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CHICKEN-MOTH SEARCH OPTIMIZATION-BASED DEEP CONVOLUTIONAL NEURAL
NETWORK FOR IMAGE STEGANOGRAPHY

RESHMA V K∗, VINOD KUMAR. R. S†, SHAHI D‡, AND SHYJITH M.B§

Abstract. Image steganography is considered as one of the promising and popular techniques utilized to maintain the
confidentiality of the secret message that is embedded in an image. Even though there are various techniques available in the
previous works, an approach providing better results is still the challenge. Therefore, an effective pixel prediction based on
image stegonography is developed, which employs error dependent Deep Convolutional Neural Network (DCNN) classifier for pixel
identification. Here, the best pixels are identified from the medical image based on DCNN classifier using pixel features, like texture,
wavelet energy, Gabor, scattering features, and so on. The DCNN is optimally trained using Chicken-Moth search optimization
(CMSO). The CMSO is designed by integrating Chicken Swarm Optimization (CSO) and Moth Search Optimization (MSO)
algorithm based on limited error. Subsequently, the Tetrolet transform is fed to the predicted pixel for the embedding process.
At last, the inverse tetrolet transform is used for extracting the secret message from an embedded image. The experimentation
is carried out using BRATS dataset, and the performance of image stegonography based on CMSO-DCNN+tetrolet is evaluated
based on correlation coefficient, Structural Similarity Index, and Peak Signal to Noise Ratio, which attained 0.85, 46.981dB, and
0.6388, for the image with noise.

Key words: Image steganography, Deep Convolutional Neural Network, Tetrolet transform, Chicken swarm optimization,
Moth search optimization algorithm.
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1. Introduction. Nowadays, steganography plays a very significant role in various areas, which is utilized
for the protection of data from unauthorized access. Steganography becomes very popular in secret message
communication. In the steganography process, the sender must choose a suitable message, and the effective
information needs to be hidden [38, 39, 40]. The object employed for carrying the message is known as the
carrier image or the message carrier. The secret message is nothing, but the image, which is to be embedded
in the carrier image. Stego-image is employed for carrying the hidden message. Hence, given the secret and
the carrier image, the main aim of steganography is to build the stego-image for carrying the hidden message
[9]. Steganography is the security approach for hiding the secret data. It has worked on concealing the image,
text, video, or audio (sensitive data) inside other images, video or audio, text (cover) [10]. Steganography
approaches are divided into video, text, protocol, Deoxyribonucleic Acid (DNA), and video steganography.

Image steganography is the technique for hiding the unnatural hidden message in carrier image, so the
quality of carrier image has a small change, and hence no one can find it [11]. In the current, most of the
steganographic approaches are employed for reducing the distortion function correlated with the statistical
detectability [13]. Image steganography is defined by hiding the secret message in the carrier image so that
the receiver can recover the watermark message when the warder does not detect the secret information.
Most of the image steganography approaches attained their goals by embedding process that leaves evidence
for distortion [8]. The image-based stego is considered as the effective cover medium due to its easy human
remembrance possibility, and popularity [10]. Image steganography is also utilized for various applications,
like safe communication between two parties [12, 14], captioning and contents protection [12, 16, 17], securing
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online voting systems, secure mobile computing [12, 15], privacy-protection of medical records, personalized
secure image retrieval, and secure surveillance systems [12, 18].

Image Steganography allows two parties for secure communication. Image steganography approaches are
divided into two, namely, frequency, and spatial domain [19]. The process of the spatial domain is to allow
whole pixels of carrier image, and the embedding of the secret message into the frequency domain is performed
after numerous conversions for converting the image to the frequency domain. The name “stego” comes from
a concealed secret message in the image. Several methods are related to the spatial domain, like Gray level
modification (GLV), Least Significant Bit (LSB), and so on [20]. The frequency domain-based methods are
Discrete Fourier Transform (DFT), and Discrete cosine transform (DCT), and so on [11].

In this research work, the image stegonography is performed using the proposed pixel-prediction approach.
The developed pixel prediction-based approach employs three phases for hiding the watermark information in
the image as, identification, embedding, and extraction phase. Initially, the input image is subjected to the
pixel prediction phase in which the appropriate pixels are extracted from the image. The features, like edge
information, pixel coverage, texture features, wavelet energy, Gabor feature value, and scattering values are
extracted from the pixels using DCNN classifier, which is trained by CSO and MSO based on error. In the
third phase, the watermark message is embedded in the input image using tetrolet transform that assures the
embedding strength. Finally, the extraction of a watermark image is done by applying Tetrolet Transform (TT).

The main contribution of the research paper is enlisted below:

• The pixel identification is carried out based on the DCNN classifier using error, which is trained by
applying CSO and MSO for finding the effective pixel employed for the embedding process.

• The features are extracted effectively from the pixel for generating the prediction map, which is followed
with the embedding procedure to embed the watermark message in the input image using TT. The
inverse TT is employed to extract the secret message from the input image.

The paper is structured as follows: Section 2 discusses existing methods of image stegonography with
challenges of the methods. The proposed method of CMSO-DCNN+tetrolet is demonstrated in section 3, and
section 4 provides the results and discussion. At last, section 5 concludes the research work.

2. Literature Survey. This section presents the literature survey of several methods utilized for the
image stegonography and the challenges of the existing works.

Several methods related to image stegonography are described, and analyzed as follows: Yuileong Yeung
et al. [20] developed binary image steganography to reduce the flipping distortion on Local Texture Pattern
(LTP) and designed flexible carriers of syndrome-trellis code (STC). Here, the security for both vision and
statistics was found better, but it failed to access the scalable and nearly continuous capacity upper bound.
Adnan Gutub and Maimoona Al-Ghamdi [10] presented counting-based secret sharing method to improve the
shares reconstruction and distribution. The method failed to define the maximum and minimum shares for
reconstructing the secret. Weixuan Tang [21] employed a Convolutional Neural Network based on adversarial
embedding (ADV-EMB) for image stegonography. Here, the security was found better, but failed to detect the
stego images in the current iteration. Soumendu Chakraborty et al. [22] developed Predictive Edge Adaptive
image steganography in which the selected area of the cover image was determined based on Modified Median
Edge Detector (MMED) to embed the binary payload (data). The developed method achieved limited level of
distortion and best embedding rate. More bits were needed in sharper edges for adaptive selection.

Dipti Kapoor Sarmah and Anand J. Kulkarni [5] presented Multi Random Start Local Search (MRSLS) for
achieving a better balance between secret text capacity, security, and image quality. This framework employs
Cohort Intelligence (CI) for attaining the enhanced quality in the image. The method failed to consider the
cohort intelligence approach was integrated with a cuckoo search algorithm for enhancing efficiency. Aref Miri
and Karim Faez [23] developed an integer wavelet transform for mapping cover images with a specific frequency
domain. The Most Significant Bit (MSB) bit was utilized for categorizing the edge coefficients in the frequency
domain. Embedding the secret bits in the frequency coefficients are needed for obtaining the stego image. S.I.
Nipanikar and V. Hima Deepthi [6] presented edge and wavelet transformation approach to finding the accurate
location to embed the message. Here, the edges are detected accurately based on the wavelet coefficient, and
the intensity of pixel, but does not consider another optimization algorithm for improving the cost estimation of
the pixel. Tomas Denemark and Jessica Fridrich [7] developed an approach for inferring the accurate direction



Chicken-Moth search optimization-based deep convolutional neural network for Image Steganography 219

of changes made in steganographic embedding. This change was incorporated with cost-based steganography
for reducing the embedding costs based on the multiplicative modulation factor, but more than two acquisitions
were needed for the embedding process.

2.1. Challenges. This section deals with the challenges faced by the existing techniques of image ste-
gonography.

• Once the data embedding is done, the changes in the image statistics are predicted using the ste-
ganalyzers, and the bit planes employed in the typical image are less correlated, which is one of the
challenges faced by the image stegonography [24].

• Other challenges face by image steganography are the visibility of extracted images at the receiver side
by changing the value of the blending coefficient is very sensitive to modification [8].

• The stego image quality and the capacity of embedding is the challenging task for designing the secure
binary image by enhancing the undetectability [14].

• In real-time, if there is additive noise in the cover image, there is the possibility for the poor PSNR or
in other words, the image quality is affected.

• The embedding capacity associated with the steganography is not significant using the color parity,
which depends on the order of the colors, and the capacity of the image is very less, which is the major
challenge in embedding the stego images from the cover image [16].

3. Image Stegnography using the proposed Chicken-Moth search optimization-based deep
convolutional neural network. This section presents the Image Steganography using Chicken-Moth search
optimization algorithm. Figure 3.1 deliberates the block diagram of the proposed Chicken-Moth search opti-
mization algorithm for Image Steganography. At first, the input medical image is given to the pixel prediction
phase in which the features, like wavelet, pixel coverage, edge details, and so on will be extracted from the im-
age, which is subjected to the pixel identification using the proposed CMSO-based DCNN. Thus, the proposed
CMSO algorithm is developed by integrating CSO [37] with the MSO [36]. Thus, the pixels to be embedded
will be decided using the Deep CNN that will be trained using the CMSO algorithm. Here, the embedding
of the secret message is done by applying TT such that it offers fast and efficient image representation. The
extraction of the secret image is done at last by applying the inverse transform.

Let us consider the input medical image M with dimension X × Y . Here, the term U represents the
watermark message of dimension P ×Q. The watermark image is in the form of binary. The representation of
the input, and embedded watermark image is given by

M = {muv}; 1 ≤ u ≤ X; 1 ≤ v ≤ Y (3.1)

U = {Sxy}; 1 ≤ x ≤ P ; 1 ≤ y ≤ Q (3.2)

where, the term muv refer to the input image pixels, ranging between 0 to 255, and Sxy denotes the watermarked
image pixels, having the binary value as 0 or 1.

3.1. Pixel prediction. Extraction of features. In the pixel prediction phase, the feature extraction
is performed based on seven features, such as wavelet energy, edge information, scattering value, Gabor filter,
pixel coverage, Local binary pattern (LBP), and Tetrolet transform. The feature extraction step carried out in
this paper is explained as follows.

3.1.1. Wavelet energy. The TT [25] is subjected to the input medical image to achieve the wavelet
energy. The wavelet transform is employed for decomposing the original image to four sub-bands, which
includes HL, HH, LL, and, LH. The four bands are represented as, {L1, L2, L3, L4} . The tetrolet energy for
the pixel is expressed as

TT (muv) = {L1, L2, L3, L4} (3.3)

where TT (muv) represents the tetrolet function. In this paper, the embedding phase focussed on HL band, hence
the energy consumed in HL band is taken as the tetrolet energy feature and is represented as F1 = L3(muv).
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Fig. 3.1. Schematic diagram of image stegonography using the proposed CMSO-based DCNN

3.1.2. Pixel coverage. The pixel coverage is computed based on the mean value of neighborhood pixel
to provide the information about the coverage value of each pixel. Assume the pixel muv in image M with N

number of neighboring pixels, and the pixel coverage is expressed as,

F2 =
1

N

N−1
∑

a=0

ma
uv (3.4)

where ma
uv is the symbol indicates the ath neighbor pixel of muvand N denotes the neighboring pixel.

3.1.3. Edge detection. It is the process of determining whether the pixel is available in the corner edge
or not. In edge information feature, if the pixel is in the edge then the value is fixed as one or otherwise the
value is set to zero. The edge information for the pixel is given by

g(u, v) = A(muv) (3.5)

where A(muv) refer to the edge information, and the output of the edge information is represented as F3 =
g(u, v).

3.1.4. Scattering value. The scattering transform [26] is employed for obtaining scattering coefficients.
This transform finds the texture information by applying the filter convolution in the pixel. The scattering
coefficient is given by

K[M ] = ∥∥M ⊗ ηb1| ⊗ ηb2|K| ⊗ ηbh| ⊗A(e)| (3.6)
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where the average filter is denoted as A(e), and the term indicates the filter banks. The output obtained from
the scattering transform is denoted as F4 = K(muv).

3.1.5. Gabor feature. The Gabor filter [27] is employed for identifying the time-frequency location of the
pixel and to achieve the robust against various brightness or contrast of the image. For the feature extraction,
2D Gabor filter is the broadly utilized filter and the filter function is given by,

P (u, v, φ, h, χ) =
1

2πσ2
exp

(

−u2 + V 2

2σ2

)

∗ exp{2πum(hu cos θ + hv sin θ)} (3.7)

where P (u, v, φ, h, χ) denote the Gabor filters with pixel. The term u−m denotes the imaginary part and the
value is

√
−1 . The sinusoidal wave frequency in the Gaussian filter is represented as h . The output of the

Gabor filter is denoted as F5, and is expressed asD({u, v} = P (muv). Therefore, F5 = D{u, v}.

3.1.6. Local Binary Pattern. The crisp form of LBP [28] utilizes the neighbourhood pixel properties
to explain each pixel. It is more resistant, efficient, and simple to make changes in gray-level using lighting
variations. The obtained feature is indicated as, F6 = V (u, v). The texture features obtained from the extraction
phase is expressed by

V (u, v) = LBP )muv =

N−1
∑

a=0

r(ta − tf )2
n (3.8)

where the term tfand ta denotes the centre and neighbor pixels gray value. Then, the membership function is
calculated as

r(b) =

{

1; b ≥ 0
0; otherwise

}

(3.9)

3.1.7. Tetrolet Transform. The tetrolet descriptor [25] is an adaptive Haar wavelet transform, to sup-
port tetrominoes, which is formed by joining four squares with similar size. Here, the input low-pass image
is divided into blocks and local tetrolet basis are generated based on the geometry of the image. The steps
involved in the tetrolet transform are illustrated below.

i) Initialization: The input image is split into blocks of size.

ii) Representation of image blocks as the sparsest tetrolet: Each of the image blocks is subjected
to the sparsest tetrolet representation and for every individual blocks, a total of 117 tetromino coverings are
admitted each of which is given to the Haar wavelet transform along with four low pass coefficients for generating
12 Tetrolet coefficients. For the individual block, the tetrolet decomposition is done at the optimum based on
12 tetrolet coefficients to obtain the final sparse image.

iii) Representation of the high pass and Low pass coefficients: The steps involved in the Tetrolet
decomposition algorithm is preceded with the arrangement of matrix based on reshape function.

iv) Tetrolet Coefficients: After representing the sparse matrix for the individual blocks, the high pass
as well as the low pass matrices is kept safe for the usage of future.

v) Termination: The steps (ii) to (iii) are repeated for the low pass image and the output obtained in
the binary image, which is denoted as F7. Therefore, the extracted features are represented as

Jred = {F1, F2, F3, F4, F5, F6, F7} (3.10)

The size of the extracted features is denoted as [1× 7].

3.2. Pixel identification using DCNN. Once the features are extracted, DCNN is utilized for pixel
identification. The DCNN is utilized for generating the prediction map for image pixels. The DCNN classifier
[29] uses the extracted features Jred as input and generates the prediction map based on input image. The
architecture of DCNN and the algorithmic steps of the CMSO-based DCNN are described bellow.
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Fig. 3.2. Architecture of DCNN for the construction of prediction map

3.2.1. Architecture of the DCNN. The basic architecture of the DCNN [29] is discussed in this section
with its architecture in figure 3.2. The DCNN comprises of the number of convolutional (conv) layers, pooling
(POOL). The architecture of the Deep CNN [34,35] is deliberated in figure 3.2 and the architecture of DCNN
consists of three layers, such as pooling (POOL), convolutional (conv), and Full Connected (FC) layers. Among
the three layers of DCNN, each of the layers constitutes specific function. The main function of the conv layers
is to generate the feature maps from the segments of the pre-processed image and these feature maps are further
sub-sampled down in the pool layers. The third layer is the FC layer, where the classification is progressed.
The convolutional layer engages in mapping the input such that the input maps undergo convolution with the
convolutional kernels in order to develop the output map The size of the output map is similar to the kernel
number, and the size of the kernel matrix is [3×3] . Thus, making it clear that the conv layers is the multilayer
loop of input maps, kernel weights, and output maps. In the first conv layer, there are a number of inputs and
outputs, whose size reduces in the successive conv layers such that the classification accuracy of the objects
depends on the number of the layers in the DCNN.

Conv layers: The responsibility of the conv layers relied on obtaining the patterns buried in the input
feature vector using the conv filters that are connected using the receptive fields, which act as an interconnection
between the neurons in the previous layer with the successive conv layers through the trainable weights. The
feature maps are developed through the convolution of the input feature vector with the trainable weights in
such a way that the trainable weights are derived using the hybrid optimization algorithm. The neurons of
the single layer engage themselves in extracting the variable features available in various location based on the
variable weights of the single layer. Let us assume the input to the deep CNN is G and hence, the output from
the conv layer is given as

(Gb
c)i,j = (Bb

c)i,j +

ϖ
d−1

1
∑

d=1

ϖ1

1
∑

k=ϖ1

1

ϖ1

2
∑

n=ϖ1

1

(ϑb
c,d)k,n ∗ (Jred)i+k,j+n (3.11)

where the symbol ∗ refers to the convolutional operator that paves way for obtaining the local patterns from
the alternative conv layers, Jred is the extracted features, (Bb

c)i,j indicates the fixed feature map or the output
from the bth conv layers centered as (i, j). The output from the previous (b− 1)thlayer forms the input to the
lth conv layer. Let the weights of the conv layers be denoted as,ϑb

c,d, which is the weights of bth conv layer and

the bias of bth conv layer is denoted as (Bb
c). Let us consider d, k and n as the notations of feature maps.

ReLU layer: ReLU is abbreviated as Rectified Linear Unit that applies non-saturating activation function.
It eliminates the negative values effectively from the activation map by fixing them to zero, also improves the
nonlinear properties of decision function without affecting the receptive fields of the convolution layer. The
neurons in conv layers are arranged in 3-dimensions along the depth, height and width, so as for extracting the
features from all the dimensions of ReLU layer, which uses an element-wise activation function to simplify the
computation using the removal of negative values. The output from the lth layer is the activation function of
the preceding (k − 1)th layer, and is expressed as

Gb
c = Afn(Gb−1

c ) (3.12)
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The importance of ReLU layer is regarding the speed of DCNN, which is enhanced and offers the ability
to deal with large number of networks.

POOL layers: It is a non-parametric layer with no weights, and bias, undergoing a fixed operation. The
importance of POOL layer is to mitigate the spatial dimensions of the input and minimizes the computational
complexity.

FC layers: The patterns generated using the pooling and the conv layers form the input to the fully
connected layers that are subjected to high-level reasoning. The output from the fully-connected layers is
given as

(Hb
c ) = δ(Gb−1

c )with(Gb
c) =

ϖ
d−1

1
∑

d=1

ϖ1

1
∑

k=ϖ1

1

ϖ1

2
∑

n=ϖ1

1

(ϑl
c,d)k,n ∗ (Jred)i+k,j+n (3.13)

where (ϑl
c,d)k,n denotes the weight.

3.2.2. Training of DCNN based on Chicken-Moth search optimization. The proposed CMSO
is the integration of CSO algorithm and MSO. The CSO [37] is a bio-inspired optimization approach, which
mimics the hierarchy of chickens swarm and the behavior of searching the food, in which each chicken denotes
the potential solution for optimization issue. The hierarchical order is very important in social lives of chicken.
Here, the chicken swarms are categorized into many hens, one rooster, and chicks. For each group, the chicken
finds the rooster, hen, and chick based on fitness value of chicken. MSO [36] is an advanced meta-heuristic
algorithm motivated with photo axis and levy flights of the moths. MS algorithm can search the best solution
effectively with improved accuracy. Moreover, the algorithm negotiates complex operations, and thus, the
execution of MS algorithm is easy and flexible. The steps involved in the proposed CMSO are described as
follows.

a) Initialization: In the first step, the position of the moths is randomly initialized, represented as {Xef ,

1 ≤ e ≤ t; 1 ≤ f ≤ p} where t is the population size, and p denotes the dimension. X ∈ {(ϑl
c,d, B

b
c , ϑ

b
c,d)}.

b) Evaluation of the objective function: The selection of the optimal location of the chicken is
performed based on minimization problem. The minimal value of the objective function describes the better
solution and therefore, the solution with the minimum value of the error is chosen as the best solution. The
error is determined as

MSE =
1

X
[

X
∑

h=1

Htarget −Hb
c ] (3.14)

where Htarget, Hb
c and are the estimated and target output of the classifier. The term X denotes the total

number of samples.
c) Location update using levy flights: After evaluating the objective function, the solution undergoes

position update based on the levy flight update, and it is mentioned as follows:

Xτ+1
e,f = Xτ

e,f + ε.F (z) (3.15)

Rearranging the above equation,

Xτ
e,f = Xτ+1

e,f − ε.F (z) (3.16)

where Xτ
e,f specifies the location of the moth at the iteration τ , and the term F (Z) signifies to the step drawn

due to the movement of levy flight. The parameter ε indicates the scaling factor and is expressed as,

ε =
Wmax

τ2
(3.17)

where Wmax refer to the maximum step walk. Then, the levy distribution H(t) is represented as

H(t) =
(α− 1)⌈(α− 1) sin(π(α−1)

2 )

πa2
(3.18)
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where q is greater than 0.⌈(y) is the gamma function.
d) Fly straightly: The location of the moth is also influenced by light source, and the upgrade solution

is represented as follows:

Xτ+1
e,f = λ× (Xτ

e,f + β.(Xτ
best −Xτ

e,f )) (3.19)

where Xτ
best denotes the best location of the moth, and the term β signifies the acceleration factor. The scaling

factor is represented as λ. During the fly straightly movement, the location of the moth is influenced by the
location of the light source. Here, the acceleration constant influences the convergence speed of algorithm.
In some cases, the position of the moth goes beyond the position of the light source. Then, the equation
(16) is modified with the CSO for enhancing the effectiveness of the approach and to find solutions to various
optimization issues. The standard equation of the movement of chick is given by

Xτ+1
e,f = Xτ

e,f +AB ∗ (Xτ
w,f −Xτ

e,f ) (3.20)

Xτ+1
e,f = Xτ

e,f [1−AB] +AB ∗Xτ
w,f (3.21)

Substituting equation (16) in equation (21),

Xτ+1
e,f = [Xτ+1

e,f − ε.F (z)][1−AB] +AB ∗Xτ
w,f (3.22)

Xτ+1
e,f − [1−AB]Xτ+1

e,f = (AB − 1)ε.F (z) +AB ∗Xτ
w,f (3.23)

Xτ+1
e,f =

1

AB
[(AB − 1)ε.F (z) +AB ∗Xτ

w,f ] (3.24)

Thus by equation (24), the position update of the moths can be obtained, using the location of the moths in
its preceding iteration, light absorption coefficient, attractiveness, and the distance between the moths.

e) Finding the best solution: The feasibility of the solution is computed based on the objective function.
If the newly generated solution is best than the previous one, then it is changed by the new solution.

f) Termination: After a certain iteration limit, the algorithm terminates, and the optimal solution is
retained at the end of the procedure. Thus, the best solution, chosen using the proposed CMSO algorithm is
utilized for embedding the secret message. The predicted map is denoted as O.

3.2.3. Embedding using Tetrolet transform. This section presents the embedding phase using Tetro-
let transform for image steganography. The embedding is utilized for hiding the secret message in the HL band,
and the tetrolet transform is given for extraction and embedding process. During embedding the input image
is divided into sub-bands and the watermark is embedded using tetrolet coefficient. The embedding process of
pixel prediction approach is depicted in figure 3.3.

At first, the sub-bands of the input medical image are generated based on tetrolet transform in the em-
bedding phase. The tetrolet transform is employed for acquiring tetrolet coefficient. When tetrolet transform
is applied to input medical image, four bands are generated, and is expressed as,

TT (M) = {L1, L2, L3, L4} (3.25)

In the tetrolet coefficient, each band refers to frequency and energy. Embedding the watermark image is
performed in band L3 is denoted as

L∗

3 = L3 + U∗γ∗O (3.26)

where the term U denotes the watermark message, and L3 is the symbol of HL band. The term represents the
HL band embedded by the watermark message, and γ be the embedding strength. The secret message U is
embedded in L3using the predicted map and the embedding strength from the classifier. The predicted map in
the classifier determines the appropriate pixels and the intensity is defined using the embedding strength. The
watermark image embedded to the HL band is expressed as, {L1, L2, L

∗

3, L4}. After the embedded of watermark
message, the inverse tetrolet transform is applied to obtain the embedded image. The embedded input medical
image is expressed as

M∗ = ITT{L1, L2, L
∗

3, L4} (3.27)
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Fig. 3.3. Embedding process of the secret image

3.2.4. Watermark message retrieval. Once the embedded image is determined, then, the image is
transmitted to the extraction phase. The TT is applied for obtaining tetrolet coefficients. At the extraction
steps, the receiver extracts the watermark message. The extraction of secret message is expressed as

TT (M∗) = {Nex
1 , Nex

2 , Nex∗
3 , Nex

4 } (3.28)

where Nex
1 , Nex

2 , Nex∗
3 and Nex

4 refers to the four bands obtained from the tetrolet process. The extraction
process is formulated as,

T ex = LEx∗
3 − L3 (3.29)

In the extraction phase, the watermarked message is represented as Uex = {Uex
xy}, which is utilized for ste-

gonography.

4. Results and Discussion. The results and discussion of the developed CMSO-DCNN+tetrolet for
image stegonography are demonstrated in this section with an effective comparative analysis to prove the
effectiveness of proposed method.

4.1. Experimental Setup. The experimentation of image stegonography method is performed in system
with 2 GB RAM, Intel i-3 core processor, Windows 10 Operating System. The proposed method is executed
in MATLAB.
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4.2. Database description. The dataset is taken from the BRATS database [30] for image stegonography.
Here, the image of every patient is collected as four modalities, like T1, T1C, FLAIR, and T2. In this dataset,
all the datasets are manually segmented, by one to four rates, which follow the similar annotation protocol,
approved by experienced doctors.

4.3. Performance metrics. The evaluation of the developed model is performed based on three metrics
namely, Correlation factor, SSIM, and PSNR.

a) PSNR: The quality of frame is determined using PSNR. The maximum value of PSNR assures that
the system is better and it is represented in decibel (dB).

PSNR = 10 log10(
m2

max

MSE
) (4.1)

where the term mmax indicates the highest pixel value for M th image.
b) SSIM index: For predicting the perceived quality of the video frame, SSIM is used. The SSIM value

is maximal for the effective method. Here, the SSIM is measured by two windows, such as χ1 , and χ2 .

SSIM(χ1, χ2) =
(2ηχ1

ητ2 + φ1)(2κχ1,χ2
+ φ2)

(η2χ1
+ η2χ2

+ φ1)(κ2
χ1

+ κ2
χ2

+ φ2)
(4.2)

where ηχ1
and ηχ2

represents the mean value of pixels for two windows, and the variance of pixels are denoted
as κχ1

and κχ2
denotes the variance of pixels. The terms φ1and φ2 are utilized for stabilization.

c) Correlation factor: The correlation coefficient offers statistical relationship among the original image
and embedded video image.

CF (χ1, χ2) =
Cov(χ1, χ2)

κχ1
, κχ2

(4.3)

where the term Cov(χ1, χ2)represents the covariance factor.

4.4. Experimental Results. The experimental results obtained by the developed technique are discussed
in this section. Figure 4.1 depicts the experimental results obtained from the proposed method without using
noise in the image, and salt and pepper noise, impulse noise, and Gaussian noise added in the image. Figure
4.1 a) depicts the input image, and figure 4.1 b) depicts the watermark message. The embedded image is shown
in figure 4.1 c), and figure 4.1 d) depicts the final extracted message.

4.5. Comparative techniques. The methods, such as random [31], sequential [32], optimal order [33],
SVNN-wavelet [34], Cost Function for Image Steganography Using Wavelet (CWSM) [35], SVNN-Contourlet,
Moth+tetrolet, DCNN+Contourlet, and are used for the comparison with the proposed CMSO-DCNN+tetrolet
for the analysis.

4.6. Comparative analysis.

4.6.1. Analysis using image without noise. The comparative analysis of the developed method is
analyzed based on correlation coefficient, PSNR, and SSIM without adding noise in the image is shown in figure
4.2. Figure 4.2 a) illustrates the analysis based on correlation coefficient by varying the number of images. When
the number of image is 1, then the corresponding correlation coefficient values computed by existing random,
sequential, optimal order, CWSM, SVNN-Wavelet, SVNN-Contourlet, Moth+tetrolet, DCNN+Contourlet, and
the proposed CMSO-DCNN+tetrolet are found to be 0.93, 0.98, 0.98, 0.98, 0.98, 0.98, 0.978, 0.98, and 0.98,
respectively. The comparative analysis based on PSNR is depicted in figure 4.2 b). For image 2, the PSNR values
achieved by random, sequential, optimal order, CWSM, SVNN-Wavelet, SVNN-Contourlet, Moth+tetrolet,
and DCNN+Contourlet, and the proposed model are 39.15dB, 39.533dB, 40.08dB, 40.02dB,42.81dB, 42.81dB,
46.43dB,46.71dB, and 47dB, respectively. The analysis in terms of SSIM is depicted in figure 4.2 c). For image
3, the existing techniques, like random, sequential, optimal order, CWSM, SVNN-Wavelet, SVNN-Contourlet,
Moth+tetrolet, and DCNN+Contourlet, possesses the SSIM of 0.484, 0.497, 0.959, 0.959, 0.959, 0.96, 0.956,
and 0.952, respectively, which is comparatively lower than the CMSO-DCNN+tetrolet. For the same image,
the developed CMSO-DCNN+tetrolet acquired the SSIM of 0.96.
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Fig. 4.1. Sample results a) Input image b) Watermark message c) Embedded image, and d) Final extracted message.

Fig. 4.2. Comparative analysis using image without noise (a) Correlation coefficient, b) PSNR, and (c) SSIM
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Fig. 4.3. Comparative analysis by adding impulse noise (a) Correlation coefficient, b) PSNR, and (c) SSIM

4.6.2. Analysis using image with Impulse noise. The comparative analysis of the developed method
is analyzed based on correlation coefficient, PSNR, and SSIM with impulse noise is shown in figure 4.3. Fig-
ure 4.3 a) shows the analysis in terms of correlation coefficient by varying the impulse noise density. Sim-
ilarly, when the impulse noise density is increased to 0.5, the methods, random, sequential, optimal order,
CWSM, SVNN-Wavelet, SVNN-Contourlet, Moth+tetrolet, and DCNN+Contourlet, attained the correlation
coefficient of 0.3105, 0.3105, 0.3105, 0.6333, 0.6816, 0.6826, 0.6613, and 0.6837, whereas the correlation coef-
ficient of the developed method is 0.683. The comparative analysis based on PSNR is depicted in figure 4.3
b). When the impulse noise density=0.2, the PSNR values achieved by random, sequential, optimal order,
CWSM, SVNN-Wavelet, SVNN-Contourlet, Moth+tetrolet, and DCNN+Contourlet, and the proposed model
are 10.53dB, 39.48dB, 40.59dB, 40.59dB,40.601dB, 40.608dB, 41.512dB, 43.71dB, and 43.77dB, respectively.
The analysis in terms of SSIM is depicted in figure 4.3 c). When the impulse noise density is 0.3, the existing
techniques, like random, sequential, optimal order, CWSM, SVNN-Wavelet, SVNN-Contourlet, Moth+tetrolet,
and DCNN+Contourlet, possesses the SSIM of 00.416, 0.432, 0.424, 0.430, 0.496, 0.497, 0.533, and 0.534, re-
spectively, which is comparatively lower than the CMSO-DCNN+tetrolet. For the same impulse noise density,
the developed CMSO-DCNN+tetrolet acquired the SSIM of 0.541.

4.6.3. Analysis using image with salt and pepper noise. The comparative analysis of the developed
method is analyzed based on correlation coefficient, PSNR, and SSIM with salt and pepper noise is depicted in
figure 4.4. Figure 4.4 a) illustrates the analysis based on correlation coefficient by varying the number of salt and
pepper noise density. When the salt and pepper noise density=0.3 , the existing techniques, like random, sequen-
tial, optimal order, CWSM, SVNN-Wavelet, SVNN-Contourlet, Moth+tetrolet, DCNN+Contourlet, and the
proposed CMSO-DCNN+tetrolet possesses the correlation coefficient of 0.4129, 0.4167, 0.4379, 0.688, 0.7434,
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Fig. 4.4. Comparative analysis by adding salt and pepper noise (a) Correlation coefficient, b) PSNR, and (c) SSIM

0.7445, 0.726, 0.75, and 0.75, respectively. The comparative analysis based on PSNR is depicted in figure
4.4 b). When the density of salt and pepper noise is 0.3, the PSNR values achieved by random, sequential,
optimal order, CWSM, SVNN-Wavelet, SVNN-Contourlet, Moth+tetrolet, and DCNN+Contourlet, and the
proposed model are 7.308 dB, 25.42 dB, 25.429 dB, 25.432 dB, 28.806 dB, 28.824 dB, 30.830 dB, 33.211 dB,
and 33.30 dB respectively. The analysis in terms of SSIM is depicted in figure 4.4 c). When the salt and pepper
noise density is 0.4, the existing techniques, like random, sequential, optimal order, CWSM, SVNN-Wavelet,
SVNN-Contourlet, Moth+tetrolet, and DCNN+Contourlet, possesses the SSIM of 0.421, 0.416, 0.436, 0.415,
0.429, 0.429, 0.437, and 0.438, respectively, which is comparatively lower than the CMSO-DCNN+tetrolet. For
the same noise density, the developed CMSO-DCNN+tetrolet acquired the SSIM of 0.4389.

4.6.4. Analysis using image with Gaussian noise. The comparative analysis of the developed method
is analyzed based on correlation coefficient, PSNR, and SSIM with Gaussian noise is depicted in figure 4.5.
Figure 4.5 a) illustrates the analysis based on correlation coefficient by varying the Gaussian noise variance.
When the Gaussian noise variance 0.4 is considered, the existing techniques, like random, sequential, opti-
mal order, CWSM, SVNN-Wavelet, SVNN-Contourlet, Moth+tetrolet, DCNN+Contourlet, and the proposed
CMSO-DCNN+tetrolet possesses the correlation coefficient of 0.328, 0.328, 0.328, 0.670, 0.7130, 0.7140, 0.7389,
0.7189, and 0.7201, respectively. The comparative analysis based on PSNR is depicted in figure 4.5 b). When
the Gaussian noise variance is 0.2, the PSNR values achieved by random, sequential, optimal order, CWSM,
SVNN-Wavelet, SVNN-Contourlet, Moth+tetrolet, and DCNN+Contourlet, and the proposed model are 8.121
dB, 34.687 dB, 34.701 dB, 34.709 dB, 39.479 dB, 39.497 dB, 43.231 dB, 43.480 dB, and 43.491 dB, respec-
tively. The analysis in terms of SSIM is depicted in figure 4.5 c). When the Gaussian noise variance=0.3,
the existing techniques, like random, sequential, optimal order, CWSM, SVNN-Wavelet, SVNN-Contourlet,
Moth+tetrolet, and DCNN+Contourlet, possesses the SSIM of 0.439, 0.422, 0.429, 0.417, 0.451, 0.4515, 0.456,
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Fig. 4.5. Comparative analysis by adding Gaussian noise (a) Correlation coefficient, b) PSNR, and (c) SSIM

and 0.4567, respectively, which is comparatively lower than the CMSO-DCNN+tetrolet. For the same Gaussian
noise variance, the developed CMSO-DCNN+tetrolet acquired the SSIM of 0.456.

4.7. Comparative discussion. Table 4.1 depicts the comparative discussion of the existing random, se-
quential, optimal order, CWSM, SVNN-Wavelet, SVNN-Contourlet, Moth+tetrolet, and DCNN+Contourlet,
and the proposed CMSO-DCNN+tetrolet in terms of correlation coefficient, PSNR, and SSIM parameters
with impulse, salt and pepper, and Gaussian noise present in the image. The maximum performance mea-
sured by proposed CMSO-DCNN+tetrolet in terms of correlation coefficient parameter is 0.85, whereas the
correlation coefficient values of existing random, sequential, optimal order, CWSM, SVNN-Wavelet, SVNN-
Contourlet, Moth+tetrolet, and DCNN+Contourlet, are 0.691, 0.693,0.708,0.780, 0.842, 0.844,0.822, and 0.846,
respectively. The maximal PSNR achieved by the proposed CMSO-DCNN+tetrolet is 46.981dB, whereas the
existing random, sequential, optimal order, CWSM, SVNN-Wavelet, SVNN-Contourlet, Moth+tetrolet, and
DCNN+Contourlet, acquired the PSNR of 13.748 dB, 39.6 dB, 42.699 dB, 42.704 dB, 42.705 dB, 42.713 dB,
46.86 dB, and 46.935 dB, respectively. The SSIM value computed by proposed CMSO-DCNN+tetrolet is
0.6388, whereas the existing random, sequential, optimal order, CWSM, SVNN-Wavelet, SVNN-Contourlet,
Moth+tetrolet, and DCNN+Contourlet, methods acquired the SSIM of 0.490, 0.503, 0.505, 0.491, 0.605, 0.6316,
and 0.6319, respectively. It is clearer that the proposed method acquired a maximal correlation coefficient,
PSNR, and SSIM.

5. Conclusion. This paper presents the pixel prediction approach based on DCNN classifier and tetrolet
transform. This framework employs the medical input image, and the tetrolet Transform is employed for hiding
the sensitive information. At first, the best pixels are found out from the image using DCNN classifier, and
are trained by CSO and MSO. The Tetrolet transform employs the embedding strength and the coefficient of
Transform is employed for embedding the secret message to the input image. At last, the watermark message,
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Table 4.1

Analysis based on the image with noise

Methods Correlation coefficient PSNR (dB) SSIM
Random 0.691 13.748 0.490

Sequential 0.693 39.6 0.503
Optimal order 0.708 42.699 0.505

CWSM 0.780 42.704 0.491
SVNN-Wavelet 0.842 42.705 0.605

SVNN-Contourlet 0.844 42.713 0.605
Moth+tetrolet 0.822 46.86 0.6316

DCNN+Contourlet 0.846 46.935 0.6319
Proposed CMSO-DCNN+tetrolet 0.85 46.981 0.6388

and the input image gets extracted based on inverse Tetrolet Transform coefficient. The performance of the
CMSO-DCNN+tetrolet is evaluated based on correlation coefficient, PSNR, and SSIM. The proposed method
produces the maximal correlation coefficient of 0.85, maximal PSNR of 46.981dB, and the maximal SSIM of
0.6388, by applying the impulse, salt and pepper noise, and Gaussian noise in the image that indicates the
superiority of proposed method. The future dimension of the research will be concentrated on extending the
analysis using other standard databases with highly advanced features.
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