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Abstract: Ex situ preservation is an important method in the preservation of chickens, and cryopreser-
vation of semen is the only method for gamete preservation at present. During the last two decades,
many studies have been performed to develop standard chicken semen cryopreservation technology
and achieve great progress. Many attempts and methods were investigated to adapt subspecies or
different breeds. In this paper, we firstly reviewed the main factors affecting cryopreservation of
chicken sperm, including the unique structure and characteristics of the spermatozoa. Secondly, the
studies on key points of the chicken sperm cryopreservation technology, including semen dilution,
cryoprotectants, equilibration time, packaging types, and freezing and thawing rates were summa-
rized to generate the optimal parameters. Then, the mechanism underlying freezing damage and
freezability revealed by recent omics methods relevant to the efficiency of cryopreservation were
discussed. This review will provide relevant reference for the future investigation of poultry semen
cryopreservation technology.

Keywords: chicken; semen; cryopreservation; cryodamage; freezability

1. Introduction

Sperm cryopreservation is one of the most important procedures in the biotechnologi-
cal development of assisted reproduction in fish [1], birds [2,3], and mammals [4]. Especially
in cattle breeding, artificial insemination relies almost entirely on the use of frozen semen
from superior males in breeding centers [5,6]. This is even more relevant when it comes
to preserving semen from endangered animals. The semen freezing technology has been
widely used in the semen preservation of mammals such as pigs, cattle and sheep, and the
technology has been relatively mature, but it cannot be directly used for reference in chick-
ens, nor can predecessors. Poultry production and the preservation of poultry germplasm
resources also have a strong demand for chicken semen cryopreservation technology. Due
to the unique physiological characteristics of avian females, it is difficult to preserve the
oocytes or embryos. Thus, the cryopreservation of avian sperm plays a substantial role
to preserve endangered wild species and genetic diversity in commercial species. It is,
meanwhile, an indispensable strategy to improve the genetic materials conservation and
biodiversity protection. Cryopreservation is known as an important tool for programs of
genetic diversity management and of endangered breeds’ conservation that can be used to
preserve the genetic diversity of chicken populations, especially vulnerable and important
breeds. Some countries have developed methods for the cryopreservation of poultry semen,
but the maturity and stability of the technology are poor. Although some methods show
relatively good sperm vitality, the preservation time of chicken semen cryopreservation-
thawed sperm vitality fertilization rate and other indicators are not ideal [7]. It was in
1949 that the success of preserving the fertility of chicken sperm was reported [8]. Semen
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cryopreservation has now been widely described in many domestic bird species, including
turkey, duck, goose, and guinea fowl [9]. However, it is not yet adapted to the commercial
chicken industry mainly due to the instability of the fertility of post-thaw chicken sperm
and the achievements remain linked to many variable results in practice and need con-
tinuous research devotion. The sperm-freezing process is complicated, with critical steps,
including male selection, semen collection, semen quality examination, semen dilution,
adding cryoprotectants (CPAs), packaging, freezing, removing CPAs (if glycerol is used),
and post-thaw sperm evaluation [10,11]. There is no standardized methodology for each
step of the cryopreservation procedure, which also contributes to differences among studies.
In this review, the research outline of the sperm cryopreservation technology in poultry
was presented to better understand the cellular and molecular mechanisms involved in
sperm cryobiology. Furthermore, the most important impressions and considerations
that must be considered during the application of the technologies were also discussed.
Gathering this information and these findings inspires researchers exploring novel and
creative approaches to crack the challenges of chicken sperm cryopreservation.

2. Unique Structure and Characteristics of Chicken Spermatozoa

Much effort has been made in recent years to preserve poultry semen by cryogenic
methods. However, mechanisms involved in protecting poultry spermatozoa against
freeze–thaw damage are not yet well understood. The unique sperm cell morphology
and physiological characteristics might be the intrinsic reasons [3,5]. Structural damage
to chicken and turkey sperm after freezing and thawing has been reported to result in
reduced motility and fertility [12]. Chicken spermatozoa are more susceptible to damage
during the freezing process due to their relatively lower surface-area-to-volume ratio and a
thinner tail than some species, such as human and bovine [13]. Spermatozoa of different
species have a common structure, which consist of the head and tail. The tail is divided into
mid-piece, principal-piece and end-piece (Figure 1). The length of bird spermatozoa is very
variable, about 30~300 µm, and sperm head length ranges from 11 to 21 µm. The head of
chicken sperm was slightly cylindrically curved, about 12.5 µm. The top of the head has a
conical acrosome of about 2.5 µm. The mid-piece is about 4.5 µm, the mitochondrial matrix
is dense and homogeneous, and the principal-piece is about 90 µm [14]. The sperm head
size influences the volume of water carried by the cell, and cell volume and shape affect the
membrane ratio of surface area to cell water volume, which is associated with their ability
to respond to osmotic changes and survival [15]. The heads of the human and bull sperm
are generally oval and larger than that of chicken sperm [16,17], which may account for
their differences in sperm freezability. Compared to other species, chicken sperm have a
longer tail, about 90 µm, which means they are more vulnerable to damage during freezing
operations, resulting in lower fertility [14,18].
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Sperm plasma membrane is considered as an essential factor involved in the resistance
of sperm to thermal and osmotic changes during freezing [19]. Bird spermatozoa have
little cytoplasmic antioxidants, and the membranes rich in polyunsaturated fatty acids [20].
These characteristics make sperm cells highly susceptible to oxidative stress and increase
the production of reactive oxidizing substances, which may lead to reduced motility, DNA
damage, and consequently, fertility [21]. Meanwhile, significant damage to the frozen
sperm plasma membrane is often associated with the separation of the acrosome, which in
turn leads to reduced fertility [22].

3. Study on Key Points of the Chicken Sperm Cryopreservation Technology

Current procedures in chicken sperm cryopreservation have been the result of more
than 60 years of research. However, no standardized protocol has been developed for
all chicken breeds/lines. Many key points, such as semen extenders, CPA, pre-freezing
manipulation, semen packaging type, freezing and thawing rates, are all impactful to the
cryopreservation efficiency (Figure 2).
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Figure 2. Key processes of chicken sperm cryopreservation technology.

3.1. Semen Dilution

The ejaculation volume of roosters is 0.2~0.7 mL, and the semen density is about
2~7 billion/mL. Primarily, the ideal extender should be able to provide energy for sperm
metabolism and maintain pH and osmolality, which are essential for maintaining cell
viability and function [23,24]. Chicken sperm can tolerate a pH range from 6.0 to 8.0 [25],
and maintain its fertilizing ability in extenders with osmolality from 250 to 460 mOsm/kg,
although the ideal osmotic pressure is 325 to 350 mOsm/kg [26]. Many extenders have
currently been used for poultry semen cryopreservation, such as Lake and Ravie (LR) [27],
BHSV [28], Beltsville [29], and EK extender [30]. Most extenders are composed of dipotas-
sium phosphate, sodium glutamate, fructose, and sodium acetate in addition to other
buffers and salts. However, the subtle differences in reagents and concentrations among
extenders will have a dramatic impact on cryopreservation, as an elusive interaction among
solutes or solvents exists [31]. There are also some commercially available extenders, in-
cluding Poultry media® without antibiotics (IMV Technologies, L’Aigle, France), Raptac®

(AMP-Lab, GmbH, Münster, Germany) and NeXcell® (IMV Technologies, L’Aigle, France).
It was suggested that two extenders (Poultry media® and Raptac®) would be suitable
for the cryopreservation procedure, with an applied modification [32]. Dilution is also
important in semen freezing and may affect the concentration of sperm during freezing.
Dilution as the first step is crucial, which can avoid semen deterioration due to substrate
depletion, increased metabolic by-products and condition change [33]. The dilution rate
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is dependent on the original semen density, which varies among species and individual.
For most reported studies of fish species, the dilution rate of sperm to final volume ranged
from 1:2 to 1:10, and the dilution rate of 1:10 was proved to be more proper [34]. The
study in endangered mahseer revealed that the motility rates of semen diluted at 1:10,
1:15, and at 1:20 were significantly higher than those at 1:5 dilution [35]. A wide range of
dilution rates are used of rams’ semen, ranging from 1:1 to 1:16; furthermore, an increase
of dilution rate did not affect ram sperm motility but resulted in a significant decrease in
the percentage of live normal sperm [36]. Honey bee semen diluent ratios of 6:1 to 12:1
significantly improved sperm post-thaw viability [37]. A dilution rate of 1:1 to 1:4 is usually
recommended for chicken semen freezing [12,38], while studies showed no significant
differences in fertility [39]. Therefore, the systematic study on the effects of extender pa-
rameters on chicken sperm is of great significance for both scientific research and practical
production to maintain the viability and fertility of fresh/frozen sperm.

3.2. Cryoprotectants

CPAs protect sperm from ice crystal formation and osmotic and chemical stress.
The action mode of CPAs is to reduce the amount of ice formation by increasing the to-
tal solute concentration. It also regulates the dehydration rate of cells in the freezing
process to achieve more gradual dehydration and minimize the possibility of ice forma-
tion in cells [5]. Such components can be classified into permeating/intracellular and
non-permeating/extracellular subtypes. Intracellular CPAs increase membrane fluidity
through the rearrangement of membrane lipids and proteins and partially dehydrate
the cell, thereby reducing the formation of intracellular ice crystals [40]. Extracellular
CPAs generally form a shield surrounding cells, which can protect cells by reducing ex-
tracellular ice crystals [41–43]. Intracellular CPAs include glycerol, dimethylsulphoxide
(DMSO), dimethylacetamide (DMA), N-methylacetamide (NMA), ethylene glycol (EG),
dimethylformamide (DMF), and some monosaccharides [44–46]. Extracellular CPAs in-
clude polyvinylpyrrolidone (PVP), polyethylene glycol (PEG), sucrose, trehalose (disaccha-
rides), and raffinose (trisaccharide) [41–43]. The results of recent studies on chicken semen
cryopreservation are summarized in Table 1.

Glycerol is regarded as a good CPA for poultry semen, but its interaction with the
females’ genital tract will negatively affects sperm motility [47]. The optimal concentration
of glycerol and the mechanism of its contraceptive effect have not been fully obtained
and elucidated [9]. The glycerol concentration of 4–11% in poultry semen extenders with
different effects depending on other constituents of diluents [48]. Although, a very low
concentration of 3% was reported [29], the exceeding 8% and 11% were widely used [49].
Further, according to the statistics of the research progresses in the last ten years summa-
rized in this review, 3% and 8% glycerol are used in many studies (Table 2). The researchers
compared 2% and 8% glycerol as CPA and obtained the fertility of 34.8% and 45.1%, re-
spectively [50]. The complex centrifugation process during glycerol removal can cause
irreversible physical damage to sperm [51]. The 8% and 11% of glycerol were removed
by stepwise dilution to a final dilution of 1:4 v/v, and the fertility was 28.8% and 2.1%,
respectively [52]. Our previous research found that the highest fertility (48.70%) was found
for the 5% and 1:2 stepwise dilution combination [53]. Glycerol is the least toxic CPA for
sperm, but the addition and later removal of glycerol makes spermatozoa face a rapid
change in osmolality from 1300 mOsm/kg (1.0 M glycerol) to 300 mOsm/kg [52]. Osmotic
stress may cause substantial damage to spermatozoa, particularly in their membranes [22].
The above results suggested that the glycerol concentration and dilution rate should be
screened and optimized simultaneously to find the best combination.

DMA is one of the most effective CPAs for chicken semen cryopreservation [54]. In
previous studies, the best fertility rates of 88% and 93% were reported when semen was
frozen with 6% DMA [55–57]. In contrast, no changes in chicken sperm viability and
motion traits were found between 3% and 6% DMA [58]. The non-contraceptive DMA
with satisfying fertility was normally obtained when the semen was cryopreserved as
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pellets. Studies have shown that DMA shows good results when sperm is frozen with
pellets [51,57]. However, pellet is not suitable for large cryobank programs, and therefore,
DMA is not widely used as compared to glycerol. A study showed that when using 6%
DMA, a higher fertility rate of 77% was obtained in the gradual in-straw freezing using a
controlled liquid nitrogen vapor than with the pellet method, with the fertility of 65% [51].
This indicated the potential of DMA in poultry semen cryopreservation.

DMF was also frequently used as a CPA for chickens and guinea fowl semen cryop-
reservation [59]. A step freezing programmer was applied for chicken semen cryopreser-
vation with DMF as a CPA in plastic vials and obtained 79% fertility [57]. In recent years,
researchers have used 6% DMF for chicken semen cryopreservation and achieved fertility
of higher than 90% [60,61]. However, these skills failed in several breeds, including White
Leghorn, Rhode Island Reds, and Beijing-You chickens according to our lab data. The
reasons for this high fertility are various, perhaps due to differences in extenders or the use
of other additives, although they all used the native Thai chickens. The differences between
chicken breeds may have a great influence on the fertility of frozen semen. In addition,
DMF has been widely used in other poultry species and made some progress. Similarly, a
higher post-thawed quality was observed for duck semen frozen with 8% DMF in extender
compared to 4%, 6%, and 10% DMF [62]. Interestingly, 6% DMF has no beneficial effects on
gander semen during cryopreservation [63].

The study showed that glycerol appeared to induce the greatest osmotic stress, and
ethylene glycol caused the least osmotic damage during the subsequent rapid removal of
the cryoprotectant [64]. EG improved the motility of chicken spermatozoa after thawing,
and especially the addition of ficoll had additional beneficial effects on progressive motility
and apoptosis [65]. On the other hand, other studies suggested that EG was not a good
CPA for guinea fowl sperm cryopreservation as no fertile eggs were obtained [28].

In addition to intracellular CPAs, the use of extracellular CPAs alone or in combination
with intracellular CPAs has been explored. The effect of a combination of monosaccharides
(fructose, galactose, glucose, and xylose) and disaccharides (lactose, trehalose, maltose, and
sucrose) for semen cryopreservation has been evaluated on various animal species [66]. The
combination of glycerol with non-permeating CPAs (egg yolk, fructose, sucrose or trehalose)
seems to be the best alternative to reduce glycerol concentration and its contraceptive
effects [67]. The combination of DMA and trehalose showed a positive effect on the quality
of cryopreserved semen in chickens [68]. Additionally, the cryopreservation of red jungle
fowl’s semen with 6% PVP has been shown to produce higher fertility than that with
glycerol [69].

Table 1. Reports on cryopreservation of rooster sperm in recent years.

CPAs Breeds Age/w Extender Antioxidant Packaging Freezing Thawing Thawing
Motility/% Fertility/% Reference

2%
Glycerol

White
Leghorn 30 Beltsville NI 0.25 mL

straw
5 cm above the LN2

for 12 min 37 ◦C, 30 s 43.1 49.5 [70]

3%
Glycerol Ross 32 Beltsville Quercetin 0.25 mL

straw
4 cm above the LN2

for 7 min 37 ◦C, 30 s 61.6 64.2 [29]

3%
Glycerol NI 52 Beltsville Resveratrol 0.25 mL

straw
5 cm above the LN2

for 12 min 37 ◦C, 30 s 60.9 NI [71]

3%
Glycerol Ross 30 Lake Glutathione 0.25 mL

straw
4 cm above the LN2

for 7 min 37 ◦C, 30 s 58.5 63.8 [72]

3%
Glycerol Ross 30 Lake CoQ 10 0.25 mL

straw
4 cm above the LN2

for 7 min 37 ◦C, 30 s 55.1 62.7 [21]

3%
Glycerol Ross NI Nabi NI 0.25 mL

straw
4 cm above the LN2

for 7 min 4 ◦C, 3 min 65.4 73.1 [48]

3%
Glycerol Ross 24 Beltsville Hyaluronic

Acid
0.25 mL
straw

4 cm above the LN2
for 7 min NI 55.3 65.5 [73]

3.8%
Glycerol Ross 30 Lake

Gamma-
oryzanol

nanoparti-
cles

0.25 mL
straw

4 cm above the LN2
for 7 min 37 ◦C, 30 s 71.7 71.0 [74]

3.8%
Glycerol Ross 30 Beltsville

Crocin 0.25 mL
straw

4 cm above the LN2
for 7 min

37 ◦C, 30 s 74.4 73.1 [75]Naringenin 71.2 74.1
3.8%

Glycerol Ross 30 Beltsville Quercetin 0.25 mL
straw

4 cm above the LN2
for 7 min 37 ◦C, 30 s 67.5 61.8 [6]



Agriculture 2023, 13, 445 6 of 16

Table 1. Cont.

CPAs Breeds Age/w Extender Antioxidant Packaging Freezing Thawing Thawing
Motility/% Fertility/% Reference

5%
Glycerol

Beijing You
chicken 52 Lake NI 0.5 mL

straw

12 ◦C/min, 4–44 ◦C,
40 ◦C/min, 44–120

◦C
5 ◦C, 3 min 37.4 48.7 [53]

5%
Glycerol Ross 35 Lake Xanthine

oxidase
0.25 mL
straw

5 cm above the LN2
for 12 min 37 ◦C, 30 s 61.8 60.4 [76]

6%
Glycerol

Black
Silkies 40 Lake NI 0.25 mL

straws 6 cm above LN2 5 ◦C, 3 min 70.0 77.6 [77]

8%
Glycerol Ross 30 Lake NI 0.25 mL

straw
4 cm above the LN2

for 7 min 37 ◦C, 30 s 45 45.1 [50]

8%
Glycerol Ross 28 Beltsville NI 0.25 mL

straw
4 cm above the LN2

for 7 min 37 ◦C, 30 s 70.1 60.0 [78]

8%
Glycerol Ross 104 Modified

Beltsville Lycopene 0.25 mL
straw

4 cm above the LN2
for 7 min 37 ◦C, 30 s 68.1 62.2 [79]

11%
Glycerol D+/D, R+ 30–40 Lake NI 0.5 mL

straw –7 ◦C/min 4 ◦C, 3 min NI 83.3 [55]

8% EG Ghagus 32 Lake and
Ravie NI 0.5 mL

straw
4.5 cm above LN2

for 30 min. 5 ◦C, 100 s NI 48.1 [45]

6% DMA Rhode
Island Red 32–36 LCM NI pellet dropping directly

into LN2
60 ◦C NI 79.0 [80]

6% DMA Black
Silkies 17−18 Lake and

Ravie NI 0.25 mL
straw

7 cm above the LN2
for 7 min 60 ◦C NI 77.6 [51]

9% DMA Hi-Line
White 28 Lake NI 0.25 mL

straw
3 cm above the LN2

for 10 min 38 ◦C, 30 s 24.2 45.0 [81]

6% DMF Rhode
Island Red 52-104 Schramm NI 0.5 mL

straw

11 cm above the LN2
for 12 min, 3 cm

above the LN2 for 5
min

5 ◦C, 5 min 57.6 87.4 [82]

6% DMF
Thai

Native
Chicken

25 BHSV NI 0.5 mL
straw

11 cm above the LN2
for 12 min, 3 cm

above the LN2 for 5
min

5 ◦C, 5 min 64.3 91.2 [60]

6% DMF
Thai

Native
Chicken

52–104 Schramm NI 0.5 mL
straw

11 cm above the LN2
for 12 min, 3 cm

above the LN for 5
min

5 ◦C, 5 min 58.2 91.9 [83]

6% DMF
Thai

Native
Chicken

40–63 BHSV
Cysteamine

0.5 mL
straw

11 cm above the LN
for 12 min, 3 cm

above the LN2 for 5
min

5 ◦C, 5 min
60.1 69.9

[84]Ergothioneine 57.6 66.8
Serine 62.7 90.9

6% DMF
Thai

Native
Chicken

NI

BHSV-
Based

NI 0.5 mL
straw

11 cm above the LN2
for 12 min, 3 cm

above the LN2 for 5
min

5 ◦C, 5 min
68.8 73.4

[61]Sasaki 68.5 77.3
TNC 66.3 90.3

NI Ross 32 Lake Mito-
TEMPO

0.25 mL
straw

5 cm above the LN2
for 12 min 37 ◦C, 30 s 60.2 65.3 [85]

NI: not informed; LN2: liquid nitrogen. Lake buffer was used as the basic medium, which was composed of
0.4 g/50 mL D-fructose, 0.15 g/50 mL polyvinylpyrrolidone, 0.96 g/50 mL sodium glutamate, 0.25 g/50 mL
potassium acetate, 0.035 g/50 mL magnesium acetate, 0.187 g/50 mL glycine [22].

Table 2. The common diluents configuration.

Composition (g/100 mL) Lake and Ravie BHSV Beltsville EK

Sodium glutamate/g 1.92 2.85 0.86 1.40
Potassium acetate/g 0.50 0.50 0.06 0.14
Glucose/g 0.80 0.50 0.70
Fructose/g 0.50
Protamine sulphate/g 0.02
Sodium acetate/g 1.43
Magnesium acetate/g 0.08 0.07 0.03
Polyvinylpyrrolidone/g 0.30 0.10
Dipotassium hydrogen phosphate/g 1.27
Potassium dihydrogen phosphate/g 0.006 0.21
Disodium hydrogen phosphate 0.98
Myo inositol/g 0.25
Trihydroxyamino ethane sulfonic acid
(TES)/g 0.19

H2O/mL 100 100 100 100
Osmolality/(mOsm/kg) 340 380 330 385
pH 7.0 7.15 7.5 7.8
Reference [27] [28] [29] [30]



Agriculture 2023, 13, 445 7 of 16

3.3. Equilibration Time

Sperm metabolism must be decreased for in vitro storage, which is practically achieved
by lowering semen temperature [86]. Notably, semen temperature must be decreased grad-
ually to prevent harmful cold shock effects [17]. A 2–4 ◦C equilibration is usually applied
to semen to add the CPAs with the lowest possible interaction with sperm metabolism
before freezing and to allow a sort of adaptation of sperm membranes and physiology that
may be beneficial for post-thaw sperm survival and function. Thus, secondary equilibrium
is a critical period when sperm structures are protected and ready for freezing [87]. The
optimal equilibrium time depends on CPAs and experimental conditions. The procedure
that diluted semen samples with DMA, loaded into 0.25-mL French straws, and equili-
brated for 10 min was deemed appropriate [38]. Some authors proposed 10 min to be
the optimum equilibration time before freezing turkey semen when using DMSO as the
CPA [88], whereas others reported that no differences within the range of 10 to 90 min
when using DMSO and EG [89]. Indeed, an equilibration time as short as 2 min has been
recommended for DMA [90]; thus, the equilibration time may be shortened when using
high DMA concentrations that appear to be very toxic to spermatozoa. Moreover, the choice
of shorter equilibration time without deleterious effects on sperm allows the simplification
of the freezing process.

3.4. Packaging Types

Different forms of semen packaging, such as pellets, straws, and ampoules have been
used for semen cryopreservation in poultry. Glass ampoule was the first type of container
introduced for chicken semen storage [86], but now it is no longer used due to it being
potentially explosive. Then, plastic straws and pellets (semen drops) were developed [90]
and are the main forms of frozen semen packaging at present (Table 2). Pellets are a
rapid freezing method requiring less equipment, but increasing freezing homogeneity [91].
However, compared with the straw, pellet is not convenient for labeling and easy to be
contaminated when removed from the freezer for manipulation [92]. Straw is suitable for
rapid freezing, uniform temperature, standard dose, distinct mark, convenient thawing
etc. Different CPAs with appropriate packaging types would obtain better fertility [91,93].
The French poultry semen-freezing bank mainly adopts DMA pellets/straw and glycerol
straws for semen freezing [40,92]. A study on boar semen showed that the cryopreservation
effect is better with 0.5 mL straw size [94]. The greater the surface-area-to-volume ratio of
the French mini-straw, the better it facilitates efficient cooling and the greater the sperm
cryo-survival and the post-thaw quality of the cryopreserved sperm [95]. Another study
also found that 0.25 mL straws-packaged ram semen resulted in a higher lambing rate
than 0.5 mL straws [96]. However, in the authors’ study of chickens, straw sizes had no
significant effect on the post-thaw sperm quality [53]. Therefore, to ensure the convenience
of artificial insemination and semen storage, it is recommended to use 0.25 mL straws in
practice due to the small volume of semen in each individual rooster.

3.5. Freezing and Thawing Rates

Many freezing methods with different CPAs, different types of sperm packaging
and with slow and rapid freezing procedures have been studied [45]. The cooling rate is
suspected to be the major factor for the reduced survival in conventional cryopreservation
methods in poultry species [9]. Freezing rates can be conducted by a programmable
freezer or by layering semen straws in different distances from the vapor above the surface
of liquid nitrogen. A study showed that there was no difference in the integrity of the
sperm when samples were frozen by a fast-freezing technique or by a slow controlled
freezing method, neither in liquid nitrogen nor in vapor-phase nitrogen [97]. However,
an automatic programmable freezer can make stepwise cooling more accurate, allowing
sperm to gradually adapt to the low temperature in order to prevent damage [98]. Cell
freezing should take place as quickly as possible to avoid the detrimental effects of CPAs;
nevertheless, it should be slow enough for cells to be dehydrated [99]. The results showed
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that the rapid freezing was suitable for freezing chicken semen [100]. However, the cooling
rate under different conditions needs to be explored, while the appropriate cooling rate is
selected according to CPAs and concentrations. Rapid freezing is usually employed with
DMA [56], whereas slow freezing rates are usually used with DMSO and glycerol [101].
When using DMF and EG, the recommended freezing rates are −15 and −1 ◦C/min,
respectively [55].

The thawing rate and temperature may affect sperm motility and fertility, and the
most suitable thawing temperature is 50~60 ◦C [102]. Other studies have included thawing
at 5 ◦C for 4 min [101] and at 60 ◦C for 25 s [90]. However, the thawing rate also depends
on the CPAs used, and when freezing semen with glycerol or DMA, ideal fertility could be
obtained by thawing at 5 °C or 60 ◦C [56]. Most of the studies summarized in Table 1 are
thawed at 4–5 ◦C for 3 min, 37 ◦C for 30 s, or 60 ◦C for 6 s.

4. Freezing Damage and Freezability Mechanism

The freezing process reduced the viability and survival of thawed sperm, and it
may be due to the disruption of the functional integrity of the sperm acrosome, plasma
membrane, DNA and mitochondria during the freezing [103,104]. Our lab studied chicken
sperm freezing and thawing [53], and we found that the freezing process caused structural
damage to most spermatozoa, and the damage was greater to the mitochondria, mid-
piece, and perforatorium than other parts (Figure 3) (unpublished). The fresh sperm
mitochondrial membrane was continuous and the mitochondrial matrix was dense and
homogeneous (Figure 3A,E). However, the density of the matrix was reduced, and the
mitochondria appeared slightly swollen after freezing–thawing (Figure 3B,F). The fresh
sperm perforatorium was cone-shaped and homogeneous in its contents. The boundary was
clearly seen, and the perforatorium was slightly condensed (Figure 3C,G). However, a larger
space appeared between the acrosome and perforatorium after thawing (Figure 3D,H).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Scanning and transmission electron microscopy of fresh chicken sperm and post-thaw chicken 
sperm (scanning electron microscope, Hitachi SU8010, Japan; transmission electron microscope, Hitachi 
H-7500, Japan). (A) Fresh sperm mitochondria (scale bar = 1 μm at 40,000× magnification); (B) Post-thaw 
sperm mitochondria (scale bar = 2 μm at 22,000× magnification); (C) Fresh sperm perforatorium (scale bar 
= 1 μm at 40,000× magnification); (D) Post-thaw sperm perforatorium (scale bar = 1 μm at 30,000× 
magnification); (E) Fresh sperm mitochondria (scale bar = 0.5 μm at 70,000× magnification); (F) Post-thaw 
sperm mitochondria (scale bar = 0.5 μm at 40,000× magnification); (G) Fresh sperm perforatorium (scale 
bar = 0.5 μm at 40,000× magnification); (H) Post-thaw sperm perforatorium (scale bar = 0.5 μm at 25,000× 
magnification). 
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Figure 3. Scanning and transmission electron microscopy of fresh chicken sperm and post-thaw
chicken sperm (scanning electron microscope, Hitachi SU8010, Japan; transmission electron mi-
croscope, Hitachi H-7500, Japan). (A) Fresh sperm mitochondria (scale bar = 1 µm at 40,000×
magnification); (B) Post-thaw sperm mitochondria (scale bar = 2 µm at 22,000× magnification);
(C) Fresh sperm perforatorium (scale bar = 1 µm at 40,000× magnification); (D) Post-thaw sperm
perforatorium (scale bar = 1 µm at 30,000× magnification); (E) Fresh sperm mitochondria (scale
bar = 0.5 µm at 70,000× magnification); (F) Post-thaw sperm mitochondria (scale bar = 0.5 µm at
40,000× magnification); (G) Fresh sperm perforatorium (scale bar = 0.5 µm at 40,000× magnification);
(H) Post-thaw sperm perforatorium (scale bar = 0.5 µm at 25,000× magnification).

These damages may be attributed to ice crystallization damage, oxidative stress, heat
shock, and osmotic shock [105]. Poultry sperm has less cytoplasm and mitochondria
and a larger amount of polyunsaturated fatty acids in the plasma membrane than some
mammalian species, such as human and bovine [6]. These characteristics are believed to
make these cells more vulnerable to damage in the freezing process. During the freezing
process, the chance of damage to the sperm plasma membrane greatly increases due to the
crystallization of water [50]. The imbalance between cellular antioxidant defense systems
and reactive oxygen species (ROS) production during freezing leads to oxidative stress,
which some reports claim is the main cause of the sperm-freezing damage [106]. The
ROS can induce detrimental changes during the process of cryopreservation of rooster
semen [107,108]. The increased ROS together with reduced antioxidants can result in
extensive changes in the plasma membrane and its function [109]. Changes in the sperm
mitochondrial membrane potential were also associated with an increase in ROS, which
altered the activity of enzymes associated with ATP production in mitochondria and further
mitochondria DNA damage [110,111].

Under normal circumstances, sperm and seminal plasma have antioxidant systems
that remove the ROS and prevent internal cell damage. There are two types of antioxidants:
enzymatic antioxidants such as glutathione peroxidase (GPx), glutathione reductase (GR),
superoxide dismutase (SOD), and catalase (CAT). Figure 4 provides the reactions catalyzed
by GPx, SOD, CAT and GR to deal with ROS. Non-enzymatic antioxidants, such as vitamin
E, selenium, cysteine, L-carnitine, taurine, resveratrol, and hyaluronic acid [112]. The
addition of antioxidants such as vitamin E, selenium, cysteine, superoxide dismutase,
L-carnitine, taurine, resveratrol, and hyaluronic acid to the freezing extenders counteracts
such negative effects during the cryopreservation of rooster semen (Table 2). In recent
years, many researches have focused on the application of the nanostructured lipid carrier
(NLC). The cryopreservation of rooster sperm with 15 mM quercetin-loaded NLC group
improved sperm quality parameters, and it may be the high potential antioxidant for the
improvement of rooster pos-thaw sperm fertility performance [6]. Furthermore, when
there was supplementation of the extender with 40 µM resveratrol and resveratrol-loaded
NLC, there was also a positive effect on the fertility of post-thaw rooster sperm [113]. It is
concluded that 15% egg yolk can be used in the cryopreservation protocol of Indian red
jungle fowl sperm, which results in higher motility, plasma membrane integrity, viability,
acrosome integrity and fertility [69]. Egg yolk and soybean lecithin are successfully used
as cryopreservation mediums for sperm cryopreservation in a variety of species. A study
concluded that the extender containing 20% egg yolk plasma and 1% soybean lecithin
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resulted in higher quality of frozen–thawed sperm, and it may be a good alternative to
conventional extenders that contain the whole egg yolk [78]. The study first studied the
influence of soy lecithin nanoparticles on the cryopreservation of rooster semen, and found
that soy lecithin nanoparticles dosage of 1.0% in the semen extender had a positive influence
on the post-thaw quality in roosters, improving various sperm motion parameters, and
reducing the oxidative stress during the cryopreservation process [114]. In a word, new
semen freezing additives are constantly being developed, which should be further explored
in combination with new technologies to improve semen-freezing efficiency.
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The success and efficiency of the cryopreservation of semen from birds or mammals
differ among species, breeds and lines. These differences in part relate to intrinsic sperm
“freezability”. Bulls, rams, horses, and boars have been reported to be more sensitive to
thermal shock than humans, rabbits, cats, and dogs [115]. Studies have shown that there are
differences in the freezing resistance of sperm from individual boars [116], even from the
same ejaculation [117]. The freezability of poultry spermatozoa is low compared with that
of a number of (mammalian) species [19]. Membranes are associated with the resistance of
sperm to cooling, which is influenced by the chemical composition or temperature changes
of the extender, which may be used to predict the fertility of frozen sperm [114]. Different
varieties of poultry sperm have different levels of lipid composition on the surface of
the plasma membrane, which may affect its quality to withstand against various storage
conditions such as cooling and freezing [83]. The contents of fructose, MDA and SOD, in
spermatozoa were closely related to the freezability of spermatozoa. It was reported that
MDA in the seminal plasma significantly increased after freezing and thawing, while SOD
activity in seminal plasma significantly decreased [118]. In addition, some results formally
test and support the hypothesis that inter-individual differences in sperm freezability are
genetically inherited rather than being random [15]. Recent developments in the various
OMICS technologies lead to a better understanding of semen molecular mechanisms
involved in sperm fertility. It has become popular to study the effects of chicken sperm
cryopreservation using newly emerging various OMICS technologies. The identification
and validation of OMICS biomarkers, such as some genes, proteins, and metabolites,
related to seminal plasma and sperm greatly impact the improvement of the reproductive
performance of roosters [119]. Proteomics studies of sperm decipher and identify the
biomarkers of sperm freezability and fertility [120–123]. These studies revealed that the
most impacted proteins during the freezing–thawing process were involved in energy
metabolism, hydrolase activity, signal transduction, and sperm motility. Some stress-
related genes were also observed in sperm transcriptomes, such as CIRBP, RHOA, HSP70,
and HSP90 [124]. ODF2, HSP90AA1, AKAP3, AKAP4, VDAC2, TP1, and ACRBP were
associated with good freezability of sperm [125]. High AKAP4 or AKAP3 expression in
frozen–thawed sperm was associated with premature capacitation [126]. RNA sequencing
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(RNA Seq) has been used to evaluate RNA and quantity in post-thaw sperm, and some
mRNA, microRNA (miRNA), and small non-coding RNA may be used as biomarkers
of male reproductive performance [127]. Some metabolites, such as 2-oxoglutarate and
fructose, have been identified as potential biomarkers for the quality and fertility of frozen
bull sperm [128]. The cryopreservation of sperm leads to a significant decrease in DNA
methylation, H3K9 acetylation, and H3K4 methylation [129]. The mechanisms underlying
differences in sensitivity to sperm freezing in different species are complex as there are
potential confounding factors to be considered.

5. Conclusions

In conclusion, sperm cryopreservation is a suitable method to preserve and expand
invaluable poultry genetic resources. The current research field is rich and has made great
progress. This significant research topic deserves further effort focusing on the exploration
of alternative non-toxic CPAs and refines their protective effects. Modern omics technology
should be used to further explore and reveal the mechanism of sperm freezability to
generate new strategies to improve chicken sperm cryopreservation efficiency.

Author Contributions: Conceptualization, J.C., Y.L. and Y.Z.; data curation, Y.Z., Y.L., Y.S. and T.M.;
Resources, J.C. and Y.S.; Writing-original draft, Y.Z. and Y.L.; Writing-review and editing, Y.Z., Y.S.,
Y.L., G.M.K.M., T.M. and J.C. All authors contributed to the interpretation of the article. All authors
have read and agreed to the published version of the manuscript.

Funding: National Natural Science Foundation of China and The Egyptian Academy of Scientific
Research and Technology (grant number 31961143028), National Key Research and Development
Program of China (grant number 2021YFD1200305), China Agriculture Research Systems (grant
number CARS-40), and National Germplasm Bank of Domestic Animals (2021–2022).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Torres, L.; Hu, E.; Tiersch, T.R. Cryopreservation in fish: Current status and pathways to quality assurance and quality control in

repository development. Reprod. Fertil. Dev. 2016, 28, 1105–1115. [CrossRef] [PubMed]
2. Mehaisen, G.M.K.; Elomda, A.M.; Hamad, S.K.; Ghaly, M.M.; Sun, Y.; Li, Y.; Zong, Y.; Chen, J.; Partyka, A.; Nazmi, A.; et al. Effect

of dimethylacetamide concentration on motility, quality, antioxidant biomarkers, anti-freeze gene ex-pression, and fertilizing
ability of frozen/thawed rooster sperm. Animals 2022, 12, 2739. [CrossRef]

3. Nizam, M.Y.; Selcuk, M. Evaluation of rooster semen frozen with shilajit containing extender. In Proceedings of the EDUVET
Veterinary Sciences Congress, Online, 25–27 June 2021; pp. 25–27.

4. Moreira, S.S.J.; Lago, A.E.D.A.; Moura, A.A.A.; Silva, A.R. Impact of seminal plasma composition on sperm freezability in wild
mammals: A review. Biopreserv. Biobank. 2022, 20, 90–96. [CrossRef] [PubMed]

5. Oldenhof, H.; Wolkers, W.F.; Sieme, H. Cryopreservation of semen from domestic livestock: Bovine, equine, and porcine sperm.
Methods Mol. Biol. 2021, 2180, 365–377. [PubMed]

6. Najafi, A.; Kia, H.D.; Mehdipour, M.; Hamishehkar, H.; Alvarez-Rodríguez, M. Effect of quercetin loaded liposomes or nanos-
tructured lipid carrier (NLC) on post-thawed sperm quality and fertility of rooster sperm. Theriogenology 2020, 152, 122–128.
[CrossRef] [PubMed]

7. Blesbois, E. Current status in avian semen cryopreservation. World’s Poult. Sci. J. 2007, 63, 213–222. [CrossRef]
8. Polge, C.; Smith, A.U.; Parkes, A.S. Revival of spermatozoa after vitrification and dehydration at low temperatures. Nature 1949,

164, 666. [CrossRef]
9. Woelders, H. Cryopreservation of avian semen. Methods Mol. Biol. 2021, 2180, 379–399.
10. Yánez-Ortiz, I.; Catalán, J.; Rodríguez-Gil, J.E.; Miró, J.; Yeste, M. Advances in sperm cryopreservation in farm animals: Cattle,

horse, pig and sheep. Anim. Reprod. Sci. 2021, 246, 106904. [CrossRef]
11. Svoradova, A.; Kuzelova, L.; Vasicek, J.; Balazi, A.; Chrenek, P. Perspective: Rooster spermatozoa cryopreservation and quality

assessment. Cryo. Lett. 2021, 42, 59–66.

http://doi.org/10.1071/RD15388
http://www.ncbi.nlm.nih.gov/pubmed/26739583
http://doi.org/10.3390/ani12202739
http://doi.org/10.1089/bio.2021.0026
http://www.ncbi.nlm.nih.gov/pubmed/34726507
http://www.ncbi.nlm.nih.gov/pubmed/32797421
http://doi.org/10.1016/j.theriogenology.2020.04.033
http://www.ncbi.nlm.nih.gov/pubmed/32402991
http://doi.org/10.1017/S0043933907001419
http://doi.org/10.1038/164666a0
http://doi.org/10.1016/j.anireprosci.2021.106904


Agriculture 2023, 13, 445 12 of 16

12. Di Iorio, M.; Rusco, G.; Iampietro, R.; Colonna, M.A.; Zaniboni, L.; Cerolini, S.; Iaffaldano, N. Finding an effective freezing
protocol for turkey semen: Benefits of ficoll as non-permeant cryoprotectant and 1:4 as dilution rate. Animals 2020, 10, 421.
[CrossRef] [PubMed]

13. Mohammad, M.S.; Mardenli, O.; Amin AL-Tawash, A.S. Evaluation of the cryopreservation technology of poultry sperm: A
review study. IOP Conf. Ser. Earth Environ. Sci. 2021, 735, 12016. [CrossRef]

14. Xia, L.; Lalli, M.F.; Ansah, G.A.; Buckland, R.B. Ultrastructure of fresh and frozen-thawed spermatozoa of high and low fertility
lines of chickens. Poult. Sci. 1988, 67, 819. [CrossRef] [PubMed]

15. Holt, W. Fundamental aspects of sperm cryobiology: The importance of species and individual differences. Theriogenology 2000,
53, 47–58. [CrossRef]

16. Zhu, H.; Zhu, Y.; Sun, C.; Jiang, F. A preliminary study on the evaluation of human sperm head morphology with a domestic
digital holographic image system. Phenomics 2022, 2, 130–135. [CrossRef]

17. Wiebke, M.; Hensel, B.; Nitsche-Melkus, E.; Jung, M.; Schulze, M. Cooled storage of semen from livestock animals (part I): Boar,
bull, and stallion. Anim. Reprod. Sci. 2021, 246, 106822. [CrossRef] [PubMed]

18. Grigg, G.W.; Hodge, A.J. Electron microscopic studies of spermatozoa: I. The morphology of the spermatozoon of the common
domestic fowl (Gallus domesticus). Aust. J. Sci. Res. Ser. B 1949, 2, 271–286. [CrossRef]

19. Blesbois, E.; Grasseau, I.; Seigneurin, F. Membrane fluidity and the ability of domestic bird spermatozoa to survive cryopreserva-
tion. Reproduction 2005, 129, 371–378. [CrossRef] [PubMed]
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