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Introduction.

0.1. Let Gy be a connected complex semi-simple Lie group. Following
Chevalley (cf. [2] and [3]), we have a uniquely determined affine group scheme
(i.e. a representable covariant functor G from the category of commutative
rings with a unit into the category of groups) such that

(1) G(C) is a connected complex semi-simple Lie group isomorphic to G,
where C is the field of complex numbers.

(2) For any algebraically closed field %, G(k) is a connected semi-simple
algebraic group defined and split over the prime field of % and its type is
the same with that of Ge.

We call G the Chevalley-Demazure group scheme associated with G, and we
shall say that G is simple, of rank r or simply connected if the Lie group
G is so. In Section 1, we shall introduce briefly the definition of G.

0.2. Let R be a commutative ring with a unit, a be an ideal of R, f:
R — R/a be the natural homomorphism. Then, there is a group homomorphism
G(f): G(R)— G(R/a). Denote by G(R,a) (resp. G¥(R, a)) the kernel (resp.
the inverse image of the center of G(R/a)) of G(f) and we call it the special
(resp. general) congruence subgroup modulo a of G(R). Any subgroup N of
G(R) such that G*(R,a) 2 N2 G(R,a) for an ideal a of R is a normal
subgroup of G(R). Such a normal subgroup of G(R) we shall call a congruence
subgroup of G(R).

0.3. Now, let R be a local ring, m be the maximal ideal and % be the
residue class field R/m, p be the characteristic of k. W. Klingenberg has
proved (cf. [5], [6]) that if G=SL,,, or Sp,,, the only normal subgroups of
G(R) are the congruence subgroups provided that the characteristic of % is #2
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and k#F, for the groups G = SL, and G = Sp,,. In this note, for a simple
Chevalley-Demazure group scheme and a local ring R, we shall reduce the
determination of the normal subgroups of G(R) to the determination of certain
submodules of R, except the following cases:

(a) G is of type A, and p= 2 or k= F;

(b) G is of type B, or G, and k = F,,
where F, is the finite field with g elements. In particular, if G is simply
connected, we have that the only normal subgroups are the congruence subgroups
provided that the characteristic of 2 is #2 (resp. #3) if G is of type
B,, C, or F, (resp. of type G;). The main theorem is stated in Section 1 with the
preliminary definitions. In Section 2, we give some basic properties of certain
subgroups of G(R) for our later use and, in Section 3, we prove a key proposition
(2.17) and then prove our main theorem (1.9).

The author wishes to express his hearty thanks to Mr. H. Hijikata for
his valuable advises.

1. Chevalley-Demazure group scheme, Statement of the main theorem.
In this section, we shall introduce the Chevalley-Demazure group scheme
associated with a connected complex semi-simple Lie group (cf. [2], [3]) and then
state our main theorem.

11. Let Gy be a connected complex semi-simple Lie group, Ty a maximal
torus of Go. Denote by g¢, tc the Lie algebras of G and T, respectively.
Let A be the system of roots of g, with respect to to, II = {a,,-+-,a,} be a
fundamental root system of A, g, be a Chevalley lattice of g, generated by
{H,,---,H,, X,, acA}. For each acA, the element H, = [X,, X_,] is
contained in the submodule ¢; = g,Né;. We have

(1) a(H,) = 2,

(2) if a,B are roots, then 8(H,) = v—p, where v, u are non-negative integers
such that 8 + i is a root for each integer —v =7=pu, or

(3) if a,B and a+@B are roots, [X,, Xp]=N.sX.1s where Nz = x=(v+1).

1.2. Let p be a faithful representation of Gy in an n-dimensional vector
space V over C, dp the differential of p which is a representation of gy in V.
Then, there exists a Z-free module V. generated by {v,,---,v,} in V such
that

(4) (m)'dp(X,)"VzcV, for all integers m =0 and all roots az< A,
(5) do(H)v, = Af(H)v,, A(H,)<e Z, for all roots ac Aandall i (1=i=n).
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Such a module V, is called to be admissible (cf. [2] and [7]). The base
{v ,=++,v, of V, determines the coordinates x;; (1 =4, j=n) on GL(V)
and the restrictions of x;; to (5; generate a subring Z[{G] of the afhne algebra
CiG] of Gy The ring Z|G] has a structure of a Hopf algebra and defines a
group scheme G over Z. Namely,

R — G(R) = Hom (Z[G], R)

is a covariant functor from the category of commutative rings with 1 into the
category of groups. We shall call G the Chevalley-Demazure group scheme
associated with Gp. In particular, if G, is simply connected of type A, (resp.
of type C,), then G is isomorphic to the functor SL,., (resp. Sr,.).

1.3. For any t¢C, x,(t) = exptdp(X,) is an element of G, and the
coordinates of x,(¢) are polynomial functions on ¢ with coefficients in Z. Let
Z|&] be the algebra over Z generated by one variable £. Then we have a
homomorphism of Z|G] onto Z|¢] which assigns to each x;; the (4, j)-coordinate
of r(§). The homomorphism induces an injective homomorphism of groups

G, (R) = Hom(Z|£], R) —> G(R) = Hom(Z|G}, R).
We denote also by x,(t), £< R, the element of G(R) corresponding to an element
of G(R) such that £ —¢.

1.4. Let P (resp. X, P,) the additive group generated by the weights of
all representations of G (resp. the weights of p, the roots of go). Then, these
are free abelian groups of rank [/ such that P2 X 2 P,; X is generated by
Ay,+++,A, over Z; if G is simply connected, then P=X. For any
x € Hom(X, C¥), h(x) = diag(x(A,), « - -, x(A,)) is an element of G,. Let Z[T]
be the algebra generated by A,A,7', -+, A,, A" over Z. Then, we have a
homomorphism of Z[G] onto Z[T'| which assigns to each x;; the (Z, j)-coordinate
of h(x). The homomorphism induces an injective homomorphism of groups

T(R) = Hom(Z[T, R) —> G(R) = Hom(Z[G], R).

We denote by A(x) the element of G(R) corresponding to an element
x € Hom(Z[T), R).

1.5. DEFINITION. Let R be a commutative ring with 1 and G be
a Chevalley-Demazure group scheme. We dencie by G,(R) the subgroup of
G(R) generated by x,(¢) for all t€ R and all a€ A and by A(yx) for all
x € Hom(Z[T], R), and denote by E(R) the subgroup of G(R) generated by x,(t)
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for all te R and all @< A. We know that if R is a field or the ring of
integers of a field with a non-archimedean discrete valuation, then G(R)=G,(R).
Further, if G is simple, simply connected of rank > 1 and if R is a semi-
local ring, then G(R)= E{(R) (cf. [8]). However, we don’t know whether, in
general, G(R)=Gy(R) {for a group scheme G (not necessarily simply connected)
and a semi-lozal ring R. We shall show in Section 3 the following.

1.6. PROPOSITION. Let G be a Chevalley-Demazure group scheme
and R be a local ring, then G{R) = G{R). In particular, if G is simply
connected, then G(R) = E(R).

1.7. For a root <A, let (a,a) = Y v(H,). The length Ma) of a is
ve

defined to be 1 if (¢, @) < (8, 8) for any root B< A, and is defined to ke A if
(a, )/(5,6) = A for some root 8 of length 1. 1f G is of type A, (n=1),
D, (n=4)or E, (n=26,7 or 8, thea ANa)=1 for all roots «; if G is of
type B, (n =2), C, (n = 2) or F, (resp. of type G,), there are roots of lengths
1 and 2 (resp. 1 and 3).

1.8. DEFINITION. Let G be a simple Chevalley-Demazure group scheme.
We call G is of symplectic type if G is of type C, (n=2) and simply
connected. Let R be a commutative ring with 1, a ke an ideal of R and for
a positive integer A, aq, ke the ideal of R generated by Mz, a* for all aca.
We shall call a special sudmodule associated with (G, a) a submodule b of R
such that

(a) a2020ay,, where N is the length of the long root in 8,
(b) if G is of symplectic type, 72bc b for any 7€ R and be D,

(b)) if G is not of symplectic type, 0 is an ideal of R,

For convenience, we shall denote a (resp. b) by a, (resp. a;). Thus, by our
notatioy, for an element x,(¢) of G(RY, t€ a,,, means that #<a or D according
as Ma)=1 or A. Now, we shall define certain subgroups of G(R). E(R,a,,a,)
is the normal subgroip of E{R) generated by x.{¢) for all roots a and
L€ Oy ; E¥R,a;,a) is the normal subgroap of G(R) consisting of the elements
x of G(R) such that (x, G(R)) € E(R,a,,q,), where for any subsets A, B of
G(R), (A, B) is the subgroup of G(R) generated by a 'b'ab for ac A, b< B.
In particular, if a, = a,, we denote IR, aa,) (resp. E¥(R,a,,q,)) by ER,a))
(resp. E¥(R,q,)) and if a, = aq, = R, by definition ER,a,) = E{R). Then, our

main theorem is the following which is proved in Section 3.
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1.9. THEOREM. Let G be a simple Chevalley-Demazure group scheme.
Let R be a local ring, m be the maximal ideal of R, k= R/m be the
residue class field, p be the characteristic of k. Assume that if G is of
type A, then p+ 2 and k + F, and if G is of type B, or G, then k # F,.
Let N be a subgroup of G(R) normalized by E(R). Then N is normal and
there exist uniquely determined ideal a of R and a special submodule b
associated with (G, a) such that

EXR,0,0) 2 N2 E(R, a,b).

1.10. COROLLARY. Under the same conditions as (1.9), if, in particular,
G is simply connected, then G(R,a) = E(R,a) for any ideal a of R.

1.11. COROLLARY. Under the same conditions as (1.9), if, in particular,
G is simply connecied and the characteristic p of k is different from the
length N of the long root, then, for any normal subgroup N of G(R), there
exists an ideal a of R such that

GHR,a) 2 N2 G(R,n).

2. Certain subgroups of G(R). In this section, we shall deal with the
structure of certain subgroups of G(R). We assume that R is a local ring
and G is simple. Notations and definitions are the same as those in the

previous sections.

2.1. DEFINITION. U(R,q,,a;) (resp. V(R,a,,q,)) is the subgroup of G(R)
generated by x.(2), t€ 0, for all positive (resp. jnegative) roots ac A, In
particular, if a,=a,, we denote it by U(R, a,) (resp. V(R,a,)), and if a,=a,=R,
we denote it by U(R) (resp. V(R)). Note that U and V are subgroup schemes
of G. 1T(R) is the subgroup of G(R) consisting of all A(y) for all
x € Hom(Z[T], R) which is isomorphic to Hom(Z[T], R) the direct product of /
copies of G, (R). T(R) is the subgroup of T(R) generated by h(x..) for all
roots @€ A and ue< R¥ (the group of units of R) where ., .(A;) = u®
A1=i=n) T(R,a) is the subgroup of T(R) generated by all A(x) such that
X(a)=1 (mod a) for all root . Now, we denote by T(R, a,, a;) the subgroup
of T'(R) generated by A(Y,. for all pairs (a,u) of @A and u< R* such
that u=1+s¢ for s€ R and £ < a,,.

2.2. As for the relations of generators for G(R), we know the following

(cf. [1], [3D).
(1) ;e = 2oa(e™ =D 2D 2 o(u—1) 2 (1) w(l—2), ueR*.
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(2) h(x) (&) h(x)™" = xd{x(@)t), t<R.
Let 0, = 2,(1) x_.(—1) 2,(1), then
(3) 0 Tit) 07" = ZTue(Et), teR,
where w, is the reflection in the hyperplane orthogonal to a and it is an

element of the Weyl group.
Let A* be the set of the positive roots. If A is of type A,,

(4) At = {a, B8, a+B); Ma) =MB) = Ma+8) =1
and we have
(5) (x4(8), 2o(10)) = Zopo(Elt0) for any t,u<R.

If A is of type B,,

(6) A= {a,B,a+8,2a+8}; Ma) = Ma+8) =1, M8) = M2a+8) = 2
and we have

(7) (x8), Z0)) = Tura(Ettt) Toos o Tt°0)

(8) (2o8)y XTus gf(10)) = Zanss( E2t00) for any t,ucR.
If A is of type G,,
(9) A* = {a, B, a+8,3a+RB, 3a+28};
Ma) = Ma+8) = AM2a+8) =1, MB) = M3a+8) = M3a+28) =3

and we have

(10) (b)), (1)) = Tpy g(Fltl) Tpgy f{ F82U) Ty (T E3U) Lsgrzp(FE247)
1) (L1 8(l), W) = Laur s T 2t0) Ly p( = 3tU%) Typ 100 £3t20)
(12) (Las g(t); XLous 8(26)) = Lgnyaa(E3tu) for any t,ucR.

Now, we prove the following.

2.3. PROPOSITION. For any ideal a of R, denote by E\(R,a) (resp.
E\(R, 0)) the normal subgroup of E(R) generated by x.t), t<a, for all roots



480 E. ABE

a such that Ma)=1 resp. Ma)=n). Then
E(R,a,b) = E\(R, )

for any special submodule b associated with (G, a)

PROOF. Since the Weyl group W is generated by w0, acA and W is
transitive on the set of roots of the same length, from (3), it is sufficient to
show that x,(¢) ¢ E,(R,a) for some root 8.of length A and for all ¢ € a. Therefore,
no loss of generality, we may assume that G is of type B, or G, First, let
G be of type B,, and let A* ke the roots (6). From (7) and (8), we have that
Lowsa(H2%%) and Lo, q(=2tu) are in E(R,a) for all tea and u< R. Thus, by
definition, we have E(R,a,b)= E,(R,a). Secondly, let G be of type G, and let
A* be the roots (9).

From (10) and (11) we have 2= Xy 22U Tsarae{ TU®) and aj,406(=3tu)
are in E(R,a) for all <€ a and u € R. Further, (x41), 2) = Zy,s0s(=t’u) € E\(R, a)
for all teq, and u <€ R. Thus by definition, we have I(R,a,b) = E,(R,a). q.e.d.

2.4. PROPOSITION. Under the same notation as in (2.3),
(1) If p£n, then E(R, a)= E(R, a) = E(R, a, ).
(it) E\R,a)= E(R,a) provided that, if G is of typz G,, k+ F,.

PROOF. It suffices to prove for the groups of type B, and G,.

(i) Let A* be the positive roots (6) of type B,. Since p£2,2 is a unit.
(8) for t=2"" and u e a shows that x., s(xu)<c E(R,qa). Now, let A* bhe the
positive roots (9) of type G,. Since p+# 3, 3is a unit. (12) for ¢ =3"" and uca
shows that xy,..(Fu) e E(R, q).

(ii) Let A* be the positive roots (6) of type B,. Then from (8) for t =1
and u € a, we have x,,,(u) € E\(R, ). Now, let A* be the positive roots (9) of
type Ga. Then from (10) for ¢ =1 and uw<€n, we have z =2, Fu)Xs, 5 Fu’)
c LR, ) and = = wuzwy™t = x(Fw) L s(u) € Ex(R, ). Since & # I, therc
exists an element ¥ of Hom(Z[|7'], R) such that y(«@)=1 and x(8)=1v where
v and v—1 are units of R. Then A(x)2'h(x)"' = 2 (Fw)Ls(Evu?) € E2(R, ).
Therefore, 2" 7'A(x)2 h(x)™" = Tperp(E(v—1u*) € Ex(R, a). This shows z,,,u?)
€ Ex(R, a) and we have also x,(u) € Ex(R, ). q. e. d.

2.5. PROPOSITION. Each element of U(R,a,,0)) is expressible in the
Sform

T (51)Xp,(S2)xg[55) = v o v v s o x( Sx)

where $;€ ey (L=:=N) and B,, B, + -+, By are the positive roots of A, the
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ordering of the roots is arbitrary chosen and fixed once for all.

Let U’ Le the set of elements expressible in the form as stated in the

proposition. We call the order of the positive roots (or the negative roots) is
1 l

regular if the heigt A(a)=3)_ m, of a=_ md, is an increasing function of
i=1 i=1

a. First, we prove the following lemma.

2.6. LEMMA. Let a, B be two positive roots. For any elements x,(t) € E(R)
and xs(w) € UR, a,, 03), the commutator (xt), xw)) is an element of U’ which
is expressible by the product of x,(s) for roots v>a, B, by a regular order.

PrROOF. If a+B ¢ A, then (x.r), x(%)) =1 and the lemma is trivial. We
assume that @+G < A. Let A, be a subsystem of roots in A of rank 2 consisting
of the roots ia+jB, i, j< Z.

(i) If a—Be&A, {a, 8 is a fundamental system of roots of A,, When A,
is of type A,, we have (z,(t), xs(1)) = Zors(tu). If u < iy then tu is also an
element of ay. When A, is of type B, we have (x,(¢), £s()= Zors( Ft1)Ts0ss
(%) OF ZLavp (£ EU) Tarss (1) according as Ma)=1 or 2. If MB)=1
(resp.=2), then tuca and t*uca, (resp. tu®<ca,). Finally, when A, is of
type Guy  (2u(2), 26(t)) = Larp (EtU) Xaarp (£EU) Logrp (HLU) Lagiap (EU)  oOF
= Loy f{ F1U) T gr0g( T EUD) L1 38( 20U Xngr30(F2%4%) according as Ma)=1 or 3. If
AMB) =1 (resp. = 3), then tu, tu’ca, and tu?, *u® € a(resp. tu,t’u® € qy), for a;
and a; are ideals of R.

(ii) If a—B=v<A and a—28¢A, then {8, v} is a fundamental root
system of A, which is of type B, or G,. When A, is of type B,, we have
a=v+8, a+B8=7+28 and Ma)=MB) =1, Ma+8) =Ay)=2. Thus,
(x.(t), xa(0)) = 2o p(2¢u). If wea, then 2tuca,, When A, is of type G, we
have a =v+8, a+8=v+28 and MB)=nra)=Aa+8)=1, AMy)=Na+26)
=M2a+8)=3. Thus, (Z.(t),xstt)) = LoralFE280)L0106( U)o s(£3t%0). If
weaq,, then 2tuca,, 3tu’ < a; and 3tPu<q,.

(ii))  a—28=v< A and, a—3B¢A, then {8, v} is a fundamental root
system of A, which is of type G,. We have a=v+28, a+8=v+38 and
Ma)=MB) =1, Ma+B8)=3. Thus (x.(2), x#t)) = Lasps(=3tw). If u<ca,, then
3tuca,. g.e. d.

2.7. PROOF OF (2.5). We shall show that U’ is a subgroup of G(R).
This proves that U =U(R,a;,a;). It suffices to prove that x.(f)x<U’ for
any z(t)e U and x<U. We claim this by induction on a regular order of the
roots o If o is the highest root then z(t) = xx.(¢) and the assertion is trivial.
Assume that x,(f)x €U’ for any x,(t) and x €U such that a>8. We must
show that xg(t)x €U’ for any t<€ s and xeU. Let x;= xp(s:)xs.(Siv1)***
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Zg,(sx) be an element of U'. Then x4(t)zy < U’ is trivial by (2.6). Now assume
2 (tur € U for any wy(k>17) and we show that zy(t)x; ¢ U'. If 8#8,; for any
i=j=N, then this is trivial. Therefore, we may assume that 8= @8, for some
j>i. From (2.6), we have

2 (8)x; = Xp(8)Xa () X141 = T ($:1)La(5;)2L 141

where 2z is an element of U’ expressible by a product of x,(¢)e U for a>g.
Further, by our assumption, xs(s;)zx;,, € U. Thus, we have proved xs(t)x; € U'.
q. e. d.

2.8. PROPOSITION. If a, is a proper ideal of R and o, is a special
submodule associated with (G, a,), then

(13) ER,a,,a,) =UR, a,, a )T (R, a;, a)V(R, a;, ay).
First, we prove some lemmas.

2.9. LEMMA. For any root a and a unit element u of R, there exists
h(x) e T'(R) such that x(a) =u’. Further, let A be of rank>1, then there
exists h(x) e T'(R) such that x(a)=wu if and only if G is not of symplectic
type or Ma)=1.

PROOF. Since ¥..(a)=u?, the first assertion is trivial. X =P,, the
second assertion is also trivial. We may assume that « is in II= {a,,---a,],
say & =a, and let a, be not orthogoaal to a,. If A, = {a,, a,} is of type G,,
then A=A, and the lemma holds from P=X=P,. I A, is of type A,(resp.
of type B, and Ma,) = 1), then % = X w1 (reSp. = ¥a, «Xann) has the value u at
a. Thus, we can find A(y) € T'(R) such that x(«) = u excent the case G is of
symplectic type and Ma) = 2. q. e d.

2.10. COROLLARY. If a, is a proper ideal and x,(t)<c E(R,a;, ay), then
h(x)x(h(x)™" € E(R, a1, 0) for any h(x) < T(R).

PROOF. This follows from (2) and the above lemma.

2.11. LEMMA. Let A be of rank>1 and a, be proper. If u=1+st
where s€ R and t € Ay, then X, (8)=1(mod a,) for any root B such that
MB) =1 and Xou (BY==1(mod ay,) for any root B such that MB)=A.

PROOF. Note that x,.(8) = (14st)*@ where t<ay,,. If MB)=1, then
My = 0y is an ideal such that 2 ay,,. Therefore, the assertion is trivial. If
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MB) =N and Ma)=1, then we have ¥, .8)=QQ+st)**=1(mod a,,). Finally,
let MB)=na)=nA. If G is not of symplectic type, then the assertion follows
from the fact that ay.,) = aag is an ideal of R. If G is of symplectic type,
then we have B(H,) =2 or 0 according as &« =8 or a # 8. Therefore, we have
also ¥, «(6)=1(mod ag,). q. e. d.

2.12. COROLLARY. If a, is a proper ideal and h(x) e T (R, a;, ), then
ZHh()x(s)"t € EXR, a,, a3) for any x,(s) <€ E(R).

PROOF. This follows from the relation x(s)h(x)x.(s)"! =x((1—x{a))s)h(x)
(cf. (2)) and the above lemma.

2.13. LEMMA. If a, is a proper ideal and x.t)< E(R,a,,a,), then
(14) Z-ol )2 £)2-a($) " = ZlO)(X0,)T-o(W)

Sor any x_,(s), where x,(v) and x_.w) are elements of E(R, a,,a,) and h(¥,..)
is an element of TR, a,, ay).

PROOF. Since tem, 1+st is a unit in R. Therefore, the equation

1 0V\/1 ¢ 1 0) 1 v\fu O 10
(3101—51—010'14“"101
has a solution, i. e., we have u = (1+s£)™, v=¢(1+st)"! and w= —s*t(1+st)".
Thus, we have (14) where A(X...) € T'(R, a;, a,) by definition. Further, if G is
not of symplectic type, x.(v), z_(w)e E(R, a,, a,) for a, and a, are ideals. If
G is of symplectic type, since (1+st)™ =1—st(mod a,), v=1¢t1—st)=0,
w= — s%(1—st)=0mod ;) (cf. 1. 8. (b)). Therefore, we have also x.(v),
x_.(w)e E(R, a,,0;). q. e d.

2.14. LEMMA. If a, is a proper ideal, x(t)c E(R,a,,a) and B is a
positive root + o, then

(15) x_f($)x)x_(5)™" = 2y for any x_4s)< ER),

where x e U(R,a,0) and vy is a product of x_,(w)s in V(R, a,, ay) such that
—y> =8

PROOF. Since @ and —@8 are linearly independent, there exists an element
w which is a product of o, for some roots ye A, such that wx(f)w™ and
wx_is)w™! are in U(R, a,, a,). Therefore, x_u(s)x.(t)x_4(s)" € w ' UR, a,, a)w.
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From (2.5), any element of U(R, a,, a;) can be expressed by the form
Zp,($)xa(Sg) 0 v v Zs(Sy), where s;€aug,, and B,,---,By are the positive
roots. If we arrange the order of the roots in such a way that w(8,)>0 for
1=i=j and w(B;)<0 for j+1=7i=N, then we have w 'U(R, a,, a)w
CUR,a, a)V(R,a, a,). Since x and y are products of x,(u)s where v are
linear combinations of & and —&, we have our assertion. g. e. d.

2.15. PROOF OF (2.8). For convenience, denote by UT'V the set in the
right side of the equation (13). First, we claim that UT'V is a subgroup of
E(R). It suffices to prove that :UT'V c UT'V for any element z of UT'V of
the form x4(t), h(xs ) and x_g(#). If 2= x,t), then by (2.5), we have x4t)
UcU. It =2=h(xs.) T, then from (2.10), we have h(xs.,)U c UT". Finally,

if z=x_4¢), we show by induction on a regular order of the roots that
(16) U cCcUT'V for any z_g8)eV.

If —8 is the largest negative root, from (2.13) and (2. 14), (16) is true. Assume
that (16) holds for any negative root larger than —8. We must show that
2_s)xecUT'V for any xeU. If x=x(s), it is clear from (2.14). Now,
assume that it is true for &’ = x5, (Si41) * + * X (sn) € U, and let x = xp(s,)x’ € U.
Then we have again by (2. 14), x_g(8)xs(s5:))x" = x5(s:,)x yx" and by our assumption
yx' e UT'V. Thus we have x_4(t)x< UT'V. This completes the proof of (16).
Secondly, we claim that UT"V is normal in E{(R). It suffices to show that
TeaDOUT Vi, ft) e UT'V for any root a;€Il and any t< R. We have
2, (OUzt) C U (cf. 2.6) and x,()h{xsu)x.(t)™ C UT" for any h(xg.)e T
and any t< R(cf. 2.12). The elements of V is expressible by a product of
Z_.(t) and an element of V® consisting of elements expressible by a product
of x,(s) such that v are negative roots different from —a; and that se a,,,.
Since X, (t)x_()x/t) " e UT'V and z,(6)VPx,(t) ' € VP (cf. 2.14), we have
Z, )V, (t)' cUT V. Therefore, we have z, ) UTVz,(t)'cUTV. A

similar calculation applies to x_.(2). q. e. d.

2.16. PROPOSITION. B(R) = UM)T(RYV(R) (resp. B(R) =Um)T'(R)V(R))
is a subgroup of G(R) (resp. ER)), where U(m) is the subgroup of U(R)
generated by x,(t) for all tem and all positive root a.

PrROOF. Iwahori-Matsumo'o ([4], Theorem 2.5) have proved this in the case
that R is the ring of integers of a field with a non-trivial, roa-archimedean
discrete valuation and G is an adloint group. However, their proof remains
valid also in our case.

The following proposition plays a fundamental role in the proof of our
main theorem,
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2.17. PROPOSITION. Let G be a simple Chevalley-Demazure group
scheme, R be a local ring and a a proper ideal of R and b a special
submodule associated with (G,a). Assume that p+2 and k+F, if G is of
type A, and that k+ F, if G is of type B, or G,. Let N be a subgroup of
G(R) normalized by E(R) such that E*(R,a,0)®pNDE(R,a,b). Then N
contains an element x,(t) not contained in E(R, o, b).

The proof will be divided into several steps. We set
EX(R,a,0) = U(R, a, )T*(R, a, b))V (R, a, b)

where T*R,a,b0) =TR)NE*R,a,b). Then E; (R,a,b) is a subgroup of G{R)
normalized by E(R) such that E¥R,a,b) D Ef(R,a,0) D E(R,a,b). We denote
by N’ = N—E§(R,a,b). Then, (2.17) follows immediately from the following
which we shall prove in the next section.

2.18. Assume that &k + F,, F; if G is of type A,. If N'# @, then N N B(R)
0.

2.19. Assume that p# 2 and £+ F; if G is of type A, and that 2= F, if
G is of type G,. If N' N B(R)# @, then N'N zg(R)xe(R)+ @, where 8, B8
are dominant roots of A (for the definition, see 3.5).

2.20. Assume that £+ F, if G is of type B, or G,. If NN x24(R)xe(R)~ 0,
then N Nz, (R)+ @ {for some root a.

2.21. Assume that p#2 and 2+ F; if G is of type A, and that k= F, if
G is of type B, or G,, then Ef(R,a,b)= E¥(R,a,b).

3. Proof of the main theorem. In this section, we prove (1.6), (2.17)
and then prove our main theorem (1.9) and its corollaries. We use notations
and definitions same as those in the previous sections.

3.1. PROPOSITION. Let G be a Chevalley-Demazure group scheme. Then
QC)=UCYT(CYV(C) 1is an affine open subset of G(C) and there exists a
rational representation ¢ of G(C) into a general linear group GLxC) such
that the coordinate function d,(9) L=i,j=N) of ¢(g9) is in Z|G| and that
the affine ring of C) is C{Gl{di'). Further, the mapping

8(C) : U(C)x T(C)x V(C)— G(C)

defined by 6(C)(x,h,y)= xhy induces a ring isomorphism
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6 : ZIGld#— ZIU1® ZITI® ZIV],
where Z[U] (resp Z{(V]) is the affine ring of the subgroup U(resp. V) of G.
This proposition follows from a theorem in [ 2].

3.2. PROOF OF (1.6). In (3.1), we denote by G’ the group scheme defined
by the subring Z[G'] of Z[G] generated by d;;(1 =1¢, j =N). The homomorphism
¢ defines a homomorphism of group schemes G—G" which we denote also by
¢é. Since (R) : UR)XT(R)xV(R)—Q(R)=Hom(Z[G][d;'l, R) defined by
6(R)(x, h, y) = xhy is bijective, we have Q(R) C Gi(R). On the other hand, if
g€ G(R, m), then ¢(¢) € G'(R, mt). This shows that d;;(¢)=1 (mod m) and d,,(g)
is a unit in R. Therefore, g € Q(R). Thus, we have G(R,m)C Q(R)C Gy(R).
Now, let @ be the homomorphism of groups G(R)— G(R/m) induced by the
canonical homomorphism of rings R— R/m. For any element ge< G(R), ¢(g)
is an element of Gy(k) = G(k). Therefore, g = ¢g,g. where g, « G(R, m) and g, is
an element of G(R) such that @(g)= g,. Thus, we have g € Go(R). This shows
that G(R)=Gy(R). If G is simply connected, then T(R)=T'(R)C E(R).
Therefore, we have G(R) = E(R). q. e. d.

3.3. COROLLARY. Let a be a proper ideal of R, then

G(R, o) =U(R, 0)I(R, ))V(R, a)
G¥R,a) = U(R, ) T*R, )V (R, a),

where T*(R,a) = G*¥R,a)N T(R).
This follows easily from the above proposition.

3.4. PROOF OF (2.18). If Nc G*(R,m), then Nc B(R) and the assertion
is trivial. If N¢ G*(R, m), then @(IN) is a subgroup of G(k) normalized by
E(E) not contained in the center of G(k). Therefore, we have o(IN)NT(E)V(k)+1
(cf. {11, p.50. We assume that if G is of type A, k# F,, F;). Thus, there
exists an element g € N such that @(9) = @(h)@(y) € T (k)V (k) for some elements
heT(R) and yeV(R) and that @(g) is not contained in the center of G(k).
This means that g = g’hy for some g € G(R, m). Since g  is expressed by the
form £'h’'y where x ¢ U(R,m), A’ « T(R, m) and ¥ € V(R, m), we have g € B(R)
and g & G*(R, m). This shows that N N B(R) # §.

3.5. Now, we proceed to prove (2.19). First, we give some preliminary
lemmas on irreducible root systems. Let A be an irreducible root system and
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= {d,+ -+, &} be a fundamental system of rcots. A root B< A is called to
be dominant if B(H,)=0 {for all «a,cTl. By definition, the highest root is
dominant. Further, if AMa)=1 for all root @< A, then the highest root is the
only dominant root. On the other hand, if A has a root of length 2 or 3, there
exist exactly two dominant roots and the length of these two roots are different
each other (cf. {1]. Lemma 13, p. 60).

3.6. LEMMA. Let A be not of type G,, then

(1) For any positive root a< A which is not in II, there exists a root
a, €Il such that a—a, € A and a+a,&A.

(ii) For any positive root o< A which is not dominant, there exists a
root a; €Tl, such that a+a; € A and a—a, & A.

PROOF. We claim that for any positive root @ which is not in II, there
exists a root a; €1l such that a(H,)>0. We see ),(B)a(HB) Ma)B8(H,) for

any root a,8c A. If a= Z m,a;, then 2Ma)=Ma)a(H,)= h(a)z mNaa(H,)

i=1 J=1
>0. Since Ma)>0, m; =0 and M«;) >0, a(H,,)>0 for some a;. Thus a—a;
is a root. As for a positive root which is not dominant, by definition, there
exists a root a; € Il, such that a(H,,) <0. Thus a+a; is a root. Now, let A
be not of type G,. Assume a=a; are roots. Then =*a, +a,*+(a+a;) and
+(a—a,) are the only linear combinations of & and «; which are roots (cf. [1],
Lemma 2, p.20). This contradicts to @(H,,)# 0. Thus we have our lemma.
q. e. d.

3.7 Let a,= z ma; be the highest root. We know that if A is of type

i=1

A,, B, C,, D,, E; or E;, then Min m;=1 and if A is of type E,, F, or G,,
then Min m,;, = 2. In the former case, we set a; one of the roots a; in II such
that m; =1 and further, if A is of type A,, a; is not orthogonal to &, and the
latter case, we set a; one of the roots @; in II such that m; =2 and that
is not orthogonal to «; and orthogonal to all roots in II different from «,.
(There exists exactly one root which has these properties.) Then, the diagram
of II— {a,} is connected. Further, we have

1
LEMMA. Let A be of type Ey, Fyor G, and a=)_ ma; be a root. Then,
i=1

m, =2 if and only if o is the highest root.

I
PROOF. If a=a,, then m, = 2. Conversely, if =) ma; is a root such

i=1
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that m, =2 and a # «,, then we have a,—digy— *++ —aiwy =B for some ay
where i(j)#1 (1=j=k). This is a contradiction, for a,—a; & A for all
i>1 g- e d.

3.8. We define a subset A, of A closed under addition of roots and an
irreducible subsystem A, of A as follows

12
Alz{aeA A=Yy ma, m>0¢,

i=1

)

;o

14
Aoz{aeA ;s a=> ma;, m=0
i=1
Let A, ={8;, By,+++, Bn} where 8,<<F;,, and B,=da, by a regular order
of A. Then from (3. 7), we have

COROLLARY. In a group G(R) whose root system is A, for amy roots
B, and B; of A, and for any elements s and t of R,

(xpfs), xo(t) =1 or zx.(w) for some u<c R.

3.9. LEMMA. Let v be a dominant root in A, then y—a,&A and
v+a, € A,

PROOF. Since v is positive and is not a dominant root in A, from (3. 6),
y+a,; is a root for some «; € II. On the other hand, v+a; is not a root for
all @, ¢TI, i>1, for v is a dominant root in A,. Thus a+a, is a root. It is
clear that a—a, is not a root. q-e.d.

3.10. Now, let N be a subgroup of G(R) and N’ be its subset stated in
(2.16). Let x = x,(5))x,(53) * * « 2,,(s,) be an element of N where v, € A1=<i=n)
and {i(1), #2),--,i(k)} be the set of all indices such that s;; & 0,0,,,(1=7=k),
1=:(1)<i(2)<+++<i(k)=n. Then a simple calculation shows that x =z,,,,(S:1)
* o« Ty (Siy) s also an element of N'. We call &' the reduced form of x.
For a subset A of A, we denote by U(A") the subgroup of U(R) generated by
Z(t) for all positive roots & in A" and for all £€ R. Then, we have

3.11 LEMMA. Let G be not of type G, If there exists an element
x € N NU(AQ)), then starting from x by a finite process of taking a commutator
with an element of U(A,) (resp. U(A)) and taking its reduced form, we
obtain an element of N’ of the form xu(t)xp(t)a L") (resp. x4(t)xa(t)), where
B, B are dominant roots of A, B the highest root and ' is a positive root
such that 8" +a,=f.
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PROOF. We may assume that x is of the form xs(t)xs, (ir1) "+ * 2o, (Ew)
where 1==i=m and ¢ & a,4, We prove the lemma by induction on 7. If

i=m, then the assertion is trivial. Suppose i <m and assume that for any
element

(1) = xp,(ti) o (Eee1) * =« Lo, (En)y kB> 1, L& Dy,

of N the lemma is true. If 8; is not dominant, then, by (3.6. ii), there
exists a root a; € Il such that a+a; € A and a—a; & A. Therefore, if a; +a,,
then, by (3.8), (x.(1), ) = x" can be reduced to an element of N’ of the form
(1). If ay=a, or B, is dominant, we may assume that (s (t,), £.,(1)) € E(R,a,,a,)
for all a; €IIN A,. For, if there exists a root a;(j >1) such that a2’ = (x(t,),
Z 1)) & E(R, a,,a;), then " can be reduced to an element of N of the form
(1). Now, we set x = x(t;)x where x' =z, (¢,) -+ x5 (tn). Then we may

apply induction assumption to x'. Thus we obtain an element stated in the
lemma. g. e. d.

3.12. COROLLARY. Let G be not of typz G,. If there exists an element
xe N NU(A), then starting from x by a finite process of taking a commutator
with an element of U(A) and taking its reduced form, we obtain an element
of N’ of the form z4t)xp(t’) where B, B are dominant roots of A.

PROOF. We prove by induction on the rank of A. If A is of rank=1,
then this is trivial. Assume that thc lemma holds for the groups of rank less
than that of A. We set x=xx, with x, € U(A,) and =z, < U(4,) (cf. 2.5).
If x,€ N, then by induction assamption, we obtain an element £’ = xx,(s)x,(s")
of N' where x;€U(A)) and v, ¥ are dominant roots of A,. For, the group
U(4A,) is stable by taking a commutator with an element of U(A,). Then,
by (3.9), (&, z,(1)=z" 1is an element of U(A,)NN'. Thus, we may apply
(8.11) to £ If. xy& N , then x, € U(A))NN’'. We may also apply (3.11) to x;.
q .e d.

3.13. PROOF OF (2.19) FOR THE GROUP OF NOT TYPE G,. If G is of
type A,, it is known by Klingenberg (cf. [5],2.7). Therefore, we assume that
the rank of G is>1. Let 2=xhye BI(R)NN , where x < U(m), h< T(R) and
yeV(R). If  and y are in E(R, a,, a;), then z=h(x)< N'. Therefore, there
exists a root a such that ¥(a)=1 (mod a,4). Then, (x,(1), A(x))=z(x(a)™'—1)
is an element of N'. Thus, we may assume that x& E(R, a,,q,) or y& E(E, a,, a,).
Note that, for an element z=xhy< N’, if £ and ¥ are the reduced forms of
x and y, then 2" = x'hy’ is also an element of N which we call the reduced
form of z. For a subsystem A’ of A, denote by G(A") the subgroup of G(R)
generated by z.(¢) for all @€ A" and all £€ R and by T(R). Now, we prove the
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following (P,) (n=2) by induction on n.

(P.) Let G be not of type G,. Suppose there exists an element z = xhy of
N N B(R) such that zeUA)NU@m), heT(R) and yeV(A") and that
x¢& E(R,a,a) or y&E(R,a,,0,), where A" is a subsystem of A of rank n.
Then, starting from 2, by a finite process of taking its reduced form, taking a
conjugate in G(A") or taking a commutator with an element of G(A"), we obtain
an element of the form z,(s)x,(s") in N', where v, v are dominant roots of A’

3.14. PROOF OF (P,) FOR THE GROUP OF TYPE A, Let A" be the
roots (4) and denote

2 = Lo(S)ZTe(52) s s(S)N)T - p(E)T _o(£2) X (2 1)-

By (3.12), it suffices to show that we obtain an element of U(R)NN' or
V(RN N'. If xre E(R,qa,), the argument is clear. Suppose x & E(R, a,).
(i) U s;€a, and s; € a,, we have

(1) 2 (1) = xp(Se £53) 0y f(S )KL _ o1 — XCOONT g a(ts ) _o(E) 2 _ofEy)-

Therefore (2, x_4(1)) is conjugate to 2= xs(F=S$s)x_._g(tt)x_(v) for some u,
ve R. Then 2" = wgw,2 0 'wz' is an element of U(R)NN".

(it) If s,ea, and s;<a;, then we have (2, x_._41)) is conjugate to
T_o(£5,)x__o(w) for some w e R which is an element of V(R)N N'.

(iii) If s, & a,, then we have

25172 26(1) = 2a(51)2(82) L1 s(S3 25 )6(X(B) — DA(X)
T o g(t)x - F13)To(VIR(Xp, )T - W)X _o(21).

Therefore, (2, x4(1)) is conjugate to 2’ = x,.5(Es)xs(v )Ry for some y ¢ V(R)
and v € R. Then 2" is an element of N' and a similar calculation as one of
the above cases applies to 2. q. e. d.

3.15. PROOF OF (P,) FOR THE GROUPS OF TYPE B, Let A* be the
roots (6) and we denote

2 = Zo(51)La(52) Lot 8(55) a1 (SR L 20 -g(E )X~ p(E3) T _a(E2) (2 1)

Suppose z & E(R,a,,a;). (i) If s,€a, and s, & a,, then a direct calculation

shows that (2',x_.(1)) is conjugate t0 2" =xa(£2s5,=£5,)2.+4(s,)y for some y" € V(R)

and (2", £_s.-4(1)) is conjugate to 2" = x_,(ZEs)x(%s}). Then w2 w;c UR)NN'.
(i) If s, €aqy, s;¢a, and s, € a,, then we have
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Zo2a-p(1)7' 2L 0-p(1) = 24(52)T0 1 8(53)0-a( = 53)2a( ESDAX)L -20-s(1 = X (22 +B))y ,

and (2, £_3,_p(1)) is conjugate to 2" = x_(2=5;)xe(ESDL 9q-s(¢) for some u € R.
Then @y,.52 w5t s € UR)N N .

(i) I s;eay, sy&a,, s;€a, and s, € a,, then (2,2_,_5(1)) is conjugate to
X _o(8,)X 5._g(w) for some u € R which is an element of V(R)N N'.

(iv) U s, & a,, we have

xﬁ(l)_ ! z'x/i(1> = xa(sl)xa E= 51)x2a+/3< is%)xﬂ<52)xa+ ﬂ<53)$2a+ﬁ(54)
2a(X(B) ~ DY) L 20— st )T —a-p(E5) T 202t ) oV (N 5, 2) Lo W)X o)

and (2, xx(1)) is conjugate t0 2= Z,4a(S))Loara(EsDHxa(v)hy’, for some
v'eR, h €eT(R) and v € V(R). A similar caluculation as one of the above
cases applies to 2z .

3.16. PROOF OF (P,_,\)=>(P,) for n=3. No loss of generality, we may
assume 7z == [. Denote 2 = x,;x2,hyyy; where x, € U(A)), x, € U(A,), h=h(x) € T(R),
o€ V(A and vy, € V(A)) (cf. 2.5, 3.7 and 3. 8). Suppose zo=x,hy, & Ef (R, a,,a,)
and x, & E(R, a, 0,) or yo& E(R, a,,a;). Then, by (P,_;), we obtain an element
X1 (8)x, (s yyr of N' such that x(s)x, (s") € E(R, a;, a;) where v, ¥ are dominant
roots in A, For U(A)) and V(A,) are stable by taking a conjugate by an element
of G(Ayor a commutator with an element of G(4,). Therefore, we may assume
that ==xy, for x; €U(A,)) and y, € V(A)). Then, by (3.11), we obtain an
element 2’ = xa(t)xa(® )xe(t")y; where 8, 8 are dominant roots and 8 is a
positive root such that a;,+8 =@ is the highest root and where yieV(A)),
for V(A,) is stable by taking a commutator with an element of U(A,) or taking
a reduced form. Further, we may assume that x; is commutative modulo
E(R, a,, a)) for all (1), i>1, (cf.proof of 3.11) and that 2’ is a reduced
form. Now, let A" be the set of roots ¥ such that x_, () is a factor of y; for
UEQ. I A= ¢, then 2 s URNN". If A"+ ¢, we may assume that there
exists a root y+# a, of A’. For, otherwise, w,2'w;'c UR)NN’'. For a root
ye A, if there exists a;, € I(>1) such that —y+a;€ A and —y —a, & A,
then (2, x,,(1)) € V(R)NN'. Otherwise, by (3. 6. i), for any root y+a, of A,
—v+a,€ A and —y—a, € A. Therefore, we may assume that x; = x4(t). For,
if xa(2) is a factor of zy, (2, 2_.,(1)) e UR)NN" and further if zgAt”) is a
factor of xi, (2,x_.(1)) is conjugate to an element of V(R)NN'. Thus we have
(2, 2,(1)) e V(R)N N, since B+a, is not a root. Thus we have proved (P,).
This completes the proof of (2.19) for the groups of not type G,.

3.17. PROOF OF (2.19) FOR THE GROUP OF TYPE G,. Let 2=xhy
€ B(R)YNN'. We may assume that x& E(R,a,,q;) or y & E(R,a,,a,). Further,
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since %k # F,, we may assume that A =1. Let A* be the roots (9) and denote

x =I5 1)1',3(5 2>xa+ﬂ(53)x2a+ﬁ(54)x3a+3(55)x3a+2ﬂ(5 5)

YV = T samsp(t) X s f(E5) T 20— p(E) o p(E5) T _(E2) X _o1).

Let u be a unit of R such that #—1 is also a unit, and X, .(resp. X5.) be an
element of Hom(Z[T], R) such that X, (&) =%, X..(8)=1 (resp. Xz.a)=1,
Xa,2(8) = u). We denote by 2° the reduced form of =z.

(i) If s,eay, s;ca; and s,e€a;, then (hA(Xs.), z) 1is conjugate to
2 = Lo g{(@ ' —1)85)Ts0408((— 1)ss)y’, for some y € V(R). Therefore, if s;ea,,
then (x_g(1),2”) is conjugate to 2" =2 , (=(u—1)se)y”" and (x_s_0s(1),2") is
conjugate to x_g(=(u—1)ss). If sgca, and s;5 & as, (x_s,-2s(1), 2') is conjugate
to x_g(==(m'—1)s;). Finally, if s, a, and s;, sg€a,, then (X g 25(1),2") is
conjugate to

2" = ()T (5D X501 g{ F5Dx_p( 2 53)

and we have

’”

2= @052 071 5= Ty o 5) L0t g 5D L30r 6 2 5D T r2a( 5D

Then, (A(Xs.), =) is conjugate to 2® = z,,5(=(w—1)5,). Tsass(V)Tsa125(w) and
(A Xa,u), 2®) is conjugate t0 2= Z,\5(F5)Tsa4(v") where s; & a,. If v'q,, we
have (z4(1), 2) = Zsarss( 7).

(i) I s;eqy, s;€a; and s;&a;, we may assume that s,€a, s;€a, and
ss € ;. For, if it does not hold, then (A(Xsus20 ), 27) has the form of the case
(1). Now let 2'= x,.5 (55)y, then (x_s_s4(1), 2) is conjugate to

2” = X _2¢ —B(is.%)x—a(is%)xﬂ(:'—_53>x—3a—ﬁ(i—s§>

and we have

2= C02«1+,Bszz_al+/-3 = X3a +,8< iss)xa+ﬁ( is%)xﬂ( i53>x3a+2/3( *= Sg)

Then, (A(Xs+s.)2"") is conjugate to 2= Ly e( (e —1)55)2a(V)Lsr26(w) and
(h(Xa,u),2™) is conjugate t0 2= Xy, 4(s's)xa(v), where s; & a,. If v &aq,, we
have (x5,+4(1), 2®) is conjugate tO Liuyae{v).

(iiil) If s, &a, or s, & a;, taking a conjugate of (A(X..), ) or (R(Xs.), 2)
if necessary, we may assume that either s,&a, and s;€a; or s, €a, and s; &a,.
Then a conjugate of (x.(1), 2") or (x41), 2") has the form of the case (ii).
q. e. d.

3.18. PROOF OF (2.20). If the roots of A have all length 1, then it is
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clear. Assume that A has two roots whose lengths are different. If G is of
rank > 2, then there exists a root ¥ linearly independent to 8, 8 such that
(arranging 8, & in a suitable order) 8+ is a root and B8—v, B+2y, 28+v 8 —y
and 8"+ are not roots (cf. [1], Lemma 13, P.60). Then, if t#a,4,we have
(1), zeB)xpt)) = 2a.,(=t)e N'. Now, let G be of type B,. Since k+ F,,
there exists a unit # of R such that #—1 is also a unit. Let x = &, s(£)Toass(t’)-
If t & airsy, We have Y= 0axws' = Lo(£8) T a(32") and (A(Xp,u),y) = Lara( (e —1)t)
e N'. If G is of type G,, since X = P,, we can prove easily. q. e. d.

3.19. PROOF OF (2.21). Since G*R,m)DE*(R,a;,a,), by (3.3), we have
B(R)DE*(R, a5, ;). Now, assume that E¥(R, a,, a;) 2 Ef(R, a,,a,). Then, (2.18),
(2.19) and (2.20) apply to N=E*R,a;,a,), we have an element x.(t) of
E*(R, a,,a,) not contained in E/R, a;,a,). This is a contradiction. g. e. d.

3.20. PROOF OF (1.9). If R is a field, then the theorem is a well known
result of Chevalley (cf. [ 1], {10]). Further, if the rank of G is =1, the result
has been given by Klingenberg (cf. [5]). If N is a central subgroup of G(R),
the theorem is trivial, for E¥(R,{0}) contains the center of G(R) and E(R,{0})=1.
Therefore, we may assume that the rank of G is>1, R is not a field and N
is not central. Let a, and a, be the ideal of R and the special submodule of
R associated with (G, a,) which are maximal satis{ying NDE(R, a,, a,). If a,=R,
then by definition a,= R and we have E*(R)= G(R)DNDE(R). Therefore, we
may assume a, is proper. Now, assume that E*(R ,a,,a;)2pN. Then, by (2.17),
there exists an element x,(¢) € N which is not contained in E(R, a,, @,). Further,
if G is of symplectic type and Ala) =\, then z(r*#)e N for any r< R and
otherwise, we have x,(rt)€ N for any r< R. Now, let a; be the ideal of R
generated by a, and #, and a; be the special submodule associated with a;
generated by a, and £. Then N coatains E{R,a;,a’) (cf. 2. 4). This contradicts
to the maximality of a; and a,, Thus, we have E*¥(R,a,,a,)DNDE(R, a;, a,).
Note that if NDE(R,a,,a,) and NDE(R,b,,b,) where a,, b, are ideals of R
and a,, b, are special submodules associated with a;, b, respectively, then
NDE(R,t,,¢,) where ¢, is the ideal generated by a, and by, and ¢, is the special
submodule associated with ¢; generated by a; and b,. Therefore, a, and a; are
uniquely determined by N. Finally, the result shows that N is a normal
subgroup of G(R). q. e. d.

3.21. PrROOF OF (1.10) AND (1.11). From (1.9), we have E*(R, a)
SG(R,a)DE(R,a). If G is simply connected, T\R,a)=T'(R,a). Therefore,
from (3.3), we have G(R,a) = E(R,a). This shows (1.10). (1.11) follows from
(1.10) and (2. 4). q.ed.



494

[—rt

[31
4]

(51
[6]
[7]
(8]
[91]

110}

E. ABE

REFERENCES

C.CHEVALLEY, Sur certains groupes simples, Tohoku Math. J., 27(1955), 14-66.

C.CHEVALLEY, Certains schémas des groupes semi-simples, Sém. Bourbaki, exp.
219(1960/61).

M. DEMAZURE AND A.GROTHENDIECK, Séminaire de géométrie algébrique, Schémas en
groupes, Inst. Hautes Etudes Sci., (1963-64).

N. IWAHORI AND H, MATSUMOTO, On some Bruhat decomposition and the structure of
Hecke ring of p-adic Chevalley groups, Inst. Hautes Etudes Sci. Publ. Math. 25(1965),
5-48.

W.KLINGENBERG, Lineare Gruppen iiber lokalen Ringen, Amer. J.Math., 83(1961),
137-153.

W. KLINGENBERG, Symplectic groups over local rings, Amer. J. Math., 85(1963), 232-240.

B.KOSTANT, Groups over Z, Proc.Sym.Pure Math. Amer. Math. Soc., 9(1966), 71-83.

H. MATSUMOTO, Subgroups of finite index in certain arithmetic groups, Proc.Sym. Pure
Math., Amer. Math. Soc. 9(1966), 99-103.

H. MATSUMOTO, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, to
appear.

J. Trrs. Algebraic and abstract simple groups, Ann. of Math., 80(1964), 313-329.

DEPARTMENT OF THE FOUNDATIONS OF MATHEMATICAL SCIENCES
TokYyO UNIVERSITY OF EDUCATION
ToKkYO, JAPAN



