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O. Introduction 

The purpose of  this series of  papers is to systematically develop methods of  

calculations in Chevalley groups over  commutative rings, based on the use of  

their minimal modules. Namely, we describe in all details two new approaches 

in the study of  (exceptional) Chevalley groups over rings, sketched in [146] 

and [137]. The approaches are complementary,  or, to put it plainly, antagonistic. 

The leading idea of  one of  them - what we call the geometry o f  exceptional 

groups - is that we can calculate with matrices for the exceptional groups as 

well. The leading idea of  another one - the decomposition o f  unipotents - is that 

one can completely eliminate matrices from all usual calculations pertaining to 

the classical groups, considering only elementary matrices and isolated columns 

or rows instead. As is classically known, all latter calculations can be easily 

performed also in the exceptional groups [39, 85, 110, 112]. 
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As an application of these methods, in the final paper of the series we give 

new direct proofs of the main structure theorems: normality of the elementary 

subgroups, classification of normal subgroups and the like. Of course, for the 

classical cases these results are well known (by J. S. Wilson, I. Z. Golubchik, 

A. A. Suslin, V. I. Kopeiko, and many others), while for the exceptional ones 

have been obtained by E. Abe, G. Taddei and L. N. Vaserstein [5, 6, 7, 125, 134] 

fairly recently. Our method of proof is more straightforward and elementary 

and completely eliminates distinction between exceptional and classical cases. 

Moreover, even for classical groups, proofs based on it, are often much easier 

than the known ones. 

In the remaining part of the introduction we informally explain, what it is 

all about. Let @ be a reduced irreducible system of roots, G(~', ) be a simply 

connected Chevalley-Demazure group scheme of type ~, T (~ ,  ) be a split 

maximal torus in it. If R is a commutative ring, the group of points G(ff, R) is 

called the (simply connected) Chevalley group of type • over R. To each root 

o~ E q~ there correspond elementary (with respect to T) root unipotents z~(() ,  

c R. All the elementary unipotents z,~((), c~ E q~, ~ C R, generate a group 

E(ff,  R), which is called the elementary subgroup of G(~,  R). 

0.1. ELEMENTARY CALCULATIONS 

The most commonly known kind of calculations in Chevalley groups are the so- 

called elementary calculations. They are based on the fact that relations among the 

elementary unipotents za (() - the Steinberg relations - are very well understood 

[39, 41,111,112] .  As soon as one is in a position to relate G and E, one can go 

amazingly far with the help of elementary calculations (look at [113] for some 

striking examples). Sometimes even the knowledge that E is normal in G is 

enough. 

E. Abe and K. Suzuki [1, 9] described all normal subgroups of elementary 

Chevalley groups over arbitrary commutative rings (actually in [9] an addition- 

al finiteness condition was imposed, but as noticed in [137], the general case 

immediately follows from the case considered in [9]). This is done exclusively in 

terms of elementary calculations. Now as soon as one knows that E is normal in 

G, one can easily describe subgroups in G normalized by E, see [4, 5, 134]. 

The elementary calculations are especially powerful when a Chevalley group 

coincides with its elementary Chevalley group, G = E. This is the case, for 

example, when the ground ring is a field, or, more generally, a semi-local ring 

[1, 9, 85, 108], and also for some other important cases, like, say, Euclidean 

rings [112], Hasse domains [27, 85], or polynomial rings with coefficients in a 

field [3, 4, 49, 81, 119, 121, 148]. This is not true in general, however, and the 

difference between G and E is measured by K1 (~, R) = G(~, R)/E(q~, R). 
For a field, elementary calculations are particularly efficient since in this case 

there is a canonical form of elements: Bruhat decomposition. A similar role is 
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played for semilocal rings by the Gauss decomposition or the like. However, for 

general rings, the groups of finite degree do not in general admit such decompo- 

sitions. This is obvious from the fact that, even when G = E, it is by no means 

true that G has finite width with respect to the elementary generators x~ (~). Of 

course, the classical groups of infinite degree admit a remarkable generalization 

of Bruhat and Gauss decompositions due to Sharpe [102]. In fact part of it sur- 

vives at the stable level (when the rank of the group is large with respect to the 

dimension of the ring) in the form of Dennis-Vaserstein decomposition [69, 93, 

108, 110, 157-159], which pushes all difficulties to the Levi factors of maximal 

parabolic subgroups. However, all these things are of little use when one looks 

at a given group over a general ring. 

0.2. STABLE CALCULATIONS 

Elementary calculations give no insight whatsoever in the interrelations of G and 

E. Since it has been known for some time that a simply-connected Chevalley 

group and the corresponding elementary Chevalley group over a field coincide, 

there was some way to relate the Chevalley group and its elementary subgroup. 

Such a technique is provided by what M. R. Stein [110] has christened the 

Chevalley-Matsumoto decomposition theorem (compare [85], Theorem 4.3 and 

further) which in turn is a further development of the method of 'grosse cellule' 

[43]. This theorem asserts that an element 9 of a Chevalley group G can be 

written as the product of an element of a Levi factor of a proper parabolic 

subgroup and two factors from the unipotent radicals of this parabolic subgroup 

and its opposite, if the diagonal matrix entry g~,~ E R of 9 corresponding to the 

highest weight vector e w in a certain rational representation n: G --+ GL(V) of 

G is invertible. 

Again for fields (or such rings, as, say, semilocal ones), only occasionally the 

element 9~o,a, is not invertible and it is very easy to guess what to do when it is not 

- this is precisely how one proves that G = E in these cases. For more general 

rings, H. Matsumoto [85] and M. R. Stein [110] developed a general technique 

to make this element invertible, based on the use of various 'stability conditions', 

similar to the stable rank of H. Bass [16, 17, 23, 24, 56, 129, 130, 131]. Actually, 

these conditions guarantee that an appropriate dimension of the ring R is small 

with respect to the rank of the group, so that we still have enough freedom to 

act essentially as we did in the cases above. 

With this end they developed what we call 'stable calculations', which make 

use of one column or row of the matrix of 7r(9 ), 9 E G, in a base of weight 

vectors. First of all, they restrict themselves to the representations 7r, for which 

the Weyl group W(ff)  acts transitively on the set of nonzero weights. Such 

representations are called basic (see [42, 85]) and every Chevalley group has at 

least one basic representation (in fact, there are precisely ]Cent(G(ff, C)) I such 

representations, all of them, but, one, minuscule). Clearly, all nonzero weights of 
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such a representation have multiplicity one. Thus, the choice of a base of weight 

vectors in the corresponding representation space V is essentially canonical. One 

can normalize a base of weight vectors in such a way, that the action of the root 

unipotents xc~(~) is described by very nice polynomial matrices in ~ with integral 

coefficients ( 'Matsumoto's lemma',  see [85, 110]). 

Additional simplification is provided by consistent use of the weight diagrams 

which allow us to visualize the computations. As graphs they are essentially the 

Hasse diagrams of the posets of weights with respect to the induced (weak) Bmhat 

order. This means that the nodes of the diagram correspond to the weights of the 

representation and that two nodes are joined by an edge if their difference is a 

fundamental root. Moreover, the edge joining two weights A and # is labeled by 

i if # -  A = a~ is the ith fundamental root. When the zero weight has multiplicity 

~< 1, the weight diagrams are precisely the Hasse diagrams and the weak order 

coincides with the strong one. More generally, if the multiplicity of the zero 

weight equals m,  it gives rise to m distinct 'zero-weight' nodes of the weight 

diagram and there are more complicated rules for the edges, taking into account 

the discrepancy of the weak and the strong orders. 

Now one may conceive a vector v E V as such a weight diagram which has 

an element of R attached to every node. A standard weight vector e x has 1 in the 

Ath node and zeros elsewhere, an arbitrary vector v has its Ath coordinate v a with 

respect to this weight base as the label at the Ath node. The above-mentioned 

Matsumoto lemma translates into a very simple rule describing what happens 

with such a vector v under the action of xa(~). If zr is minuscule and the root 

= ai is fundamental, then xa(~) adds or subtracts (always adds for a clever 

choice of the weight base) (v ~ to v ~ along each edge labeled with i. For other 

roots, one has just to trace all paths in the diagram which have the same labels at 

their edges as the root a in its linear expansion with respect to the fundamental 

roots. For example, if a = 2al  + a2, one has to look at the paths which have 

the labels 1, 1,2, in any order (the order of the labels on such a path starting in 

A together with the structure constants of the Lie algebra is responsible for the 

sign with which xc,(~) acts on v;~). There are slightly more complicated roles in 

the presence of zero weight. 

Now if g E G, then the #th column g*,t~ of the corresponding matrix 7r(g) 

consists of the coefficients in the expansion of 7r(9)eU with respect to e ;~. We 

may conceive any element 9 E G (which we seldom distinguish from its image 

~r(9 ) in GL(V)) as a matrix 9~,,~ where A and/~ range over all the weights of 

the representation 7r (with multiplicities, of course). Then the columns above are 

obtained by freezing the second index in such a matrix. Such columns may be 

identified with the corresponding elements of V. Analogously, the rows 9~,, are 

obtained by freezing the first index and correspond to the vectors from the dual 

module V*. As we know from the preceding paragraph, one can very efficiently 

perform calculations with such columns and rows. 
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0.3. GE N E RA L  CALCULATIONS 

For the natural representations of the classical groups (that is SL(I + 1, R), 

SO(2/+ 1, R), Sp(2l, R) and SO(2/, R) for types At, Bt, Ct and Dr, respectively) 

it is reasonably easy to perform calculations involving the whole matrix r(9 ). 
This is due to the fact that the dimensions of these representations are relatively 

small as compared with the dimensions of the groups. As a result, there are 

few equations among the matrix entries of the matrices ¢r(9 ), and, as is well 

known, these equations are quadratic. In these representations the unipotent root 

elements of these groups have residue 1 (i.e. they are the usual transvections) or 

2 (i.e. they are products of two transvections which form mutual angle of rr/2 

or 27r/3). 

The use of matrices is especially important when everything else does not 

work, i.e. for rings of large dimension, which have few units. In these cases, the 

corresponding groups do not admit decompositions allowing efficient use of ele- 

mentary calculations. First proofs for normality of elementary subgroups, stan- 

dard description of normal subgroups, standard description of automorphisms, 

etc., for the classical groups over arbitrary commutative rings and their rel- 

atives, used matrices. Here one can mention the works of J. S. Wilson [154], 

I. Z. Golubchik [61, 62], A. A. Suslin [119], W. van der Kallen [80], W. C. Water- 

house [150], M. S. Tulenbaev [128], V. I. Kopeiko [81, 82], A. A. Suslin and 

V. I. Kopeiko [121], G. Taddei [123], I. Z. Golubchik and A. V. Mikhalev [65, 66], 

V. M. Petechuk [90], E. I. Zelmanov [123], Z. I. Borewicz and N. A. Vav- 

ilov [31, 138, 139, 140], and many others. Only later, did A. A. Suslin [128], 

L. N. Vaserstein [133, 134, 135, 136] and A. Bak [19] notice that for rings close 

to a commutative ring can apply indirect methods to these problems (like 'factor- 

ization and patching' or 'localization and patching') which allow us to avoid the 

use of matrices, substituting with dimension arguments similar to those appearing 

in the Quillen-Suslin solution of Serre's conjecture. Consult [20, 21, 22, 69, 141] 

and [144] for the history and comparison of various proofs. Until quite recent- 

ly [114, 115, 141], there were no direct ways to avoid matrix calculations in 

considering structure problems of classical groups over rings. 

For exceptional groups distinct from G2, the situation seems to be very dif- 

ferent (as for G2, one may argue that it is a classical group - or, else that the 

groups of types D4 and B3 are exceptional). Namely, the degrees of their minimal 

faithful representations are already fairly large as compared to their dimensions. 

In fact, these degrees are equal to 26, 27, 56 and 248 for the groups of types F4, 

E6, E7 and Es, respectively. There are many equations among the matrix entries 

of the matrices 7r(9 ) in these representations and some of these equations are 

cubic or quartic. Even for the two smallest groups, unipotent long root elements 

have residue 6. All this makes one rather uncomfortable with the idea of direct 

matrix calculations with the groups, using their minimal representations. Below, 

we refute all these objections as not being serious. 
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This psychological attitude created a strange double standard, when one usual- 

ly thinks about the classical groups as isometry groups of bilinear forms and com- 

pletely ignores analogous descriptions of the exceptional groups, acting on their 

minimal modules, in terms of cubic or quartic forms. This attitude is expressed, 

for example, in most textbooks on algebraic groups, where such realizations are 

not even mentioned ([105] is an exception). One of our wider objectives in this 

series of papers is to demonstrate that the easiest and one of  the most efficient 

ways to think about the groups of  types G2, F4, E6, E7 and E8 over rings is 

precisely to think of  them as certain groups of 7 × 7, 26 x 26, 27 x 27, 56 x 56 

or 248 × 248 matrices. 

First of all, the equations among the entries of the matrices 7r(g) are very 

transparent. Some cubic or quartic invariants of the groups were already known 

to L. E. Dickson and E. Cartan. The systematic study of exceptional groups over 

fields as isometry groups of cubic or quartic forms was initiated in the early fifties 

by C. Chevalley and H. Freudenthal and continued by T. Springer, J. Tits, E Veld- 

kamp, N. Jacobson, G. B. Seligman, J. G. M. Mars, R. B. Brown, S. J. Hafts, 

and others. The whole subject got a new life in the works of M. Aschbacher, 

A. Cohen, B. Cooperstein [11, 12, 13, 44], and others, related to the maximal 

subgroup classification project. Quite remarkably, most of these invariants are 

characteristic-free. Thus, for example, the group of type E6 over an arbitrary 

commutative ring R is the isometry group of a certain cubic form with coeffi- 

cients 4-1 on a free R-module of rank 27 and other exceptional groups admit 

similar uniform descriptions. 

One should not be too upset that the equations have degree 3 or 4. In fact, 

most calculations use not the cubic or quartic invariant itself, but only its partial 

derivatives. In particular, equations defining the orbit of the highest-weight vector 

in the representations are quadratic (we do not discuss here further K-theoretical 

obstacles for an element of V to be a column of a matrix 7r(g), 9 E G). It is 

an utterly rare phenomenon for a simple group to be defined by equations of 

degree ~< 2 [28, 151]. In fact, the classical groups themselves in representations 

other than the natural ones are not like that. For example, the spinorial group 

is defined by equations of degree 4 [35], while the adjoint classical groups are 

usually defined by equations of degree 3. 

One should also not be too upset about the sizes of the matrices either. In fact 

one does not usually complain that GL(248, R) consists of matrices of degree 

248. What one does is the following: calculate with block matrices, most of 

whose blocks are l 's  or O's or irrelevant. One has usually to trace the destiny of 

very few entries or blocks to be able to attain his or her goals. The same strategy 

usually works for exceptional groups. In fact, a matrix of the form rr(g) has many 

obvious block structures corresponding to the restrictions to various subsystem 

subgroups. If we consider the group of type E6 and are only interested in what 

happens over A5 or Ds, we can calculate with 3 x 3 instead of 27 x 27 block 

matrices. If we want to go one step deeper to A4 or D4, we have to consider 
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6 × 6 block matrices, but this is still not too bad. Only occasionally - not to say 

n e v e r -  one has to play with the whole 27 × 27 matrix. The same applies to all 

other cases. 

The following obvious observation is crucial in these calculations. The columns 

and rows of our matrices are usually part ia l ly  ordered and not linearly ordered. 

Of course, the partial order is the one described by the weight diagram. The 

intuition coming from the natural representation of S L ( / +  1, R) is misleading: 

this is one of the very  few cases when the weight diagram is a chain. Already 

for the natural representation of SO(2/, R), it is erroneous to think that the lth 

column precedes the (l + 1)-st one. This means that we can always change the 

numbering of columns and rows to a more convenient one (without violating the 

partial order, of course, if we still want our Borel subgroup to consist of upper 

triangular matrices). It is precisely the constant change of viewpoint, restriction to 

various subsystems, and comparison of the results, that constitutes the essence of 

matrix calculations in exceptional groups (in the classical as well, but one seldom 

notices this, unless he or she has ever looked at more complicated cases). 

Finally, one should not be too upset about the root elements having large 

residues. This can be already seen in the classical cases. A usual (linear) transvec- 

tion has residue 1 and is defined by a column and a row (the centre and the axis 

of the transvection). Root elements in the classical groups have residues 2 and 

should, a pr ior i ,  depend on two columns and two rows - but they do not, because 

of the presence of polarity. Actually, as is well known, an Eichler-Siegel-Dickson 

transvection is completely defined by two columns (or, what is the same, one  

column and one  row). The same happens for exceptional groups. We now retum 

to our favourite example of E6 in the 27-dimensional representation. The root 

element has residue 6 and so, a priori ,  should depend on s/x columns and s ix  rows 

with some complicated dependencies among them given by the equations. Well, 

as is less well known, a Freudenthal transvection is again completely defined by 

one  column and one row, the rest being most conveniently defined in terms of 

the cross -produc t  with this column and this row. So, in this respect, the elements 

of root type in exceptional groups are not very much different from the usual 

transvections or the ESD-transvections - in fact, they are even less sophisticated 

than the root elements in the unitary groups! 

0,4. CONTENTS OF THE SERIES 

Here we briefly discuss the contents of the forthcoming papers. 

In the first part, we recall necessary definitions and notation, reproduce a 

construction of Chevalley groups and their elementary subgroups, recall familiar 

facts about the elementary calculations in these groups, and fix a specific choice 

of structure constants. 

In the second part, the minimal modules of Chevalley groups, the main tool 

for all that follows, are studied in detail. In particular, we construct their weight 



80 NIKOLAI VAVILOV AND EUGENE PLOTKIN 

diagrams and give an explicit description of the action of root unipotents in the 

special bases of weight vectors (the so-called Kostant bases), which is compatible 

with the choice of structure constants in the first part. We also list branching rules 

for the restriction of these representations to subsystem subgroups. 

The third part deals with the analogue of the Ree-Dieudonn6 identification 

theorem for exceptional groups. More precisely, in this part we give a new con- 

struction of multilinear forms on minimal modules, whose groups of isometries 

coincide with the corresponding Chevalley groups. In most cases, this was known 

before, but our proof of identification uses only elementary (multi)linear algebra 

in contrast with the previous proofs, based on deep geometrical results (like the 

local characterization of buildings). In this part, we explicitly list the equations 

on entries of matrices from a Chevalley group acting on a minimal module. 

In the fourth paper, we study unipotent elements of root type in representations 

of Chevalley groups (including, as special cases, the usual linear transvections, 

the Eichler-Siegel-Dickson transvections and the Freudenthal transvections). In 

particular, we establish addition formulae for such elements and prove an ana- 

logue of the Whitehead-Vaserstein lemma. For fields, the class of elements of 

the root type coincides with the class of root unipotent elements (i.e. elements, 

conjugate to an elementary root unipotent), but for tings it is usually much wider. 

This part, together with the preceding one, sets the foundations of the geometry 

of exceptional groups over rings. 

The fifth part contains the fundamentals of the decomposition of unipotents. 

We construct certain special elements of the root type (the fake root unipotents 

in the terminology of [141]), stabilizing a given column and prove that these 

elements generate the whole elementary Chevalley group as the column ranges 

over all columns of 7r(9), 9 E G. These results are basic for the reduction to 

groups of smaller rank. 

In the final paper of this series, we apply the methods developed in the previ- 

ous parts to get a new direct proof of the main structure theorems for the Cheval- 

ley groups over arbitrary commutative rings. We establish the standard description 

of subgroups, normalized by a relative elementary subgroup, the description of 

subnormal subgroups as well as commutator formulae for congruence-subgroups 

and relative elementary groups and some other results, which cannot be stated in 

a precise form before Part IV (see the next section for a pattern). Some of these 

results are new, not only for exceptional groups but even for classical cases, in 

some others the known estimates are improved. 

Our results in this part are very different from the known ones in the follow- 

ing respect. Before only indirect methods of the proof of the structure theorems 

were known for exceptional groups. These methods were based on such things 

as localizations and partitions of 1 in the ground ring. Clearly, the length of such 

a decomposition is not bounded by any constant depending on the group. Our 

methods are direct and constructive, so that they result in formulae depending 

on the group and not on the ring. To communicate some flavour of what is 
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really proven in the sixth part, we give an example. Thus, we show that in the 

27-dimensional representation V of a Chevalley group G of type E6 any root 

unipotent gza(~)9 -1, where o~ E if, ( E R, 9 E G, is a product of exactly 27 

Freudenthal transvection lying in the Weyl conjugates of the standard parabolic 

subgroup P1, and express these factors in terms of 9, a and ~. Clearly, such 

explicit results are beyond reach of 'localization and patching'. We believe that 

such explicit formulae are of independent interest and, maybe, in the long term, 

are more important than the structure theorems themselves. An English play- 

wright said "Theorems come and go, but a good formula remains for ever". 

The proportion of new things grows at a constant pace from the first part to the 

fifth. The first part contains absolutely nothing new, apart from this introduction 

and the tables, which are not new either, only different. The second part is also 

not very new, but is far less known. It contains some previously unpublished 

recipes. The third part contains new proofs for identifications of exceptional 

groups with isometry groups of multilinear forms as well as a new construction 

of the forms and explicit description of equations. The fourth part is new for 

exceptional groups over rings (although mostly known for classical groups over 

rings and exceptional groups over fields). Finally, the fifth part is new even for the 

classical groups, only a sketch of it was published in [141, 146] (actually many 

details for the classical groups are contained in the manuscripts [114, 138], and 

a systematic presentation of the linear case - even over noncommutative rings - 

will appear in [115]). 

We have included somewhat more background information in the first three 

parts, than what was strictly necessary for our purposes. This is motivated by 

several reasons. First, these three papers form an elementary and essentially 

self-contained introduction to the foundations of the theory of Chevalley groups 

over rings. We assume only the rudiments of linear algebra, Lie algebras, and 

representation theory. We invoke the definition of a Chevalley-Demazure group 

scheme, but after the identification theorem in the third part, this definition may 

be safely forgotten. Second, the results and methods presented here should serve 

as a definitive common background for our forthcoming publications, dedicat- 

ed to various aspects of Chevalley groups over rings (subgroups in Chevalley 

groups [140, 143], Steinberg groups, unstable K-theory [93], nonsplit groups, 

etc.). Third, we believe that some of the methods presented here are of a wider 

interest, and a lot of technical details may be useful to the experts working 

with Chevalley groups in various fields, be it in connection with the theory of 

finite simple groups, the theory of algebraic groups, the theory of representations, 

algebraic K-theory, or arithmetic. 

Our main focus in these papers are on, of course, the exceptional groups. 

However, we would like to make the following observations: 

- conceptual differences between the classical and exceptional groups are neg- 

ligible; 
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- in most problems, it is not natural to exclude exceptional groups from the 

consideration; 

- even if one is interested solely in the classical groups, a theory also com- 

prising exceptional groups gives a much better understanding. 

If one is not convinced by these arguments, here is the ultimate argument, which 

he or she cannot beat: 

- it is a lot of fun* to work with exceptional groups, especially with those of 

types E6 and ET. 

As should be clear from the preceding text, the understanding of Chevalley 

groups, which we present here, comes from four major sources.** 

I. 'Elementary' theory of Chevalley groups as initiated by C. Chevalley him- 

self and developed by R. Steinberg, R. Carter, and many others in the context of 

fields and by E. Abe, K. Suzuki, J. Hurley, M. R. Stein, and others for rings; 

II. The representation-theoretic techniques introduced to the K-theory of Che- 

valley groups in the works of H. Matsumoto [85] and M. R. Stein [110]; 

III. The 'geometry of exceptional groups' over fields as developed by H. Freu- 

denthal, T. Springer, J. Tits, N. Jacobson, F. Veldkamp, and others; which got 

a new life in the works of M. Aschbacher, A. M. Cohen, B. N. Cooperstein, 

etc.; 

IV. The 'geometry of classical groups' over rings, going back to J. Dieudonn6 

and H. Bass, as developed by O. T. O'Meara, A. Bak, A. A. Suslin, J. S. Wilson, 

W. van der Kallen, I. Z. Golubchik, A. V. Mikhalev, A. J. Hahn, L. N. Vaserstein, 

and others. 

We effectively fuse all these viewpoints in our exposition. We believe that 

it gives a much richer and deeper picture than the traditional approaches, based 

almost exclusively on elementary calculations. 

1 .  N o t a t i o n  

In this section, we recall definitions associated with Chevalley groups over tings 

and fix notation used in the sequel. 

All background information connected with Lie algebras and their represen- 

tations, can be found, for instance, in [32, 33, 67, 77, 100, 147], but we recall 

* We m u s t  admit that sometimes Es is too much of a goad thing - and working with exceptional 
groups, loses s o m e  of its beneficial effects at this stage. This might depend on the fact that we 
still feel much less comfortable with the geometry of an adjoint representation, than with that of 
a microweight one. 

** Of course, there were many second and third-order influences. Thus, the calculations with one 
column are similar to the 'matrix problems' in the representation theory of posets [59] and to the 
calculations of Borel orbits in [37, 72]; our treatment of equations resembles the 'standard monomial 
theory' [45, 84, 101], in the construction of fake root unipotents one recognizes the 'geometry of 
root subgroups' [48], etc. We document all such borrowings at the appropriate places. 
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the notation in the text of the papers. We follow [32, 33] as far as the numbering 

of roots, weights, etc., is concerned. 

We consider the information on algebraic groups, contained in [29, 73, 104, 

105, 147] to be standard, and use it without explicit references. 

The theory of affine group schemes is treated in the books [51, 52, 53, 78]. 

We use, in fact, only rudimentary notions of the theory, an elementary description 

of which can be found in [149]. An excellent overview of Hopf algebras from 

the point of view of their significance in the theory of linear algebraic groups 

can be found in [2]. 

As for the classical groups, we follow the notation from [10, 39, 55, 69] while 

the necessary rudimentary information from algebraic K-theory (definitions of 

lower K-functors, stability conditions, etc.) can be found in [16, 18, 23, 24, 25, 

26, 27, 86, 120, 129, 130, 131, 144]. 

The books [39, 113] contain a systematic exposition of the theory of Chevalley 

groups over fields. As introductions to this theory, one can also use [29, 38, 

42, 71, 74, 99]. We do not include in the bibliography, books in which finite 

Chevalley groups and their twisted analogues (i.e. the finite groups of Lie type) 

are considered from the point of view of Steinberg's theory, that is as the groups of 

fixed points of Frobenius endomorphisms acting on the corresponding algebraic 

groups. 

There are no monographs on Chevalley groups over rings. We follow the 

papers [1, 3, 4, 5, 6, 7, 8, 9, 43, 85, 106, 107, 108, 109, 110, 124, 137, 141]. 

Let • be a reduced irreducible root system of rank l, P be a lattice, lying 

between the root lattice Q(ff) and the weight lattice P(ff). Then we can construct 

an affine group scheme Ge(q~), over Z (i.e. a representable covariant functor from 

the category of commutative rings with 1 to the category of groups), such that 

for every algebraically closed field K, the value of this functor Gp(~, K) on K 

is the semisimple algebraic group of type (I,, P)  over K. The existence of such a 

functor was proven by C. Chevalley [43], while its uniqueness by M. Demazure 

[50]. We call such a scheme the Chevalley-Demazure group scheme of type 

(~I,, P), and its value Gp(~, R) on a commutative ring R with 1 ('the group 

of rational points Gp(q?, R) with the coefficients in R') is called the Chevalley 

group of type (q~, P) over R. Since the problems we treat are usually independent 

from the choice of the lattice P, we suppress P in the notation and speak about 

a Chevalley group G(ib, R) of type I, over R. If we want to emphasize which 

group we are talking about, we write Gsc(ff, R) for the simply connected group, 

when P = P(,I~), and Gad(~, R) for the adjoint group, when P = Q(~). Unless 
specified otherwise, we assume our groups to be simply connected. In order to 

fix necessary notation, we recall briefly the construction of the group scheme 

G(~, ), certain associated objects and some important subgroups in the group 

G(q~, R) of its rational points. 
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2. Cbevalley Algebras 

Let L = Lc be a complex semisimple Lie algebra of type ~, [ , ] be the Lie 

bracket on L and H be its Cartan subalgebra. Then L admits the root decompo- 

sition L = H ~ ~ La, where La are the root subspaces, i.e. one-dimensional 

subspaces, invariant with respect to H. For each root a denote by the same 

letter the linear functional on H,  such that [h, ea] = a(h)ea .  The restriction 

of the Killing form of the algebra L to H is nondegenerate and is denoted by 

( , ). This inner product allows us to identify H with H* and consider a 's  as 

elements in H. However, instead of roots, it is convenient to consider coroots 

ha --- 2 a / ( a ,  a) .  Fix an order on fig, and let ~+,  ~ -  and II = { a l , . . . ,  al} be 

the sets of positive, negative, and fundamental roots, respectively. A choice of 

nonzero elements ea E La, a E ~+, uniquely determines elements e -a  E L-a,  

a E /b +, such that [ea ,e-a]  = ha. Then the set {ea, a E (I); ha, a E II} is a 

base of the Lie algebra L, called a Weft base of L. The elements of such a base 

are multiplied as follows: 

[ha, hal = 0, a, 9 E n; 
[ha, e~] = A ~ e , ,  a E H, /3 E ~; 

[e~, e-a]  = ha, a E ¢;  (2.1) 

[e ,ez] = o, a, Z c  a + Z ¢ ¢ u { 0 } ;  

[e~, ez] = N~ea+z ,  a,/3, a +/3 E q~. 

Here, Aaz = 2(a,/3)/(a,a) E Z are the Cartan integers and Na/~ are some 

complex numbers, called the structure constants. A direct calculation shows 

that 

Na,~N_a,- ,  = - ( p  + l) 2, 

where p is such an integer, that - p a + f l , . . . ,  f l , . . . ,  qa+fl is the a-series of roots 

passing through/3. Chevalley has shown [42], that the elements ea can be chosen 

in such a way that Na~ = -4-(p + 1). Thus, all the structure constants in this case 

are integers, this fact is called a Chevalley theorem (see [33, 39, 74, 112] for the 

proof). The set of ea, a E 'I', satisfying the condition above, is called a Chevalley 

system, and a Weyl base with the integral structure constants a Chevalley base. 

An explicit choice of signs of the structure constants is a delicate matter (see 

Sections 14-17). 

Let Lz be the integral span of a Chevalley base. Then Lz is a Lie algebra over 

Z, which is a Z-form of the Lie algebra L, i.e. L = Lz ®5 C. This form is called 

an admissible Z-form or a ChevaUey order in L. Let now R be a commutative 

ring. Set LR = LT. ®z R. In other words, LR is the Lie algebra over R, which as 

an R-module is the free module with the base ea = ea ® 1, h~ = h/~ ® 1, with 

the multiplication given by (2.1). The algebra LR is called the split semisimple 

algebra of type • over R or simply the Chevalley algebra of type ~ over R. 

Chevalley algebras over fields are the split semisimple algebras of classical 

type (recall that in the theory of modular Lie algebras, the exceptional algebras 
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are also called algebras of classical type, because there are also algebras of Cartan 

type, which do not come from characteristic zero). The structure of Chevalley 

algebras over fields was considered, for instance, in [76, 116]. 

3. Adjoint Elementary Chevalley Groups 

Now we are in a position to introduce the adjoint elementary Chevalley groups. 

Let us recall the corresponding construction, due to Chevalley [41] (see also 

[38, 39, 71, 74, 112]). Some details of this construction are essential for the 

treatment of the Chevalley group of type E8. 

Let first D be an arbitrary nilpotent derivation of the Lie algebra L. Then 

expD = 1 + D + D 2 + . . .  + D (n) (where D (n+l) = 0 and D (m) = Din~m!  

is the mth divided power of D) is an automorphism of the algebra L. Now we 

specialize D to an adjoint derivation ad ea. It is well known that (ad e a )  4 = 0. 

Since ad((ea) = ~ad ea is also a nilpotent derivation for each ( E C, we can 

set 

xa(~) = xad(~) = exp(~adec~). 

Now we consider the action of the automorphisms xa(f) on the elements of the 

Chevalley base. On the subalgebra (ea, ha, e-a> = s12, the elements xa(~) act 

as follows: 

Xc~(~)e-a = e - a  + ~ha - ~2ea. (3.1) 

If a and/3 are linearly independent, then 

xc,(~)hz = h~ - A~c,(ec~, (3.2) 

xa(~)e~ = e¢~ + Nap@a+~ + Ma~2~2e/3+2c~ + " -  + Ma/3q~qefl+qa, 

where 

1 
Mc~k = ~ Nc,~Nc~,~+c~" " Na3+(k-1)a .  (3.3) 

Since Na/3 = +(p + 1), the number M ~ k  = +Cpk+k is an integer. Thus, the 

automorphism Xa(() = x~(()  sends each element of the Chevalley base into a 

linear combination of base elements whose coefficients are linear combinations 

of nonnegative powers of ( with integer coefficients. This means that we can 

define an automorphism xa(() over an arbitrary commutative ring by the same 

formulae (3.1)-(3.3). 

The group of automorphisms of the Chevalley algebra LR, generated by all 

automorphisms of the form xa(() = xff(() is called the elementary adjoint 

ChevaUey group o f  type • and is denoted by Ead('I% R). In other words, 

Ead(~,R) = <xa(~), a 6 ~, ~ 6 R>. 
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Thus, by the very definition, the group Ead(iI ), R) is a linear group, being a 

subgroup of the group GL(LR) of all automorphisms of the free R-module LR. 

In fact, it consists of automorphisms of the Lie algebra LR and in the field case 

it is very closely related to Aut(LR) (see [112, 33] for the details). 

4. Weyl Modules 

The construction of adjoint Chevalley groups is based on a choice of an admissi- 

ble Z-form of the adjoint representation of Lie algebra L. In order to construct all 

Chevalley groups, we need to be able to choose admissible Z-forms of an arbitrary 

finite-dimensional representation. Let again L = Lc be a complex semisimple 

Lie algebra, and 7r" L -+ GL(V) be its representation in a finite-dimensional 

vector space V over C. For an element A E H*, denote by V ~ the corresponding 

weight subspace of the space V, regarded as / / -module ,  i.e. 

V ~ = {v e V lrc(h)v = A(h)v, h E H}. 

We say that A is a weight of the representation 7r if V ~ ¢ 0. The dimension 

m x =  mult(A) of the space V :~ is called the multiplicity of the weight A. Let 

us denote by/~(Tr) the set of weights of the representation 7r, and by A(Tr) the 

set of weights with multiplicities. This means that all the weights from A(Tr) 

are distinct, and we assign to each weight A C A(rr) a collection of m distinct 

'weights' A1 , . . . ,  Am e A(Tr), where m = mult(A). We denote by A*(rr) and 

by A* (Tr) the sets of nonzero weights and nonzero weights with multiplicity, 

respectively. Let P = P(Tr) be the lattice of weights of the representation 7r, 

i.e. the subgroup in P(ff )  generated by/~(Tr). Then, V = g V  ~, A E A(Tr). in 

particular, for the adjoint representation 7r = ad, we have 

V =  L, A*(Tr) = ~ ,  A(Tr)-- • U {01, . . . ,0z},  

P = Q ( ~ ) ,  V ~ = L a  f o r a E ~  and V ° = H .  

Let # E AQr) and v + E V. The weight # is called the highest weight of 

the representation 7r and the vector v + is called a highest-weight vector (or a 

primitive element) if 7r(ea)v + = 0 for all a E ~2 +. Of course, this notion depends 

on the choice of order on the root system ~. The representation 7r is irreducible if 

and only if V is generated as an L-module by a vector of the highest weight. The 

multiplicity of the highest weight of an irreducible representation is equal to 1, 

hence a primitive element in this case is determined uniquely up to multiplication 

by a nonzero scalar. It is well known that the correspondence between the finite- 

dimensional irreducible modules and their highest weights yields a bijection of 

the set of isomorphism classes of irreducible finite-dimensional L-modules onto 

the set P ( ~ ) + +  of dominant integral weights (with respect to a fixed order). 

Recall that 

P( f f )++ ----- {# e P('I~) [ (# , a )  > O, a e II}. 
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The famous Chevalley-Ree theorem asserts, that each finite-dimensional L- 
1 ~ { e  "~m module V contains a Z-lattice M, invariant with respect to all operators ~.v ~ aj , 

o~ C ~, m E Z +, and each such lattice is the direct sum of its weight components 

M )' = M M V ~ (see [39, 74, 83, 95, 113]). Such a lattice M = Vz is called an 

admissible Z-form of the module V. A base v ~, A C A(~-), is called an admissible 

base of the lattice Vz, if it consists of weight vectors, and is such that for all 

a e qS, m e Z +, A E A(Tr), the vector  7r(e(m))v ~ is again an integral linear 

combination of the base vectors. The Chevalley-Ree theorem asserts that every 

finite-dimensional module has an admissible base. This theorem can be proven 

directly [96] by an explicit construction of admissible bases in the fundamental 

modules and then deducing the existence of such bases in all finite-dimensional 

modules by the passage to a direct sum, a tensor product, or a submodule. 

Again let, R be an arbitrary commutative ring. Set VR = Vz ®z R. So, 'dR 

is a free R-module with the base v ~ = v ~ ® 1, A E A(Tr). It is clear that VR 

is a module over the Chevalley algebra LR. Indeed, ea and ha act on the first 

component of the product v ® ~, v E Vz, ~ C R, while the scalars of R act on the 

second. If V is an irreducible L-module with the highest weight #, then VR is 

called the Weyl module of the Chevalley algebra R with the highest weight #. 

We make a remark concerning the field case (see [78]). It is well known 

that, for a field of prime characteristic, the irreducible representations are also 

parametrized by the highest weights. However, the Weyl module with the highest 

weight p does not necessary coincide with the irreducible module with the highest 

weight #. Moreover, the Weyl module is not, generally speaking, irreducible (for 

large dimensions they are almost always reducible). In fact, the Weyl module 

is indecomposable, and its unique top composition factor coincides with the 

irreducible module of the same highest weight. We consider minimal modules, 

for which such a situation occurs extremely rarely, only in characteristics 2 and 

3. The fact that Weyl modules are not, generally speaking, irreducible, does not 

play any role in the sequel. 

5. Kostant Theorem 

The current approach to the proof of Chevalley-Ree theorem is due to Kostant 

[83] (see also [30, 74, 78, 113, 124]) and is based on the fact that divided powers 

e~ ) = eq/q! generate a Z-form U(L)z of the universal enveloping algebra U(L) 

of Lie algebra L. Namely, choose an order on the set of positive roots ~ = 

( P l , . . . ,  fin}. Usually, we consider only regular orders, i.e. orders compatible 

with the height of a root ht(a) = ~Pi ,  where a = ~ p i a i ,  a~ C FI. This 

means that ht(a) >/ht(/3) if a />/~.  One can assume, moreover, that our order is 

given by the numbering of positive roots, i.e. fli >- ~j if i />  j .  For an n-tuple 

S = (S l , . . . ,  sn) C Z~_, one introduces elements e +S by the formula 
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The elements e +6" are usually denoted simply by e S, while e -S are denoted by 

fs .  For x E L and q E N one sets 

For an l-tuple Q = (ql,.. . ,  qz) E Z~_, one sets 

hQ= (hc~l) .... (hcql. 

\ ql / \ ql ] 

Now the Kostant theorem (the 'integral Poincare-Birkhoff-Will theorem') 
asserts that the elements of the form fShqeT, where S, T E Z~, Q E Z/+, 

constitute a base of a Z-form U(L)z of the universal enveloping algebra U(L), 

see [30, 74, 78, 112]. This form is called the Kostantform or the Kostant-Cartier 
f o r m .  

Now it is obvious how to construct an admissible Z-form of any represen- 

tation. We pick up a highest-weight vector v + in V and set Vz = U(L)zv +. 

This construction leads to a very useful admissible base, the so-called Kostant 
base which consists of linearly independent vectors of the form fSv+, where 

the n-tuples S --- ( s l , . . . ,  Sn) E Z~ are chosen by a special rule. We skip the 

details of this construction for arbitrary L-modules, since for minimal modules 

(the only ones we really use) all the weight subspaces corresponding to nonzero 

weights are one-dimensional. Therefore, the choice of a Kostant base is almost 

canonical and much easier than in the general case. 

Note, that the Kostant Z-form U(L)z allows us to define one more object of 

paramount significance connected with a Chevalley group G = G(~, R), namely 

the corresponding hyperalgebra U(L)R = U(L)z ® R. When R = K is a field 

of prime characteristic, not the corresponding Chevalley algebra, but precisely 

the hyperalgebra is responsible for the irreducible representations of the group 

G [43, 75, 117]. (The definition above differs from the standard one, but it was 

shown in [70] that they are equivalent.) 

6. Elementary Chevalley Groups 

Again, let v A, A E A(~r), be an admissible Z-base of an L-module V. Then all 

operators 7r(~ea) E GL(V), a E ff~, ~ E C, are nilpotent and we can define the 

exponential of such an operator by the usual formula 

exp((ea)  = e + ~r(ea)  + ~2~'(ea)(2) + . - . .  

The image of each base vector under this operator is a linear combination of 

the base vectors whose coefficients are linear combinations of powers of ( with 

integral coefficients. This means that we can define an automorphism 

xa(~) = x~(()  = exp (~Tr(ea)) E GL(VR) 
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of the R-module VR by the same formula as above for any commutative ring. 

The subgroup of the automorphism group of the R-module VR, generated 

by all the automorphisms of the form x,~(~) = x~(~) is called an elementary 

Chevalley group of type il? over R and is denoted by ETr (/IL R). Thus, we have 

Therefore, E~(¢ ,  R) ~< GL(VR), which means that the elementary Chevalley 

group from the very start arises as a linear group. As an abstract group, E = 

E~(cI,, R) depends up to isomorphism not on the 7r itself, but just on its lattice 

of weights P = P (~ ) .  If we want to stress this, we write E --- Ep(¢, R) instead 

of E~r(¢, R). But according to our definition, the groups E -- Ep(¢, R) always 

arise in some particular representations E~r(¢, R). The corresponding modules 

for E~r(gP,R) are also called the Weyl modules. 

In the next paper of the series we study these actions in some details - 

especially for the minimal modules - and state formulae describing the action of 

z~(~) analogous to (3.1)-(3.3). 

7. Chevalley Groups 

Now let G = Gc be the connected complex semisimple Lie group with the 

Lie algebra L = Lc and the lattice of weights P.  Denote by C[G] the affine 

algebra of G, i.e. the algebra of all regular complex-valued functions on G, 

regarded as a Hopf algebra [2, 29, 73, 104]. Denote by the same letter 7r, the 

representation of G on a finite-dimensional space V = Vc, whose differential 

equals 7r: Lc -+ GL(Vc). The choice of an admissible base v ;~, A E A(Tr), allows 

us to identify V c with C n, n = dim V, and, therefore, introduces coordinate 

functions x~,u, A, # C A(Tr), on GL(Vc). These coordinate functions identify 

GL(Vc) with GL(n,  C) and their restrictions to r (Gc)  generate a subring Z[G] 

of the affine algebra C[G]. It can be verified that this subring is in fact a Hopf 

subalgebra of C[G], see [43, 50, 53]. Thus, one can define an affine group scheme 
over Z by 

R ~ Gp(62, R) = Homz(Z[G],R).  

The image of a ring R under this functor is denoted by Gp(rp, R) and is called 

a Chevalley group of type ~ over R. Up to isomorphism of algebraic groups, 

this group depends only on • and R, but not on rr. At the same time, by defi- 

nition, we can consider the corresponding linear groups G. (O,  R) as subgroups 

in GL(n, R), where n = dimTr. 

Now let c~ E ¢ and u be an independent variable. The homomorphism of 

Z[G] on Z[u], assigning to each coordinate function x~, u its value on x=(u), 
induces a homomorphism 

Ga(R) = Hom(Z[u], R) ~ G(O,R) = Hom(Z[G], R) 
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of the additive group R + = Ga (R) of the ring R to the Chevalley group G(ff, R). 

The image of this homomorphism is the root subgroup Xc~ = {x~((), ( E R}. 

Hence, the elementary Chevalley group E~(ff, R) is contained in the Chevalley 

group G~(ff, R). The interrelations between these two groups constitute a major 

problem in the theory of Chevalley groups over rings. Whereas for an elementary 

Chevalley group, there is a very nice system of generators x~((), c~ E ~, ( E R, 

and the relations among these generators are fairy well understood, nothing like 

this is available for the Chevalley group itself. 

Let first K be an algebraically closed field. Then always G~ (~, R) = ETr (if, R) 

It is easy to see that this equality is not true in general, even for the case of a 

field. However, if G is simply-connected, then for an arbitrary field one has 

Gsc(¢, R) = Esc(ff, R), This is proven by the method of 'grosse cellule', which 

is a special case of the Chevalley-Matsumoto decomposition [8, 30, 43, 53, 85, 

110]. In fact the equality Gsc(~, R) = Esc(~, R) holds, even for the case when 

R is a semilocal ring [1, 9, 85, 108]. Recall that a commutative ring is said to be 

semilocal if it has only finitely many maximal ideals. There are also some further 

cases when the groups Gsc and Esc are known to coincide, say, Euclidean tings 

[112], Dedekind rings of arithmetic type [27, 85], and polynomial tings with 

coefficients in a field or a principal ideal ring [3, 4, 49, 68, 81,119, 121,148]. In 

the case of fields or semilocal rings, the distinction between the above groups is 

easily bridged, even for nonsimply-connected groups by adding certain semisim- 

ple generators (see Section 10). 

It is well known that the group of elementary matrices E(2, R) = Esc(A1, R) 

is not necessarily normal in the special linear group SL(2, R) = Gsc(Al, R) (see 

[47, 122, 118]), but it turns out that if • is an irreducible root system of rank 

I /> 2, then E(¢,  R) is always normal in G(ff, R) (see [82, 119, 121] for the 

classical groups and [124, 125] for the Chevalley groups). In fact, a new direct 

proof of this statement is one of the goals of the present series of papers. 

Thus, for these cases one can define the quotient group 

which is the famous Kl-functor of type • over R (see [3, 108, 109, 110]). 

Algebraic K-theory shows that this functor is, generally speaking, nontrivial, 

that is why for a general ring the group Esc(~, R) can be strictly smaller than 

Csc(~, R). 

8. Identifications 

In fact, equations, defining Chevalley groups, can be explicitly listed. After that, 

one can identify these groups with the groups, preserving certain systems of 

tensors. In particular, the Ree-Dieudonn~ theorem establishes that appropriate 

Chevalley groups of classical series coincide with split classical groups (i.e. the 

groups of isometrics of bilinear forms of the maximal Witt index). 
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1. (I) = An. Here the group Gsc(An, R) coincides with the special linear group of 

degree n + 1 over R, while the group Gad (An, R) coincides with the correspond- 

ing projective linear group PGL(n + 1, R). In turn, Esc((I), R) = E(n + 1, R) is 

the elementary group, i.e. the group generated by all elementary transvections 

xij (~) = e q- ~eij, ~ C R, i ~ j (as usual, e is the identity matrix and eij is a 

standard matrix unit). 

The quotient group 

KI(An, R) = SKI(n + 1,R) = SL(n + 1,R)E(n + 1,R) 

is the usual (linear) nonstable Kl-functor [23, 24, 27, 69, 86]. 

2. 62 = Bn. Following [39], we number the indices from 1 to 2n + 1 as fol- 

lows: 1 , . . . ,  n, 0 , - n , . . . , - 1 .  Let Q be the quadratic form, defined on the free 

R-module V = R m of rank m = 2n + I, by the formula 

Q(x l , . . .  ,X-l)  = x 2-k XlX_l + . . .  + XnX-n. 

In other words, Q is a form of the maximal Witt index, which makes V to a 

split orthogonal space ('Artin space') of dimension 21 + 1. 

Then Gsc(O, R) is precisely the spinorial group Spin(n, R), associated with 

the form Q, while Gad ((b, R) coincides with the corresponding special orthogo- 

hal group SO(n, R) = PSO(n, R). At the same time, the elementary Chevalley 

groups Esc ((I), R) and Ead(~, R) coincide with Epin(n, R) and EO(n, R), respec- 

tively (for the definitions of these groups see [23, 25, 17, 69, 121]). Let us note 

that, while Spin(n, K) = Epin(K) for an arbitrary field K, the group EO(n, K) 

does not necessarily coincide with SO(n,  R). In fact, it coincides with the kernel 

of  spinorial norm, which is, generally speaking, a proper subgroup of SO(n, K) 

and (apart from very small dimensions) equals the commutator subgroup f~(n, K) 

of the latter group. Thus, the functor 

KI(Bn, R) = Spin(2n + 1,R)/Epin(2n + 1,R) 

defined above is trivial for fields and differs from the Bass orthogonal K1- 

functor 

KOI(n,R) = S O ( n , R ) / E O ( n , R )  

(see [26, 17, 59, l l0,  130]). 

3. ¢ = C,~. We number the indices from 1 to 2n as follows 1 , . . . ,  n, - n , . . . ,  - 1 

and introduce on the free module V = R m, m = 2n, a symplectic form B by 

B ( x , y )  : ( x l y _  1 - x _ l Y l )  q - . . . - - ] -  ( X n y _  n -- X _ n Y n )  , 

where 

x = (Xl , . . . , x -1 ) ,  Y = (Yl , . . . ,Y-I)  E V. 
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Then Gsc(ff, R) is isomorphic to the sympIectic group Sp(2n, R) associated with 

this form, while the group Gad(~, R) is isomorphic to the corresponding projec- 

tive group PGSp(2n, R) (the factor group of the group GSp(2n, R) of symplectic 

similarities modulo the centre). The group Esc(ff, R) is the corresponding ele- 

mentary group Ep(2n, R), and 

KI(Cn, R) = KSpl(2n, R) = Sp(2n, R)/Ep(2n, R), 

is the usual nonstable symplectic Kl-functor [27, 69]. 

4. • = Dn. Let us keep the same numbering of indices as for the case of ep = Cn 

and introduce a quadratic form Q on the free R-module V = R m, m = 2n, by 

O ( X l , . .  . , z ~ )  = Z l X - 1  + . . .  + z , ~ z _ n .  

This form has the maximal Witt index and makes V to an Artin space. The 
group Gsc(dg, R) is again the spinorial group, associated with the form Q, while 

Gad(if, R) = PGO(n, R) is the projective orthogonal group (the factor group of 

the group GO(2n, R) of orthogonal similarities modulo the centre). 

For one of the proper intermediate lattices P, lying between Q(ff) and P(/b) 

(if n is odd, this lattice is unique), we have Gp(O, R) = SO(2n, R). In this case, 

the situation is similar to ff = Bn and the functor 

KI(Dn, R) = Spin( 2n, R) /Epin(2n, R) 

is again different from the Bass functor KO1 (2n, R). 

The identifications for the classical groups go back to the works of R. Ree 

[94] and J. Dieudonn6 [54] (where the case of an odd ortogonal group over a 

nonperfect field of characteristic 2 was treated). For a modem exposition, see 

J.-Y. Hre [71 ]. 

For the exceptional cases, explicit identifications with groups, preserving sys- 

tems of tensors, are far less commonly known, although there are quite a number 

of works dedicated to this topic. We describe these identifications very briefly, 

referring to [11, 12, 13, 44, 105, 141] for further information and references. 

The whole subject will be discussed in detail in a forthcoming paper by the first- 

named author. That is why we do not go into technical details (preservation of 

a three-linear form and the corresponding cubic form, partial polarizations, etc.), 

and we restrict ourselves to the case when K is a field of characteristic distinct 

from 2 and 3. In fact, most of the invariants constructed below are characteristic 

free and thus define the Chevalley groups over an arbitrary commutative ring. 

5. • = G2. The group of type G2 was introduced by L. E. Dickson in 1905 

and Ree [94] verified that Dickson's group actually coincides with the Chevalley 

group of type G2. In fact, the group of type G2 is, in many respects, close to the 

classical groups and can be considered in this context. 
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Let V = K 7 be a seven-dimensional vector space with the coordinates num- 

bered as follows: 1,2, 3, 0 , - 3 , - 2 , - 1 .  We consider the following pair of forms 

on V: the same quadratic form, as for the case of B3 

Q(x)  = 2xg + x l x - i  + x2x -2  + X 3 X - 3 ,  

where 

x = ( z l , z 2 , z 3 , z o ,  x - 3 , z - 2 , z - 1 )  V, 

and the alternating three linear form F,  defined by the monomials 

XoXlX_l --1- xox2x_2 -1- xox3x-3  W XlX2X3 -1- X - l X - 2 x - 3 .  

This should be understood in the following sense. To get the form F ( x ,  y, z), 

one should alternate each monomial to get six summands. For example, the first 

monomial gives the following summands 

xOYlZ-1 • yOzlx- I  -~ ZOXlY-1 -- yOXlZ-1 -- zOYlX-I -- xoz ly -1 .  

The group Isom(Q, F, K) consists of such elements g of GL(V) = GL(7, K), 

that Q(gx)  = Q(x)  and F (gx )  -- F ( x )  for every x E V. It was proven in [95] 

that G(G2, K) --- Isom(Q, F, K). 

6. ~ ---- E 6. Let M(3, K) be the full matrix ring of degree 3 over K, and V --- 

{ ( x , y , z )  I x , y , z  C M(3, K)} be the 27-dimensional vector space over K. 

Define a cubic form F on V by the following formula: 

F ( ( x ,  y, z)) = det(x) + det(y) + det(z) - t r (xyz) .  

Then Gsc(E6, K) can be identified with the group Isom(F, K), consisting of all 

transformations g E GL(V) = GL(27, K), such that F ( g ( x , y , z ) )  = F ( ( x , y , z ) ) .  

This remarkable construction of simply connected Chevalley groups of type 

E 6 is due to Freudenthal. A similar (but slightly more complicated) realization 

of this group was discovered by Dickson as early as 1905. Usually, it is more 

convenient not to consider the cubic form, but the trilinear form, associated with 

the above form. 

7. ff = F4. The group of type F4 is obtained by restricting the group of type 

E6 constructed above to certain hyperplanes in the 27-dimensional space V. 

(Actually, almost any hyperplane will work, the variety of hyperplanes which do 

not has positive codimension. For the exceptional hyperplanes, one gets groups 

of type B 4 o r  - falling still deeper - D 4 . )  

8. (I) = ET. The first explicit construction of the form in this case is again due to 

Freudenthal and may be described as follows. Let V be the vector space 

V = { ( x , y ) ) x ,  y C M ( 8 ,  K),  x t = - x ,  y t = _ y }  
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consisting of pairs of 8 x 8 alternating matrices with entries in the field K (its 

dimension over K equals 56). Define a symplectic inner product h on the space 

V by the formula 

h((xl,x2), (yl,Y2)) = 1/2(tr(ylx2) - tr(xlY2)) 

and a quartic form F by 

F((x,y))  = pf(x) + pf(y) - 1/4tr((xy) 2) + 1/16tr(xy) 2, 

where pf(x) denotes the Pfaffian of an alternating matrix x. Polarize F to a 

symmetric four-linear form f on V. Then the isometry group of the pair of 

forms h and f coincides with Gse(E7, K).  In other words, Gsc(E7, K)  consists 

of those symplectic (with respect to h) matrices which preserve the form f or, 

what is the same (recall that char(K) ¢ 2, 3), the form F,  in the usual sense 

Gsc(E7,K) = {g E Sp(56, K) l f (g(x,y))  = f ( (x ,y) )} .  

The group we get in this way is the simply connected Chevalley group Gsc(ET, R). 

9. • = E8. Let V = L be the Chevalley algebra of type E8 over K.  It has 

dimension 248. Recall that V = L bears the Lie bracket [ , ]: V x V --+ V 

as well as the Killing form ( , ): V x V --+ K.  Then Gsc(E8,K) can be 

identified with the isometry group of the trilinear form f (x ,  y, z) = (Ix, y], z), 

where x, y, z E V. 

9. Chevalley Commutator Formula 

Let us recall some properties of the elementary root unipotent elements x~ (~), 

which do not depend on a representation. It is clear that 

xa(~)xc~QI) = xc~(~ + ~), (9.1) 

for every ~ E R and rl E R and, thus, for a fixed a E q), the map x~: ~ --4 xc,(~) 

is a homomorphism of the additive group R + of the ring R to the one-parameter 

subgroup Xa{xc,(~) I~ E R}. This subgroup is called the elementary unipotent 
root subgroup corresponding to a. In fact, xa is an isomorphism of R + on 

Xa. When it does not lead to a confusion, we omit epithets 'elementary' and 

'unipotent' and speak about root elements and root subgroups. For two elements 

x ,y  E G, we denote by [x,y] their commutator x y x - l y  -1. Now let a, t3 E ~, 
o~ +/3  ¢ O, ~, r /E R. Then the Chevalley commutator formula asserts, that 

[xa(~),x~(~)] = I I  Xic~+jz(Nc~ziJ~i~J) , (9.2) 

where the product on the right-hand side is taken over all roots of the form 

ia + jl3 E ~, i , j  E N, in any given order. The constants NaZi j do not depend 
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on ( and r/(though they may depend on the order of roots). The numbers N,~¢ij 

are called the structure constants of the Chevalley group, and we will see that 

all of them are integers [14, 15, 38, 39, 42, 76, 94, 95, 113], etc. 

First of all, Na¢ll = N,~¢, where N,~O are the structure constants of the Lie 

algebra L in the Chevalley base, i.e. lea, co] = N~#e~+# and, therefore, they are 

equal to +1,4-2, 4-3. Thus, 

[xa(~),xa(r/)] = 1, (9.3) 

if a +/3 ~ ~, and 

= (9.4) 

if c~ +/3 is the only linear combination of the roots a and/3 with natural coeffi- 

cients, belonging to ~. 

In the case when all roots of • have the same length (the 'simply laced' 

case), only these two possibilities occur. Thus, in this case, the coefficients in 

the Chevalley formula are completely determined by the structure constants in 

the corresponding Lie algebra (and, therefore, can be found in the tables [36, 60, 

87, 88, 142], see the details below). For the general case, the coefficients Naoij 

are expressed via the constants M,~i, mentioned in Section 2. More precisely, if 

we order the roots ia + j/3 according to increasing i + j,  the following formulae 

hold (see [38, 39]): 

Na~i l  : MaBi, Nc,~ij = -Moaj ,  

Nat23 = 1/3Mc~+~,~,2, Nat32 = 2/3Ma+~,a,2. 

Recall that the constants Ma~k were defined as follows: 

k 

= +C~ +k Mc~Bk = 1/k! H Na,~+(i_l),~ k • 
i=1 

A different formula for calculation of Na¢ij is contained in [53, 76]. Suppose 

the roots ia + j/3 are arranged in any order. Then 

Na/332 = 2 M a / B N B , 3 ~ + ~ ,  

Nc~f132 = -Mafl3Nfl,3c~+fl, 

Na~323 = -2Mfla3Nc~,a+313, 

Nat23 = Mfla3N~,a+ 3fl, 

i f a + f l  < 2a +/3, 

if a +/3 > 2a +/3, 

if a +  2/3 < a + / 3 ,  

if a + 2/3 > a + / 3 .  

Yet another choice of signs in the Chevalley commutator formula is reproduced 

in [103]. 

Now, an inspection of the root systems of types A2, B2, G2 shows that Na#ij 

may only take the values 4-1,4-2, 4-3. Clearly G2 is the only (irreducible) system 

if, in which the number of linear combinations of two roots a,/3 E • of the form 
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TABLE III. The N~,2~-matrix for F4. 

1 0 1 0 1 10 111 12 

0 1 1 1 1 21 122 33 

0 0 0 2 2 22 224  44 

0 0 0 0 0 02 222  22 

0010 0 - 1 - 1  0 0 O0 010  O0 

0001 0 0 0 - 1 - 1  - 1 0  000  O0 

0110 - I  0 0 0 0 0 0 - 1 0 0  O0 

0011 0 1 1 0 0 - 1 0  000  00 

1110 0 0 0 0 0 01 000  00 

0111 1 0 0 0 1 00 000  00 

1111 0 0 0 - 1  0 00 000  00 

0121 1 0 - 1  0 0 00 000  00 

1121 0 1 0 0 0 00 000  00 

1221 0 0 0 0 0 00  0 0 0  00 

1231 0 0 0 0 0 00 000  00 

1232 0 0 0 0 0 00 000  00 

TABLE IV. Chevalley commutator formula for G2. 

97 

[XI0(~), Xll  ( ( ) ]  : Z2I (2~()X31 (3~2()X32(-3~(2) 

[Xl0((), X21 (()1 = X31 ( 3 ( ( )  

[~,,,(~), ~3,(¢)] = ~3:(¢¢) 

[Xll (~), X21 (ff)] = X32(--3~ff) 

where the signs are specified by the above formulae. 

For the classical cases, the structure constants are nothing mysterious: use 

the same Chevalley order as in [33]. For the cases El, one has only to list the 

structure constants for the corresponding Lie algebra. This is done, for example, 

in [60, 142] (see references there for a broader picture). Actually, it is the choice 

of the structure constants which we will always use (see Section 15). This leaves 

us with the analysis of the cases F4 and G2. These cases are relatively small 

and the corresponding structure constants were calculated by several authors on 

various occasions. 

A possible choice of the coefficients N~3ij for the system F4 is given in 

Tables II and III (Table I lists Dynkin forms of positive roots of F4 in the height 

lexicographic order). Namely, Table II lists the structure constants N~3 = Na311 

of the corresponding Lie algebra (see Section 15). Table III lists only the constants 

N~321, but, as we know, Na~12 = -N3~21. 
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For the group of type G2, the Chevalley commutator formula is somewhat 

more complicated. Namely, the two following cases are not covered by the for- 

mulae (9.3)-(9.4) above. If two short roots c~ and/3 form the angle of 27r/3, 

then 

[x~(~),xz(r/)] = xa+z(-4-2(rl)x2a+~(+3~2rl)xa+2Z(q-3~r12). (9.6) 

If a long root o~ and a short root/3 form the angle of 57r/6, then 

[Xc~(~),X/3(~)] = Xc~+13(q-~7"])Xo+213(q-~T12)Xc~+313(-l-~2)X2c~+313(-l-~2~3). (9.7) 

These relations are studied in detail in [112], Section 10. A particular choice of 

signs in these formulae is listed in Table IV. 

10. Split Maximal Torus 

In this section, we explain how the distinction between a Chevalley group and its 

elementary subgroup is bridged for fields. Let T = Tp(~, ) be a split maximal 

toms of a Chevalley-Demazure group scheme G = Gp(¢, ). If R is a com- 

mutative ring, the corresponding group of points T = Tp(¢, R) is called a split 
maximal torus of the Chevalley group G = Gp(¢, R). It is well known that 

T =  Tp(¢,R) = Hom(Z[T],R) ~ Horn(P, R*), 

where Z[T] = Z[,'~I, ,'~11, . . ,  , ,'~l, ,,~?1] is the algebra of Laurent  po lynomia ls  for 

some Z-base A1, . . . ,  At of the lattice P.  

Let, as usual, v a, A E AQr), be an admissible base of the Weyl module 

V = V• of the Chevalley group G = Gp(¢, R), constructed starting from a 

finite-dimensional representation 7r of the Lie algebra L = Lc. We arbitrarily 

number the weights A E A(Tr) and set vi = v x~. Thus, V l , . . .  , V n is a base V, 

consisting of weight vectors corresponding to the weights A l , . . . , A n .  Let us 

denote by X(P, R) the set of R-characters of the weight lattice P = P(Tr), i.e. 

the group Hom(P,  R*), and by Xt(P, R) the subgroup in X(P, R) consisting of 

those R-characters, which can be extended to P(¢~). 

If the group G is simply connected, that is P = P(¢)), then X'(P, R) = 
X(P, R) but, in general, not every character of P can be extended to the whole 

weight lattice P(/b). For a X E X(P, R), denote by hTr(X ) the endomorphism 

of the module V, which is defined in the base v l , . . . ,  vn by the diagonal matrix 

diag(x(A1),...,X(An)). In other words, h~(x)v ~ = X(A)v ~ for all A E A(lr). 

Then 

T = Tp(¢~, R) = {h~r(X), X E X(P, R)}. 

Let 

H = Hp('~, R) = {h~r(X), X E X'(P, R)}. 
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It can be shown that 

Hp(~2, R) = Tp(¢,R) MEp('~,R). 

Thus, Up(O, R) <. Tp(¢, R) and if P = P ( ¢ ) ,  then gp(¢,  R) = Tp(e2, R). 
The group 

G°p(,~, R) = Ep( ¢, R)Tp( ¢, R) 

is contained in the Chevalley group Gp(O, R) and it is well known that these 

groups coincide in the case when R = K is a field or, more generally, a semilocal 

ring [1, 9, 85]: 

Gp(¢,K) = G°p(¢,K). 

Impressed by the fact that Ead(¢ ,K)  is usually simple as an abstract group, 

many authors call the latter group the 'Chevalley group'. In this context, it is 

interesting to notice that in the original paper [41] Chevalley studied the groups 

G0d(~, K)  rather than Ead(~, K).  

The elements h(x) are related to the elementary generators xB(~) by the 

formula 

h(x)x~(()h(x) -1 = x~(x(~)(). 

Many more details about the elements h(x) as well as an exhaustive bibliography 

may be found in [145]. 

11. Regularly Embedded Subgroups 

Now we recall definition of some important subgroups in Chevalley group G = 

G(~,  R). First, set 

u = u ( ¢ ,  R) = <x~(~), ~ e R, ~ e O+>, 

U -  = U - ( ¢ , R )  = <xs(~), ~ ~ R, ~ ~ ¢-> .  

The subscript P is redundant in the notation as these groups do not depend on 

representation 7r up to isomorphism. In the field case, these groups are maximal 
unipotent subgroups in G. For an arbitrary commutative ring R and an arbitrary 

ordering of the set q?+ of positive roots, we have U = rI x a ,  u -  = II  x _ a ,  

where a c {)+ in the given order. More precisely, each element u C U can be 

uniquely expressed in the form II xa(us) ,  a E ¢+,  where the coefficients us  E R 

depend only on u and the chosen order of roots. If u = I ]xa (u~) ,  a E q?+, 

where the product is taken in another order, then it follows from the Chevalley 

commutator formula that uc~ - us  is a linear combination of the products of the 

form u~l . . . . .  u ~ ,  where/3i E ~+  are such that/31 + - - .  +/3s = a. In particular, 
I u s = us  for all simple roots a. 
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Recall that a subset S _c ~/, is called closed if for any a,  fl E S such that 

a + /3  E ~,  one has ~ + fl E S. With a closed subset S, one can associate the 

subgroup 

E(S) = E(S,R) -- (x~(~), ~ E R, o~ E S). 

Each closed set S may be presented as a disjoint union of two parts, reductive 

(alias symmetric) S r = {a E S, - a  E S} and special (alias unipotent) S ~ = 
{a E S , - a  ~ S}. It is clear that the special part of a closed set is an ideal 

in it (i.e. if a E S, /3 E S u, a + /3  E • then a + /3  E S u) and, therefore, it 

follows from the Chevalley commutator formula that E(S) may be presented as 

a semidirect product of its unipotent radical E(S u) (which is a normal subgroup 

in E(S)) and a reductive subgroup E ( S  r) (a Levi subgroup of E(S)):  

E(S) = E(S × E(Sr). 

In the sequel, we use subgroups which stand in the same relation to E(S) as 

a Chevalley group does to its elementary subgroup. In order to construct them, 

we must return to the situation considered in Section 7. Let R = C. We set 

G = G ( S , C ) = E ( S , C )  and G°=G°(S ,C)=G(S,C)T(¢ ,C) .  

These are algebraic subgroups of the Chevalley group G = G(~2, C). Let X(S) 
denote one of the groups G or G °. Restrictions of the coordinates x~,u, A,/z E 

A(Tr) (with respect to an admissible base v~), A E A(Tr) to the group X(S) ,  gen- 

erate an affine Z-algebra Z[X(S)]. Now, the natural projection Z[G] -+ Z[X(S)] 

induces the homomorphism 

Hom(Z[X(S),R]) ~ Hom(Z[G],R) = G(~,R). 

We denote the group on the left-hand side by 

G(S,R) = G(S) or G°(S,R) = G°(S), 

respectively. These groups admit Levi decompositions 

G(S) = E(S '~) × G(S r) and G°(S) = E(S u) × G°(S r) 

with the same unipotent radical as E(S). Clearly, S r is a root system and 

the semisimple group G(S  r) = G(Sr,R) coincides with the corresponding 

Chevalley group. The reductive group G°(S r) = G°(S r, R) is the product of 

G(S r, R) and T(~, R). It not only depends on S, but also on the ambient group 

C ( ¢ , n ) .  
The following two special cases of the above construction are of particular 

interest. 
First, if A C_ ¢ is a root subsystem, then there is an embedding of Chevalley 

groups G(A,  R) C_ G(,I~, R), taking roots to roots. Following Dynkin, we used 
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to call such embeddings 'regular'. At the same time, the expression 'subsystem 

subgroups' coined by Liebeck and Seitz seems to be more suggestive. 

Second, let Q be a parabolic set of roots, i.e. a closed set of roots such that 

for any root cz E 4 either o~ E Q or -c~ E Q. The group G°(Q) = GO(Q, R) and 

its conjugates are called 'parabolic' subgroups. The proofs of many results are 

based on a reduction to the groups of smaller rank using parabolic subgroups. 

Note that in the case when the ring R is not a field, the subgroups G°(Q), 

4 + c_ Q c_ 4,  by far do not exhaust all the subgroups containing the standard 

Borel subgroup 

B = B ( 4 ,  R) = U(4 ,  R ) T ( 4 ,  R). 

See [137, 152, 153] for the description of other such subgroups and further 

references. 

12. Normalizer of Maximal Torus 

Let us apply the construction from the previous section to the special case of 

A = {4-ct}. We get an embedding qoa of the group G(A, R), which is isomorphic 

to SL(2, R) or PGL(2, R), into the Chevalley group G(4 ,  R). The image of this 

embedding will be denoted by Ga = Ga (R). In the case when R = K is a field, 

Gc~ is equal to (Xa, X-a} .  This embedding can be normalized in such a way 

that: 

( 1 ~ )  ( 1 0 )  

For e E R* we set 

(0 (; 0) 
qoc~ e -1 0 = wc~(e), qOa e_ 1 = 

In fact, these elements can be easily expressed in terms of xa and x - a ,  namely 

wa(e) = xa (e )x_a( -e -1 )Xa(e ) ,  (12.1) 

ha(e) = w~(~)wa(1) -1 • (12.2) 

The elements ha (e) and their conjugates are called semisimple root elements. 

Sometimes, in order to be specific, we speak about long or short root semisimple 

elements depending on whether o~ is long or short. The elements ha can be easily 

expressed in terms of Section 10. Namely, let us fix an e E R* and consider the 

R-character Xa,e of the lattice P ( 4 ) ,  defined by the formula Xa,6(A) = e (~'a). 

Then ha(e) E H ( 4 ,  R), and 

H ( ~ , R )  = <ha(e), e E R*, o~ E ¢) .  

Moreover, in fact, we can take only a E II. 
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Now we introduce some important subgroups. Let 

No(~, R) = (w~(E), ~ E R*, a E ~). 

Denote by N(ff, R) the product N0(ff, R)T(a2, R). Then it is well known that 

H(ff, R), and T(ff, R) are normal subgroups of N(¢ ,  R) and 

N ( ~ , R ) / T ( ~ , R )  ~- N o ( ~ , R ) / H ( ~ , R )  ~ W, 

where W = W(69, R) is the Weyl group of the root system ¢. These isomor- 

phisms can be defined in such a way that a root reflection wa E W maps to the 

classes wa(e)T or wa(¢)H, respectively. The group N(/b, R) is the normalizer 

of the maximal torus in the sense of the theory of algebraic groups. When R = K 

is a field, the group N(~,  K) almost always coincides with the normalizer of 

T(~, K) in the abstract sense. The possible exceptions are the field ~2 and for 

some systems F3. In an appropriate base of weight vectors, the elements from 

T(ff, R) are represented by diagonal matrices, while those from N(~,  R) by 

monomial matrices. 

The key role in various problemsconceming~ Chevalley groups is played by 

the so-called extended Weyl group W = W(ff) of the roots system if, which is 

isomorphic to the group N(,I,, Z) (see [53, 127]). This group is called also the 

Tits-Demazure group (see [89]). In the case, when 2 E R*, this group coincides 

with the group W : (w,~(1), a E ~). It is known that the group W is an 

extension of the usual Weyl group W by the elementary abelian group of order 

2 z, thus IWl-- 2zlwl. 

13. Steinberg Relations 

Apart from Relations (9.1), (9.2), (12.1), (12.2) from Sections 9 and 12 elements 

za(~), w~(~) and ha(c) satisfy the following relations, which are also called 

Steinberg relations 

- 1  

h,~(e)w~(w)hc,(e) -1 

= ( 1 3 . 1 )  

= ww~ (r/c~¢-(e'~)w), (13.2) 

= h~o,~Z(w), (13.3) 

= x~ (~(Z'a)w), (13.4) 

= ( 1 3 . 5 )  

for all e, w E R*, ( E R, a,/3 E ,I,. The numbers ~,~ are constants equal to 

+1 and depending only on a,/3 (and, of course, on the choice of the structure 

constants of Chevalley algebra). It is known [39, 94, 113], that 7/~t~ satisfy the 

following properties: 

~Tafl = rla,-~, ~laa = rla,-a = - 1 ,  ~Taflrlaw~(~) = (- -1)  a~t~, (13.6) 
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and 

~7a3 = l, C ~ S : f l # 0 ,  ~X-t-fi~O, 

~ = ~ : .  = - 1 ,  (a,/3) = (/3, ~) = - 1 ,  

7/a3 = - 1 ,  ( a , / 3 ) = 0 ,  a 4 - / 3 E O .  (13.7) 

There are further useful relations among the element wa(e) and ha(e). Thus, 

~ ( e ) ~ ( ~ )  = h ~ ( - e ~ - I ) .  

In particular, 

Wa(e) 2 = h a ( - 1 ) ,  W a ( e )  - l  = Wot(--e). 

(13.8) 

Finally, wa(e) = w-a(-e).  Any two elements ha(e) and hfl(w) commute and 

the symbol ha(e)  is multiplicative on e, i.e. 

h,~ (e)h~ (w) = ha (ew). (13.9) 

Besides, ha(e) - I  = h -a (e ) .  

Let us show, how the numbers Vo, Z are expressed in terms of structure con- 

stants. If the roots a and/3  are proportional, then rlc~3 --- - 1 ,  and if they are 

orthogonal, then ~ 3  = 1 (see (13.6), (13.7) above). Suppose the roots a and/3 

have the same length and ff ~ G2. 

If a ,  t ,  a + /3  E O, then a straightforward calculation, using the definition of 

elements wa (e) and the Chevalley commutator formula, shows that 

ZUot(E)X/3(~)Wa(~)  - 1  = xa+3(Na3¢~) 

(we used the equality Na~ = N_~,~+~). Thus 

~ / a 3 = N a 3 ,  a , 3 ,  a + / 3 E + -  

Similarly, if a,/3,/3 - a E ~, then 

~ a ( ~ ) ~ ( ~ ) ~ ( s )  -~ = ~ _ ~ ( - N _ ~ , S I ~ )  

and 

This completely determines all the constants ~/a3 in the case when lal = 1/31, and 

the system • is distinct from G2. 

If the roots o~ and/3 have different length, a is a long root,/3 is a short one, 

then a similar calculation using the Chevalley commutator formula shows that 
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Thus, it remains to consider the case when/3 is long and a is short. Then 

rlo~l 3 = Nal3ql, a + [3 E (~, 

where p and q have the same sense as before, i.e. they correspond to the a-series 

of roots passing through/3. 

There are similar formulae expressing ~/~ for the case when o~, 13 are short 

roots, generating a root system of type G2. 

14. Properties of the Structure Constants 

First of all we recall some well-known properties of the structure constants 

NaG = O, a, fl E '~, a + /3 ~ ~2, a + / 3 ¢ 0 ,  (14.1) 

N~,~ = -No,~, (14.2) 

Na,-Z = N~,-a, (14.3) 

Na,~ = +(p + 1), (14.4) 

N~zN_,~,_Z = - ( p  + 1) 2. (14.5) 

The proof of the following two formulae uses the Jacobi identity. If a + /3  + 7 

= 0, then 

Na~/(7, 7) = U¢~/(o~,a) = N.ya/(/3,/3). (14.6) 

Let now a,/3,"/,5 be four roots such that a + /3  + "7 + 5 -- 0. Then 

+/3, +/3) + + %/3 + 

+N.~aN~/(~/+ a,  "I' + a) - 0. (14.7) 

We consider the matrix N = (Na~), c~,/3 E (I)+. Formula (14.2) says that 

this matrix is antisymmetric. Now (14.3) (or (14.5)) expresses the matrix (Na/~), 

a,/3 E ~ -  via N. The same formula expresses (Nc~z), o~ E (I)-, /3 E (I)+ via 

(N~f~), a E ¢+ ,  /3 E (I)-. It remains only to express (N~f~), a E (I)+, /3 E (I)- 

via N.  Indeed, applying (14.6) we get 

{ N~,_c~_~(c~+/3, a+/3) / (a ,a )  i f a + / 3 E  ~+,  

N-a-~,c~(a +/3,  a +/3)/(/3,/3) if a + /3  E ~ - .  (14.8) 

This completely reduces the calculation of all the structure constants Na# to the 

calculation of N. 

When all the roots of ff have the same length, the formulae above may be 

substantially simplified. Namely, for all roots a,/3, a + fl E /b, one necessarily 
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has c~ - / 3  ~ ~, so that p = 0 and Nc, f~ = +1. Formulae (14.6) and (14.7) 

become 

N,~O = NO7 = N.r,~, if c~ +/3 + 7 = 0 (14.9) 

and 

N~N76 + N~.rN,~6 + N.r,~N~6 = O, if c~ +/3 + 3' + 6 - O. (14.10) 

Observe that in the last case, only two of the summands can be nonzero. 

Indeed, Nc¢~ # 0 and Nf~. r # 0 implies that a +/3,/3 + 7 E ~. Thus,/3 forms 

angle 27r/3 with both a and 3'. Suppose Na.y # 0. Then the angle between ct 

and 7 also equals 27r/3 and, thus, a,/3, 7 lie in one plane. But then 6 = 0, a 

contradiction. Thus, (14.7) is equivalent to a piece of the 2-cocycle equation: 

NzTN,~,O+7 = Nc,+~,TN,~. (14.11) 

This equation is extremely important. Actually, the equation alone settles many 

cases where [133] refers to the explicit knowledge of signs. 

15. Calculation of the Structure Constants 

There is a natural inductive procedure based on the formulae from the proceeding 

section, which expresses all the structure constants in terms of the structure 

constants for certain pairs of roots, the so-called extraspecial pairs, see [126, 39]. 

In turn, the signs of the structure constants for the extraspecial pairs may be 

taken arbitrary (it is customary to take all of these signs to be '+ ' ) .  

Let us choose the height lexicographic ordering of positive roots which is 

regular (i.e. a root of smaller height always proceeds a root of larger height) and 

lexicographic at the roots of a given height. It is a total ordering of (/,+ and we 

write c~ -< /3 if c~ precedes/3 with respect to this ordering. By definition, this 

means that either ht(a) < ht(/3) or ht(c~) --- ht(/3) and the integer represented by 

the string Dynkin form of a is bigger than the integer represented by the string 

Dynkin form of/3. 

Recall that a pair (a,/3) of positive roots is called special if a + / 3  E (I) 

and o~ -.</3 with respect to the ordering described above. A pair (or,/3) is called 

extraspecial, if it is special and for any special pair (7, 5) such that a+t3 = 7 + 6  

one has a -~ 7. Then the values of the structure constants Nc, f~ may be taken 

arbitrarily at the extraspecial pairs and all the other structure constants may be 

uniquely determined using only properties (14.2), (14.5), (14.6) and (14.7) (see 

[39], pp. 58-60). 

Since, for classical groups, the structure constants can be easily determined 

(it is sufficient to take ChevaUey systems, considered in [33]), and for the group 

G2 the structure constants are well known [39, 94, 113], etc., one has only to 

consider the cases F4, E6, E7, Es. Here is an inductive procedure from the paper 
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[60] (modulo correcting two misprints, see [134]), which works for Er,E7,E8. 

Let H = { a l , . . . ,  al}. Set Na,z = 1 if ai +/3 • ~+ and there is no j < i such 

that ai +/3 = aj + fl for some ~ • ~+. If o~,/3, a + /3  • (/'+, let i be minimal 

such that a + /3  = ai  + fl for some/3 • ,I~ +. Since all the roots have the same 

length, either a - ai  • if+, or/3 - ai  • (I '+, but not both. Now Nag is expressed 

as follows 

; -N,~,~-a~N~-a~,~ if/3 - a~ E (I '+, 
NaG 

Nai,a_aiNa_a,,O if a - ai  • if+, 

and, since the height of a - ai or /3  - ai is strictly smaller than that of a 

or /3,  respectively, we get an algorithm to calculate the matrix N = (Nag), 

a,/3 E • + . 

In order to get the matrix Nat~, a,/3 E ~, the following relations can be 

used 

{ Na_g,~(a - r ,  a - f l ) / (a,  a) if c~ - / 5  E ¢}+, 

N a , - ~ =  N ~ _ a , g ( / 5 _ a , / 3 _ a ) / ( f l , / 3 )  if / 3 _ a E  ¢+. 

Especially important for the subsequent calculations is the matrix N -= (Na~) 

of type ff = E8. This is connected with the fact that the minimal representations 

of the groups G(Er, R) and G(E7, R) appear in the restrictions of the adjoint 

representation for the group of type ~ = Es. Therefore, for these types the signs 

of actions of the elementary root unipotent elements xa(~), a E if, ~ E R, on a 

weight base v ;~ of a minimal module may be determined from the Nag-matrix 

of type Es. 

16. Frenkel-Kac Cocycle 

Recall that a root system • is called simply laced if (a,/3) = O,-4-1 for any 

two linearly independent roots ~,/3 E ~. For an irreducible root system, this is 

equivalent to saying that all the roots of • have the same length. For a simply 

laced system, always Na~ = O, =t= 1, so the only problem is to determine the signs 

of the structure constants. 

For the simply laced root systems there is a much more elegant and efficient 

way to calculate the structure constants, which is due to I. Frenkel and V. Kac 

[57] (see also [58, 79, 98, 104]). (Note that, in some sense, a similar algorithm 

for groups of type G2 and F4 is given in [97].) 

Let Q(ff) be the root lattice of the root system if, i.e. the Z-lattice spanned 

by • endowed with the inner product induced by the inner product in V. Any 

fundamental root system ~r = { o q , . . . ,  at} forms a Z-base of Q(~) .  In particular, 

the lattice Q(~I,) is even, i.e. (x, x) E 2z for all x E Q(O). 

Now denote by f any bilinear Z-valued form on Q(ff) such that 

(x, y) = f ( x ,  y) + f ( y ,  x) (mod 2) 
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and, moreover, 

½(x,x)  = f ( x , x )  (mod2) 

for all x, y E Q(q)). 

It is obvious that such a form exists. In fact, take H as a basis of Q[ff] and 

define f(o~i, c~j) by the following formulae: 

0, l <~ i < j <~ l, 

f(o~i,o~j) = ½(o~i,o~i), 1 ~< i ~< l, 

(c~i, c~i), 1 ~< j < i ~< 1. 

Of course, usually the inner product is normalized so that (c~i, c~i) = 2 and, thus, 

f ( a i ,  c~i) = 1. 
Let ¢(6~) be a function on Q(~)  such that ¢(x) = 0 if x ¢ q~ and ¢(c~)~(-c~) = 

- 1  for all c~ E q'. Now for all linearly independent a , p  E q', we may set 

= + 

It is easy to show that these numbers actually form a system of structure constants 

for a Lie algebra of type q~. 

For example, one may set ¢(x) to be the sign of a vector x E Q(~)  with 

respect to the fixed fundamental system H: 

+1,  x E ~2 +, 

- 1 ,  zE -, 

O, 

Unfortunately, this natural sign does not lead to the choice of the structure con- 

stants we want. That is why one has to modify the choice of signs (see [142]) 

or of the form f (see [46]). We refer to [142] for further details. 

17. Hall Polynomials of Ringel 

In [97] C. M. Ringel proposed a beautiful generalization of the Kac-Frenkel 

construction which works for all root systems if, not just for the simply laced 

ones. Below, we reproduce his construction of the structure constants. 

Let c~, f~, 3' E (I)+. Then one can define certain polynomials ¢~f~ ('Hall poly- 

nomials'). These polynomials have the property that ¢~f~ = 0 if 3' # c~ + fl and 

if 3" c~ -4- fl, then exactly one of two polynomials 7 = ¢ ~ ,  ¢~,~ is nonzero. 

Now the structure constants may be expressed via the evaluations of the Hall 

polynomials at 1. More precisely, one has Naf~ = ¢~f~(1) - ¢~a(1). 

This formula may be restated as a convenient recipe to express the struc- 

ture constants explicitly, without any reference to the Hall polynomials. Name- 

ly, define a (nonsymmetric) bilinear form f on the root lattice Q(q)) as fol- 

lows. Let d i a g ( f l , . . . ,  fl) be the minimal symmetrization of the Cartan matrix 
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TABLE V. 
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f ( a , ~ )  A,,D~,Ez Bz,C,,F4 G2 

0 + + + 

1 - + + 

2 + - + 
_ _ _ 

4 + + - 

5 - + - 

of H. This means that f l , . . . ,  fl are relatively prime natural numbers such that 

Aijfj = Ajifi for all i,j, where, as usual, Aij = 2(ai ,aj) / (aj ,o~j) .  Then the 

form f is defined by 

{ fi for i = j ,  

f (~i ,aj)= A~jf~ f o r i < j ,  

0 for i > j. 

Now assume that a, ~, a + fl C if?+. Then precisely one of the numbers 

f(a, fl), f(/~,a) is negative. Suppose f(~,a) < 0. Then the sign of N ~  is 

determined by the value of f(a,/3) according to Table V. 

Of course, in fact the form f does not take value 5 for • = Bt, Ct or F4 and 

values 4 and 5 for ff --- G2. 

Tables of the structure constants of types E6, E7 and E8 may be found in 

[60, 142]. In Tables I-IV, we have reproduced tables of the structure constants 

for F4 and G2, corresponding to the choice of signs described in Section 15; the 

signs of Na~ for all extraspecial pairs are taken to be +. 
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