0,1
J (6, f ∗T M).

For the proofs of (iii) and (iv) we now consider ξ ∈ C∞(triv). We can assume
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ξ = φ(x)∂w, where φ : 6 → Cm . In this situation, F̃ξ (t, x) = exp∇̃
f̃ (x)(t∂w) =

(φ(x)t, 0, . . . , 0, f (x)). Thus the paths γx are straight lines in Cn × f (x) ⊂ M̃

and parallel transport τt,x : T(t, f (x))M̃ → T0, f (x))M̃ along γx is the identity. We are

also going to consider the coordinates x ∈ 6 of the type x = x1 + i x2, and do our

computations for s = ∂x1
.

If J̃ (t) is the almost complex structure at γ̃
ξ
x (t), then J̃ (t) has the form

(
At 0

Bt Jt

)

with respect to the product structure Cm × M . Moreover along π−1(0) we have

J̃ (0)=

(
JCm 0

0 Jt

)
.

Therefore (∂/∂t) J̃ (t) preserves the fibers, as does J̃ (t). Moreover, along {0}× M ,

J̃ (0) preserves the splitting into T M and H . As we have seen, parallel transport

along γ̃
ξ
x (t) is the identity.

Considering local coordinates x = x1 + i x2 on 6 and taking s = ∂x1
, we have

D1,hor(φ∂w)(∂x1
)= 1

2
projH

∂

∂t

(
τ
ξ
t,x d f̃ t(∂x1

)+ 1
2
τ
ξ
t,x J̃ d f̃ t( j∂x1

)
)
|t=0

= 1
2

projH

∂

∂t

(
d f̃ t(∂x1

)+ 1
2

J̃ d f̃ t(∂x2
)
)
|t=0

=
1

2

∂

∂t

(
∂x1
(φ(x))t, 0, . . . , 0

)
|t=0

+ 1
2

projH

∂

∂t
( J̃t)|t=0d f (∂x2

)

+ 1
2

projH J̃0

∂

∂t

(
∂x2
(φ(x))t, 0, . . . , 0, d f (x)

)
|t=0

,

where, as mentioned before, φ : 6 → Cm . But the middle term on the right-hand

side vanishes because d f (∂x2
) is a vertical vector and ∂/∂t J̃ preserves fibers, so

(∂/∂t)( J̃t)|t=0d f (∂x2
) is also a vertical vector. Then

(23) D1,hor(φ∂w)(∂x1
)= 1

2
∂x1
φ(x)+ 1

2
JCm (∂x2

)φ(x)

For the last expression we have to use that along π−1(0), J̃0 preserves the hor-

izontal space H , so projH ◦ J̃0 = J̃Cm ◦ projH . Therefore, the conclusion follows

that D1,hor = ∂̄Cm .

To prove point (iv) of the theorem we now need to consider ξ = ∂w ∈ Const.

Under this assumption we have τ
∂w
t,x d f̃ t = d f0. Thus

∂

∂t
τ
∂w
t,x d f̃ t(s)= 0.
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As before, s is a just a section in T6. Then

D1,vert(∂w)(s)= 1
2

projV

∂

∂t

(
τ ∂wt,x d f̃ t(s)+

1
2
τ ∂wt,x J̃ d f̃ t( js)

)
|t=0

= 1
2

projV

∂

∂t

(
τ ∂wt,x d f̃ t(s)

)
|t=0

+ 1
2

projV

∂

∂t

(
τ ∂wt,x J̃ (τ ∂wt,x )

−1
)
|t=0

· d f ( js)

+ 1
2

projV J̃0

( ∂
∂t
τ ∂wt,x d f̃ t( js)

)
|t=0

= 1
2

projV (∇̃∂w J̃ )d f ( js),

where we denote by projV the projection onto the fibers. Recall that (∂/∂t) J̃ takes

vertical vector fields into vertical vector fields. Therefore

1
2

projV ∇̃∂w J̃ d f ( js)=
1

2

∂ J (z)

∂w
(d f ( js)),

precisely because d f ( js) is a vertical vector field and the covariant derivative along

horizontal vector fields was chosen to be the standard connection in Cm . Applying

the same reasoning to i∂v, we see that

(D1,vert)(∂z)(s)=
1

2

∂

∂z
(J (z))|z=0(d f ( js)).

It is worth pointing out that (∂/∂z)(J (z))|z=0 = dψ∗
0 (∂/∂z). �

Proof of Theorem 2.9. Direct implication: Using Lemma 4.4(v) we get the com-

mutativity of the diagram

(24)

T0C
m dψ ✲ TJ AI

Const

i

❄
D1,vert✲ �

0,1
J (6, f ∗T M),

R

❄

where i : T0Cn → Const ⊂ C∞(triv) is the natural identification map and ψ is the

morphism from the parameter space to the space of almost complex structures. R

is, as mentioned before, given by R(Y )= 1
2
Y ◦ d f ◦ j .

Since D f̃ is surjective by hypothesis, this means that D1 ⊕ D2 is surjective. We

therefore conclude, by Lemma 4.4(i,ii), that

(25) D1 = (D1,vert, D1,hor) : C∞(triv) ✲ coker D f ⊕�
0,1

J̃
(6, H)

is surjective. Since the kernel of the ∂̄Cm operator on Cm consists precisely of

constant sections, Lemma 4.4(iii) implies that D−1
1,hor(0) =Const. Therefore the

operator (D1,vert)|Const
: Const → coker D f is surjective. But this will imply that

(D1,vert)|Const
◦ i : T0C

m → coker D f

is surjective.
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As we saw in the proof of Proposition 2.8, R induces an isomorphism

R̃ : ˜coker d5 ✲ coker D2,

and moreover the diagram (24) will be still commutative if we restrict dψ and

D1,vert to coker d5 and coker D2 respectively. Therefore dψ : T0Cn → coker d5

is surjective. By Proposition 2.8, this yields parametric regularity.

For the inverse implication, notice that D1,hor will cover the space �
0,1

J̃
(6, H)

when 6 = S2, because D1,hor = ∂̄Cm in this case. By hypothesis, dψ : T0Cn →

coker d5 is surjective and the preceding observation implies that

D1 = (D1,vert, D1,hor) : C∞(triv) ✲ coker D f ⊕�
0,1

J̃
(6, H)

is also surjective. Therefore D f̃ is a surjective operator. �
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A FAMILY OF ISOCHRONOUS FOCI WITH DARBOUX

FIRST INTEGRAL

JAUME GINÉ AND JAUME LLIBRE

We consider the class of polynomial differential equations ẋ = λx − y +

Pn(x, y) + P2n−1(x, y), ẏ = x + λy + Qn(x, y) + Q2n−1(x, y) with n ≥ 2,

where Pi and Q i are homogeneous polynomials of degree i . These systems

have a focus at the origin if λ 6= 0, and have either a center or a focus if λ= 0.

Inside this class we identify a new subclass of Darboux integrable systems

having either a focus or a center at the origin. Under generic conditions

such Darboux integrable systems can have at most two limit cycles, and

when they exist are algebraic. For the case n = 2 and n = 3 we present new

classes of Darboux integrable systems having a focus.

1. Introduction and statement of the results

Three of the main problems in the qualitative theory of real planar differential
systems are the determination of centers, limit cycles and first integrals. This paper
deals mainly with the determination of first integrals and limit cycles.

As usual a center is a singular point having a neighborhood filled of periodic
orbits, and a focus is a singular point having a neighborhood where all the orbits
spiral in forward or in backward time to it.

Here we study real planar polynomial differential systems of the form

(1)
ẋ = λx − y + Pn(x, y) + P2n−1(x, y),

ẏ = x + λy + Qn(x, y) + Q2n−1(x, y),

where Pi and Qi are homogeneous polynomials of degree i . Inside this class we
will characterize a new subclass of Darboux integrable systems having either a
focus or a center at the origin.

Giné is partially supported by MCYT grant BFM 2002-04236-C02-01, by a University of Lleida
Project P01 and by DURSI of Government of Catalonia’s Acció Integrada ACI2001-26. Llibre is par-
tially supported by DGICYT grant BFM 2002-04236-C02-02 and by CICYT grant 2001SGR00173.
MSC2000: 34C35, 34D30.
Keywords: integrability, algebraic limit cycle, focus, center.
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We establish some notation and preliminary results. In polar coordinates (r, θ),
defined by

(2) x = r cos θ, y = r sin θ,

system (1) becomes

(3)
ṙ = λr + fn+1(θ)rn + f2n(θ)r2n−1,

θ̇ = 1 + gn+1(θ)rn−1 + g2n(θ)r2n−2,

where
fi (θ) = cos θ Pi−1(cos θ, sin θ) + sin θ Qi−1(cos θ, sin θ),

gi (θ) = cos θ Qi−1(cos θ, sin θ) − sin θ Pi−1(cos θ, sin θ)

are certain homogeneous trigonometric polynomials in the variables cos θ and sin θ

having degree in the set {i, i−2, i−4, . . . }. Indeed, fi (θ) can be of the form
(cos2 θ +sin2 θ)s fi−2s with fi−2s a trigonometric polynomial of degree i −2s ≥ 0,
and a similar situation occurs for gi (θ).

If we impose gn+1(θ) = g2n(θ) = 0 and make the change R = rn−1, system (3)
becomes the differential equation

(4)
d R

dθ
= (n − 1)

(

λR + fn+1(θ)R2 + f2n(θ)R3).

Differential equations of this kind appeared in Abel’s studies on the theory of el-
liptic functions. For more details on Abel differential equations, see [Kamke 1943;
Cheb-Terrab and Roche 2003; Gasull and Llibre 1990].

We say that all polynomial differential systems (1) with gn+1(θ) = g2n(θ) = 0
define class F if f2n(θ) and fn+1(θ) satisfy

(5) f ′
2n(θ) fn+1(θ) − f2n(θ) f ′

n+1(θ) = (n − 1)
(

a fn+1(θ)3 − λ fn+1(θ) f2n(θ)
)

for some a ∈ R. Clearly, the class of our polynomial differential systems (1) has
dimension 6n+4 in the space of all coefficients, and the subclass F is an algebraic
subvariety of it.

We shall prove that all polynomial differential systems (1) in class F have a
Darboux first integral. We have found the subclass F thanks to the Abel differential
equations studied in [Kamke 1943, pp. 24–25, cases (a–d)]. Using these same
techniques new Darboux integrable systems are found in [Giné and Llibre 2004]
for polynomial systems formed by a linear part plus homogeneous nonlinearities.

A function of the form f
λ1
1 . . . f

λp

p exp(h/g), where fi , g and h are polynomials
in C[x, y] and the λi ’s are complex numbers, is called a Darboux function. System
(1) is called Darboux integrable if the system has a first integral or an integrating
factor which is a Darboux function (for a definition of a first integral and of an
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integrating factor, see [Chavarriga et al. 1999; Christopher and Llibre 2000], for
instance). Our main result is the following:

Theorem 1. For polynomial differential systems (1) in the class F the following

statements hold.

(a) If λ 6= 0 and f2n(θ) fn+1(θ) 6= 0, then the origin is a focus and the system has

the Darboux first integral H̃(x, y) obtained from

H(R, θ) =







































































R exp((n−1)λθ) exp

(

− 1√
4a−1

arctan
(1+2R f2n(θ)/ fn+1(θ))√

4a−1

)

√

R2 f 2
2n(θ)/ f 2

n+1(θ)+R f2n(θ)/ fn+1(θ)+a
if a > 1

4 ,

R exp((n−1)λθ) exp 1
1+2R f2n(θ)/ fn+1(θ)

1+2R f2n(θ)/ fn+1(θ)
if a = 1

4 ,

R exp((n−1)λθ)

(√
1−4a+1+ 2R f2n(θ)

fn+1(θ)

)(−1+1/
√

1−4a)/2

(√
1−4a−1− 2R f2n(θ)

fn+1(θ)

)(1+1/
√

1−4a)/2
if a < 1

4 , a 6= 0,

exp((n−1)λθ) f2n(θ)

fn+1(θ)
if a = 0,

through the changes of variables (2) and with R = rn−1.

(b) If λ 6= 0 and a = f2n(θ) fn+1(θ) = 0, then the origin is a focus and the system

has the Darboux first integral H̃(x, y) obtained from

H(R, θ)=







exp((n−1)λθ)

R
+ (n−1)

∫

exp((n−1)λθ) fn+1(θ) dθ if f2n(θ) = 0,

exp(2(n−1)λθ)

R2 + 2(n−1)
∫

exp(2(n−1)λθ) f2n(θ) dθ if fn+1(θ) = 0,

through the changes of variables (2) and with R = rn−1.

(c) If λ = 0, the origin is a center, and the system has an analytic first integral

H̃(x, y) obtained by taking λ= 0 in the expressions for H̃(x, y) in (a) and (b).

(d) If λ = 0, the origin is a center, and the following systems have a rational first

integral:

(d1) Systems with fn+1(θ) = f2n(θ) = 0.
(d2) Systems with f2n(θ) = 0 and

∫ 2π

0 fn+1(θ) dθ = 0.

(d3) Systems with fn+1(θ) = 0 and
∫ 2π

0 f2n(θ) dθ = 0.
(d4) Systems whose a (defined in (5)) satisfies a < 1

4 , a 6= 0, and
√

1 − 4a is

rational.

Theorem 1 will be proved in Section 2. Part (c) follows easily from (a) and (b).
A limit cycle of system (1) is a periodic orbit isolated in the set of periodic

orbits of system (1). We say that a limit cycle γ is algebraic if it is contained in
an algebraic curve.
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Theorem 2. If a system (1) in class F with λ 6= 0 and f2n(θ) fn+1(θ) 6= 0 has a

limit cycle, it is algebraic. Moreover, such a system can have at most two limit

cycles. There are systems with 0, 1 or 2 limit cycles.

In the course of the proof, given in Section 3, we provide an explicit expression
for algebraic limit cycles.

Systems (1) for n =2 are cubic differential systems. The problem of determining
when a cubic differential system (1) has a center at a singular point is open. Trying
to distinguish whether a weak focus of a general cubic system is a center or a
focus has produced disappointing results, due to the huge expressions obtained
for its Poincaré–Liapunov constants; see [Schlomiuk 1993]. But several authors
have studied particular subclasses of cubic polynomial differential systems; see for
instance [Pearson et al. 1996] and the references therein. The center problem for
cubic polynomial differential system (1) satisfying x Q3(x, y)− y P3(x, y) = 0 has
been totally solved in [Chavarriga and Giné 1998; Lloyd et al. 1997].

Other polynomial differential systems recently investigated are those of the form

(6) ẋ = y + x F(x, y), ẏ = −x + yF(x, y),

where F(x, y)=
∑4

i=1 Fi (x, y) for homogeneous polynomials Fi (x, y) of degree i .
Such systems satisfy x Qi (x, y) − y Pi (x, y) = 0 for i = 1, . . . , 4; therefore, they
have constant angular speed θ̇ = 1. When a system (6) has a center at the origin,
this center is called a uniformly isochronous center [Conti 1994]. If F(x, y) = 0,
the origin is a linear center. The conditions for a system (6) to have a center have
been studied in [Collins 1997] when F3 = F4 = 0. Systems of the form (6) have
been studied in [Giné and Santallusia 2001] in the case that F(x, y) is of degree 3
with F2 = 0, and in [Chavarriga et al. 2001] in the case that F(x, y) is of degree 3.
The case where F(x, y) is of degree 4 is totally solved in [Volokitin 2002] when
F1 = F3 = 0.

It is easy to check that systems (1) with n = 2 satisfying g3(θ) = g4(θ) = 0 can
be written into the form

(7)
ẋ = λx − y + x(αx + βy + Ax2 + Bxy + Cy2),

ẏ = x + λy + y(αx + βy + Ax2 + Bxy + Cy2),

where α, β, A, B and C are arbitrary constants. In [Collins 1997] it has been proved
that the origin of system (7) is a center if and only if

λ = 0, A + C = 0 and Aα2 + Bαβ + Cβ2 = 0.

In Corollary 5 we compute the class of cubic polynomial differential systems
satisfying (a) and (b) in Theorem 1, thereby exhibiting new classes of Darboux
integrable cubic systems having a focus.
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Polynomial systems (1) with n = 3 satisfying g4(θ) = g6(θ) = 0 can be written
to the form

(8)
ẋ = λx−y+x(Ax2+Bxy+Cy2+Dx4+Ex3 y+Fx2 y2+Gxy3+H y4),

ẏ = x+λy+y(Ax2+Bxy+Cy2+Dx4+Ex3 y+Fx2 y2+Gxy3+H y4),

where A, B, C, D, E, F, G and H are arbitrary constants. Volokitin [2002] has
proved that the origin of system (8) is a center if and only if one of the following
sets of conditions are satisfied:

(i) λ = 0, A = B = C = 0, and F = −3(D + H).

(ii) λ = 0 and A = C = D = F = H = 0.

(iii) λ = 0, A 6= 0, C = −A, F = 3B(AE − B D)/2A2,

H =
−2A2 D + B(B D − AE)

2A2
, G =

2A2 B D + (2A2 − B2)(B D − AE)

2A3
.

In Corollary 6 we will provide new classes of Darboux integrable systems (8)
having either a focus or a center at the origin.

2. Proof of Theorem 1

Proof of Theorem 1(a). Following [Kamke 1943, p. 25, case (d)], we make the
change of variables (R, θ) → (η, ξ) defined by R = u(θ)η(ξ), where u(θ) =
exp ((n − 1)λθ) and ξ =

∫

exp ((n − 1)λθ) (n−1) fn+1(θ) dθ . This transformation
writes the Abel differential equation (4) into the form

(9) η′(ξ) = g(ξ) η(ξ)3 + η(ξ)2,

where g(ξ) = exp ((n − 1)λθ) f2n(θ)/ fn+1(θ) and ′ = d/dξ . Making the change
ξ → t in the independent variable defined by ξ ′ =−1/(tη(ξ)), where now ′ =d/dt ,
equation (9) becomes

(10) t2ξ ′′(t) + g(ξ(t)) = 0.

Note that g(ξ) = aξ means

exp((n − 1)λθ) f2n(θ)/ fn+1(θ) = a

∫

exp((n − 1)λθ)(n − 1) fn+1(θ) dθ;

equivalently, by differentiating with respect to θ , we get

(11)
d

dθ

f2n(θ)

fn+1(θ)
= a(n − 1) fn+1(θ) −

(n − 1)λ f2n(θ)

fn+1(θ)
,

which is equivalent to condition (5). Thus g(ξ) = aξ , and (10) is an Euler dif-
ferential equation. Applying the change t = exp(τ ) to the independent variable,
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equation (10) then becomes a linear ordinary differential equation with constant
coefficients:

(12) ξ ′′(τ ) − ξ ′(τ ) + aξ(τ ) = 0,

where ′ = d/dτ . Equation (12) has the characteristic equation k2 − k + a =
0, so its general solution is ξ(τ ) = C1 exp(τ/2) + C2τ exp(τ/2) if a = 1

4 , and
ξ(τ ) = C1 exp(k1τ) + C2 exp(k2τ) if a 6= 1

4 , where k1 and k2 are the roots of the
characteristic equation. Going back to the independent variable t = exp(τ ), the
solution of the Euler differential equation is ξ(t) = C1

√
t +C2

√
t ln t if a = 1

4 and
ξ(t) = C1tk1 + C2tk2 if a 6= 1

4 .
Finally, going back through the change of variables to the variables (R, θ) and

taking into account whether the roots k1 and k2 are real or complex, we obtain the
first integrals shown in statement (a), according to the value of a.

We now prove that the systems in (a) are Darboux integrable, by showing that all
terms that appear in the first integral of those systems are of the form f

λ1
1 . . . f

λp

p ,
with fi a polynomial and λi a complex number. First, the term exp((1 − n)λθ)

takes the form

exp((1 − n)λθ) = exp((1 − n)λ arctan(y/x))

= (x + iy)i(n−1)λ/2(x − iy)−i(n−1)λ/2.

Recall that if f = 0, with f ∈ C[x, y], is an invariant algebraic curve of a real
polynomial differential system, the complex conjugate f =0 is also an invariant al-
gebraic curve; see [Christopher and Llibre 2000], for instance. Therefore, if among
the invariant algebraic curves of system (1) there occurs a complex conjugate pair
f = 0 and f = 0, the first integral has a factor of the form f µ f µ̄, which is the
(multivalued) real function

(

(Re f )2 + (Im f )2)Re µ
exp

(

−2 Im µ arctan
Im f

Re f

)

.

On the other hand, writing R = rn−1, it follows that

F =
fn+1(θ) + 2R f2n(θ)

fn+1(θ)
=

rn+1( fn+1(θ) + 2rn−1 f2n(θ))

rn+1 fn+1(θ)
,

is a rational function in cartesian coordinates because f2n(θ) and fn+1(θ) are ho-
mogeneous trigonometric polynomials of degree 2n and n+1, respectively. Taking
into account these relations, the first integral for a > 1

4 is the Darboux function

H(ρ, θ) = ρ exp((1 − n)λθ) f µ f µ̄,
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where Re f = F , Im f =
√

4a − 1, Re µ = − 1
2 , and Im µ = 1/(2

√
4a − 1). The

first integral for a = 1
4 is the Darboux function

H(ρ, θ) = ρ exp((1 − n)λθ) exp(1/F)/F.

The first integral for a < 1
4 and a 6= 0 is the Darboux function

H(ρ, θ) = ρ exp((1 − n)λθ)
∣

∣

√
1 − 4a + F

∣

∣

µ1
∣

∣

√
1 − 4a − F

∣

∣

µ2
,

where µ1 = 1
2(−1 + 1/

√
1 − 4a) and µ2 = 1

2(1 + 1/
√

1 − 4a). Finally, the first
integral for a = 0 is the Darboux function

H(ρ, θ) =
exp((1 − n)λθ) f2n(θ)r2n

rn−1 fn+1(θ)rn+1
,

and this completes the proof of statement (a). �

Proof of Theorem 1(b). In the cases f2n(θ)= 0 and fn+1(θ)= 0, the Abel differen-
tial equation (4) is the Bernoulli differential equation d R/dθ = (n−1)( fn+1(θ)R2+
λR) and d R/dθ = (n − 1)( f2n(θ)R3 +λR), respectively. Solving these Bernoulli
equations we obtain the first integrals of statement (b).

Systems of statement (b) are Darboux integrable because their first integrals are
obtained by integrating elementary functions; see [Singer 1992] for more details.
The integrals appearing in the first integrals in question can be computed using
recurrence formulas; see for instance [Petit Bois 1961, p. 149]. �

Proof of Theorem 1(c). The proof follows easily taking λ = 0 in statements (a)
and (b). �

Proof of Theorem 1(d). If fn+1(θ) = f2n(θ) = 0, system (3) with λ = 0 satisfies
ṙ = 0 and therefore it has a polynomial first integral H = x2 + y2. Statement (d1)
follows.

If f2n(θ) = 0, from the Abel differential equation (4) it is easy to derive that
H(R, θ) = 1/R + (n − 1)

∫

fn+1(θ) dθ is a first integral. Taking into account that
∫ 2π

0 fn+1(θ) dθ vanishes and going back to cartesian variables, we obtain a rational
first integral and (d2) follows.

If fn+1(θ) = 0, again from the Abel differential equation (4) it is easy to derive
that H(R, θ) = 1/R2 +2(n −1)

∫

f2n(θ) dθ is a first integral. Taking into account

that
∫ 2π

0 f2n(θ) dθ vanishes and going back to cartesian variables, we obtain a
rational first integral, and (d3) follows.

Finally, from the expression of the first integral H(R, θ) for a < 1
4 and a 6=0 with

√
1 − 4a rational, we have H 2(R, θ) = R2

∣

∣

√
1 − 4a + F

∣

∣

2µ1
∣

∣

√
1 − 4a − F

∣

∣

2µ2 ,
where µ1 and µ2 are defined at the end of the proof of part (a). Therefore, a
convenient power of H 2(R, θ) gives a rational first integral. There follows (d4).

�
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Now we investigate whether it is possible to find other integrable classes from the
well known integrable cases of the Abel differential equation. Following [Kamke
1943, p. 24, case (4)], first we perform the change of variables (R, θ) → (η, ξ)

defined by R = w(θ)η(ξ) − fn+1(θ)/(3 f2n(θ)), where

w(θ) = exp
( ∫

(n − 1)(λ − f 2
n+1(θ)/(3 f2n(θ))) dθ

)

and ξ =
∫

(n − 1) f2n(θ)w2(θ) dθ . This puts the Abel equation (4) into the normal
form

(13) η′(ξ) = η(ξ)3 + I (θ),

where

I (θ) =
1

(n−1) f2n(θ)w3(θ)

(

d

dθ

fn+1(θ)

3 f2n(θ)
−

(n−1)λ fn+1(θ)

3 f2n(θ)
+

2(n−1) f 3
n+1(θ)

27 f 2
2n(θ)

)

.

From the definition of w(θ) we have

(14) ln |w(θ)| = (n − 1)

∫ (

λ −
f 2
n+1(θ)

3 f2n(θ)

)

dθ

= (n − 1)

∫

fn+1(θ)

f2n(θ)

(

λ f2n(θ)

fn+1(θ)
−

fn+1(θ)

3

)

dθ.

In the case a 6= 0, the right-hand side of (14) becomes, upon use of (5) (or,
equivalently, of (11)),

−
1

3a

∫

d

dθ

(

f2n(θ)/ fn+1(θ)
)

f2n(θ)/ fn+1(θ)
dθ +

(

1 −
1

3a

)

(n − 1)

∫

λ dθ

= −
1

3a
ln

∣

∣

∣

∣

f2n(θ)

fn+1(θ)

∣

∣

∣

∣

+
(

1 −
1

3a

)

(n − 1)λθ.

This leads to w(θ) =
∣

∣ f2n(θ)/ fn+1(θ)
∣

∣

−1/3a
exp((n − 1)(1 − 1/(3a))λθ), so I (θ)

becomes

(15) I (θ) =
(2 − 9a

27

)

(

f2n(θ)

fn+1(θ)

)(1−3a)/a

exp((n − 1)(1 − 3a)λθ/a).

It is easy to see that I (θ) = 0 for a = 2
9 and I (θ) = − 1

27 for a = 1
3 . In these

two cases, we can separate variables in the differential equation (13) and obtain the
associated first integrals. But I (θ) = 0 and I (θ) = − 1

27 imply that (5) holds with
a = 2

9 and a = 1
3 , respectively. So we obtain cases already studied. New cases of

integrability would only appear for I (θ) 6= 0, − 1
27 .
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Cases (b) and (c) of the Abel differential equation of [Kamke 1943, p. 25] again
lead to the case already studied, with a = 2

9 .

3. Algebraic limit cycles with Darboux first integral

The next proposition presents what is probably the easiest example of a polynomial
differential system that has a Darboux first integral and an algebraic limit cycle.
Other examples of this kind were given in [Dolov 1976; Kooij and Christopher
1993; Christopher 1994]. In fact, it has now been proved that any finite configura-
tion of limit cycles is realizable by algebraic limit cycles of a Darboux integrable
polynomial differential systems [Llibre and Rodríguez 2004].

Proposition 3 [Chavarriga et al. 1999]. The differential system

(16) x ′ = x − y − x(x2 + y2), y′ = x + y − y(x2 + y2)

has the algebraic solution x2 + y2 −1 = 0 as a limit cycle. In polar coordinates (2)
the function H(r, θ) = (r2 −1) exp(2θ)/r2 = C is a Darboux first integral defined

on R
2 \ 6, where 6 = {(0, 0)} ∪ {(x, y) : x2 + y2 − 1 = 0}.

To study the existence or nonexistence of limit cycles in system (1) we shall use
the following result.

Theorem 4 [Giacomini et al. 1996, Theorem 9]. Let (P, Q) be a C1 vector field

defined in an open subset U of R
2. Let V = V (x, y) be a C1 solution of the linear

partial differential equation

P
∂V

∂x
+ Q

∂V

∂y
=

(

∂ P

∂x
+

∂ Q

∂y

)

V,

defined in U . If γ is a limit cycle of (P, Q), then γ is contained in {(x, y) ∈ U :
V (x, y) = 0}.

Under the assumptions of Theorem 4, the function 1/V is an integrating factor
in U \{V (x, y) = 0} (see [Chavarriga et al. 1999; Christopher and Llibre 2000] for
details). So the function V is called an inverse integrating factor.

Proof of Theorem 2. For systems (1) in class F with λ 6= 0 and f2n(θ) fn+1(θ) 6= 0,
it is easy to check that

V (ρ, θ) = R(R2 f 2
2n(θ)/ f 2

n+1(θ) + R f2n(θ)/ fn+1(θ) + a)

is an inverse integrating factor of the associated Abel differential equation (4).
Notice that V is defined for all (R, θ) such that fn+1(θ) 6= 0. Again by Theorem 4,
if system (1) and consequently its associated Abel equation (4) have limit cycles,
those of the Abel equation must be contained in the set {V (R, θ) = 0}.
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From the expression of the inverse integrating factor, the unique possible limit
cycles must be given by

R(θ) =
{

1
2(−1 ±

√
1 − 4a ) fn+1(θ)/ f2n(θ) if a < 1

4 ,

− 1
2 fn+1(θ)/ f2n(θ) if a = 1

4 .

For these expressions to define limit cycles, R(θ) must be defined and positive for
all θ . Since f2n(θ) and fn+1(θ) are homogeneous trigonometric polynomials of
degree 2n and n + 1 respectively, we conclude that n must be odd and a ≤ 1

4 .
Clearly a system in our class (1) has no limit cycles if n is even, or if a > 1

4
and f2n(θ) fn+1(θ) 6= 0. It can have one limit cycle if a = 1

4 : for instance, setting
A = 2, B = E = 0 in Corollary 6(c) yields the system ẋ = −y − x(x2 + y2 − 1)2,
ẏ = x−y(x2+y2−1)2, which has exactly one limit cycle, the circle x2+y2−1=0.
And the system can have two limit cycles if n is odd and a < 1

4 : setting A = 4,
B = E = 0 in Corollary 6(c) yields the system ẋ = x − y − x(x2 + y2 − 2)2,
ẏ = x+y−y(x2+y2−2)2, which has exactly two limit cycles given, x2+y2−3=0
and x2 + y2 − 1 = 0. This completes the proof. �

4. Some corollaries

System (1) with n = 2 and g3(θ) = g4(θ) = 0 — i.e., the cubic system (7) —
has a focus or a center at the origin. The following corollary characterizes cubic
polynomial systems (7) belonging to class F.

Corollary 5. A cubic system (7) with λ 6= 0 belongs to class F if and only if one of

the following statements holds.

(a) α = β = 0. Then (7) has the Darboux first integral

H(x, y) =
(x2 + y2) exp

(

−2λ arctan y

x

)

P2(x, y)
,

where P2(x, y) = 2λ3 + (A + C)(x2 + y2) + 2λ2(Ax2 + y(Bx + Cy)) +
λ(2 − 2Cxy + 2Axy + B(y2 − x2)).

(b) A = aα(αλ − β)/(1 + λ2), B = a(α2 − β2 + 2αβλ)/(1 + λ2), and C =
aβ(α+βλ)/(1+λ2). Then (7) has, if a> 1

4 , the Darboux first integral H(x,y)=

(x2 + y2) exp
(

−2λ arctan y

x
− 2√

1−4a
arctan 1+λ2−2a(β−αλ)x+2a(α+βλ)y

(1+λ2)
√

1−4a

)

P2(x, y)
,

where P2(x, y)=1+k4+aβ2x2+αy+aα2 y2+k3(αx+βy)+k(αx+βy)(1−
2aβx+2aαy)−β(x+2aαxy)+k2(2+aα2x2+αy+aβ2 y2+βx(−1+2aαy));
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if a < 1
4 and a 6= 0 it has the Darboux first integral

H(x, y) =
(x2 + y2) exp

(

−2λ arctan y

x

)

R1(x, y)

R2(x, y)
,

where

R1(x, y) =
(

(−1+
√

1−4a)(1+λ2)−2a(−βx+αλx+αy+βλy)
)−1−1/

√
1−4a

,

R2(x, y) =
(

(−1−
√

1−4a)(1+λ2)+2a(−βx+αλx+αy+βλy)
)1−1/

√
1−4a;

in the case a = 1
4 the Darboux first integral is

H(x, y) =
(x2 + y2) exp

(

−2λ arctan y

x
− 2(1+λ2)

1+λ2−2aβx+2aαλx+2a(α+βλ)y

)

(

1 + λ2 − 2aβx + 2aαλx + 2a(α + βλ)y
)2

;

and in the case a = 0 the Darboux first integral is

H(x, y) =
(x2 + y2) exp

(

−2λ arctan y

x

)

(1 + λ2 − βx + αλx + αy + βλy)2
.

Consequently, for λ 6= 0 these cubic systems have a focus at the origin and are

Darboux integrable.

Proof. This follows from parts (a) and parts (b) of Theorem 1 for n = 2, after
tedious computations. �

System (1) with n = 3 and g4(θ) = g6(θ) = 0 — i.e., the quintic system (8) —
has a focus or a center at the origin. The following corollary characterizes quintic
polynomial systems (8) belonging to class F.

Corollary 6. A system (8) with λ 6= 0 belongs to class F if and only if one of the

following statements holds.

(a) A = B = C = 0. Then (8) has the Darboux first integral given by Theorem

1(b) with n = 3 and f4(θ) = 0.

(b) A = B = D = E = 0, F = a C2/(2λ(1 + λ2)), G = −a C2/(1 + λ2) and

H = a C2(1 + 2λ2)/(2λ(1 + λ2)). Then (8) has the Darboux first integral

given by Theorem 1(a) with n = 3.

(c) B = 2λA, C = 2λD(1 + λ2) − a A2/(a A), E = 2a A2, F = 2λ(2a2 A4 +
D2 −aλA2 D +λ2 D2)/(a A2), G=2(4aλA2 D −a2A4 −2λ2D2 +4aλ3 A2 D −
2λ4 D2)/(a A2) and H = D(1 + 2λ2)(2λD(1 + λ2) − a A2)/(a A2). Then (8)
has the Darboux first integral given by Theorem 1(a) with n = 3.

(d) C = (−a AB + aλB2 − 2aλA2 + 2λE − 4aλ2 AB + 2λ3 E)/(a(B − 2λA)),

D = A(2a A2 − E)/(2λA − B), F = (3a2 AB3 + 8λa2 A4 − 12a2λA2 B2 −
8aλA2 E −aλB2 E +2λE2 +16a2λ2 A3 B +2aλ2 AB E −8aλ3 A2 E +2λ3 E2)/
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(a(B − 2λA)2), G = (a2 B4 − 4a2 A2 B2 + aB2 E − 4a2λAB3 + 4aλAB E +
4aλ2 A2 E − 4λ2 E2 + 8aλ3 AB E − 4λ4 E2)/(a(B − 2λA)2), H = (−2a A2 +
aB2 + E − 4aλAB + 2λ2 E)(−a AB − 2aλA2 + aλB2 + 2λE − 4aλ2 AB +
2λ3 E)/(a(B − 2λA)2). Then (8) has the Darboux first integral given by

Theorem 1(a) with n = 3.

(e) D = E = F = G = H = 0. Then (8) has the Darboux first integral given by

Theorem 1(b) with n = 3 and f6(θ) = 0.

Consequently, for λ 6= 0 these quintic systems have a focus at the origin and are

Darboux integrable.

Proof. This follows from parts (a) and parts (b) of Theorem 1 for n = 3, after
tedious computations using a computer-algebra program. �
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A NONCOMMUTATIVE BGG CORRESPONDENCE

PETER JØRGENSEN

We set up a noncommutative version of the Bernšteı̆n–Gel’fand–Gel’fand

(BGG) correspondence and apply it to periodic injective resolutions.

Introduction

The Bernšteı̆n–Gel’fand–Gel’fand (BGG) correspondence is surprising. Originally
established in [Bernšteı̆n et al. 1978, Theorem 2], it gives an equivalence of cate-
gories

❣r(E) ≃ Db(coh P
e).

Let me explain this formula: On the left, E is the exterior algebra
∧

(Y1, . . . , Ye+1)

and ❣r(E) is the category of finitely generated graded E-left-modules modulo mor-
phisms which factor through injectives. On the right, P

e is e-dimensional projective
space, coh P

e is the category of coherent sheaves on P
e, and Db(coh P

e) is the
derived category of bounded complexes of such sheaves.

The surprising thing about the correspondence is that the geometric object on
the right-hand side is equivalent to the purely algebraic object on the left-hand side.
Put differently, if one did not know about the BGG correspondence, it would really
not be obvious that it is possible to recover Db(coh P

e) purely algebraically!
In this paper, I will generalize the BGG correspondence to noncommutative

projective geometry. Noncommutative projective geometry is well established;
one of the seminal papers is [Artin and Zhang 1994] but many have been published
since, showing how a range of projective geometry can be generalized in a noncom-
mutative way. This turns out also to be true of the BGG correspondence, which is
generalized in Theorem 3.1 below and now takes the form

●r(A!) ≃ D(QGr A).

Here A is a suitable noncommutative graded algebra with Koszul dual algebra A! ,
and the category QGr(A) is a noncommutative analogue of the category QCoh(Pe)

of quasi-coherent sheaves on P
e.

MSC2000: 14A22, 16E05, 16W50.
Keywords: noncommutative projective space, Koszul duality, Bernšteı̆n–Gel’fand–Gel’fand

correspondence, graded Frobenius algebra, periodic injective resolution.
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After proving this, I consider an application to periodic injective resolutions.
The background is a result by Eisenbud [2002, Theorem 2.2]: Let M be a finitely
generated graded module without injective direct summands over the exterior al-
gebra E , for which the Bass numbers

µi (M) = dimk ExtiE(k, M)

are bounded for i ≥ 0. Then the minimal injective resolution I of M is periodic
with period one: All the modules I i and all the differentials ∂ i

I are the same, up
to isomorphism and degree shift. (In fact, Eisenbud worked with minimal free
resolutions, but using the Matlis duality functor Homk(−, k) on his result gives
the above.)

I will show that this phenomenon can be understood geometrically in a very
simple way: Using the BGG correspondence, the module M can be translated to
a geometric object on P

e. Since the Bass numbers of M are bounded, this object
turns out to have zero-dimensional support, so is stable under twisting, that is,
tensoring by OPe(1). Translating back, this means that M is its own first syzygy,
and periodicity of the minimal injective resolution follows.

Next, I consider the noncommutative case where a similar procedure yields re-
markably different results: Let A be a noncommutative graded algebra, and let M
be a finitely generated graded module over the Koszul dual A! , for which the Bass
numbers µi (M) are bounded for i ≥ 0. Then, choosing A and M suitably, it is
possible to make the minimal injective resolution of M periodic with any finite
period, or to make it aperiodic.

The reason is that when translating M through the noncommutative BGG cor-
respondence, one still obtains a geometric object with zero-dimensional support.
However, due to the noncommutative (hence nonlocal) nature of the situation, it
is no longer true that such an object is invariant under twisting. Rather, the object
can have an orbit of any finite length, or an infinite orbit. Translating back gives
the above results on periodicity of the minimal injective resolution.

The concrete example I will give of this behaviour is already known from [Smith
1996]. But the present geometric view through the BGG correspondence is new.

Here is a synopsis of the paper. Section 1 exhibits D(QGr A) as a full sub-
category of D(Gr A). Section 2 considers a version of Koszul duality. Section 3
combines these results into the noncommutative BGG correspondence, and shows
that under the correspondence, the simple module k over A! corresponds to the
“structure sheaf” O in D(QGr A).

Section 4 does a few computations that are put to use in Section 5, where the
BGG correspondence is applied to periodicity of minimal injective resolutions.

To avoid a lengthy section on nomenclature, hints on notation are given along the
way. The reader should rest assured that no new, let alone revolutionary, notation is
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introduced. The paper remains firmly on classical ground, and differs notationally
only in minor details from such papers as [Artin and Zhang 1994], [Jørgensen
1999], and [Smith 1996]. However, I do need the following blanket items, which
apply throughout.

Setup 0.1. k is a field, and A = k ⊕ A1 ⊕ A2 ⊕ · · · is a connected N-graded
noetherian k-algebra which is AS regular and Koszul (see [Jørgensen 1999, p. 206]
and [Beilinson et al. 1996, def. 1.2.1], or Remark 0.2). I assume gldim A = d ≥ 2.

Remark 0.2.

(i) For A to be AS regular means that gldim A = d is finite, and that the graded
A-bi-module k = A/A≥1 satisfies

ExtiA(k, A) ∼= ExtiAop(k, A) ∼=

{

0 for i 6= d,

k(ℓ) for i = d

for some ℓ. As usual, (−)(ℓ) denotes ℓ-th degree shift of graded modules, so
M(ℓ)i = Mi+ℓ.

(ii) For A to be Koszul means that the minimal free resolution L of the graded
A-left-module k = A/A≥1 is linear. That is, the i-th module L i has all its
generators in graded degree i , so has the form

∐

A(−i).

(iii) It is easy to see that since A is Koszul, the constant ℓ in (i) must be d .

(iv) By [Beilinson et al. 1996, Cor. 2.3.3], the algebra A is quadratic, that is, it
has the form

A ∼= T(V )/(R)

where V is a finite-dimensional vector space, T(V ) the tensor algebra, and
(R) the two sided ideal generated by a space of relations R in V ⊗k V . Let
(−)′ denote Homk(−, k) and define R⊥ by the exact sequence

0 → R⊥ −→ V ′ ⊗k V ′ −→ R′ → 0.

Then the Koszul dual algebra of A is

A! = T(V ′)/(R⊥);

see [Beilinson et al. 1996, Def. 2.8.1].

(v) By [Beilinson et al. 1996, Theorem 2.10.1] there is an isomorphism (A!)op ∼=

ExtA(k, k). Combining this with gldim A = d gives that A! is concentrated in
graded degrees 0, . . . , d .

(vi) The algebra A! is graded Frobenius by [Smith 1996, Proposition 5.10]. This
means that dimk A! is finite, and that there is an isomorphism of graded A! -
left-modules (A!)′ ∼= A!(m), where (A!)′ = Homk(A! , k) is the Matlis dual
module of A! .
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(vii) Since A! is concentrated in graded degrees 0, . . . , d, the constant m in (vi)
must be d. So there is an isomorphism of graded A! -left-modules (A!)′ ∼=

A!(d).

1. The categories ●r(A) and ◗●r(A)

Remark 1.1. Let me first recapitulate a few items from [Artin and Zhang 1994],
to which I refer for further details and proofs.

The category Gr(A) has as objects all Z-graded A-left-modules and as mor-
phisms all homomorphisms of A-left-modules which preserve graded degree.

A module M in Gr(A) is called torsion if each m in M is annihilated by A≥n

for some n. The torsion modules form a dense subcategory Tors(A) of Gr(A), and
the quotient category is

QGr(A) = Gr(A)/Tors(A).

This category behaves like the category of quasi-coherent sheaves on the space
Proj(A), although Proj(A) itself may not make sense. For instance, if A is com-
mutative, QGr(A) is in fact equivalent to the category of quasi-coherent sheaves on
Proj(A) by Serre’s theorem, as given in [Artin and Zhang 1994, Theorem, p. 229].

The degree shifting functor (−)(1) on Gr(A) induces a functor on QGr(A) which
I will also denote (−)(1).

The category Gr(A) has the full subcategory gr(A) consisting of finitely gen-
erated modules. Induced by this, QGr(A) has the full subcategory qgr(A) which
behaves like the category of coherent sheaves on Proj(A).

The projection functor Gr(A)
π

−→ QGr(A) has a right-adjoint functor

QGr(A)
ω

−→ Gr(A)

by [Artin and Zhang 1994, p. 234], so there is an adjoint pair

Gr(A)
π ✲✛
ω

QGr(A).

As follows from [Artin and Zhang 1994, Proposition 7.1], these functors send injec-
tive objects to injective objects, and restrict to a pair of quasi-inverse equivalences

(1) ■♥❥ tf(A)
π ✲✛
ω

◗■♥❥(A)

between the subcategory of torsion-free injective objects of Gr(A) and the sub-
category of all injective objects of QGr(A).
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Let me next turn to derived categories. The projection functor π is exact and so
extends to a triangulated functor

D(Gr A)
π

−→ D(QGr A)

between derived categories. Moreover, since A has finite global dimension, each
object of the category Gr(A) has a bounded resolution by injective objects. The
same therefore holds for QGr(A), as one sees using ω and π . So right-derived func-
tors can be defined on the unbounded derived categories D(Gr A) and D(QGr A)

by [Weibel 1994, Section 10.5].

In particular, D(QGr A)
Rω

−→ D(Gr A) exists, and it is not hard to see that

(2) D(Gr A)
π ✲✛

Rω
D(QGr A)

is an adjoint pair of functors.

Definition 1.2. Let

k⊥ = {N ∈ D(Gr A) | RHomA(k, N ) = 0}.

Proposition 1.3. The functors in equation (2) restrict to a pair of quasi-inverse
equivalences of triangulated categories

(3) k⊥
π ✲✛

Rω
D(QGr A).

Proof. First observe that diagram (1) extends to a pair of quasi-inverse equivalences

(4) K(■♥❥ tf A)
π ✲✛
ω

K(◗■♥❥ A)

between the homotopy category of complexes of torsion free injective objects of
Gr(A), and the homotopy category of complexes of injective objects of QGr(A).

Next, the finite global dimension of A implies that K(■♥❥ A), the homotopy cat-
egory of complexes of injective objects of Gr(A), is equivalent to D(Gr A). Under
the equivalence, the restriction of a functor F to K(■♥❥ A) corresponds to the right
derived functor RF on D(Gr A). See [Weibel 1994, Section 10.5], for example. A
similar remark applies to K(◗■♥❥ A) and D(QGr A). So forming

K(■♥❥ A)
π ✲✛
ω

K(◗■♥❥ A)

gives a diagram which, up to equivalence, is just diagram (2).
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This shows that diagram (4) gives an equivalence between some subcategory
of D(Gr A) and the whole category D(QGr A). To finish the proof, I must show
that the subcategory in question is k⊥. That is, I must show that the subcategory
K(■♥❥ tf A) of K(■♥❥ A) corresponds to the subcategory k⊥ of D(Gr A). For this,
note that by the above, the functor HomA(k, −) on K(■♥❥ A) corresponds to the
derived functor RHomA(k, −) on D(Gr A), so I must show that K(■♥❥ tf A) is the
subcategory of K(■♥❥ A) annihilated by HomA(k, −).

In fact, this is not quite true, but it is true and easy to see that the subcategory of
K(■♥❥ A) annihilated by HomA(k, −) consists exactly of the complexes isomorphic
to complexes in K(■♥❥ tf A), and this is enough. �

2. Koszul duality

Remark 2.1. Let me recapitulate the version of Koszul duality set up by Beilinson,
Ginzburg and Soergel, and elaborated on by Fløystad.

In [Beilinson et al. 1996, proof of Theorem 2.12.1] and [Fløystad 2003, Section
3.2] we find a construction for an adjoint pair of functors between categories of
complexes of graded modules,

(5) Ch(Gr A!)
F ✲✛
G

Ch(Gr A).

These functors are defined as follows: Given M in Ch(Gr A!), one constructs a
double complex

...
...

...

· · · ✲ A(1) ⊗ M−1
1

✻

✲ A(1) ⊗ M0
1

✻

✲ A(1) ⊗ M1
1

✻

✲ · · ·

· · · ✲ A ⊗ M−1
0

✻

✲ A ⊗ M0
0

✻

✲ A ⊗ M1
0

✻

✲ · · ·

· · · ✲ A(−1) ⊗ M−1
−1

✻

✲ A(−1) ⊗ M0
−1

✻

✲ A(−1) ⊗ M1
−1

✻

✲ · · ·

...

✻

...

✻

...

✻
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with certain differentials, and the total complex Tot
∐

, defined using coproducts, is
F(M). In the diagram, superscripts indicate cohomological degree and subscripts
indicate graded degree. Also, ⊗ denotes tensor product over k.

And given N in Ch(Gr A), one constructs a double complex

...
...

...

· · · ✲ Hom(A!(−1), N−1
1 )

✻

✲ Hom(A!(−1), N 0
1 )

✻

✲ Hom(A!(−1), N 1
1 )

✻

✲ · · ·

· · · ✲ Hom(A! , N−1
0 )

✻

✲ Hom(A! , N 0
0 )

✻

✲ Hom(A! , N 1
0 )

✻

✲ · · ·

· · · ✲ Hom(A!(1), N−1
−1 )

✻

✲ Hom(A!(1), N 0
−1)

✻

✲ Hom(A!(1), N 1
−1)

✻

✲ · · ·

...

✻

...

✻

...

✻

with certain differentials, and the total complex Tot
∏

, defined using products, is
G(N ). In the diagram, Hom denotes homomorphisms over k.

Now consider ❈♦❋r❡❡(A!), the full subcategory of Gr(A!) consisting of modules
which have the form

∏

j (A!)′(m j ), and ❋r❡❡(A), the full subcategory of Gr(A) con-
sisting of modules which have the form

∐

i A(ni ). On the corresponding homotopy
categories of complexes, the functors F and G induce functors which, abusively, I
will denote by the same letters,

(6) K(❈♦❋r❡❡ A!)
F ✲✛
G

K(❋r❡❡ A).

According to [Fløystad 2003, Proposition 5.11], this is a pair of quasi-inverse
equivalences of triangulated categories.

Finite global dimension of A implies that D(Gr A) is equivalent to K(❋r❡❡ A) (see
[Weibel 1994, Section 10.5]), so the equivalences (6) can also be read as

(7) K(❈♦❋r❡❡ A!)
F ✲✛
G

D(Gr A).

Remark 2.2. The name Koszul duality is potentially confusing: “duality” might
lead one to think of contravariant functors, while F and G are in fact covariant.

For the following lemma, note that I use 6i (−) for the i-th suspension, so if M
is a complex then (6i M)ℓ = M i+ℓ.
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Lemma 2.3. The functors F and G in equation (7) satisfy the following.

(i) F(M(i)) ∼= 6i (FM)(−i).

(ii) G(N ( j)) ∼= 6 j (GN )(− j).

(iii) F((A!)′) is isomorphic to the A-left-module k.

Proof. (i) and (ii) can be seen by playing with the double complexes which define
F and G. (iii) follows from [Beilinson et al. 1996, Theorem 2.12.5(iii)]. �

Remark 2.4. The injective stable category over a ring is defined as the module
category modulo the ideal of morphisms which factor through an injective module.

The present paper uses the graded version of this, so the injective stable category
●r(A!) is defined as Gr(A!) modulo the ideal of morphisms which factor through
an injective object of Gr(A!).

Since A! is graded Frobenius by Remark 0.2(vi), the category Gr(A!) is Frobe-
nius by the graded version of [Happel 1987, Section 9.2], and so the category
●r(A!) is triangulated by [Happel 1987, Section 9.4]. For M in ●r(A!), the sus-
pension 6M is the first syzygy in an injective resolution of M . So 6M is the
cokernel of an injective pre-envelope, that is, an injective homomorphism M −→ I
in Gr(A!), where I is an injective object of Gr(A!). Any injective pre-envelope can
be used; changing the injective pre-envelope does not change the isomorphism
class of 6M in ●r(A!).

The degree shifting functor (−)(1) on Gr(A!) induces a functor on ●r(A!) which
I will also denote (−)(1).

Since Gr(A!) is Frobenius, the methods of [Keller 1994, Section 4.3] show that
the category ●r(A!) is equivalent to the full subcategory of exact complexes in
K(❈♦❋r❡❡ A!). Under the equivalence, a module M corresponds to a complete
cofree resolution C of M , that is, a complex C in K(❈♦❋r❡❡ A!) which is exact and
has its zeroth cycle module Z0(C) isomorphic to M .

Under the equivalence between ●r(A!) and the full subcategory of exact com-
plexes in K(❈♦❋r❡❡ A!), the suspension 6 on ●r(A!) corresponds to the ordinary
suspension 6 on K(❈♦❋r❡❡ A!), given by moving complexes one step to the left and
switching signs of differentials. Also, the functor (−)(1) on ●r(A!) corresponds to
the functor (−)(1) on K(❈♦❋r❡❡ A!) induced by degree shifting of A! -left-modules.

Proposition 2.5. The functors in (7) induce a pair of quasi-inverse equivalences of
triangulated categories

●r(A!)
✲✛ k⊥.

Proof. Remark 2.4 identifies ●r(A!) with the full subcategory of exact complexes
in K(❈♦❋r❡❡ A!), and Definition 1.2 defines k⊥ as a full subcategory of D(Gr A).
To prove the proposition, I must show that these subcategories are mapped to each
other by the functors F and G of equation (7).
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However, let N be in D(Gr A). Then the j-th graded component of the i-th
cohomology module of the complex GN is

hi (GN ) j

(a)
∼= HomK(Gr A! )(A! , 6i (GN )( j))

(b)
∼= HomK(CoFree A! )((A!)′(−d), 6i (GN )( j))

∼= HomK(CoFree A! )(6
−i (A!)′(−d − j), GN )

= (∗),

where (a) is classical and (b) holds because of A! ∼= (A!)′(−d); see Remark 0.2(vii).
Adjointness between F and G gives (c) in

(∗)
(c)
∼= HomD(Gr A)(F(6−i (A!)′(−d − j)), N )

(d)
∼= HomD(Gr A)(6

−i−d− j F((A!)′)(d + j), N )

∼= HomD(Gr A)(F((A!)′), 6i+d+ j N (−d − j))
(e)
∼= HomD(Gr A)(k, 6i+ j+d N (− j − d))

∼= hi+ j+d RHomA(k, N )− j−d ,

and (d) and (e) are by Lemma 2.3, parts (i) and (iii).
But now it is clear that GN is exact if and only if N is in k⊥, as desired. �

3. The BGG correspondence

Composing the equivalences of categories from Propositions 1.3 and 2.5 gives the
following main theorem of the paper.

Theorem 3.1 (The BGG correspondence). There are quasi-inverse equivalences
of triangulated categories

●r(A!)
ϕ ✲✛
γ

D(QGr A).

Example 3.2. If A is the polynomial algebra k[X1, . . . , Xd ] then it is classical that
A satisfies the conditions of Setup 0.1, and the definition of A! in Remark 0.2(iv)
makes it easy to see that A! is the exterior algebra E =

∧

(Y1, . . . , Yd). Also,
QGr(A) is equivalent to the category QCoh(Pd−1) of quasi-coherent sheaves on
(d − 1)-dimensional projective space by Serre’s theorem, [Artin and Zhang 1994,
Theorem, p. 229]. So Theorem 3.1 gives an equivalence of categories

●r(E) ≃ D(QCoh P
d−1).
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This is the classical BGG correspondence, originally established in [Bernšteı̆n et al.
1978, Theorem 2], with the slight improvement of dealing with the stable category
of all modules and the unbounded derived category of quasi-coherent sheaves rather
than the finite subcategories in [Bernšteı̆n et al. 1978, Theorem 2].

Remark 3.3. The quasi-inverse equivalences ϕ and γ from Theorem 3.1 are con-
structed by composing some other functors. Untangling the construction gives the
following concrete descriptions.

To get ϕ(M), take a complete cofree resolution C of M . Then ϕ(M) = πF(C),
where F is one of the functors from equation (7) and π is one of the functors from
equation (2).

To get γ (M), consider G(Rω(M)), where Rω is one of the functors from equa-
tion (2) and G is one of the functors from equation (7). This is an object of
K(❈♦❋r❡❡ A!) and in fact, it is even in the full subcategory of exact complexes
of K(❈♦❋r❡❡ A!). Now γ (M) = Z0G(Rω(M)), where Z0 takes the zeroth cycle
module.

The next lemma follows immediately from Lemma 2.3, parts (i) and (ii).

Lemma 3.4. The functors ϕ and γ satisfy the following.

(i) ϕ(M(i)) ∼= 6i (ϕM)(−i).

(ii) γ (M( j)) ∼= 6 j (γ M)(− j).

For the following lemma, let L be the minimal free resolution of the graded A! -
left-module k. Each L i is finitely generated free and hence cofree because Remark
0.2(vii) implies A! ∼= (A!)′(−d). So L is a complex in K(❈♦❋r❡❡ A!), and I can
apply the functor F from equation (7) and get a complex F(L) in D(Gr A).

Lemma 3.5. The cohomology of F(L) is torsion.

Proof. The version of F from equation (5) respects small colimits because it is con-
structed using tensor products and small coproducts. In the category of complexes
Ch(Gr A!), the object L is the colimit of the objects

L〈 j〉 = · · · −→ 0 −→ L− j −→ · · · −→ L0 −→ 0 −→ · · · ,

so

(8) F(L) ∼= F(colim L〈 j〉) ∼= colim F(L〈 j〉).

Now, A! is Koszul by [Beilinson et al. 1996, Proposition 2.9.1], and L is the
minimal free resolution of k over A! , and so

(9) L−i ∼=
∐

A!(−i).

This implies that L−i is concentrated in graded degrees i, . . . , d + i because A!

is concentrated in graded degrees 0, . . . , d by Remark 0.2(v). So the construction
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in Remark 2.1 says that F(L〈 j〉) is Tot
∐

of a double complex whose nonzero part
can be sketched as

(10)

A(d + j) ⊗ L− j
d+ j

A(d + j − 1) ⊗ L− j
d+ j−1

✻

✲ · · ·

...

✻

✲ · · · ✲ · · · ✲ A(d) ⊗ L0
d

A( j) ⊗ L− j
j

✻

✲ · · · ✲ · · · ✲ ...

✻

· · · ✲ A(1) ⊗ L0
1

✻

A ⊗ L0
0.

✻

Also, combining equation (9) with A! ∼= (A!)′(−d), which holds by Remark
0.2(vii), gives L−i ∼=

∐

(A!)′(−d − i). So, up to degree shift and suspension, the
(−i)-th column of (10) is just a coproduct of copies of the column obtained from
(A!)′. This column has nonzero part

A ⊗ (A!)′0

...

✻

A(−d) ⊗ (A!)′−d ,

✻

and is a free resolution of the A-left-module k, as follows from [Beilinson et al.
1996, Theorem 2.12.5(iii)]. So the columns of (10) have cohomology only at the
top ends, and the cohomology in the (−i)-th column is

∐

k(d + i).
Now consider the first spectral sequence of the double complex (10) (see [Weibel

1994, Section 5.6]). The previous part of the proof shows that the E2-term of the
spectral sequence is nonzero only at the top ends of the columns of (10), where

E0d
2

∼=
∐

k(d), . . . , E− j,d+ j
2

∼=
∐

k(d + j).
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Since the double complex is bounded in all directions, the spectral sequence con-
verges towards the cohomology of Tot

∐

. Consequently, Tot
∐

of the double com-
plex has cohomology only in cohomological degree d, and this cohomology sits in
graded degrees −d, . . . ,−d − j .

But this Tot
∐

is F(L〈 j〉). So (8) now shows that F(L) has cohomology only in
cohomological degree d , and that this cohomology can be nonzero only in graded
degrees −d, −d − 1, . . . . In particular, the cohomology of F(L) is torsion. �

Now consider the graded A! -left-module k viewed as an object of ●r(A!), and
consider O, the “structure sheaf” in QGr(A) defined by O = π(A). Then O can also
be viewed as a complex in D(QGr A) concentrated in cohomological degree zero,
and the following result holds.

Theorem 3.6. The functor ϕ satisfies ϕ(k) ∼= O.

Proof. To get ϕ(k), I must take πF(C), where C is a complete cofree resolution of
the A! -left-module k, while F and π are the functors from equations (7) and (2);
see Remark 3.3.

For this, consider first the functors F and G from (7). Let X in K(❈♦❋r❡❡ A!)

be a cofree resolution of k. From [Beilinson et al. 1996, Theorem 2.12.5(iii)]
there follows F(X) ∼= A. Hence GF(X) ∼= G(A), and as F and G are quasi-inverse
equivalences of categories, this implies X ∼= G(A). But k is quasi-isomorphic to
X , so this shows that k is quasi-isomorphic to G(A). However, it is clear from the
construction of G in Remark 2.1 that G(A) is a complex of cofree modules placed
in nonnegative cohomological degrees. All in all, G(A) must be a cofree resolution
of k, so there is a canonical morphism k −→ G(A).

Now let L be a minimal free resolution of k as in Lemma 3.5, so there is a
canonical morphism L −→ k. Composing the morphisms L −→ k and k −→ G(A)

gives a morphism L −→ G(A) whose mapping cone C is easily seen to be a
complete cofree resolution of k.

The distinguished triangle L −→ G(A) −→ C −→ in K(❈♦❋r❡❡ A!) gives a
distinguished triangle

πF(L) −→ πFG(A) −→ πF(C) −→

in D(QGr A). Let me compute the three complexes here: The cohomology of
F(L) is torsion by Lemma 3.5, so πF(L) ∼= 0. And F and G are quasi-inverse
equivalences, so FG(A) is isomorphic to A, so πFG(A) ∼= π(A) = O.

Finally, πF(C) is ϕ(k) as mentioned above. So the distinguished triangle reads

0 −→ O −→ ϕ(k) −→ ,

proving ϕ(k) ∼= O. �
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4. Computations

This section contains computations, some involving the BGG correspondence,
which will be used on periodic injective resolutions in Section 5.

The following lemma is just a graded version of [Benson 1998, Cor. 2.5.4(ii)].

Lemma 4.1. Let M be in ●r(A!). There are canonical isomorphisms

HomGr(A! )(k, 6i M) −→ Exti
Gr(A! )

(k, M)

for i ≥ 1.

Lemma 4.2. Let M be in ●r(A!) and consider M = ϕ(M) in D(QGr A). Then

Exti
Gr(A! )

(k, M(−i + j)) ∼= Ext j
QGr(A)

(O, M(i − j))

for i ≥ 1 and each j .

Proof. This is a simple computation,

Exti
Gr(A! )

(k, M(−i + j))
(a)
∼= HomGr(A! )(k, 6i M(−i + j))

(b)
∼= HomD(QGr A)(ϕk, ϕ(6i M(−i + j)))
(c)
∼= HomD(QGr A)(O, 6 j

M(i − j))

= Ext j
QGr(A)

(O, M(i − j)),

where (a) is by Lemma 4.1 and (b) is by the BGG correspondence, Theorem 3.1,
while (c) is by Theorem 3.6 and Lemma 3.4(i). �

For the following lemma, observe that the finitely generated graded modules
form a full subcategory ❣r(A!) of ●r(A!), and that the complexes which have
bounded cohomology consisting of objects from the category qgr(A) form a full
subcategory Df(QGr A) of D(QGr A).

Lemma 4.3. The subcategories ❣r(A!) and Df(QGr A) map to each other under
the BGG correspondence

●r(A!)
ϕ ✲✛
γ

D(QGr A).

Proof. It is not hard to check that ❣r(A!) consists of the objects of ●r(A!) which
are finitely built from objects of the form k(i).

Similarly, Df(QGr A) consists of the objects of D(QGr A) which are finitely built
from objects of the form O( j).
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But under the BGG correspondence, k(i) corresponds to 6i
O(−i) by Theorem

3.6 and Lemma 3.4(i), so the present lemma follows. �

Lemma 4.4. Let M be in Df(QGr A). Then for i ≫ 0 I have

Ext j
QGr(A)

(O, M(i − j)) ∼= HomQGr(A)(O, h j (M)(i − j))

for each j , where h j (M) is the j-th cohomology of M.

Proof. The algebra A has global dimension d by assumption, so qgr(A) has coho-
mological dimension at most d−1 by [Artin and Zhang 1994, Proposition 7.10(3)],
so Ext≥d

QGr(A)
(O, N) = 0 holds for each N in qgr(A).

Moreover, A is even AS regular by assumption, so qgr(A) satisfies Serre van-
ishing by [Artin and Zhang 1994, Theorems 8.1(1) and 7.4]. That is, given N in
qgr(A) and given p with 1 ≤ p ≤ d − 1, I have Extp

QGr(A)
(O, N(r)) = 0 for r ≫ 0.

So given N, I can kill all the Extp
QGr(A)

(O, N(r)) with p ≥ 1 by choosing r large
enough. That is, given N in qgr(A), I have

(11) r ≫ 0 ⇒ Extp
QGr(A)

(O, N(r)) = 0 for p ≥ 1.

There is a convergent spectral sequence

E pq
2 = Extp

QGr(A)
(O, hq(M)(i − j)) ⇒ Extp+q

QGr(A)
(O, M(i − j))

by [Weibel 1994, 5.7.9] (convergence because the cohomology h(M) is bounded).
By assumption on M, the finitely many nonzero hq(M)’s are in qgr(A). So equation
(11) implies that for i − j ≫ 0, the term E pq

2 is concentrated on the line p = 0. So
the spectral sequence collapses and gives

(12) HomQGr(A)(O, hq(M)(i − j)) ∼= Extq
QGr(A)

(O, M(i − j))

for i − j ≫ 0 and each q .
Now observe that the isomorphism (12) also holds for q ≫ 0, simply because

both sides are then zero. For the left-hand side, this is true because h(M) is
bounded. For the right-hand side, use that h(M) is bounded and that qgr(A) has
cohomological dimension at most d − 1.

So setting q equal to j , the isomorphism (12) holds for j ≫ 0, and for other
values of j I can force i − j ≫ 0 by picking i ≫ 0, and then the isomorphism also
holds. That is,

HomQGr(A)(O, h j (M)(i − j)) ∼= Ext j
QGr(A)

(O, M(i − j))

for i ≫ 0 and each j , proving the lemma. �
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5. Periodic injective resolutions

This section shows how the BGG correspondence can be used to understand the
periodicity of certain injective resolutions over exterior algebras as a geometric
phenomenon.

I also show an analogous noncommutative example with much more compli-
cated behaviour, due to the more intricate nature of noncommutative geometry.

The commutative case. Denote by E the exterior algebra
∧

(Y1, . . . , Yd) over k,
and recall that gr(E) is the category of finitely generated graded E-left-modules.
The following result appears in [Eisenbud 2002, Theorem 2.2].

Theorem 5.1 (Eisenbud). Let M in gr(E) be without injective direct summands,
and suppose that the Bass numbers

µi (M) = dimk ExtiE(k, M)

are bounded for i ≥ 0.
Then the minimal injective resolution I of M is periodic with period one in the

following sense: Up to isomorphism, I i is I 0(i) and ∂ i
I is ∂0

I (i).

In other words, up to isomorphism and degree shift, all the I i and all the ∂ i
I

are the same. (In fact, Eisenbud worked with minimal free resolutions, but using
Matlis duality on his result gives Theorem 5.1.)

This phenomenon can be understood geometrically in a very simple way, using
the BGG correspondence: The module M can be translated to a geometric object
on P

d−1, and since the Bass numbers of M are bounded, this object turns out to
have zero-dimensional support. Therefore the object is stable under twisting, that
is, tensoring by OPd−1(1), and translating back, this gives that M is its own first
syzygy, and periodicity of the minimal injective resolution follows.

In more detail, let A be the polynomial algebra k[X1, . . . , Xd ] so I am in the sit-
uation of Example 3.2. In particular, A! is the exterior algebra E =

∧

(Y1, . . . , Yd),
and QGr(A) is equivalent to QCoh(Pd−1), with the subcategory qgr(A) correspond-
ing to the subcategory coh(Pd−1) of coherent sheaves. Let M be in gr(E), and
suppose that the Bass numbers

µi (M) = dimk ExtiE(k, M)

are bounded for i ≥ 0.
The BGG correspondence associates to M the object

M = ϕ(M) ∈ D(QCoh P
d−1).

In fact, Lemma 4.3 even says that only finitely many of the cohomologies hℓ(M)

are nonzero, and that each hℓ(M) is coherent.
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For i ≥ 1 I have

µi (M) = dimk ExtiE(k, M)(13)
(a)
=

∑

j

dimk ExtiGr(E)(k, M(−i + j))

(b)
=

∑

j

dimk Ext j
QCoh(Pd−1)

(OPd−1, M(i − j))

= (∗),

where in (a), I am being clever by using the degree shift −i + j instead of simply
j , and where (b) is by Lemma 4.2. And for i ≫ 0 I have

(14) (∗) =
∑

j

dimk HomQCoh(Pd−1)(OPd−1, h j (M)(i − j))

by Lemma 4.4.
It follows that if µi (M) is bounded for i ≥ 0, then for each j ,

dimk HomQCoh(Pd−1)(OPd−1, h j (M)(i − j))

is bounded for i ≥ 0. Hence for each j ,

(15) dimk HomQCoh(Pd−1)(OPd−1, h j (M)(ℓ))

is bounded for ℓ ≫ 0. However, this is now a geometric statement: For ℓ ≫ 0, the
polynomial growth rate of the numbers in equation (15) equals the dimension of
the support of h j (M) on P

d−1, as follows from [Hartshorne 1977, Theorem I.7.5].
So it follows that each of the finitely many nonzero h j (M) has zero-dimensional
support; in other words, the support is a finite collection of points.

Now suppose that the ground field k is infinite. Then it is possible to pick a
hyperplane H in P

d−1 which is disjoint from the support of each h j (M). To H
corresponds an injection OPd−1(1) →֒ OPd−1 which is an isomorphism away from
H . Tensoring over OPd−1 with M gives a morphism

M ⊗ OPd−1(1)
µ

−→ M ⊗ OPd−1,

and h j (µ) is h j (M) ⊗ OPd−1(1) −→ h j (M) ⊗ OPd−1 . However, this is an isomor-
phism for each j because OPd−1(1) →֒ OPd−1 is an isomorphism away from H and
hence an isomorphism on the support of each h j (M). So µ is an isomorphism in
D(QCoh P

d−1), proving

M(1) ∼= M.
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Under the BGG correspondence this gives γ (M(1)) ∼= γ (M), and using γ (M) =

γ ϕ(M) ∼= M and Lemma 3.4(ii) this can be rearranged as

(16) 6M ∼= M(1)

in ●r(E).
In●r(E), the suspension 6M is computed as the first syzygy of M in an injective

resolution; see Remark 2.4. So equation (16) shows that in ●r(E), this first syzygy
is just M itself, with a degree shift of one. It is possible to improve this with a
few remarks: First, if M is without injective direct summands, then it is not hard
to show that the isomorphism (16) lifts to hold in Gr(E), if 6M is obtained as the
first syzygy in a minimal injective resolution of M . Secondly, the assumption that
k is infinite can be dropped using [Grothendieck 1965, Proposition 2.5.8].

Iterating equation (16) now shows that in the minimal injective resolution I of
M , the syzygy 6i M is simply M(i). Hence the module I i must be I 0(i), and the
differential ∂ i

I must be ∂0
I (i). So I have recovered Theorem 5.1.

The noncommutative case. In the above argument, the minimal injective resolu-
tion is periodic with period one because points in P

d−1 are invariant under twisting.
It is known that this invariance breaks down when one passes to noncommutative
analogues of P

d−1.
Here the twist can move points, and it is possible to have orbits of length n,

for any finite n, and orbits of infinite length. So it is natural to expect that suitable
noncommutative analogues of the above argument might give examples of algebras
A! , analogous to E , and modules M where µi (M) is bounded for i ≥ 0, and yet
where the minimal injective resolution of M is periodic with period n, or aperiodic.
Indeed, this turns out to hold.

Note that the following example of this behaviour is already known from [Smith
1996]. But the present geometric view through the BGG correspondence is new.

Setup 5.2. Assume that the ground field k is algebraically closed. Let C be an
elliptic curve over k with a line bundle L of degree d, and an automorphism τ

given by translation by a point of C . Let A be the Sklyanin algebra associated to
these data in [Smith 1996, Sec. 8].

Remark 5.3. Note that A satisfies the standing assumptions from Setup 0.1. In
fact, A is a noncommutative analogue of the polynomial algebra on d variables
k[X1, . . . , Xd ], and hence the Koszul dual A! is a noncommutative analogue of
the exterior algebra

∧

(Y1, . . . , Yd).

Remark 5.4. The construction of A in [Smith 1996, Sec. 8] is so that the curve
C sits inside P(A′

1). So each point p on C is also a point in P(A′
1), that is, a one

dimensional subspace of A′
1. This subspace has an annihilator p⊥ in A1, and the
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graded A-left-module P〈p〉 = A/Ap⊥ is a so-called point module. That is, it is
cyclic, and each graded piece in nonnegative degrees is one dimensional.

Let me now use the functor π from Remark 1.1 to write

M〈p〉 = π(P〈p〉).

This is an object of qgr(A), and I view it as a complex concentrated in cohomo-
logical degree zero. This complex is an object of D(QGr A), so finally the BGG
correspondence gives the object

M〈p〉 = γ (M〈p〉)

in ●r(A!). In fact, M〈p〉 viewed as an object of D(QGr A) is in the subcategory
Df(QGr A), so Lemma 4.3 says that M〈p〉 is even in ❣r(A!).

Observe that M〈p〉 is only well-defined up to isomorphism in ●r(A!), so when
looking at M〈p〉 as a graded A! -left-module, I can drop any injective direct sum-
mands, and so assume that M〈p〉 is without injective direct summands.

Let me start by pointing out the following property of the modules M〈p〉.

Proposition 5.5. The Bass numbers µi (M〈p〉) are bounded for i ≥ 0.

Proof. By a computation like the one in equations (13) and (14), it follows that for
i ≫ 0 I have

µi (M〈p〉) =
∑

j

dimk HomQGr(A)(O, h j (M〈p〉)(i − j)) = (∗).

However, the complex M〈p〉 is just the object M〈p〉 placed in cohomological de-
gree zero, so

(∗) = dimk HomQGr(A)(O, M〈p〉(i)) = (∗∗),

and since M〈p〉 is π(P〈p〉) and i is large, this is

(∗∗) = dimk P〈p〉i = 1

by [Artin and Zhang 1994, Theorem 8.1(1) and Proposition 3.13(2)], because the
algebra A is AS regular. �

Now some computations with the M〈p〉’s.

Lemma 5.6. The module M〈p〉 determines p.

Proof. It is certainly true that M〈p〉 determines M〈p〉 ∼= ϕ(M〈p〉). In turn, M〈p〉

determines the tail P〈p〉≥n for n ≫ 0, because when viewing M〈p〉 as an object of
qgr(A), I have

(17) P〈p〉≥n
∼= ωπ(P〈p〉)≥n = ω(M〈p〉)≥n
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for n ≫ 0 by [Artin and Zhang 1994, Theorem 8.1(1) and Proposition 3.13(2)].
But P〈p〉≥n determines p by [Smith 1996, Sec. 8]. �

Lemma 5.7. Recall d and τ from Setup 5.2. The modules M〈p〉 satisfy

6(M〈p〉) ∼= M〈τ 2−d p〉(1)

in ●r(A!).

Proof. In [Smith 1996, Example 9.5] is proved

P〈p〉≥1(1) ∼= P〈τ 2−d p〉,

and applying π shows
M〈p〉(1) ∼= M〈τ 2−d p〉

because π only sees the tail of a module. Applying γ and Lemma 3.4(ii), this can
be rearranged to the lemma’s isomorphism

6(M〈p〉) ∼= M〈τ 2−d p〉(1).

�

Lemma 5.8. If 6i (M〈p〉) ∼= M〈q〉( j) holds in ●r(A!) for some points p and q on
C , then i = j .

Proof. The lemma’s isomorphism implies ϕ(6i (M〈p〉)) ∼= ϕ(M〈q〉( j)), and using
Lemma 3.4(i) and ϕ(M〈p〉) = M〈p〉, this becomes 6i (M〈p〉) ∼= 6 j (M〈q〉)(− j).
Since the cohomologies of M〈p〉 and M〈q〉 are concentrated in cohomological de-
gree zero, this is only possible with i = j . �

Finally, these lemmas can be used as follows. If there is to be periodicity in the
sense

(18) 6i (M〈p〉) ∼= M〈p〉( j)

in ●r(A!) for some i and j , then i = j by Lemma 5.8. Moreover, 6i (M〈p〉) ∼=

M〈τ (2−d)i p〉(i) holds by Lemma 5.7. Substituting into equation (18) gives

M〈τ (2−d)i p〉(i) ∼= M〈p〉(i),

hence M〈τ (2−d)i p〉∼= M〈p〉, and as M〈p〉 determines p by Lemma 5.6, this implies

τ (2−d)i (p) = p.

Conversely, τ (2−d)i (p) = p gives

6i (M〈p〉) ∼= M〈τ (2−d)i p〉(i) ∼= M〈p〉(i)

in ●r(A!) by Lemma 5.7.
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Summing up, if d , τ and p are so that τ (2−d)i (p) 6= p for i = 1, . . . , n − 1 but
τ (2−d)n(p) = p, then in ●r(A!) the suspension 6i (M〈p〉) is not a degree shift of
M〈p〉 for i = 1, . . . , n − 1, but 6n(M〈p〉) is M〈p〉(n).

And if d, τ and p are so that τ (2−d)i (p) 6= p for i ≥ 1, then in ●r(A!) the
suspension 6i (M〈p〉) is not a degree shift of M〈p〉 for i ≥ 1.

Using that M〈p〉 contains no injective direct summands, this easily lifts to give
the same result in Gr(A!) for syzygies in minimal injective resolutions. So I get
the following example which shows the promised contrast to Theorem 5.1 with
respect to periodicity of minimal injective resolutions.

Example 5.9. (1) Let d , τ and p be so that τ (2−d)i (p) 6= p for i = 1, . . . , n − 1
but τ (2−d)n(p) = p.

Then the minimal injective resolution I of M〈p〉 is periodic with period n,
in the sense that in the resolution, the i-th syzygy 6i (M〈p〉) is not isomorphic
to a degree shift of M〈p〉 for i = 1, . . . , n −1, but the n-th syzygy 6n(M〈p〉)

is isomorphic to M〈p〉(n).
Hence up to isomorphism, I n is I 0(n) and ∂n

I is ∂0
I (n), while the same is

not true with any smaller value of n.

(2) Let d , τ and p be so that τ (2−d)i (p) 6= p for i ≥ 1.
Then the minimal injective resolution I of M〈p〉 is aperiodic, in the sense

that in the resolution, no syzygy 6i (M〈p〉) is a degree shift of M〈p〉 for i ≥ 1.
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MODULAR DIOPHANTINE INEQUALITIES AND NUMERICAL

SEMIGROUPS

J. C. ROSALES, P. A. GARCÍA-SÁNCHEZ AND J. M. URBANO-BLANCO

We study the set of integer solutions to the modular diophantine inequality

ax mod b ≤ x.

Introduction

Given x ∈ Q, we set ⌈x⌉ = min{z ∈ Z | z ≥ x} and ⌊x⌋ = max{z ∈ Z | z ≤ x},
as usual. Given integers m, n with n > 0, we set m mod n = m − n⌊m/n⌋ and
m mod (−n) = m mod n. A modular diophantine inequality is an expression of
the form ax mod b ≤ x with a, b integers such that b 6= 0. Since ax mod b ≥ 0,
the set S of solutions to such an inequality is contained in the set N of nonnegative
integers. S is a numerical semigroup, that is, S is closed under addition, 0 ∈ S and
N \ S is finite. Not every numerical semigroup arises from a modular diophantine
inequality, and Section 2 presents a procedure for testing numerical semigroups
for this property. Theorem 12 is crucial for obtaining this algorithm, and thus
Section 1 is devoted to it. One of the main consequences of this theorem is that if
the inequalities ax mod b ≤ x and cx mod d ≤ x have the same solutions, then

b − (a, b) − (a−1, b) = d − (c, d) − (c−1, d),

where (x, y) denotes the greatest common divisor of the integers x and y.
A numerical semigroup S is said to be modular with modulus b and factor a if

S ={x ∈N |ax mod b≤ x}. The preceding remark ensures that b−(a, b)−(a−1, b)

is an invariant of S, which we call the weight of S and denote by w(S).
If S is a numerical semigroup, the largest integer not in S is called the Frobenius

number of S and is denoted by g(S). This integer has been widely studied; see for
instance [Brauer 1942; Brauer and Shockley 1962; Johnson 1960; Selmer 1977;
Sylvester 1884; Curtis 1990; Davison 1994; Djawadi and Hofmeister 1996]. In this
direction it is worth highlighting [Ramírez Alfonsín 2000; ≥2005], where a review
of this problem is given, with many references. In the literature one can also find a
large number of publications devoted to the study of one-dimensional analytically
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irreducible local domains via their value semigroups, which are numerical semi-
groups; see, for instance, [Apéry 1946; Barucci et al. 1997; Bertin and Carbonne
1977; Delorme 1976; Fröberg et al. 1987; Kunz 1970; Teissier 1973; Watanabe
1973]. As a consequence of this study, some interesting kinds of numerical semi-
groups arise, such as symmetric and pseudo-symmetric numerical semigroups. In
Section 1 we prove that a modular numerical semigroup S is symmetric if and only
if w(S) = g(S), and pseudo-symmetric if and only if g(S) = w(S) + 1. Sections
3 and 4 are devoted to modular numerical semigroups with modulus equal to their
weight plus two and three, respectively. We show that those of weight plus two
are obtained from a symmetric numerical semigroup by adjoining its Frobenius
number to it, and that those with weight plus three arise from a pseudo-symmetric
numerical semigroup by adding to it its Frobenius number and this number divided
by two.

In Section 5 we study those modular numerical semigroups S such that the
factor of S divides the modulus. For these numerical semigroups we can explicitly
give formulas for the multiplicity, the minimal generator set, the Apéry set and the
Frobenius number, so the case a |b is now well understood.

Section 6 addresses the problem of computing the Frobenius number in the
complementary case a ∤b, solving it when (a−1)(a − (b mod a)) < b. We have
not been able to solve the general case.

1. Modular numerical semigroups

Let a and b be integers such that b 6= 0. Since ax mod b = (a mod b)x mod b and
ax mod b = ax mod (−b), in order to study the solutions of ax mod b ≤ x , we
can assume that b is a positive integer and that 0 ≤ a < b.

Proposition 1. The set of integer solutions of a modular diophantine inequality is
a numerical semigroup.

Proof. Let a and b be two integers such that 0 ≤ a < b and let S = {x ∈ N |
ax mod b ≤ x}. Clearly 0 ∈ S, and if x is an integer greater than or equal to
b, then x ∈ S. Hence N \ S is finite. For x, y ∈ S, we have a(x + y) mod b ≤
ax mod b+ay mod b ≤ x + y, whence x + y ∈ S, so S is closed under addition. �

A numerical semigroup S arising as in the proposition is said to be modular.
The modular semigroup with modulus b factor a will be denoted by S(a, b); thus
S(a, b)={x ∈ N |ax mod b ≤ x}. When we write S(a, b) we will generally assume
tacitly that a and b are integers with 0 ≤ a < b.

Example 2. S(2, 3)= S(2, 4)={0, 2, 3, →}, where → means that all the elements
beyond 3 are in the set. Thus a and b don’t have to be unique.
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The goal of this section is to prove Theorem 12, which counts the natural
numbers absent from S(a, b). We prepare the ground with some simple results.

Lemma 3. Let a and b be integers such that 0 ≤ a < b. Then ax mod b ≤ x if and
only if (b + 1 − a)x mod b ≤ x .

Proof. If ax mod b ≤ x , there exist q, r ∈ N such that ax = qb +r with 0 ≤ r ≤ x .
Hence (b +1−a)x = (b +1)x −ax = bx −qb + x − r and (b +1−a)x mod b ≤
x − r ≤ x . The converse follows by interchanging a with b + 1 − a. �

Lemma 4. Let S be a modular numerical semigroup with modulus b ≥ 2. Then
there exists a positive integer a such that a ≤ 1

2(b + 1) and S = S(a, b).

Proof. Write S = S(a, b) with 0 ≤ a < b. By Lemma 3, S = S(b + 1 − a, b), so
if a > 1

2(b + 1) we can replace a by b + 1 − a ≤ 1
2(b + 1). Also if a = 0 we can

replace it by a = 1, since S = N for both these values of a. �

Lemma 5. Let a and b be integers such that 0 ≤ a < b and let x ∈ N. Then

a(b − x) mod b =
{

0 if ax mod b = 0,

b − (ax mod b) if ax mod b 6= 0,

and ax mod b > x implies that a(b − x) mod b < b − x . �

Corollary 6. If S = S(a, b) and x ∈ N \ S, then b − x ∈ S. �

Given a subset A of N, we denote by H(A) the complement N \ A, and by 〈A〉
the submonoid of N generated by A (the set of finite sums of elements of A).

Remark 7. If S = S(a, b) 6= N for positive a and b, then b−1 /∈ H(S), since
otherwise b − (b−1) = 1 would be an element of S. Moreover x ∈ S for all
integers x ≥ b. Therefore the Frobenius number g(S) is at most b − 2.

We now characterize the case g(S) = b−2. If g(S) = b−2, Corollary 6 implies
that b − (b − 2) = 2 ∈ S. Hence b is odd and S = 〈2, b〉. In addition, since 2 ∈ S,
2a mod b ≤ 2 and this leads to 2a > b, whence a > 1

2 b. But Lemma 4 says we
can take a ≤ 1

2(b +1), which then means a = 1
2(b +1). Hence S = S( 1

2(b +1), b).
Conversely, if S = S(1

2(b + 1), b) with b odd, it is easy to check that S = 〈2, b〉
and thus g(S) = b − 2.

Example 8. Suppose b ≥ 2 and S = S(2, b). Then S =
{

0,
⌊ 1

2(b+1)
⌋

, →
}

. For
clearly {b, →} ⊆ S. Now take 0 < x < b. Then x ∈ S if and only if 2x mod b ≤ x .
However, 2x mod b = 2x if and only if 2x < b, and thus in this case x 6∈ S. If
2x ≥ b, then 2x mod b = 2x − b ≤ x , whence x ∈ S.

Lemma 9. Let S = S(a, b) and let x be an integer such that 0 ≤ x ≤ b. Then x and
b − x are both in S if and only if ax mod b ∈ {0, x}.
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Proof. If ax mod b /∈ {0, x}, Lemma 5 gives a(b − x) mod b = b − (ax mod b). If
x ∈ S, the right-hand side exceeds b − x (since ax mod b < x). Thus b − x /∈ S.

Conversely, if ax mod b = 0, clearly x ∈ S and also b − x ∈ S by Lemma 5;
whereas if ax mod b = x 6= 0, again x ∈ S, and Lemma 5 gives a(b − x) mod b =
b − (ax mod b) = b − x , so b − x ∈ S. �

Lemma 10. Let a and b be positive integers and x an integer such that 0 ≤ x < b.

(1) ax mod b = 0 if and only if x is a multiple of b/(a, b).

(2) ax mod b = x if and only if x is a multiple of b/(b, a−1). �

Lemma 11. Let S = S(a, b) with 0 < a < b. Let α = (b, a−1) and β = (b, a), and
let x be an integer such that 0 ≤ x ≤ b. Then

{x, b−x} ⊂ S ⇐⇒ x ∈
{

0,
b

α
, 2

b

α
, . . . (α−1)

b

α
,

b

β
, 2

b

β
, . . . , (β−1)

b

β
, b

}

=: X.

The cardinality of X is α + β.

Proof. The equivalence is just Lemmas 9 and 10 put together. To show there is no
duplication in the elements of X as written, note that (α, β) = 1. If sb/α = tb/β

for some s, t ∈ N, then sβ = tα = kαβ for some k ∈ N. Hence s = kα and t = kβ. �

Theorem 12. Let S = S(a, b) for some integers 0 ≤ a < b. Then

# H(S) =
b + 1 − (a, b) − (a−1, b)

2
.

Here as usual # denotes cardinality.

Proof. Let α, β and X be as in Lemma 11. By Corollary 6 and Lemma 11, for
0 ≤ x ≤ b, at most one of x , b−x lies in H(S), and it’s exactly one unless x ∈ X .
Thus # H(S) = 1

2(b + 1 − # X) = 1
2(b + 1 − α − β). �

Example 13. If p is an odd prime, # H(S(a, p))= 1
2(p−1) for all a with 1<a < p.

As an immediate consequence of Theorem 12 we obtain:

Corollary 14. Suppose S(a, b) = S(c, d). Then

b − (a, b) − (a−1, b) = d − (c, d) − (c−1, d).

Example 15. The converse of Corollary 14 is false. For instance, 〈4, 5, 6〉 =
S(3, 12) 6= S(2, 10) = 〈5, 6, 7, 8, 9〉.

Recall that we have defined the weight of S = S(a, b) as w(S) := b − (a, b) −
(a−1, b); by Theorem 12, this number equals 2 # H(S)−1, and so is an invariant
of S. Note that w(N) = −1. If S 6= N, we can choose a, b with 2 ≤ a < b; hence
(a, b)+(a−1, b)≤ 1

2 b+ 1
3 b < b, so w(S)≥ 1. Thus, like the Frobenius number, the
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weight of a modular numerical semigroup is at least 1, except for the case S = N,
where w(S) = g(S) = −1.

Theorem 12 and the inequality # H(S) ≥ 1
2(g(S) + 1), valid for any numerical

semigroup S (see [Fröberg et al. 1987], for instance), yield:

Corollary 16. If S is a modular numerical semigroup, then w(S) is odd and greater
than or equal to g(S). �

In view of this, modular numerical semigroups S with w(S)=g(S) and g(S) odd,
or with w(S) = g(S)+1 and g(S) even, have minimal possible weight with respect
to their Frobenius numbers. The next result characterizes this kind of numerical
semigroup, but before proving it we need to recall some concepts.

A numerical semigroup S is symmetric if x ∈ N \ S implies g(S) − x ∈ S. It is
straightforward to prove that a symmetric numerical semigroup has odd Frobenius
number. A numerical semigroup is pseudo-symmetric if g(S) is even and x ∈ N\ S
implies that either x = g(S)/2 or g(S) − x ∈ S. A numerical semigroup S is
symmetric if and only if # H(S) = 1

2(g(S)+1), and pseudo-symmetric if and only
if # H(S) = 1

2(g(S) + 2)); see [Fröberg et al. 1987], for instance.
A numerical semigroup is irreducible if it cannot be expressed as the intersection

of two numerical semigroups containing it properly. In [Rosales and Branco 2003]
it is shown that S is irreducible if and only if S is symmetric or pseudo-symmetric
(depending on the parity of g(S)).

Corollary 17. Let S be a modular numerical semigroup.

(1) S is symmetric if and only if w(S) = g(S).

(2) S is pseudo-symmetric if and only if w(S) = g(S) + 1.

Proof. S is symmetric if and only if # H(S) = 1
2(g(S) + 1). By Theorem 12,

# H(S) = 1
2(w(S) + 1), whence S is symmetric if and only if g(S) = w(S). The

proof of (2) is analogous. �

Example 18. If b is an odd integer, there exists a modular numerical semigroup S
with w(S) = b. It suffices to take S = S(2, b+2), since w(S(2, b+2)) = b + 2 −
(2, b + 2) − (1, b + 2) = b + 2−1−1 = b.

2. Determining whether a numerical semigroup is modular

In this section we give a procedure for deciding whether a given numerical semi-
group is a modular numerical semigroup, and if so to express it in the form S(a, b).

Lemma 19. Let S be a modular numerical semigroup with modulus b and S 6= N.
Then b ≤ 12 # H(S) − 6.

Proof. As we saw right after Example 15, if a ≥ 2 we have (a, b)+(a−1, b) ≤ 5
6 b.

By Theorem 12, # H(S) ≥ 1
2(b + 1 − 5

6 b) and thus b ≤ 12 # H(S) − 6. �
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For a numerical semigroup S, the multiplicity of S, denoted by m(S), is the least
positive integer in S. Here is an immediate consequence of Lemma 11:

Lemma 20. For S = S(a, b),

b − m(S) ∈ S ⇐⇒ m(S) = min
{ b

(a, b)
,

b

(a−1, b)

}

.

Lemma 21. Let S be a modular numerical semigroup with modulus b. Then

b ≥ g(S) + m(S).

Proof. Since 1, 2, . . . , m(S)−1 are not in S, Corollary 6 ensures that b−m(S)+1,
. . . , b−1 are. But {b, m(S)} ⊂ S, so {b − m(S) + 1, →} ⊆ S. This implies that
g(S) ≤ b − m(S). �

Lemma 22. For S = S(a, b),

b = g(S) + m(S) ⇐⇒ m(S) 6= min
{ b

(a, b)
,

b

(a−1, b)

}

.

Proof. Follows from Lemmas 20 and 21. �

Now we have all the ingredients to give the algorithm announced at the start of
this section, to decide whether a numerical semigroup is of the form S(a, b), and if
so, produce such a pair (a, b) (or all such pairs with a ≤ 1

2(b +1), if the algorithm
is not stopped after the first pair is found).

Algorithm 23. Given a numerical semigroup S distinct from N:

(1) Compute # H(S), g(S) and m(S).

(2) Set b = g(S) + m(S).

(3) For every a ∈ A :=







2 ≤ a ≤ 1
2(b + 1),

a ∈ N b = 2 # H(S) + (a, b) + (a−1, b)−1,

m(S) < min{b/(a, b), b/(a−1, b)}







compute S(a, b); if S = S(a, b), return this answer and stop.

(4) Compute B =
{

b ∈ {k · m(S) | k ∈ N}
∣

∣ 2 # H(S) + 1 ≤ b ≤ 12 # H(S) − 6
}

.

(5) For every b ∈ B

for every a ∈ Ab :=







2 ≤ a ≤ 1
2(b + 1),

a ∈ N b = 2 # H(S) + (a, b) + (a−1, b)−1,

m(S) = min{b/(a, b), b/(a−1, b)}







compute S(a, b); if S = S(a, b), return this answer and stop.

(6) Return “S is not modular”.
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We briefly justify the correctness of Algorithm 23. In Steps (2) and (3) we check
whether S is a modular numerical semigroup with modulus g(S) + m(S), and the
correct working of these steps relies on Lemmas 4 and 22 and Theorem 12. If S is
not a modular numerical semigroup with modulus g(S) + m(S), Lemma 22 gives
m(S) = min{b/(a, b), b/(a−1, b)}. This implies that m(S) divides b. Theorem 12
states that b = 2 # H(S) + (a, b) + (a−1, b)−1, so b ≥ 2 # H(S) + 1; at the same
time b ≤ 12 # H(S) − 6 by Lemma 19. Therefore Steps (4) and (5) cover the case
b 6= g(S) + m(S).

Example 24. Let S = 〈3, 5〉. Then # H(S) = 4, g(S) = 7 and m(S) = 3. In Step
(2) we get b = 10. Step (3) yields A = {2, 3, 4}, then S(2, 10) = 〈5, 6, 7, 8, 9〉,
S(3, 10) = 〈4, 5, 7〉, and S(4, 10) = 〈3, 5〉 = S, so the algorithm returns S =
S(4, 10).

Example 25. Let S = 〈3, 8, 10〉. In this case # H(S) = 5, g(S) = 7 and m(S) = 3.
In Step (2) we obtain b = 10 and in Step (3), A = ∅. The only nonempty set Ab

with b ∈ B is A15 = {5}. Since S 6= S(5, 15) = 〈3, 7, 11〉, the algorithm returns No.

Example 26. Let S = 〈10, 11, 12〉. Then # H(S) = 25, g(S) = 49 and m(S) = 10.
In Step (2) we obtain b = 59 and A is empty. Computing B, we obtain

B = {60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180,

190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290}.

The only nonempty set Ab with b ∈ B is A60 = {6}. It turns out that S = S(6, 60).

Remark 27. If the input to Algorithm 23 is known to be symmetric, the procedure
can be improved, because if S = S(a, b) is symmetric then b must be equal to
g(S) + (a, b) + (a−1, b) (note that w(S) = g(S) by Corollary 17). A similar
argument applies to the pseudo-symmetric case.

Remark 28. The intersection
⋂n

i=1 S(ai , bi ) of n ≥ 1 modular numerical semi-
groups is a numerical semigroup; it need not be modular, as can be seen from
Example 25, since we can write 〈3, 8, 10〉 = 〈3, 4〉 ∩ 〈3, 5〉 = S(3, 8) ∩ S(4, 10).

Nor can every numerical semigroup be written as such an intersection: for
instance, 〈7, 8, 10, 13〉 is a symmetric, hence irreducible, numerical semigroup;
thus it cannot be an intersection of modular numerical semigroups other than by
being itself a modular numerical semigroup. Algorithm 23 says that it is not.

3. Modular numerical semigroups whose modulus is its weight plus two

We now study modular numerical semigroups S = S(a, b) whose modulus b equals
w(S)+2. Since b =w(S)+(a, b)+(a−1, b)≥w(S)+2, the condition b =w(S)+2
is equivalent to (a, b) = (a−1, b) = 1 (so b is odd), and it characterizes modular
numerical semigroups whose moduli are minimal with respect to their weights.
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Every numerical semigroup S is finitely generated (as an additive monoid). This
is easy to see — for instance, start with two relatively prime r, s ∈ S and then adjoin
all elements of S∩{0, 1, . . . , rs −1} as yet unaccounted for. Among all generating
sets one can of course choose one that is minimal, say M(S). A minute’s thought
shows that M(S) is characterized by containing exactly those nonzero elements of
S that cannot be expressed as a sum of two nonzero elements of S:

M(S) = (S \ {0}) \
(

(S \ {0}) + (S \ {0})
)

.

In particular, M(S) is unique. We set e(S) = # M(S) and call this number the
embedding dimension of S; the elements of M(S) are called minimal generators.

Proposition 29. Let S = S(a, b) with 2 ≤ a < b and (a, b) = (a−1, b) = 1. Then

(1) b = g(S) + m(S),

(2) # H(S) = 1
2(g(S) + m(S)−1),

(3) b is the largest minimal generator of S.

Proof. (1) We already know that b−1 ∈ S when 2 ≤ a < b. Hence m(S) 6= b. Using
Lemma 22, we get b = g(S) + m(S).

(2) Immediate from Theorem 12.

(3) First we prove that b is a minimal generator of S. Assume to the contrary that
b = x + y with x, y ∈ S \ {0}. Then ax mod b ≤ x and ay mod b ≤ y, and thus
(ax mod b) + (ay mod b) ≤ x + y = b. Since a(x + y) mod b = ab mod b = 0,
we deduce that (ax mod b)+ (ay mod b) ∈ {0, b}. Thus either ax mod b = x and
ay mod b = y, or ax mod b = 0 and ay mod b = 0. These two cases contradict
the two halves of Lemma 10.

To see that b is the largest minimal generator, take x ∈ S with x >b. By applying
(1) we obtain x > g(S) + m(S), which implies that x − m(S) > g(S); this forces
x −m(S) ∈ S. Thus x = m(S)+(x −m(S)) cannot be a minimal generator of S. �

Proposition 29 allows us to relate the modular numerical semigroups in question
with unitary extensions of symmetric numerical semigroups or UESY-semigroups
in short. A numerical semigroup S is a UESY-semigroup if there exists a symmetric
numerical semigroup S′ such that S′ ⊂ S and #(S \ S′) = 1. In [Rosales ≥ 2005b]
this condition is shown to be equivalent to the existence of a symmetric numerical
semigroup S′ such that S = S′ ∪ {g(S′)}. The following result also appears there.

Proposition 30. Let S be a numerical semigroup, S 6= N. The following conditions
are equivalent:

(1) S is a UESY-semigroup.

(2) # H(S) = 1
2(g(S)+m(S)−1) and g(S)+m(S) is a minimal generator of S. �
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A pseudo-Frobenius number [Rosales and Branco 2002] of a numerical semi-
group S is an integer x /∈ S such that x +s ∈ S for all s ∈ S\{0}. The set of pseudo-
Frobenius numbers of S is denoted by Pg(S), and its cardinality, called the type of
S, is denoted by t(S). Clearly g(S) ∈ Pg(S). Moreover S is symmetric if and only
if Pg(S)={g(S)}, and S is pseudo-symmetric if and only if Pg(S)={g(S), 1

2 g(S)};
see [Barucci et al. 1997; Fröberg et al. 1987], for instance.

In [Rosales ≥ 2005b] it is proved that if S is a UESY-semigroup distinct from
N, then t(S) = e(S)−1. This, plus Propositions 29 and 30, gives:

Corollary 31. Let S = S(a, b) be such that 2 ≤ a < b and (a, b) = (a−1, b) = 1.
Then t(S)= e(S)−1 and there exists a symmetric numerical semigroup S′ such that
S = S′ ∪ {g(S′)}. �

Theorem 32. Let S = S(a, b). Then b = w(S) + 2 if and only if S is a UESY-
semigroup and b is a minimal generator of S.

Proof. If b =w(S)+2=b−(a, b)−(a−1, b)+2, we deduce (a, b)= (a−1, b)=1.
Corollary 31 then says that S is a UESY-semigroup, and Proposition 29 that b is a
minimal generator of S.

Conversely, if b is a minimal generator of S it equals g(S) + m(S), by Lemma
21 and the fact, shown in the proof of Proposition 29, that a minimal generator of S
cannot exceed g(S)+m(S). If S is a UESY, then, # H(S) = 1

2(g(S)+m(S)−1) by
Proposition 30 and # H(S) = 1

2(w(S)+ 1) by Theorem 12. Thus b = w(S)+ 2. �

Corollary 33. Let S be a modular numerical semigroup with modulus b. Then
b = w(S)+2 if and only if S \ {b} is a symmetric numerical semigroup. Therefore,
if b is a prime integer, S \ {b} is a symmetric numerical semigroup.

Proof. If b=w(S)+2, Theorem 32 says b is a minimal generator of S, so S′ = S\{b}
is a numerical semigroup with g(S′) = b. By Corollary 6, S′ is symmetric.

Conversely, if S \ {b} is a symmetric numerical semigroup, then S is a UESY-
semigroup with b as a minimal generator. Now Theorem 32 gives b = w(S) + 2.

Finally, b prime implies (a, b) = (a−1, b) = 1, so w(S) = b − 2. �

Corollary 34. Let b ≥ 3 be an integer. Then b is prime if and only if b is the largest
minimal generator of S(a, b) for every a such that 2 ≤ a ≤

√
b.

Proof. If b is prime Proposition 29 applies; this proves one direction. Conversely,
suppose b is not a prime — say b = ac with integers a, c ≥ 2 and a ≤

√
b. For

S = S(a, b), we have ac mod b = 0 and thus c ∈ S. But then b = ac cannot be a
minimal generator of S. �

4. Modular numerical semigroups whose modulus is its weight plus three

We now study modular numerical semigroups S = S(a, b) such that b = w(S)+3;
this condition is equivalent to (a, b) + (a−1, b) = 3. There are two cases:
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• (a, b) = 1 and (a−1, b) = 2.

• (a, b) = 2 and (a−1, b) = 1.

In both situations b must be even and by Corollary 6 we deduce that 1
2 b ∈ S.

Let S be a numerical semigroup with minimal generating set {n1, . . . , n p}. We
say that x ∈ S has a unique expression if the equality x = a1n1 +· · ·+ apn p, with
a1, . . . , ap ∈ N, determines a1, . . . , ap uniquely.

Proposition 35. Let S = S(a, b) be such that 2 ≤ a < b and (a, b)+ (a−1, b) = 3.

(1) m(S) 6= 1
2 b ⇔ S 6= {0, 1

2 b, →}⇔b =g(S)+m(S)⇔# H(S)=
g(S)+m(S)−2

2
.

(2) 1
2 b is a minimal generator of S.

(3) b has a unique expression in S.

Proof. (1) Follows easily from Corollary 6, Lemma 22 and Theorem 12.

(2) Suppose x + y = 1
2 b with x, y ∈ S. Then ax mod b ≤ x and ay mod b ≤ y,

whence ax mod b+ay mod b ≤ x + y = 1
2 b. Thus 1

2ab mod b = a(x + y) mod b =
ax mod b + ay mod b. We must show that x = 0 or y = 0. We distinguish two
cases. If (a, b) = 2, then 1

2ab mod b = 0, so ax mod b = 0 and ay mod b = 0; then
Lemma 10 shows that both x and y are multiples of 1

2 b, which leads to the desired
conclusion. Similarly, if (a−1, b) = 2, then 1

2ab mod b = 1
2 b, so ax mod b = x

and ay mod b = y; Lemma 10 again shows that x and y are multiples of 1
2 b.

(3) We prove that if x, y ∈ S\{0} are such that x+y =b, then x = y = 1
2 b. Arguing as

in the proof of Proposition 29(3), we see that either (ax mod b, ay mod y)= (x, y)

or ax mod b = ay mod y = 0. Lemma 10 implies that x and y are both multiples
of 1

2 b, and since x 6= 0 6= y, we conclude that x = y = 1
2 b. �

Paralleling what we did in Section 3 for the case b = w(S) + 2, we can use
Proposition 35 to relate modular numerical semigroups such that b = w(S) + 3
with a previous studied class of numerical semigroups. A numerical semigroup S is
called a PESPY-semigroup if there exists a pseudo-symmetric numerical semigroup
S′ such that S = S′ ∪

{ 1
2 g(S′), g(S′)

}

(the two additional elements are the pseudo-
Frobenius numbers of S′; see [Barucci et al. 1997; Fröberg et al. 1987]).

Numerical semigroups of the form {0, x, →} with x a positive integer are called
intervals. The following result appears in [Rosales ≥ 2005a].

Proposition 36. Let S be a numerical semigroup that is not an interval. The
following conditions are equivalent:

(1) S is a PEPSY-semigroup.

(2) # H(S) = 1
2(g(S) + m(S) − 2), 1

2(g(S) + m(S)) is a minimal generator of S
and g(S) + m(S) is an element of unique expression of S. �
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The next result is an immediate consequence of Propositions 35 and 36.

Corollary 37. Let S = S(a, b) be such that 2 ≤ a < b, (a, b) + (a−1, b) = 3 and
S is not an interval. Then S is a PEPSY-semigroup.

In [Rosales ≥ 2005a] it is proved that if S is a PEPSY-semigroup that is not an
interval, then t(S) = e(S)−1. Thus:

Corollary 38. Let S = S(a, b) be such that 2 ≤ a < b, (a, b) + (a−1, b) = 3 and
S is not an interval. Then t(S) = e(S)−1.

Remark 39. Among numerical semigroups, interval semigroups have maximal
embedding dimension relative to multiplicity: e(S) = m(S). For any numerical
semigroup with maximal embedding dimension, t(S) = m(S)−1 = e(S)−1 (see
[Barucci et al. 1997], for instance). Hence the assumption “S is not an interval”
can be dropped from Corollary 38.

Theorem 40. Assume that S = S(a, b) is not an interval. Then b = w(S) + 3 if
and only if S is a PEPSY-semigroup, 1

2 b is a minimal generator of S and b has a
unique expression in S.

Proof. Necessity follows from Corollary 37 and Proposition 35. Sufficiency:
Lemma 21 says that b ≥ g(S)+m(S). If b > g(S)+m(S), then m(S)+(b−m(S))

and 1
2 b + 1

2 b are distinct expressions for b in S (m(S) 6= 1
2 b since otherwise S

is an interval, by Corollary 6). Therefore b = g(S) + m(S). By Proposition
36, we know that # H(S) = 1

2(g(S) + m(S) − 2) and Theorem 12 ensures that

# H(S) = 1
2(w(S) + 1), whence b = g(S) + m(S) = w(S) + 3. �

Corollary 41. Let S be a modular numerical semigroup with modulus b. Then
b = w(S)+3 if and only if S\

{ 1
2 b, b

}

is a pseudo-symmetric numerical semigroup.
Therefore, if b = 2p and a < p for some positive prime p, then S \

{ 1
2 b, b

}

is a
pseudo-symmetric numerical semigroup.

Proof. Suppose b = w(S)+3. By Theorem 40, 1
2 b is a minimal generator of S and

b has a unique expression in S. This implies that S′ = S \
{1

2 b, b
}

is a numerical
semigroup, and clearly g(S′) = b. Using Corollary 6 we can easily deduce that S′

is pseudo-symmetric.
Conversely, if S\

{1
2 b, b

}

is a pseudo-symmetric numerical semigroup, then S is
a PEPSY-semigroup by definition, 1

2 b is a minimal generator of S and b = 1
2 b+ 1

2 b
is the unique expression of b in S. Thus b = w(S) + 3 by Theorem 40. �

5. When the factor divides the modulus

We next focus on numerical semigroups of the form S = S(a, ab), where we may
as well assume a, b > 1. First a general definition: given a numerical semigroup
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S and n ∈ S \ {0}, the Apéry set of n in S [Apéry 1946] is

Ap(S, n) = {s ∈ S | s − n 6∈ S}.

This set always has n elements w(0) = 0, w(1), . . . , w(n−1), where w(i) is the
least element congruent to i modulo n. Note also that x ∈ Z is an element of S if
and only if x ≥ w(x mod n). Consequently

(∗) g(S) = max(Ap(S, n)) − n.

The following result is a consequence of [Rosales 1996, Lemma 3.3] and gives
a characterization of Apéry sets which will be useful later.

Lemma 42. Let m > 0 be an integer and let X = {0 = w(0), w(1), . . . , w(m−1)}
be a subset of N such that i < w(i) ≡ i mod m for all i ∈ {1, . . . , m−1}. Let S be
the submonoid of N generated by X ∪ {m}. Then S is a numerical semigroup with
multiplicity m. Moreover, Ap(S, m) = X if and only if for all i, j ∈ {1, . . . , m−1}
there exist k ∈ {0, . . . , m−1} and t ∈ N such that w(i)+w( j) = w(k)+ tm. �

Getting back to S = S(a, ab), with a, b > 1, we will give a description of the
particular Apéry set Ap(S, m(S)) in terms of a, b, and this will lead to an explicit
formula for the Frobenius number of S. We also show how the minimal generating
set for such numerical semigroups can be computed from a and b as well as the
corresponding sets of pseudo-Frobenius numbers.

Lemma 43. m(S(a, ab)) = b.

Proof. Let S = S(a, ab) and let x ∈ {1, . . . , b−1}. Then ax < ab and thus ax mod
ab = ax > x , whence x 6∈ S. Clearly b ∈ S and consequently m(S) = b. �

Theorem 44. Ap(S(a, ab), b) = {0, k1b + 1, k2b + 2, . . . , kb−1b + b−1}, where
ki = ⌈(a−1)i/b⌉ for all i ∈ {1, . . . , b−1}.

Proof. Let S′ be the semigroup generated by {b, k1b+1, . . . , kb−1b+b−1}. Since
ki ≥ 1 for all i ∈ {1, . . . , b−1} we have m(S′) = b. Clearly k1 ≤ · · · ≤ kb−1 and
ki + k j ≥ ki+ j for all i, j ∈ {1, . . . , b−1} with 2 ≤ i + j ≤ b−1. Using Lemma
42, we deduce that Ap(S′, b) = {0, k1b + 1, . . . , kb−1b + b−1}. Recall that x ∈ Z

belongs to S′ if and only if x ≥ kx mod bb + x mod b, since this latter number is
the element in Ap(S′, b) that is congruent to x modulo b. So, for x an integer
we have x ∈ S′ ⇐⇒ ⌊x/b⌋ ≥ kx mod b ⇐⇒ ⌊x/b⌋ ≥ ⌈(a−1)(x mod b)/b⌉ ⇐⇒
⌊x/b⌋ ≥ (a−1)(x mod b)/b ⇐⇒ ⌊x/b⌋b ≥ (a−1)(x mod b) ⇐⇒ x −(x mod b) ≥
(a−1)(x mod b)⇐⇒ a(x mod b)≤ x ⇐⇒ ax mod ab ≤ x . Thus S′ = S(a, ab). �

Using this result and equality (∗) with n = m(S), we obtain:

Corollary 45. g(S(a, ab)) =
⌈

(b−1)(a−1)/b
⌉

b − 1.
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Particularizing the formula given in Theorem 12 for the case at hand, we get

# H(S(a, ab)) =
a(b−1) − (a−1, b) + 1

2
.

Minimal generators. We next turn our attention to the minimal generating set
{n0 < n1 < · · · < n p} of S(a, ab). We know that n0 = b, by Lemma 43; our
goal is to describe the remaining minimal generators.

Lemma 46. Let x and y be positive integers. Then ⌈x/b⌉ + ⌈y/b⌉ = ⌈(x + y)/b⌉
if and only if x ≡ 0 mod b or y ≡ 0 mod b or (x mod b) + (y mod b) > b. �

Remark 47. If S is any numerical semigroup and m ∈ S\{0}, then S is generated by
X = (Ap(S, m)\{0})∪{m}= {m, w(1), . . . , w(m−1)}, and the minimal generating
set of S is X \ (X + X). Now, in the case of S = S(a, ab), Theorem 44 says
that Ap(S, b) = {0, k1b + 1, . . . , akb−1b + b−1}, with ki = ⌈(a−1)i/b⌉ for all
i ∈{1, . . . , b−1}. Thus kt b+t is a minimal generator of S if and only if kt 6=ki+kt−i

for all i ∈ {1, . . . , t−1}.

Lemma 48. Let S = S(a, ab) with a, b > 1, set ki = ⌈(a−1)i/b⌉ for all i ∈
{1, . . . , b−1} and take t ∈ {1, . . . , b−1}.

(i) If t < b/(a−1, b), then kt b + t is a minimal generator of S if and only if
(a−1)i mod b < (a−1)t mod b for all i ∈ {1, . . . , t−1}.

(ii) If t > b/(a−1, b), then kt b + t is not a minimal generator of S.

(iii) If t = b/(a−1, b), then kt b + t is a minimal generator of S.

Proof. Using Lemma 46 and Remark 47, we see that kt b+ t is a minimal generator
of S if and only if (a−1)i 6≡ 0 mod b and (a−1)i mod b+(a−1)(t − i) mod b ≤ b
for all i ∈ {1, . . . , t−1}. Observe that

(†)
b

(a−1, b)
=

lcm(a−1, b)

a−1
= min{i | (a−1)i mod b = 0}.

(i) From the foregoing we deduce that if t < b/(a−1, b), then kt b+t is a minimal
generator of S if and only if (a−1)i mod b + (a−1)(t−i) mod b ≤ b for all i ∈
{1, . . . , t−1}. If (a−1)i mod b+(a−1)(t −i) mod b = b, then (a−1)t mod b = 0,
which is impossible in view of (†), since t < b/(a−1, b). Hence kt b + t is a
minimal generator of S if and only if for all i ∈ {1, . . . , t−1} one has (a−1)i mod
b + (a−1)(t − i) mod b < b, which is equivalent to (a−1)i mod b + (a−1)(t −
i) mod b = (a−1)t mod b. Since (a−1)(t −i) mod b 6= 0, we conclude that kt b+t
is a minimal generator of S if and only if (a−1)i mod b < (a−1)t mod b for all
i ∈ {1, . . . , t−1}.

(ii) Let i = b/(a−1, b). Then (a−1)i ≡ 0 mod b and in view of Lemma 46 we get
ki + kt−i = kt , which implies that kt b + b is not a minimal generator of S.
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(iii) In this setting (a−1)t mod b=0 and (a−1)i mod b 6=0 for all i ∈{1, . . . , t−1}.
Hence for every i ∈{1, . . . , t−1} one gets (a−1)i mod b+(a−1)(t−i) mod b =b,
and by Lemma 46 we deduce that kt 6= ki +kt−i for any i ∈{1, . . . , t−1}. Therefore
kt b + t is a minimal generator of S. �

Lemma 48 yields an explicit description of the minimal generating set of S:

Theorem 49. Let S = S(a, ab) with a, b > 1, and set ki = ⌈(a−1)i/b⌉ for i ∈
{1, . . . , b−1}.

(1) If (b, a−1) = 1, the minimal generating set of S is {b, kt1b+t1, . . . , ktr b+tr },
where {t1, . . . , tr } =

{

t ∈ {1, . . . , b−1}
∣

∣ (a−1)i mod b < (a−1)t mod b for
all i ∈ {1, . . . , t−1}

}

.

(2) If (b, a−1) 6= 1, let tr+1 = b/(b, a−1). Then the minimal generating set
of S is {b, kt1b + t1, . . . , ktr b + tr , ktr+1b + tr+1}, where

{

t1, . . . , tr } = {t ∈
{1, . . . , tr+1−1}

∣

∣ (a−1)i mod b<(a−1)t mod b for all i ∈{1, . . . , t−1}
}

. �

Example 50. Let S = S(5, 35). Applying Theorem 49(1) with a = 5 and b = 7, we
see that {t1, . . . , tr } = {1, 3, 5} (observe that 1 is always in {t1, . . . , tr }), and that S
is minimally generated by {7, 8, 17, 26}.

Example 51. Let S = S(5, 30). Applying Theorem 49(2) with a = 5 and b = 6, we
see that tr+1 = 3, {t1, . . . , tr } = {1}, and S is minimally generated by {6, 7, 15}.

Corollary 52. Let S = S(a, ab) with a, b > 1. Set ki = ⌈(a−1)i/b⌉ for i ∈
{1, . . . , b−1}, and

t =

{

min {x ∈ N | (a−1)x ≡ b−1 mod b} if (b, a−1) = 1,

b/(b, a−1) if (b, a−1) 6= 1.

Then kt b + t is the greatest minimal generator of S. �

Corollary 53. Let a ≥ 3 and let b be a positive integer. Then e(S(a, ab)) ≥
⌊b/(a−1)⌋ + 1.

Proof. The integer b is always a minimal generator of S(a, ab). Also, if (a−1)t ≤b,
then by Lemma 48, kt b + t is a minimal generator of S. �

Pseudo-Frobenius numbers. For any numerical semigroup S, we define an order
≤S on S as follows: a ≤S b if b−a ∈ S. Given a subset A of S, denote by Max≤S A
the set of maximal elements of A with respect to ≤S . The following result appears
in [Rosales and Branco 2002].

Lemma 54. Let S be any numerical semigroup with multiplicity m. If

Max≤S (Ap(S, m)) = {wi1, . . . , wit },

the pseudo-Frobenius numbers of S (page 387) are precisely wi1 −m, . . . , wit −m.
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Note that if w, w′ ∈ Ap(S, m) and w − w′ ∈ S, this forces w − w′ to be in
Ap(S, m) as well. Hence

Max≤S (Ap(S, m))

=
{

w ∈ Ap(S, m) | w + w′ 6∈ Ap(S, m) for all 0 6= w′ ∈ Ap(S, m)
}

.

Let S = S(a, ab) with a, b > 1. Our aim is to compute the set Max≤S (Ap(S, b))

and thus, in view of Lemma 54, the pseudo-Frobenius set Pg(S).

Remark 55. By Theorem 44, ki b+ i 6∈ Max≤S (Ap(S, b)) if and only if there exists
j ∈ {1, . . . , b−1} such that i + j ≤ b−1 and ki + k j = ki+ j . Minimal generators
are ≤S-minimal elements of Ap(S, b), which is why the condition just stated is
similar (dual) to the one presented on the previous page for minimal generators.

Theorem 56. Let a and b be two integers greater than one, and let S = S(a, ab).
Let ki = ⌈(a−1)i/b⌉ for i ∈ {1, . . . , b−1}. Then ki b + i ∈ Max≤S (Ap(S, b)) if and
only if one of the following conditions hold:

(i) (a−1)i ≡ 0 mod b and i = b−1,

(ii) (a−1)i 6≡ 0 mod b and for all t ∈ {i + 1, . . . , b−1}, either (a−1)i mod b <

(a−1)t mod b or (a−1)t mod b = 0.

Proof. Assume that (a−1)i ≡ 0 mod b and i < b−1. Then by Lemma 46, we
deduce that ki + k1 = ki+1 and thus ki b + i 6∈ Max≤S (Ap(S, b)). If (a−1)i 6≡
0 mod b, then by Lemma 46 we have ki bi + i ∈ Max≤S (Ap(S, b)) if and only if
for all t ∈ {i + 1, . . . , b−1} we have (a−1)(t − i) 6≡ 0 mod b and (a−1)i mod
b + (a−1)(t − i) mod b ≤ b. If (a−1)i mod b + (a−1)(t − i) mod b < b, then
(a−1)i mod b + (a−1)(t − i) mod b = (a−1)t mod b and thus (a−1)i mod b <

(a−1)t mod b. If (a−1)i mod b+(a−1)(t−i) mod b=b, then (a−1)t mod b=0.
To prove the converse, assume ki b + i 6∈ Max≤S (Ap(S, b)). Then there exists

t ∈ {1+ i, . . . , b−1} such that ki + kt−i = kt . By using Lemma 46, we deduce that
(a−1)i ≡0 mod b or (a−1)(t−i)≡0 mod b or (a−1)i mod b+(a−1)(t−i) mod
b > b. If (a−1)i ≡ 0 mod b, then i must be equal to b−1, but this is impossible
since t ∈ {i + 1, . . . , b−1}. If (a−1)(t − i) ≡ 0 mod b, then (a−1)i mod b =
(a−1)t mod b, which is also impossible by hypothesis. Finally if (a−1)i mod b+
(a−1)(t − i) mod b > b, then (a−1)t mod b = (a−1)i mod b+(a−1)(t − i) mod
b − b < (a−1)i mod b, leading again to a contradiction. �

Example 57. Let S = S(5, 30). Applying Theorem 56 we get Max≤S (Ap(S, 6)) =
{29}, which by Lemma 54 means that Pg(S) = {23}. Thus S(5, 30) is symmetric.

Proposition 58. Let S = S(a, ab) with a, b > 1.

(1) S is symmetric if and only if (a−1, b) + (a−1) mod b = b.

(2) S is pseudo-symmetric if and only if (a−1, b) + (a−1) mod b = b + 1.
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Proof. (1) Combining Corollaries 45 and 17(1), we see that S is symmetric if
and only if

⌈

(b−1)(a−1)/b
⌉

b−1 = ab−a − (a−1, b). The left-hand side can be
written as

(

a−1−⌊(a−1)/b⌋
)

b−1= (a−1)b−⌊(a−1)/b⌋b−1=ab−b−(a−1−
(a−1) mod b)−1. Thus S is symmetric if and only if (a−1) mod b+(a−1, b)=b.

(2) As above, but this time using Corollary 17(2). �

Corollary 59. Let k be a positive integer and let b be a multiple of k. Then
S(b − k + 1 + bn, (b − k + 1 + bn)b) is symmetric for all n ∈ N. �

The pseudo-symmetric case is completely different:

Corollary 60. S(a, ab) is not pseudo-symmetric for any choice of a, b > 1.

Proof. Set q = ⌊(a−1)/b⌋ and choose u, v ∈ Z such that (a−1, b) = u(a−1)+vb.
If S(a, ab) is pseudo-symmetric, we have (a−1, b)+(a−1) mod b = b+1, hence
u(a−1) + vb + (a−1) − qb = b + 1, or yet (u + 1)(a−1) + (v − q−1)b = 1. But
this implies (a−1, b) = 1 and hence 1+(a−1) mod b = b+1, an impossibility. �

Some families. We now present some families of numerical semigroups of the
form S(a, ab) with a, b > 1 such that (a−1, b) = 1. For these families we can
compute the minimal generating set and pseudo-Frobenius numbers explicitly. As
a consequence of Theorems 49 and 56 one gets:

Proposition 61. Let S = S(a, ab) with a, b > 1 and (a−1, b) = 1. Set ki =
⌈(a−1)i/b⌉ for i ∈ {1, . . . , b−1} and take t ∈ {1, . . . , b−1}.
(1) kt b+t is a minimal generator of S if and only if (a−1)i mod b <(a−1)t mod

b for all i ∈ {1, . . . , t−1}.
(2) kt b + t ∈ Max≤S (Ap(S, b)) if and only if (a−1)t mod b < (a−1)i mod b for

all i ∈ {t + 1, . . . , b−1}.
Let Sn be the symmetric group in n elements {1, . . . , n}, and for k relatively

prime to n + 1, define the permutation σk,n+1 ∈ Sn by σ(i) = ki mod (n + 1) for
i = 1, . . . , n. Such a permutation is called modular. Next, given any permutation
σ ∈ Sn , set

E(σ ) = {t ∈ {1, . . . , n} | σ(i) < σ(t) for all i ∈ {1, . . . , t−1}},
T(σ ) = {t ∈ {1, . . . , n} | σ(t) < σ(i) for all i ∈ {t+1, . . . , n}}.

With this notation we can rewrite Proposition 61 as follows.

Corollary 62. Let S = S(a, ab) with a, b > 1 and (a−1, b) = 1. Then

e(S) = # E(σa−1,b) + 1 and t(S) = # T(σa−1,b).

The minimal generating set of S is {b} ∪
{

⌈(a−1)i/b⌉b + i
∣

∣ i ∈ E(σa−1,b)
}

, and

Max≤S (Ap(S, b)) =
{

⌈(a−1)i/b⌉b + i
∣

∣ i ∈ T(σa−1,b)
}

.
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Example 63. Let S = S(6, 42). Apply Corollary 62 with a = 6 and b = 7. Clearly
σ5,7 = (154623), E(σ5,7)={1, 4} and T(σ5,7)={3, 6}. Hence e(S)=3 and t(S)=2.
The set {7, ⌈(5×1)/7⌉7+1, ⌈(5×4)/7⌉7+4} = {7, 8, 25} is a minimal generating
set of S and Max≤S (Ap(S, 7)) = {⌈(5 × 3)/7⌉7 + 3, ⌈(5 × 6)/7⌉7 + 6} = {24, 41}.

Corollary 64. Let S = S((b−1) + bn, ((b−1) + bn)b) with n ∈ N and b ≥ 5 odd.
Then S is minimally generated by

{

b, (n + 1)b + 1,
(

b−1
2 + n b+1

2

)

b + b+1
2

}

, and

Max≤S (Ap(S, b)) =
{(

b−1
2 + n b−1

2

)

b + b−1
2 , ((b − 2) + n(b−1))b + b−1

}

.

Proof. Since (b − 2 + bn, b) = (b − 2, b) = 1, we can apply Corollary 62. By
inspection we see that E(σb−2,b)={1, (b+1)/2} and T(σb−2,b)={(b−1)/2, b−1}.
We can conclude the proof using Corollary 62, taking into account that
⌈

((b − 2) + bn)1

b

⌉

=n+1,

⌈

((b − 2) + bn)(b ± 1)/2

b

⌉

=
b−1

2
+n

b ± 1

2
, and

⌈

((b − 2) + bn)(b−1)

b

⌉

= (b − 2) + n(b−1). �

Corollary 65. Let b be an integer greater than or equal to two and let n ∈ N.
Then S = S((n + 1)b, (n + 1)b2) is minimally generated by {b, (n + 1)b + 1} and
Max≤S (Ap(S, b)) = {(n + 1)(b−1)b + b−1}.

Proof. Use Corollary 62 and the fact that σ(n+1)b−1,b = σb−1,b swaps i and b−i . �

Corollary 66. Let S = S(2 + nb, (2 + nb)b) with n ∈ N and b ≥ 2. Then S is
minimally generated by

X = {b, (n + 1)b + 1, (2n + 1)b + 2, . . . , ((b−1)n + 1)b + b−1}

and Max≤S (Ap(S, b)) = X \ {b}.

Proof. Use Corollary 62 and the fact that σ1+nb,b = σ1,b is the identity. �

Corollary 67. Let S = S(3 + nb, (3 + nb)b) with and n ∈ N b ≥ 3 odd. Then S
is minimally generated by

{

b, (n + 1)b + 1, (2n + 1)b + 2, . . . ,
(

b−1
2 n + 1

)

+ b−1
2

}

and

Max≤S (Ap(S, b)) =
{(

b+1
2 n + 2

)

b + b+1
2 , . . . , ((b−1)n + 2)b + b−1

}

.

Proof. By considering σ2+bn,b = σ2,b we see that E(σ2,b) =
{

1, . . . , 1
2(b−1)

}

and
T(σ2,b) =

{ 1
2(b+1), . . . , b−1

}

. Using Corollary 62, the proof follows easily from

⌈

(2 + bn)i

b

⌉

b =

{

(ni + 1)b + i if i ≤ 1
2(b−1),

(ni + 2)b + i if i ≥ 1
2(b+1).

�
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6. The Frobenius number in other special cases

In Section 5 we studied S(a, b) with a |b. We now give some partial results for the
Frobenius number in the complementary case, a ∤b. We are able to find the number
when (a−1)(a − (b mod a)) < b. We use without further comment the fact that,
for q a rational number and x a positive integer, x < ⌈q⌉ implies x < q .

Lemma 68. Let S = S(a, b) with 0 < a < b and b mod a 6= 0. Then

g(S(a, b)) ≤ b − ⌈b/a⌉.

Proof. Let x be a positive integer. If x < ⌈b/a⌉, then x < b/a and thus ax mod b =
ax > x . Hence x 6∈ S and in view of Corollary 6, this leads to b − x ∈ S. As y ∈ S
for all y ≥ b, we conclude that g(S) ≤ b − ⌈b/a⌉. �

Lemma 69. Let a and b be positive integers such that a < b and b mod a 6= 0.
Then a⌈b/a⌉ mod b = a − (b mod a). �

Proposition 70. Let a and b be positive integers such that a < b and b mod a 6= 0.
Then g(S(a, b)) = b − ⌈b/a⌉ if and only if (a−1)(a − (b mod a)) < b.

Proof. Let S = S(a, b). From Lemma 68 we deduce that g(S) = b − ⌈b/a⌉ if and
only if b−⌈b/a⌉ 6∈ S, or in other words, a(b−⌈b/a⌉) mod b > b−⌈b/a⌉. This by
Lemma 69 is equivalent to ((b mod a)−a) mod b > b−⌈b/a⌉, and this condition
holds if and only if b + (b mod a)−a > b −⌊b/a⌋−1. Hence g(S) = b −⌈b/a⌉ if
and only if ⌊b/a⌋ + 1 + (b mod a) > a, or equivalently (b − (b mod a))/a + 1 +
(b mod a) > a, and this holds if and only if b > (a−1)(a − (b mod a)). �

Corollary 71. Let a and b be positive integers such that a < b,b mod a 6= 0 and
(a−1)(a − (b mod a)) < b. Then m(S(a, b)) = ⌈b/a⌉.

Proof. Let S = S(a, b). By Proposition 70, we know that g(S) = b −⌈b/a⌉. Thus
b−⌈b/a⌉ 6∈ S and thus by Corollary 6, ⌈b/a⌉ = b− (b−⌈b/a⌉) ∈ S. Besides, if x
is a positive integer such that x < ⌈b/a⌉, then x < b/a, whence ax mod b = ax > x
and thus x 6∈ S. Therefore m(S) = ⌈b/a⌉. �

Though we have given an explicit formula for g(S(a, b)) for several cases, we
have not been able to find such a formula for arbitrary positive integers a and b.
We propose this as an open question.

Problem 1. Find a formula for g(S(a, b)) with a and b positive integers.
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