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Chicken adaptive response to low energy
diet: main role of the hypothalamic lipid
metabolism revealed by a phenotypic and
multi-tissue transcriptomic approach
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Abstract

Background: Production conditions of layer chicken can vary in terms of temperature or diet energy content

compared to the controlled environment where pure-bred selection is undertaken. The aim of this study was to

better understand the long-term effects of a 15%-energy depleted diet on egg-production, energy homeostasis

and metabolism via a multi-tissue transcriptomic analysis. Study was designed to compare effects of the nutritional

intervention in two layer chicken lines divergently selected for residual feed intake.

Results: Chicken adapted to the diet in terms of production by significantly increasing their feed intake and

decreasing their body weight and body fat composition, while their egg production was unchanged. No significant

interaction was observed between diet and line for the production traits. The low energy diet had no effect on

adipose tissue and liver transcriptomes. By contrast, the nutritional challenge affected the blood transcriptome and,

more severely, the hypothalamus transcriptome which displayed 2700 differentially expressed genes. In this tissue,

the low-energy diet lead to an over-expression of genes related to endocannabinoid signaling (CN1R, NAPE-PLD)

and to the complement system, a part of the immune system, both known to regulate feed intake. Both

mechanisms are associated to genes related polyunsaturated fatty acids synthesis (FADS1, ELOVL5 and FADS2), like

the arachidonic acid, a precursor of anandamide, a key endocannabinoid, and of prostaglandins, that mediate the

regulatory effects of the complement system. A possible regulatory role of NR1H3 (alias LXRα) has been associated

to these transcriptional changes. The low-energy diet further affected brain plasticity-related genes involved in the

cholesterol synthesis and in the synaptic activity, revealing a link between nutrition and brain plasticity. It

upregulated genes related to protein synthesis, mitochondrial oxidative phosphorylation and fatty acid oxidation in

the hypothalamus, suggesting reorganization in nutrient utilization and biological synthesis in this brain area.

Conclusions: We observed a complex transcriptome modulation in the hypothalamus of chicken in response to low-

energy diet suggesting numerous changes in synaptic plasticity, endocannabinoid regulation, neurotransmission, lipid

metabolism, mitochondrial activity and protein synthesis. This global transcriptomic reprogramming could explain the

adaptive behavioral response (i.e. increase of feed intake) of the animals to the low-energy content of the diet.
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Background
The egg-production sector uses genetically selected

chicken breeds bought from a few breeding companies.

While the purebred selection process usually takes place

in a controlled environment, commercial layers are ex-

posed to a wide diversity of environments, some being

more challenging than others because of stressors like

high heat, sub-optimal diet composition or low diet en-

ergy content. In this study we investigated, on laying

hens, the effects that a 15%-energy depleted diet pro-

vided ad libitum over a long period (14 weeks) has on

the transcriptome of several energy-related tissues to

verify if animal performance changes related to the low

energy intake were due to underlying mechanisms at the

transcriptomic level. The low-energy diet used in this

study resembles the type of diet that can used for layer

production in countries where, for diverse reasons, ac-

cess to protein or oil happens to be too costly or impos-

sible due to the lack of supply. While several studies

have investigated the effect of a low-energy diet on the

performances of laying hens, no study has analyzed the

tissue mechanisms underlying performance variations at

the transcriptomic level. As examples, Grobas et al. [1]

observed an increase in feed intake, a decrease in body

weight gain and no difference in egg production rate

and egg weight in layers fed ad libitum a 2680 kcal/kg

diet compared to a 2810 kcal/kg diet, both with the same

protein content levels per kilocalorie of energy, from 22

to 65 weeks of age. Harms et al. [2] observed the same

results regarding feed intake, body weight gain, egg pro-

duction rate and egg weight for layers fed a 2519 kcal/kg

diet compared to a 2798 kcal/kg control diet from 36 to

44 weeks of age, with adjusted levels of amino-acids. On

the contrary, Murugesan and Persia [3] observed no ef-

fects on egg production, body weight and feed intake,

but only a reduction of the abdominal fat pad mass in

layers fed ad libitum a 2790 kcal/kg diet, compared to a

2880 kcal/kg control diet, both diets having approxi-

mately the same crude proteins content, from 28 to 39

weeks In this context, we investigated the effects of a

low-energy diet on the performances and feed intake to-

gether with the transcriptomes of four tissue of adult

layers fed ad libitum two diets differing in energy con-

tent (2321 kcal/kg for the low-energy diet versus 2710

kcal/kg for the commercial diet) from 17 to 31 weeks of

age. Since feed efficiency is a key factor for energy allo-

cation and is a trait of economic importance, we hypoth-

esized a possible interaction between feed efficiency and

the response to the energy-depleted diet. We therefore

compared the response to the low-energy diet between

two brown egg layer lines divergently selected for the re-

sidual feed intake (RFI) [4] to evaluate such a potential

interaction between diet and feed efficiency factors. The

RFI is the difference between the predicted feed intake

estimated considering body weight and egg production,

and the observed feed intake. The four tissues used to

explore the transcriptomic mechanisms at work in re-

sponse to the low-energy diet on the same animals as

those used for the performance analysis were the liver,

the adipose tissue, the blood and the hypothalamus, all

related to energy homeostasis. The adipose tissue is

crucial for fatty acid storage, the main form of energy

storage, and mobilization. The liver is a key organ for

lipogenesis in birds [5], in addition to many other

physiological processes such as oxidation, secretion and

detoxification. The hypothalamus is an important center

for the regulation of feed intake, and blood is a circulat-

ing tissue that gathers and transports nutrients, hor-

mones, proteins and cell waste throughout an organism.

To the best of our knowledge, such a study analyzing

both laying performances and four tissue transcriptomes

in response to an energy-depleted diet has not yet been

undertaken in layers.

Results
Diet energy change had little effect on production traits

but affected feed intake and body composition

The line, diet and interaction effects on body weight, egg

production and shell strength, feed intake (FI), residual

feed intake (RFI) and abdominal adipose weight after 14

weeks of the low-energy diet are summarized in Table 1.

The diet energy content difference had no effect on egg

production, i.e. on laying rate, egg weight and egg mass.

In contrast, we observed a significant decrease in body

weight at 31 weeks (on average for both lines, − 4.4%,

p < 0.05) in the LE group compared to the CT group,

despite the fact that at the beginning of the trial (17

weeks of age), the LE group was slightly heavier than the

CT group (on average, + 3%, p < 0.05, Additional file 1).

We also observed a significant (p < 0.05) increase of feed

intake in the LE group over 28 to 31th week of age,

without significant interaction with the line (p = 0.50). It

can however be noted that the increase in feed intake in

response to the LE diet is smaller in the R- line (+ 145 g)

than in the R+ line (+ 270 g), which can be related to the

fact that the R- line generally eats less; the interaction

between diet and line remains however not significant.

The calculated RFI was significantly higher in the LE

group, meaning that the animals were less feed efficient

than the CT group. Finally, the LE group had at 31

weeks of age a significantly lower ratio of abdominal adi-

pose tissue weight to body weight compared to the CT

group (on average, − 0.72, p < 0.05), even if the body

weight significantly decreased at the same age (on aver-

age − 4.4%, p < 0.05) indicating a higher decrease of ab-

dominal tissue (on average, − 20.6%, p < 0.05).

Concerning the line factor, as expected, we observed sig-

nificant differences on FI, RFI and abdominal adipose
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weight. The significant line effect for the body weight at

31 weeks, for which the interaction p-value was the low-

est and close to 0.10 is due to the {R-,LE} group, the ani-

mals of which are lighter than in the three other groups.

However, we observed no significant differences between

the body weight of R+ and R- from the control group, as

expected since the divergent selection on RFI was per-

formed at constant body weight. Both lines, regardless of

their RFI, reacted in a similar way to the energy-depleted

diet by increasing their feed intake. However, this in-

crease in feed ingestion was not sufficient to avoid body

weight loss in the R- fed with the LE diet and depletion

of the energy reserves (body fat). To explore the molecu-

lar mechanisms underlying this adaptation, we analyzed

gene expression of several tissues of birds from these

two lines and diets.

Diet energy change leads to transcriptomic modifications,

mainly in hypothalamus and blood

To explore the genes involved in the response of birds

to the two diets, we analyzed the transcriptomic changes

associated with diet changes in the adipose tissue, blood,

hypothalamus and liver. A total of 16,461 genes were

expressed in at least one of the four tissues considered,

and represents 66% of the 24,881 genes from Ensembl

v93 annotation (Fig. 1a and b). Of these 16,461 genes,

13,567, 11,440, 15,307 and 12,873 were expressed in the

adipose, blood, hypothalamus and liver, respectively

(Fig. 1b), and 10,314 (41%) were expressed in all four tis-

sues (Fig. 1a). Some of these genes were tissue-specific,

representing 1.34% (adipose) to 10.8% (hypothalamus) of

the total number of genes expressed in the tissues

(Fig. 1a, Additional file 2). The hypothalamus had mark-

edly higher gene-specificity, with 1653 genes expressed

only in this tissue. It also had the greatest number of

total expressed genes (15307). Strikingly, diet change

had a large effect on the hypothalamic and blood tran-

scriptomes, with 2700 and 1334 differentially expressed

genes (DEG), respectively, while the hepatic and adipose

tissue transcriptomes were almost unaffected (15 and 2

DEG, respectively) (Fig. 1c and d, Additional file 3). The

line had a major effect in all tissues, with 3143, 4631,

1874 and 2480 DEG in the adipose, blood, hypothalamus

and liver, respectively. As only a very small number of

significant interactions (pFDR < 0.05) were observed

(Fig. 1c), allowing for an independent analysis of the line

and diet factors, the present paper focuses only on the

diet effect.

Functional characterization of hypothalamic

transcriptome changes upon diet energy challenge

Among the 2700 DEG detected in the hypothalamus in

response to the diet energy change, 1438 and 1262 genes

were over- and under-expressed, respectively, in the LE

group compared to the control. We characterized these

two DEG lists using KEGG pathway term enrichment as

described in Methods. For the over- and under-expressed

gene lists, 26 and 44 pathways (pFDR < 0.05) were signifi-

cantly enriched (Additional file 4). The 10 top terms with

the lowest pFDR for both DEG lists are presented in

Table 2.

Pathways associated with the under-expressed genes

(Table 2A) comprised 91 under-expressed genes related to

different types of synapses: glutamatergic, dopaminergic

Table 1 Means (±SD) and significance for production, feed efficiency and body composition traits, for the effect of the diet, the line

and their interaction

{R+,CT}a {R+,LE}a {R-,CT}a {R-,LE}a Dietb Lineb Diet × Lineb

Body weight, week 31 (g) 2162.35 (±165.33) 2142.46 (±129.28) 2089.44 (±216.87) 1925.40 (±217.32) * ** 0.11

Laying intensity (%) 86.17 (±11.92) 87.73 (±7.81) 86.87 (±5.44) 84.59 (±8.58) 0.70 0.50 0.54

Egg number 60.94 (±9.33) 62.18 (±9.93) 61.17 (±6.16) 60.47 (±7.43) 0.93 0.86 0.60

Egg weight (g) 47.91 (±3.11) 46.80 (±2.98) 48.08 (±2.25) 47.61 (±1.82) 0.21 0.53 0.60

Egg mass (g)c 1166.41 (±181.31) 1182.36 (±210.53) 1118.36 (±108.85) 1055.80 (±126.99) 0.43 * 0.27

Static stiffness (N.mm−1) 109.68 (±18.75) 104.64 (±15.58) 126.75 (±18.39) 118.95 (±18.76) 0.12 *** 0.75

Feed intake (g)c 4128.47 (±426.94) 4398.10 (±551.14) 2583.92 (±308.26) 2728.73 (±419.65) * *** 0.50

Energy intake (kcal)c 11,188.16 (±1157.00) 10,207.97 (±1279.19) 7002.41 (±835.38) 6333.39 (±974.01) ** *** 0.52

RFI (g/21d−1)c 868.36 (±329.66) 1152.32 (±390.52) − 614.35 (±134.93) − 196.81 (±211.78) *** *** 0.28

Abdominal adipose weight
at 31 weeks (g)

73.33 (±21.10) 57.10 (±18.61) 129.83 (±44.23) 105.00 (±31.67) * *** 0.64

Ratio of abdominal adipose
weight to body weight
at 31 weeks (%)

3.37 (±0.83) 2.65 (±0.78) 5.96 (±1.39) 5.24 (±1.09) * *** 1

aValues represent the line/treatment group means for each trait (±standard deviation). R+ refers to low feed efficient layers and R- to high feed efficient layers, CT

to control group and LE to low energy diet. The number of animals analyzed are: R+,CT n = 34, R+,LE n = 11, R-,CT n = 36, R-,LE n = 15
b***: p < 0.001, **: p < 0.01, *: p < 0.05
cFeed-related traits were measured between 28 and 31 weeks of age
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and GABAergic synapses, as well as the synaptic vesicle

cycle or axon guidance. Among these genes were notably

GRIA1, GRIA3 and GRIA4 that code for subunits of the

glutamate receptor, the predominant excitatory neuro-

transmitter in the nervous system; DDC, that code for an

enzyme involved in the synthesis of dopamine, a neuro-

transmitter involved in the reward system, and DRD3 that

code for a subunit of the dopamine receptor; GABRQ,

GABRG2, GABRR2 that code for subunits of the receptor

to the gamma-aminobutyric acid (GABA), the major in-

hibitory neurotransmitter.

Pathways associated with over-expressed genes in LE

compared to CT (Table 2B) were related to the “Ribo-

some” and several metabolic pathways. “Ribosome”

comprises 83 ribosomal Protein genes, of which 41

Ribosomal Protein L (RPLx) genes, 27 Ribosomal

Protein S (RPSx), as well as 8 Mitochondrial Ribosomal

Protein L (MRPLx) and 5 Mitochondrial Ribosomal

Protein S (MRPSx). Among the metabolic pathways,

energy-related pathways appear to be most affected. In-

deed, we found an over-representation of genes associ-

ated with oxidative phosphorylation, a process that

involves a series of oxidation-reduction reactions in

mitochondria, resulting in the phosphorylation of ADP

to produce ATP. Among these genes, 31 were related

to one of the 5 protein complexes constituting the re-

spiratory chain located in the inner mitochondrial

membrane: 15 genes for the complex I (NADH:ubi-

quinone oxidoreductase), 8 genes the complex II (suc-

cinate:ubiquinone oxidoreductase), 3 genes for the

complex III (ubiquinol:ferricytochrome C oxidoreduc-

tase), 2 genes for the complex IV (cytochrome C

Fig. 1 Overview of gene expression and differential expression between diets in the adipose tissue, blood, hypothalamus and liver. a Venn

diagram of the genes expressed and shared in the four tissues. b Total number of genes expressed in each tissue; between brackets, percentage

of v87 annotation (24,881 genes). c Differentially expressed genes (DEG) in each tissue (columns) and each factors, Line, Diet and Interaction

(rows). The total number of DEG (left) and the details of the number of up- (↗) and down-expressed genes (↘) in LE diet (or R+ line) compared

to CT (to R- line) are indicated. Hypoth.: Hypothalamus. d Venn diagram of the DEG between diets in the four tissues. Single genes in the

diagram are: (a) ENSGALG00000002503 (SFTPA2) (b) ENSGALG00000031497 (no HGNC), (c) ENSGALG00000026507 (FDX1) and (d)

ENSGALG00000006099 (ZFPM1)
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oxidase) and 2 genes for the complex V (FoF1-ATP

synthetase), in addition to SLC25A4, the ADP/ATP

translocase 1. More than 21 of them are located in the

mitochondrial genome. In addition, genes involved in

fatty acid transport (ACSBG1, APOA1, APOC3, DBI,

SLC27A1, FABP4, FABP7, SCP2), the fatty acid β-

oxidation in the mitochondria (CPT2, CACT, ACADL,

ACADS, ECHS1, ECI1, HADH, HADHB, ACAA2), and

to a lesser extent, in the peroxisomes (ACAA1, ACOX,

ECI2) were also over-expressed. On the contrary, genes

involved in the de novo lipogenesis were significantly

under-expressed, in particular FASN, that codes for a

key enzyme of the saturated fatty acid synthesis, and

ACLY that codes for the primary enzyme involved in

the synthesis of cytosolic acetyl-CoA from citrate. Simi-

larly genes involved in the cholesterol synthesis such as

HMGCR, FDFT1, SQLE, CYP51A1, DHCR7, and

DHCR24 were also under-expressed. Interestingly, we

observed an over-expression of genes involved in the

biosynthesis of ω3 and ω6 polyunsaturated fatty acids,

with FADS2, ELOVL5, FADS1, ELOVL2 and (see top 5

and 19 KEGG term). It is noteworthy that one of the

products of this pathway, the arachidonic acid, can be

used by the enzyme coded by NAPEPLD, which is over-

expressed (FC = 1.93, pFDR = 6.86 × 10− 11) as a sub-

strate for the synthesis of anandamide. Since the lipid

metabolism was largely impacted (Fig. 2a), we studied

the transcription factors related to this metabolism

(Fig. 2b). The expressions of PPARA, SREBF2 and

SREBF1 genes were not affected (FC = 1; 0.88 and 1.08

respectively, with pFDR = 0.99; 0.44 and 0.79, respect-

ively). On the other hand, NR1H3 (alias LXRA) was sig-

nificantly over-expressed (FC = 1.55, pFDR = 2 × 10− 6).

The 30 genes most correlated (r > 0.8) to NR1H3 are

showed in Fig. 2c in which can be found FADS2 and

NAPE-PLD (r = 0.81 and r = 0.84, pFDR < 2.24 × 10− 5 and

pFDR < 5.4 × 10− 6, respectively, Fig. 2d).

Functional characterization of blood transcriptomic

changes upon diet energy change

Among the 1334 DEG detected in the blood in re-

sponse to the dietary change, 719 and 615 genes were

over- and under-expressed, respectively, in the LE com-

pared to the CT group. KEGG characterization of the

over- and under-expressed DEG lists reveals 2 and 8

significantly enriched pathways, respectively (pFDR <

0.05) (Additional file 5). The terms for both DEG lists

are presented in Table 3.

Table 2 Top 10 (based on pFDR) KEGG pathways associated with under-expressed (A) and over-expressed DEG (B) in the

hypothalamus

Term # of genes pFDR

A. Under-expressed genes in LE compared to CT

Synaptic vesicle cycle 22 7.36 × 10−11

Glutamatergic synapse 26 1.79 × 10−08

Dopaminergic synapse 26 2.37 × 10−07

Axon guidance 25 5.62 × 10−07

Oxytocin signaling pathway 27 2.46 × 10−06

Circadian entrainment 20 2.50 × 10−06

Oocyte meiosis 21 7.03 × 10− 06

Protein processing in endoplasmic reticulum 26 2.04 × 10−05

Nicotine addiction 12 2.04 × 10−05

GABAergic synapse 17 5.18 × 10− 05

B. Over-expressed genes in LE compared to CT

Ribosome 83 1.03 × 10−67

Metabolic pathways 166 2.57 × 10−25

Oxidative phosphorylation 46 3.26 × 10−22

Glycine, serine and threonine metabolism 15 7.73 × 10−08

Fatty acid metabolism 15 1.81 × 10−06

Fatty acid degradation 14 2.52 × 10−06

Valine, leucine and isoleucine degradation 14 3.18 × 10−06

PPAR signaling pathway 16 3.65 × 10−05

Carbon metabolism 19 1.54 × 10−04

Alanine, aspartate and glutamate metabolism 10 4.70 × 10−04
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The pathways associated with under-expressed genes in

blood are related to “Metabolic pathways”, in particular

amino acids biosynthesis (ACO2, ALDH7A1, CPS1, CTH,

ENO2, GOT1, PFKP, TALDO1, TKT, TPI1), fructose and

mannose metabolism (AKR1B1, AKR1B10, PFKFB4,

PFKP, PMM2, TPI1) or galactose metabolism (AKR1B1,

AKR1B10, GALK2, PFKP, PGM2). Genes involved in

cholesterol biosynthesis were under-expressed in blood

(FDFT1, SQLE, CYP51A1, NSDHL and DHCR24) as in

hypothalamus. The two pathways associated with over-

expressed genes are “RNA degradation”, with EDC3,

EXOSC5, PABPC1, PAN2, PAN3, PATL1, RQCD1,

SKIV2L and TOB2, and “Ribosome”, which contains 3

RPL, 3 MRPL, 3 Ribosomal Protein Lateral Stalk Subunit

P (RPLPx) and 4 RPS genes, 11 out of these 13 genes were

also over-expressed in hypothalamus.

Fig. 2 Lipid metabolism modulation in the hypothalamus in response to the LE diet and genes highly correlated to NR1H3 (LXRα). a Schematic

summary of the lipid metabolism related genes found to be differentially expressed in the hypothalamus of LE group. b Boxplot of the

expression of the key lipid transcription factor/nuclear receptors. c Top 30 genes which expression is correlated to NR1H3. d Co-expression plot

of NR1H3 with NAPE-PLD (right) and FADS2 (left). n.s: not significant; ***: p < 0.001

Table 3 KEGG pathways associated with over-expressed (A) and under-expressed DEG (B) in the blood

Term # of genes pFDR

A. Under-expressed genes in LE compared to CT

Metabolic pathways 61 7.92 × 10−05

Biosynthesis of amino acids 10 2.18 × 10−03

Carbon metabolism 11 8.02 × 10−03

Fructose and mannose metabolism 6 9.32 × 10−03

Steroid biosynthesis 5 9.32 × 10− 03

Amino sugar and nucleotide sugar metabolism 7 9.32 × 10−03

Pentose phosphate pathway 5 2.20 × 10−02

Galactose metabolism 5 3.82 × 10−02

B. Over-expressed genes in LE compared to CT

Ribosome 13 2.95 × 10−02

RNA degradation 9 3.24 × 10− 02
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Detection of co-expressed genes with WGCNA within

hypothalamus and blood DEG lists

To detect gene subsets in our DEG lists, we used the R

package WGCNA to identify and cluster co-expressed

gene modules (see Methods). As shown in Fig. 3,

WGCNA separated for hypothalamus (Fig. 3a) and blood

(Fig. 3c) different co-expression groups (noted by a color)

for both “LE > CT” (in red) and “LE < CT” (in blue) DEG

lists. Interestingly, 2 modules of the same DEG list were

not positively correlated in the blood (Fig. 3d, pink color

in the correlation matrix) with the blue and purple mod-

ules for the red “LE > CT” DEG list and the red and tur-

quoise modules of the blue “LE < CT” DEG list, while all

modules were positively correlated in the hypothalamus

(Fig. 3b). The plots of module eigengenes of these two

pairs can be found in Fig. 3e. We can clearly distinguish in

the two plots, two distinct parallel series of points that

correspond to the R+ and R- lines. This parallelism reveals

two facts: first, a difference of expression between the lines

with a positive “R- / R+” expression ratio for the purple

module (i.e., the x-axis of the plot in Fig. 3e top) whereas

it is negative for the blue module (i.e., the y-axis). Second,

the eigengene expression differential between the LE and

CT groups (symbolized by a Δdiet in Fig. 3e) is similar for

both lines confirming the absence of a diet × line inter-

action. We found the same characteristics for the red vs.

turquoise modules (Fig. 3e bottom). This illustrates again

that this difference is independent of the line effect, and

the absence of interactions at the gene expression level, as

already seen in Fig. 1c.

The functional analysis of each co-expressed gene

module in the hypothalamus revealed KEGG terms

similar to the full list of over- and under-expressed

genes for the turquoise and blue modules, respectively,

and no KEGG term enrichment for the green, red and

yellow modules. In the pink module, three genes were

associated with “N-Glycan biosynthesis”, while the

brown module was enriched in genes related to vesicles

and organelles. Finally, the black module was enriched

in terms associated with immunological functions (see

Additional file 6). This last module, composed of 134

genes, is associated with 10 immunological-related

pathways, supported by 22 genes in total, such as

C1QA, C1QB and C1QC, C3AR1, CD14, IRF1 and

TLR4. In the blood, we found seven modules in the list

of over-expressed genes and five modules in the list of

under-expressed genes. Functional analysis revealed

KEGG terms similar to the full list of under-expressed

genes for the black module. No KEGG term enrichment

were found for the purple, magenta, green, blue, pink,

turquoise, brown, and red modules. The greenyellow

module was enriched with genes associated to “Ribo-

some” and “Protein processing in endoplasmic

reticulum”, while the salmon module was enriched with

3 genes associated with the “Estrogen signaling path-

way” (See Additional file 7).

Fig. 3 Analysis of WGCNA modules obtained for the hypothalamus and blood differentially expressed genes. Hierarchical clustering of the

eigengenes of the modules detected with hypothalamus (a) and blood (b) DEG. Module colors are drawn next to module names, with the

number of genes in the modules. Unclustered genes are in the grey module. The boxes on the right indicate whether the module contains over-

expressed (LE > CT) genes (red) or under-expressed (LE < CT) genes (blue). Black lines highlight the 2 subsets distinguished by WGCNA for the

LE > CT DEG list. c Heatmap of the correlation matrix between the modules eigengenes. Note the negative correlation (pink boxes) between the

purple and blue modules (top) and turquoise and red modules (bottom). d Plots of two pairs of module eigengenes from blood DEG. Top: purple

vs. blue module from the LE < CT DEG list, bottom: turquoise vs. red module from the LE > CT DEG list. Δdiet is the difference between the LE

mean vs. CT mean (symbolized with an empty circle) for each line
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Focus on genomic regions concentrating differentially

expressed genes

We searched for groups of three or more DEG in close

physical proximity (i.e., side by side) along the genome

that had a significant pairwise expression correlation

(|r| > 0.7 & pFDR < 10
− 4), hypothesizing that such genes

might be co-regulated by a local common mechanism.

We found two such proximal co-expressed gene groups in

the hypothalamus (Fig. 4a and b), composed of RPS6KA2,

MPC1 and SFT2D1 for the first one (Fig. 4a) and C1QA,

C1QB and C1QC for the second (Fig. 4b), genes that be-

long to the black WGCNA module, which was enriched

in immunity-related genes.

Discussion
Layers from both lines adapt to the low-energy diet by

increasing feed intake and changing body reserve

dynamics

The absence of significant differences in egg production

(number and weight) between the LE and CT groups sug-

gests that the animals were able to adapt to a suboptimal

diet. The adaptive mechanisms adopted by the animals to

compensate for the decrease in diet-energy content in-

volved an increase in feed intake and a decrease of the

abdominal adipose tissue. The increase in feed intake in

response to a 15%-energy-depleted diet over 14 weeks is

consistent with the results from Grobas et al. [1] and

Harms et al. [2]. However, this increased ingestion did not

allow the layers from the LE group to fully compensate for

the difference in energy, (Table 1) as indicated by the

significant difference in Energy Intake between the diet

groups. The decrease of the percentage of fat weight to

the total weight, probably resulting from this incomplete

compensation, is consistent with the results reported by

Murugesan and Persia [3], where layers were fed a 3%-en-

ergy-depleted diet compared to the control over 11 weeks,

although the authors did not observe a feed intake modifi-

cation, perhaps due to the small difference in energy be-

tween the two diets.

The absence of a significant line × diet interaction at

the expression level is consistent with the absence of

interaction at the trait level, meaning that both R+ and

R- birds reacted to the energy-depleted diet in a similar

way and with the same magnitude. At the expression

level, the Δdiet values in Fig. 3e illustrates this conclu-

sion: as an example, Δdiet for the genes belonging to the

purple module are similar in the two lines whereas these

genes are more expressed in R- than in R+.

Liver and adipose tissue transcriptomes were unaffected

by the low-energy diet

Neither the abdominal adipose tissue nor the liver tran-

scriptomes were affected by the diet change, as shown

by the small number of differentially expressed genes in

these two tissues (15 and 2, respectively). The absence of

differentially expressed genes in the abdominal adipose

tissue indicates that the mobilization of body reserves

observed with the adipose tissue weight decrease was

not mainly driven transcriptionally. This observation is

consistent with the fact that the two key genes of adipo-

cytes lipolysis, PNPLA2 (alias ATGL) coding the enzyme

catalyzing the initial step of this process and LIPE coding

the Hormone-Sensitive Lipase which primarily hydro-

lyzes stored triglycerides to free fatty acids are known to

be quickly regulated through post-translational modifi-

cations such as phosphorylation [6]. We further con-

firmed that these two genes were not differentially

expressed using RT-qPCR (for PNPLA2, ΔCtLE-CT = 0.02,

Fig. 4 Genomic localization and pairwise scatterplots of expression of four groups of co-expressed and co-localized genes. In each plot, top:

genomic localization of the three genes. Bottom: pairwise scatterplots of expression (FPKM) the genes. a cluster composed of RPS6KA2, MPC1 and

SFT2D1. b cluster composed of C1QA, C1QB and C1QC
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p = 0.97 and for LIPE, ΔCtLE-CT = 0.21, p = 0.50). The

mobilized lipids resulting of this probable adipose tissue

lipolysis could have been used by the hypothalamus as

an energy source, as we discuss later. Concerning the

liver, the absence of reaction at the transcriptomic level

shows that the difference in energy between the two di-

ets did not impact gene expression, which suggests an

absence of hepatic lipid metabolism variation. Indeed,

lipid metabolism is known to be highly regulated at the

transcriptional level, as previously shown in chickens [5,

7]. In these studies, which explored the impact of the diet

fiber and lipid composition variation or the fasting-feeding

transition (known to impact hepatic lipid metabolism),

numerous genes involved in the lipid metabolism were

impacted at the transcriptional level. The result observed

here in liver can be explained by the partial compensation

of the energy depletion by the increase in feed intake and

the mobilization of the body reserves. We confirmed by

RT-qPCR the absence of differential expression of PPARα,

a key genes of fatty acid β-oxidation (ΔCtLE-CT = − 0.16,

p = 0.30) and for FASN and SREBF1, two key genes of fatty

acid synthesis (for FASN, ΔCtLE-CT = − 0.24, p = 0.37 and

for SREBF1, ΔCtLE-CT = − 0.14, p = 0.57).

Blood cells participate in the adaptation to the CT versus

LE diet changes

While the liver and adipose tissue were almost unaffected

by the low energy diet, at least from the transcriptomic

point of view, blood cell genes reacted strongly to the low-

energy diet with more than 1000 genes modulated by the

diet change but for which the interpretation remains diffi-

cult. Indeed, the red blood cell components differ between

mammals and vertebrates more distant in the evolutionary

scale, such as birds or fish. In these animals, erythrocytes

and thrombocytes are nucleated and their transcriptional

activity is not yet well defined. Secondly, the blood tran-

scriptome is mainly studied to evaluate the response to an

inflammatory and immune challenge and rarely to study

the effects of diets. To our knowledge, no study has ex-

plored so far the blood transcriptome profile in chicken

under such conditions. We found an activation of genes

involved in RNA degradation and ribosome activity and a

repression of genes involved in cholesterol and amino acid

biosynthesis, as well as galactose and fructose metabo-

lisms. Cholesterol synthesis decrease in response to energy

restriction was also reported by Bouvier-Muller et al. [8]

in energy-restricted ewe’s blood transcriptome. Under-

expression of some of the genes described in our study

like CYP51A1, DHCR24, FDFT1 and SQLE was also ob-

served in ewes fed a low energy diet versus control (restric-

tion to 60% of the calculated net energy requirements

during 15 days). Furthermore, three genes involved in

macrophage cholesterol efflux and transport [9] show a

significant, or a trend toward, over-expression in our study:

ABCA1 (FC = 1.68 pFDR = 0.07) and APOA1 (FC = 2.10

pFDR = 0.08), the latter being the chicken equivalent of hu-

man APOE [10], and CETP (FC = 1.61, pFDR = 0.02). The

precise relationship between these genes and their differen-

tial expression remains to be linked with the feed intake.

Taken together, these reports and our results suggest that

the chicken blood transcriptome may play a role in the

adaptation of birds to feed stress. However, the differentially

expressed genes are quite hard to interpret, and further

studies will be required to unveil the mechanisms at play.

In the hypothalamus, the low-energy diet seems to alter

the general synaptic organization, partly through a

modulation of cholesterol and a global protein synthesis

associated to fatty acid β-oxidation

The hypothalamus is a brain area that integrates meta-

bolic and hormonal cues and controls appetite and per-

ipheral metabolism. It is composed of different cell

types, including neurons and “non-neuronal” cells (such

as astrocytes, microglial cells, oligodendrocytes and

endothelial cells) [11], and the transcriptomic changes

observed in this study reflect most likely changes

occurring in different cells, but we are unable to distin-

guish which ones. Notwithstanding, the differential

expression analysis suggests an effect of the low-energy

diet in neuronal circuits. We detected an under-

expression of genes involved in the synaptic vesicle

cycle, as well as in the glutamatergic, dopaminergic and

GABAergic synapses. In addition, key genes involved in

the cholesterol synthesis (CYP51A1, DHCR7, DHCR24,

FDFT1 and SQLE) and in the cholesterol efflux from

neuronal cells, namely ABCA7 (FC = 0.67, pFDR = 0.03)

and ABCG4 (FC = 0.64, pFDR = 0.007) [12] were also

under-expressed. Interestingly, the adult brain is the

most cholesterol-rich organ, containing 20% of the

whole body’s cholesterol [13]. The majority of it is

present in myelin sheaths and the rest in the plasma

membranes of astrocytes and neurons to maintain their

morphology and synaptic transmission [14]. Taken to-

gether, these findings reveal a link between nutrition

and brain plasticity in chicken, as it has already been de-

scribed in mice [15, 16]. Furthermore, our results sug-

gest an overall activation of protein synthesis in the

hypothalamic cells, one of the most energy-consuming

processes in a cell [17], probably reflecting the protein

machinery necessary to promote feed intake increase. In-

deed, we detected in the hypothalamus of the low-

energy group 83 over-expressed DEG related to the ribo-

some machinery indicating activation of numerous genes

related to the oxidative phosphorylation (that produces

ATP) and the fatty acid oxidation (used as fuel for the

respiratory chain) (Fig. 5). Concerning the oxidative

phosphorylation, we observed 32 over-expressed genes

coding the 5 protein complexes located in the inner
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mitochondrial membrane (Fig. 5) including the ADP/

ATP translocase 1 (SLC25A4, FC = 1.79, pFDR = 3.31 ×

10− 06) required for the entry of ADP (the substrate of

the ATPase) in the mitochondria, and considered as a

limiting factor of this process. The NADH and FADH2

required by the respiratory chain is produced by the

mitochondria β-oxidation of fatty acid, which increase is

supported by 10 over-expressed DEG (Fig. 5) and by the

integration of amino acids in the Krebs cycle as indi-

cated by the 12 over-expressed DEG identified (Fig. 5).

While short and medium chain fatty acids appear to

enter the brain-blood barrier by simple diffusion through

the plasma membrane, long chain fatty acids (> 12 car-

bons) need transporters to cross the brain-blood barrier.

Some of these transporters such as FABP4, FABP7 [18]

and SLC27A1 [19] were also overexpressed. Cedernaes

et al. [20], obtained similar results, although in a

different context. The authors observed an over-

representation of genes related to oxidative phosphoryl-

ation as well as to ribosome sub-units in mice hypothal-

amus following a fasting period, and others studies [21]

made a link between mitochondrial oxidation of fatty

acids in the hypothalamus and increase in feed intake.

Hypothalamic arachidonic acid may be involved in the

difference of feed intake between LE and CT groups

through mechanisms involving the hypothalamic

endocannabinoid and complement systems

The involvement of the endocannabinoids in the regulation

of feed intake is well documented [22, 23], in particular for

the two best known representative of this family of mole-

cules, the 2-AG (2-arachidonoylglycerol) and the Arachido-

noyl ethanolamine (AEA also called Anandamine). Both

these molecules are the ligands of the endocannabinoid

receptor, CN1R. Interestingly, we observed an under-

expression of DAGLB (FC = 0.74, pFDR = 0.003), involved in

the synthesis of 2-AG [24] and an over-expression of

MGLL (FC = 1.75, pFDR = 5.73 × 10− 06), coding an enzyme

responsible for 2-AG degradation. We also observed an

over-expression of NAPE-PLD (FC = 1.95, pFDR = 6.86 ×

10− 11), which codes for the enzyme that catalyzes the

second step of the classical “two-step” pathway of the syn-

thesis of AEA and other NAEs. The first step of this path-

way consists in the formation of N-acylphosphatidyl

ethanolamines (NAPEs) by the transfer of the acyl chain of

phospholipids on phosphatidylethanolamine by a calcium-

dependant transacylase [25]. NAPE-PLD then catalyses the

Fig. 5 Proposed mechanism of energy pathways increased in the hypothalamic cells in LE diet. In blue: reactions related to fatty acid β-oxidation

(ETFDH, ACADL, ACADS, ECHS1/ECI1, HADH, HADHB, ACAA2), to fatty acids transport through the plasma (FABP4, FABP7, SLC27A1), and the

mitochondrial (CPT2, CACT) membrane. In purple: reactions related to TCA cycle (IDH2), to transport of amino-acids (BCKDHA, BCKDHB) and

pyruvate (MPC1, MPC2) in the mitochondria, to the integration of amino-acids in the TCA cycle as α-ketoglutarate (GDH1, GPT2) or succinyl-CoA

(ALDH6A1, ECHS1, HIBDCH) and of the pyruvate as oxaloacetate (PC). In green: reactions related to oxidative phosphorylation and mitochondrial

respiratory chain complex I (MT-ND1, MT-ND2, MT-ND3, MT-ND4, ACAD9, MT-ND4L, MT-ND5, MT-ND6, NDUFA2, NDUFA8, NDUFA10, NDUFB9,

NDUFS4, NDUFV3, FOXRED1), complex II (MT-CO1, MT-CO2, MT-CO3, APOPT1, COX14, COX7B, COA5, COA6), complex III (MT-CYB, UQCRB, UQCRQ),

complex IV (MT-ATP6, MT-ATP8) and complex V (SDHD, SDHAF2), as well as the entry of ADP in the mitochondria (SLC25A1)
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cleavage of NAPEs to yield NAEs. Different NAEs are gen-

erated depending on the nature of the acyl chain in the first

step. For example, Arachidonoyl ethanolamine (AEA)

derives from the ω6 poly-unsaturated fatty acid (PUFA)

arachidonate and Palmitoyl ethanolamide (PEA) derives

from the saturated fatty acid palmitate [26]. We observed

an over-expression of FADS1 (FC = 1.99, pFDR = 3.25 × 10−

14), FADS2 (FC = 2.07, pFDR = 3.15 × 10− 10), ELOVL2 (FC =

1.87, pFDR = 0.003) and ELOVL5 (FC = 1.48, pFDR = 0.0004),

key genes of the PUFA ω6 synthesis [27]. FADS2 catalyzes

the Δ6-desaturation of the essential fatty acid linoleic acid

(C18:2 ω6) into γ-linolenic acid (C18:3ω6), which is elon-

gated into C20:3 ω6 by ELOVL5; the C20:3 ω6 is then Δ5-

desaturated into arachidonic acid (C20:4 ω6) by FADS1

[28] which may lead to the formation of AEA [29]. As 2-

AG, AEA could also activates the CB1R endocannabinoid

receptor, leading to an increase of feed intake [30]. Consist-

ently with this hypothesis, we observed an under-

expression of CB1R which might be due to a negative feed-

back following CB1R activation. Figure 6 summarizes this

proposed mechanism. Interestingly, we found that FADS2

and NAPE-PLD were highly correlated to NR1H3 (alias

LXRα) that codes for a receptor involved in the control of

various physiological functions with a major role in fatty

acid homeostasis and cholesterol metabolism [31]. The

mechanism of the regulation of the FADS2 and NAPE-PLD

transcription that can be direct or indirect, remains to be

elucidated. Interestingly, the arachidonic acid is also a pre-

cursor of the prostaglandins [32], which has been shown to

be involved in feed intake regulation along with comple-

ment system molecules [33].

Among the eight modules detected by WGCNA using

the lists of hypothalamic DEG, the black module was com-

posed of over-expressed genes related to immunity. Three

of them, C1QA, C1QB and C1QC were detected as co-

localized and co-expressed genes. The co-localization and

strong co-expression of C1QA, C1QB and C1QC strongly

suggest a mechanism of common regulation. These three

genes code for the A, B and C polypeptide chains compos-

ing the C1q molecule, a subcomponent of the C1 complex

involved in the complement activation [34]. The comple-

ment system is a part of the innate immune system, in-

volved in the host defense against bacteria and in the

removal of wastes [35]. C3AR1, the receptor of C3a, which

is produced upon the activation of the complement

system [36], also belongs to the black co-expression mod-

ule. Interestingly, Ohinata et al. showed that an agonist of

C3AR could suppress feed intake in mice [37] through

prostaglandin (PG) E2 production [33]. Furthermore, the

same authors showed that C5a, another member of the

complement system, stimulated feed intake via a mechan-

ism involving this time PGD2 [38]. Interestingly, as we

Fig. 6 Proposed mechanism leading to an increased feed intake in the LE diet. Diet fatty acids are processed by FADS1, FADS2, ELOVL5 and

FADS1, leading to the production of arachidonic acid (AA). The arachidonic acid eventually lead to the production of Arachidonoyl ethanolamine

(AEA), thanks to the action of NAPE-PLD. The AEA acts on CB1R, leading to an increase in feed intake. FADS1 and 2: Fatty Acid Desaturase 1 and

2, ELOVL5: Elongation Of Very Long Chain Fatty Acids Protein 5, NAPE-PLD: N-Acyl Phosphatidylethanolamine Phospholipase D, CB1R:

Cannabinoid Receptor 1, AA: Arachidonic Acid, PE: Phosphatidylethanolamine, NAPE: N-arachidonoyl phosphatidylethanolamine, AEA:

Arachidonoyl ethanolamine (alias Anandamide)
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discussed earlier, we found that key genes of the poly-

unsaturated fatty acid (PUFA) ω6 synthesis, that lead to

the formation of arachidonic acid, the precursor of prosta-

glandins, were overexpressed in LE group. Finally,

C1QTNF4 (C1q/TNF-related Protein 4), that possesses

two tandem globular C1q domains and is under-expressed

in LE versus CT (FC = 0.65, pFDR = 0.01), has also been

shown to suppress feed intake in mice [39]. Surprisingly,

we found only one other group of 3 co-localized and co-

expressed genes in the hypothalamus DEG lists. Such re-

sults show that regulatory mechanisms affecting different

genes located in a same genomic region are not so fre-

quent in response to a diet change despite the high num-

ber of DEG identified and analyzed in the hypothalamus

and the blood. We found similar results in a previous

study that evaluated on the impact of diet-composition

change on the breast muscle, adipose tissue and liver of

broiler, in which one region was identified [5].

Conclusions
This work is the first to provide a multi-tissue analysis

of layers submitted to a hypo-energetic diet on a long

period. Neither the adipose tissue nor the liver seemed

to be affected by the diet change at the transcriptional

level, suggesting regulations occurring at a different

level. In contrast, we observed a strong effect of the diet

on the hypothalamic transcriptome of the layers. The

regulation of feed intake in the hypothalamus is a com-

plex mechanism. Our results in chicken suggest, as in

mice, a link between feed intake and brain plasticity, as

well as fatty acid metabolism [40–43]. We show here a

mechanism in chickens that seems to modify feeding be-

havior through an increase in feed intake in response to

a low-energy diet, allowing egg mass production to be

maintained, probably through the action of the endocan-

nabinoid and the complement systems that involve the

hypothalamic poly-unsaturated fatty acid synthesis, and

in particular the arachidonic acid. Overall, this work

contributes to a better understanding of the adaptive

strategies employed by chickens to cope with a subopti-

mal diet and the impact that this suboptimal feeding

may have on egg quality and production. Such under-

standing is of importance in the frame of the globalized

poultry market, in which commercial animals are ex-

posed to a wide diversity of production conditions.

Methods
Animals and diet

Laying hens were hatched at the INRA Pôle d’Expérimen-

tation Avicole de Tours (PEAT) in Nouzilly, France. They

belonged to two Rhode Island Red layer lines that under-

went a 40-year diverging selection on residual feed intake

(RFI) [4]. The RFI represents the difference between the

observed and the predicted feed consumption based on a

multiple regression equation taking into account the aver-

age body weight, the weight variation and, for females, the

mass of eggs produced over a given period [44, 45]. The

R+ chickens were selected to have a positive RFI, reflect-

ing a low feed efficiency, while the R- chickens were

selected to have a negative RFI and therefore to be feed

efficient. They were reared under standard farming condi-

tions in floor pens until 17 weeks of age. At this age, 45

R+ and 51 R- hens were transferred in individual cages

and reared under thermo-neutral conditions (22 °C), with

a lighting regimen set at 14 h of light per day and an ad

libitum feeding. Of these, 34 R+ and 36 R- hens were fed a

commercial diet (control group, CT) and 11 R+ and 15 R-

were fed a low-energy diet (low-energy group, LE). The

two diets had a similar protein content, while the energy

content was reduced by 15% in the LE diet as compared

to the standard diet (2450 kcal/kg versus 2880 kcal/kg),

due to the replacement of soybean and maize by rapeseed

and raw wheat, and by increasing the raw cellulose per-

centage (7.4 g/kg against 2.6 g/kg). The composition of

both diets is detailed in Additional file 8.

Tissue sampling

At 31 weeks, eight animals from each line (R- and R+) and

from each diet (CT and LE) were selected as representa-

tive of the group for slaughtering, that is 8 × 2 × 2 = 32 ani-

mals. Layers were slaughtered at the fed status by neck cut

and bleeding, immediately after head electrical stunning.

Right after slaughter, abdominal adipose tissue, the ex-

tremity of the left liver lobe and hypothalamus were sam-

pled, snap frozen in liquid nitrogen and stored at − 80 °C

until analysis. Blood samples from the same animals were

collected from the occipital sinus in EDTA tubes and

100 μL of blood were removed and diluted in 1mL of

TRIzol® reagent (Invitrogen, California, USA). After a

vigorous agitation, the tube was maintained at room

temperature for five minutes, then quickly frozen in liquid

nitrogen and stored at − 80 °C until RNA extraction.

Traits collection and analysis

Seven traits related to performance and body composition

were recorded for the 45 R+ (34 CT and 11 LE) and 51 R-

(36 CT and 15 LE) birds. Egg number was recorded from

the date of the first egg (around 21weeks of age) to 31

weeks of age and laying rate (i.e. number of egg laid dur-

ing the recording period divided by the length of the

period in day, expressed in %) was calculated; egg weight

(g), static stiffness (N.mm− 1) were calculated from 3 eggs

per hen collected at 30 weeks of age, and abdominal adi-

pose was weighted at slaughter. Weekly feed intake was

measured over 4 weeks, from 27 to 31 weeks of age and

body weight (g) at 31 weeks of age. Residual feed intake

was computed as described in Bordas et al. [4]. Traits were
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analyzed with R version 3.4.2 [46]. A two-way analysis of

variance was performed with line, diet and the interaction

between line and diet as main effects using the R function

lm, and the R package “car” [47].

RNA isolation

Approximately 100mg of adipose tissue and 30mg of liver

were homogenized in TRIzol® reagent (Invitrogen, Califor-

nia, USA), and the whole blood mixed with 1mL of TRI-

zol® was adjusted between 4 and 4.5 with 10 μL of 5 N

glacial acetic acid [48]. The total RNA was then extracted

according to the manufacturer’s instructions, resuspended

in 50 μL of RNA-free water and stored at − 80 °C. For the

hypothalamus, we used the kit Allprep DNA/RNA (Qia-

gen). The RNA was extracted from the hypothalamus ac-

cording to the manufacturer’s instructions. The total RNA

was quantified with a NanoDrop® ND-1000 spectropho-

tometer (Thermo Scientific, Illkirch, France). The RNA

quality was controlled using an Agilent 2100 bioanalyzer

(Agilent Technologies France, Massy, France). The aver-

age RNA integrity numbers were 7.3 ± 0.6 (mean ± SD) for

the adipose tissue, 8.8 ± 0.48 for the hypothalamus, 8.2 ±

0.5 for the whole blood and 9.2 ± 0.3 for the liver.

RNA-seq data acquisition

Paired-end sequencing was conducted on all samples

using an Illumina HiSeq3000 (Illumina, California, USA)

system, with 2 × 150 bp. Libraries with an on average 465-

bp insert were prepared following Illumina’s instructions

by purifying poly-A RNAs (TruSeq RNA Sample Prep

Kit). Illumina adapters containing indexing tags were

added for subsequent identification of samples. Samples

were PCR-amplified, and quantitative PCR was then per-

formed for library quantification (QPCR NGS Library

Quantification kit). Eight samples were filled on one lane

within a flow cell with 2 samples for each of the four line

× diet groups to minimize the inter-lane bias. After se-

quencing, the indexed adapter sequences were trimmed

using CASAVA v.1.8.2 software (Illumina). We obtained

an average of 90 million reads per sample (84 million for

the adipose tissue, 98 million for the blood, 86 million for

the hypothalamus and 90 million for the liver), for a grand

total of 11 billion reads. For each sample, reads were

mapped to the Gallus gallus-5 reference genome using

STAR v.2.3.0e [49]. PCR duplicates were removed using

rmdup tool from SAMtools suite [50]. For each sample,

quantification was performed using RSEM [51] with the

Ensembl v93 annotation.

RNA-seq data analysis

All the analyses were performed with R version 3.4.2. The

trimmed mean of M-values (TMM) scaling factor method

was used for library size normalization [52] using the R/

Bioconductor package edgeR [53] version 3.12.1. In each

tissue, the expressed genes were selected if their FPKM

expressions were over 0.1 in at least 80% of the samples of

a group line × diet (FPKM expression being obtained after

TMM normalization using “rpkm” function from edgeR

package). Differential expression analysis was performed

using the R/Bioconductor package edgeR [53] based on a

generalized negative binomial model for model fitting. We

used the “edgeR-Robust” method to account for potential

outliers when estimating per gene dispersion parameters

[54]. P-values were corrected for multiple testing using

the Benjamini-Hochberg approach [55] to control the false

discovery rate (FDR), and genes were identified as signifi-

cantly differentially expressed if pFDR < 0.05.

Functional enrichment analysis

The enrichment analysis of Kyoto Encyclopedia of Genes

and Genomes (KEGG) terms in each list of interest of

differentially expressed genes was performed using the

STRING tool [56] (https://string-db.org). Only the 1-to-1

human orthologous genes with a standardized HGNC name

were submitted for the analysis, i.e. 67.4% of the 18,346

protein-coding genes of chicken Ensembl v93 annotation.

Co-expression module detection with WGCNA

We used the R package WGCNA [57] to detect co-

expression modules based on gene expression data and a

weighted correlation network. Briefly, WGNCA screens for

clusters (called modules) of highly correlated genes in the

expression dataset. Indeed, while within a list of over- or

under-expression in one condition versus another one, one

can expect all the genes to be positively correlated to one

another, such list can be split into modules of genes with a

higher expression correlation among them than with the

rest of the list. These genes are more likely to share a com-

mon regulation and a common biological function and

therefore may highlight more specifically one pathway. In

addition, it may happen that a gene subset is not correlated

with the other subsets of the same DEG list because of fac-

tors other than the one used for the differential expression

analysis. These modules are summarized by an eigengene,

which corresponds to the first principal component of the

module. These eigengenes enable comparisons between

modules, clustering of modules, and calculations of correla-

tions between modules and phenotypes. Modules hierarch-

ical clustering was realized using as “1 – the pearson

correlation” between modules as distance criterion and

“ward’s”method as aggregation criterion.

Detection of co-localized differentially expressed genes

We used R home-made script to screen for groups of

three or more differentially expressed genes, located

side-by-side, without consideration for distance, and

with a significant pairwise Spearman expression correl-

ation (|r| > 0.7 and pFDR < 10
− 4).
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RT-qPCR analysis

Reverse transcription (RT) was carried out using the high-

capacity cDNA archive kit (Applied Biosystems, Foster

City, CA) according to the manufacturer’s protocol.

Briefly, reaction mixture containing 2 μL of 10× RT buffer,

0,8 μL of 25X dNTPs, 2 μL of 10X random primers, 1 μL

of MultiScribe Reverse Transcriptase (50 U/ μL), and total

RNA (2 μg) was incubated for 10min at 25 °C followed by

2 h at 37 °C and 5min at 85 °C. Dilution RT reaction was

further used for real time quantitative PCR (qPCR). 5 μl of

cDNA samples were mixed with 7,5 μl of Sso Advanced

Universal SYBR Green Supermix (Bio-Rad), 1,5 μl H20

and 330 nM of specific reverse and forward primers. Reac-

tion mixtures were incubated in an CFX connect Real-

Time PCR Detection System (Bio-Rad, Marne la Coquette,

France) programmed to conduct one cycle (95 °C for 30 s)

and 43 cycles (95 °C for 15 s and 60 °C for 30 s). A melting

curve program was then performed for each gene to check

the presence of a unique product with specific melting

temperature. For each sample and each gene, PCR runs

were performed in duplicates. The sequences of the

primers used were, from 5′ to 3′: LIPE, forward

“GTCTCGGGTTCCAGTTCGTG”, reverse “CGTAGGA-

CACCAACCCGATG”. PNPLA2, forward “TGGGCAGT-

CATCTTTCAGCCA”, reverse “AAGCTGACGCTGG

TACTCCT”. FASN, forward “TGAAGGACCTTATCG-

CATTGC”, reverse “GCATGGGAAGCATTTTGTTGT”.

PPARα, forward “GTCGCTGCCATCATTTGCTGT”, re-

verse “TTGCCGGAGGTCAGCCATTT”. SREBF1, for-

ward “GTCGGCGATCCTGAGGAA”, reverse “CTCTT

CTGCACGGCCATCTT”.
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