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METHOD Open Access

ChiCMaxima: a robust and simple pipeline
for detection and visualization of chromatin
looping in Capture Hi-C
Yousra Ben Zouari1,2,3,4, Anne M. Molitor1,2,3,4, Natalia Sikorska1,2,3,4, Vera Pancaldi5,6,7 and Tom Sexton1,2,3,4*

Abstract

Capture Hi-C (CHi-C) is a new technique for assessing genome organization based on chromosome conformation

capture coupled to oligonucleotide capture of regions of interest, such as gene promoters. Chromatin loop detection

is challenging because existing Hi-C/4C-like tools, which make different assumptions about the technical biases

presented, are often unsuitable. We describe a new approach, ChiCMaxima, which uses local maxima combined with

limited filtering to detect DNA looping interactions, integrating information from biological replicates. ChiCMaxima

shows more stringency and robustness compared to previously developed tools. The tool includes a GUI browser for

flexible visualization of CHi-C profiles alongside epigenomic tracks.

Keywords: Promoter-enhancer interactions, Chromatin loops, Capture Hi-C, Biological replicates, Gene regulation,

Chromatin assortativity

Background

The advent of the chromosome conformation capture

(3C) technology [1] allowed higher-order chromosome

folding to be inferred by identifying spatial proximity be-

tween distal genomic sequences, leading to a compre-

hensive insight of genome topology. As sequencing

throughput has increased, it has become feasible to glo-

bally assess all chromatin interactions within a popula-

tion (4C: “one-to-all”; 5C: “many-to-many”; Hi-C:

“all-to-all” methods) simply by sequencing all 3C ligation

products or a selected subset of them [2–5]. In fact,

Hi-C interaction maps can give insight into chromosome

folding at different scales, depending on the sequencing

depth (and hence resolution) of the study [6, 7]. How-

ever, the strength of Hi-C in assessing all possible chro-

matin interactions is also one of its major disadvantages:

the numbers of possible ligation products that can be

detected is much greater than the current sequencing

output. Recently, several groups have coupled Hi-C (or

another 3C derivative) to sequence capture with pools of

oligonucleotides complementary to thousands of restric-

tion fragment ends [8–12]. Such “CHi-C” (Capture

Hi-C) methods allow the simultaneous and higher reso-

lution mapping of chromatin interactions for large sub-

sets of the genome, such as all promoters or DNase

hypersensitive sites. For example, promoter-centered

interactomes have already been used to assign epige-

nomic status and follow enhancer looping dynamics

throughout development, as well as to characterize

disease-linked intergenic sequence polymorphisms [13–

17]. Despite being highly informative, CHi-C datasets

have specific properties that set them apart from other

3C-like techniques, which require specialized analytical

tools to take these aspects into account. The majority of

CHi-C strategies involve large numbers (thousands) of

genomically dispersed baits for which interacting regions

are detected. The asymmetry between the number of

baits and the number of detected interacting regions

leads to an asymmetry of CHi-C contact matrices, con-

founding standard Hi-C normalization approaches. In

addition, individual baits have variable capture efficien-

cies which introduce additional technical biases. De-

pending on the bait design, CHi-C datasets will be more

or less populated with ligation products between two

bait fragments (“double-captured” interactions), as well
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as between bait and non-bait (“single-captured”), which

may complicate bias assessment even further.

As for all genome-wide datasets, the challenges for

CHi-C analysis are in the appropriate definition of an

expected background level, from which “significant” sig-

nal can be resolved, and in the development of correct

normalization strategies to reduce the impact of

non-biological biases. Up to now, three major methods

have been described for CHi-C analysis: GOTHiC [18],

HiCapTools [19], and CHiCAGO [20]. GOTHiC, actu-

ally developed for interaction calling in Hi-C, employs a

very simplistic binomial test coupled with multiple test-

ing correction to search for overrepresented interactions,

but does not explicitly take into account known features

of Hi-C data, such as the heavy dependence of “back-

ground” interactions on genomic distance, let alone as-

pects of CHi-C such as capture bias. HiCapTools uses a

substantial portion of negative control probes within the

design to better estimate “background” chromosome

folding behavior, over which specific looping events can

be calculated. However, sufficient numbers of controls

are rarely included in many CHi-C applications, limiting

the widespread use of this method. CHiCAGO uses a

statistical background model to account for different

biases in promoter-CHi-C data, combining three factors

to define the expected background interaction level: gen-

omic distance, bait capture efficiency, and technical

biases present in Hi-C and sequencing approaches [20].

These parameters are fitted to the data to define an ex-

pected interaction strength for each individual restric-

tion fragment, based on a combined negative binomial

and Poisson variable. However, the treatment of each

single fragment as an independent variable creates prob-

lems when accounting for biological replicates, since

despite its improved coverage compared to Hi-C,

current depths of CHi-C datasets still vastly sub-sample

the possible space of ligation products. As a result, many

reproducible chromatin loops observed at the resolution

of larger bins of pooled restriction fragments are lost

when scoring individual restriction fragments (Add-

itional file 1: Figure S1). Related to this, it also follows

that chromatin interactions comprising contiguous frag-

ments of increased signal, centered on an interaction

peak, are less likely to result from technical artifacts

than isolated “spikes” of CHi-C signal. CHiCAGO uti-

lizes the same geometric mean approach as DESeq2 [21]

to allow weighting for different read depths of different

replicates, but this may not completely counter the

problem, especially if there is a large discrepancy in

numbers of sequence reads between replicates. We tried

to overcome these existing limitations of CHi-C analysis

methods and developed ChiCMaxima, which we applied

to multiple published promoter CHi-C datasets, includ-

ing mouse embryonic stem (mES) cells with different

restriction enzyme and probe design strategies [10, 11],

and nine different human primary hematopoietic cell

types [13]. Benchmarking against GOTHiC and CHi-

CAGO consistently showed that ChiCMaxima was a

more stringent method for interaction calling, but more

robust to handling undersampling when comparing bio-

logical replicates. Further, ChiCMaxima gave a higher

enrichment for interactions containing hallmarks of

regulatory chromatin, such as histone modifications in-

dicative of enhancers or CTCF binding sites, suggesting

that its false positive detection rate for functional chro-

matin loops may be lower than for the other methods.

Analysis of the chromatin contact network resulting

from ChiCMaxima-called interactions in mES cells iden-

tified potential key roles of Polycomb proteins and

elongating RNA polymerase II, in line with previous

findings [22], further demonstrating the utility of ChiC-

Maxima. In addition to the pipeline for calling CHi-C

interactions, we also present ChiCBrowser, a

user-friendly and flexible browser for inputting whole

CHi-C datasets and then normalizing and visualizing

bait-specific interaction profiles. Tracks of annotated

genes and linear epigenomic profiles can also be added

to the browser, and called interactions (whether by

ChiCMaxima or other methods) can also be highlighted.

This tool, whether used standalone or in parallel with

ChiCMaxima interaction calling, will aid the community

to analyze CHi-C datasets and inform new hypotheses.

Results

Methodological foundation of ChiCMaxima

Calling interactions as signal local maxima

In 3C approaches, genomic distance has an important

impact on the expected frequency of interactions. Gen-

erally, the frequency of interactions decays with a power

law as the genomic distance between fragments in-

creases, consistent with many polymer physics models

[4]. DNA loops correspond to a peak of higher inter-

action signal compared to the expected level of neighbor

fragments on either side; this principle was used to de-

tect loops in some of the first 3C studies [23]. To detect

peaks in the signal, we use a naïve, non-parametric ap-

proach to call local maxima, making limited prior as-

sumptions about the data (Fig. 1). The theoretical basis

and proof of principle of ChiCMaxima is presented

below; an operational guide and breakdown of the pipe-

line’s different tools is detailed in Additional file 2.

First, treating each bait independently and removing

bait-to-bait and inter-chromosomal interactions, we ob-

tain a “virtual 4C” profile of read counts relative to the

genomic position of the non-bait fragment and perform

loess smoothing on this profile. The fragments with the

maximum signal are identified within sliding windows of

a fixed fragment number, and local maxima are defined
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as regions where the smoothed signal equals this value.

With this approach, only three parameters need to be

controlled: the span of the loess smoothing (s), the win-

dow size (w) for the local maximum computation, and

the total genomic span (c, for cis-distance from bait)

over which local maxima are assessed. Over-smoothing

or using too large window size may cause some maxima

to be missed, and under-smoothing or small window

sizes may call many local spikes as spurious interactions.

We performed a parameter sweep for local maxima call-

ing on a subset of mES promoter CHi-C data (all cov-

ered pairwise contacts (~ 1.5 million) for 2000 randomly

sampled baits within a single biological replicate). We

found that the numbers of interactions called most

heavily depended on the w parameter (Additional file 1:

Figure S2a, b; see Additional file 3 for the full

exploration of ChiCMaxima parameters). As expected, lar-

ger w provided the greatest stringency, calling fewer max-

ima which were supported by greater numbers of

sequencing reads. However, large w also placed a heavy

bias on calling the shortest-range interactions, potentially

precluding detection of the functional chromatin loops

that are known to take place over megabase scales [24–

26]. Changes to the s or c parameters made relatively little

difference to interaction calling (see Additional file 3). Re-

gardless of the choice of ChiCMaxima parameters, we ob-

served that local maxima with very low signal, often very

distant from the bait (and thus with a negligible back-

ground signal from neighboring fragments), are still called

as “interactions” (Fig. 1a). We thus opted to remove these

spurious calls with additional filtering.

Bait-specific filtering

According to previous work on CHi-C data [20], the

background interaction level at short genomic distances

(up to ~ 1.5Mb) is largely dominated by genomic separ-

ation (proposed to be caused by Brownian collisions of

the chromosome fiber). In CHiCAGO, a cubic-fitted

log-distance function was derived from the geometric

means of read counts for binned genomic separations

and was then scaled with capture bias estimates in the

final derived background distribution [20]. Inspired by

A

B

Fig. 1 Interaction calling by ChiCMaxima. a Virtual 4C profile derived from one mES CHi-C replicate centered on the bait Adamts10 promoter. The

numbers of raw CHi-C sequence reads are plotted as gray circles against their genomic location, and the black line shows the loess-smoothed

profile (span = 0.05). Red dotted lines and filled circles denote the positions of called interactions, defined as local maxima of smoothed signal

within a fixed number of covered restriction fragments (window = 20). b The same virtual 4C profile as a, plotted with a bar chart of the

geometric means for sequence reads from the profile, stratified by genomic distance between the bait and interacting region (bins of 30 kb). Red

dotted lines and filled circles denote the same local maxima as a, which have smoothed signal greater than the geometric mean for the

corresponding interaction distance, and so are kept as ChiCMaxima-called interactions
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this, we searched for similar but bait-specific approaches

to apply to each virtual 4C profile. The advantage of this

approach is that the data from different baits, which may

reside in very different chromatin environments, do not

need to be pooled together. The major limitation is that

the relative paucity of bait-specific data could lead to

overfitting in the model, particularly if a strong inter-

action causes overestimation of “background” signal

around it. Indeed, we found that cubic or linear fits of

bait-specific log-distance functions performed poorly—

very few called maxima were filtered out as having fewer

supporting reads than the background estimate (Add-

itional file 1: Figure S2c, d). Instead, we noted better re-

moval of spurious weak interactions by simply filtering

out called maxima with fewer supporting reads than the

geometric mean for bait-specific contacts within the cor-

responding genomic separation bin (Fig. 1b). Import-

antly, this filter allowed us to improve the confidence of

called interactions using smaller maximum-calling win-

dows (w parameter), maintaining stringency while redu-

cing the bias for shorter-range interactions. This

approach was robust to different widths of the genomic

separation bins, b, used for computing geometric means

(see Additional file 3 for full details). The major limita-

tion of this approach is that it only serves to remove

spuriously called local maxima and does not provide a

meaningful background model of “expected” contacts.

As a result, ChiCMaxima calls interactions without giv-

ing a measure of interaction strength. Based on our par-

ameter sweep, we opted for the following parameters for

the majority of subsequent analyses: w 50 fragments; s

0.05; c 1.5Mb; b 30 kb.

Accounting for biological replicates

Although CHi-C improves on the resolution afforded by

conventional Hi-C, it remains an under-sampled

method. Although taking the intersection of called inter-

actions from all replicates will give the highest-confi-

dence chromatin loops, the false negative rate appears to

be very high from this approach, due to poor reproduci-

bility at the single restriction fragment level, both for

CHiCAGO and for the better-performing ChiCMaxima

(Additional file 1: Figure S1). We noted that many inter-

action peaks from one biological replicate also had adja-

cent or very close peaks in the second replicate, even

though they were not at exactly the same restriction

fragment (Additional file 1: Figure S3a). To see if these

are likely to represent the same biological interactions,

we assessed more systematically the distributions of gen-

omic distance between interacting regions called in one

biological replicate and the closest interaction called in

the second replicate of the mES CHi-C data (Add-

itional file 1: Figure S3b). Indeed, around one fifth of

ChiCMaxima-called interactions had no genomic

separation across replicates, meaning that they were on

the same or directly contiguous restriction fragment,

and more than a third of all interactions were found

within 20 kb (~ 5 HindIII restriction fragments), suggest-

ing that genomic interactions called by CHi-C can in-

deed be reproducibly called across replicates, albeit at a

lower resolution than single restriction fragments. To

add more flexibility for analyzing biological replicates,

ChiCMaxima allows a threshold distance between re-

ported peaks in biological replicates to be defined by the

user (d: default in the tool is 0). After local maximum

computation and filtering on each biological replicate,

these interactions are further filtered to retain only those

where an interaction is also called within distance d in

all other biological replicates. Unless stated otherwise,

CHi-C analysis in this manuscript is performed with the

parameter d = 20 kb. ChiCMaxima also provides a tool

for assessing the distributions of closest distances be-

tween interactions called in pairs of biological replicates,

better informing the user on their choice of the d par-

ameter (see Additional file 2 for details).

Benchmarking of ChiCMaxima

We performed ChiCMaxima on a published mES pro-

moter CHi-C dataset [11] and compared our results with

published ones from GOTHiC and CHiCAGO applied to

the same dataset [11, 20] (Table 1; Additional file 4: Table

S1). On visual inspection, ChiCMaxima successfully iden-

tified clear promoter interactions, some of which we also

validated by 4C, and seemed to call fewer spurious ones

than the other two methods (Fig. 2). Indeed, ChiCMaxima

identified fewer promoter-centered interactions (23,583)

than CHiCAGO (94,148) or GOTHiC (548,551). Pairwise

comparisons revealed a striking dissimilarity of called in-

teractions across all three methods—with the exception of

ChiCMaxima interactions within the GOTHiC set, the

majority of called interactions from one method is not

shared with those of another (Fig. 3a). This is likely due to

the very different assumptions made in the models for

each method. We next sought to compare the perform-

ance of each method in calling chromatin interactions that

are most likely to be functionally relevant, and minimizing

likely false positives. First, we tested the hypothesis that

ChiCMaxima, in calling fewer interactions than the other

two methods, was the most stringent tool, calling only

higher-confidence interactions. We split the interaction

sets called by CHiCAGO or GOTHiC into those that were

recapitulated, or not, by ChiCMaxima. In both cases, the

interactions maintained in ChiCMaxima had significantly

higher metrics of interaction score (weighted probability

score in CHiCAGO [20]; observed/expected ratio in

GOTHiC [18]) than for interactions called by the other

method alone (Fig. 3b; P < 2 × 10−16, Wilcoxon rank sum

test). Interactions conserved by CHiCAGO and GOTHiC
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Table 1 Overview of CHi-C interactions called by CHiCAGO, GOTHiC, and CHiCMaxima

CHiCAGO [20] GOTHiC [11] ChiCMaxima (this manuscript) ChiCMaxima and CHiCAGO

Number of called interactions 94,148 548,551 23,583 5611

Mean number of called interactions per bait 4.2 29.4 1.4 0.34

A

B

Fig. 2 ChiCMaxima precisely calls chromatin interactions. a mES CHi-C (upper panel) and 4C (lower panel) profiles centered on the bait Dek

promoter are shown. The interactions called by ChiCMaxima and CHiCAGO are denoted as stripes (gray and pink, respectively); points denote

interactions called by GOTHiC. GOTHiC seemingly calls many spurious interactions. b mES CHi-C (upper panel) and 4C (lower panel) profiles

centered on the bait Hoxc5 promoter are shown. The interactions called by ChiCMaxima are denoted as gray stripes, and a large number of

seemingly spurious interactions called by CHiCAGO are denoted as red points. Called interactions conserved between ChiCMaxima and CHiCAGO

are centered on CTCF sites. For both profiles, gene position (blue) and CTCF ChIP-seq profiles (dark green) are shown below the CHi-C and

4C profiles
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calling also had significantly higher observed/expected ra-

tios than interactions called in GOTHiC alone, but with a

much more modest effect size. We thus conclude that

ChiCMaxima is indeed the most stringent of the CHi-C

interaction calling methods, calling the higher-confidence

interactions of the other methods.

Epigenomic analysis of ChiCMaxima-called interactions

One of the major perceived applications of CHi-C is to as-

sign target genes to candidate cis-regulatory elements, par-

ticularly enhancers, by virtue of the specific interactions

they make with promoters. Genomic studies revealed that

enhancers share hallmark chromatin features: monomethy-

lation of histone H3 lysine-4 (H3K4me1), DNase-hypersen-

sitivity, acetylation of histone H3 lysine-27 (H3K27ac), and/

or p300 co-activator occupancy [27]. However, despite epi-

genomic predictions of enhancers in numerous cell types,

unambiguous identification of their target genes has proved

more elusive, since they can control multiple genes and

may skip one or several promoters to act over large dis-

tances [28]. Promoter CHi-C studies have indeed shown a

general enrichment in interacting regions bearing enhancer

A

B

C

Fig. 3 Comparison of ChiCMaxima, CHiCAGO, and GOTHiC on mES CHi-C data. a Venn diagrams showing numbers of interactions called by the

three different methods which are conserved with the other methods. b Box plots comparing the CHiCAGO (left) or GOTHiC (center and right)

metric scores of interaction strength for the sets of interactions called by CHiCAGO (left) or GOTHiC (center and right) which are conserved with

those called by ChiCMaxima (left and center) or CHiCAGO (right), versus those which are not. ***P < 2 × 10−16; Wilcoxon rank sum test. c Bar

charts showing fold enrichment over genomic background for different ChIP-seq peaks within the promoter-interacting sequences determined

by the different CHi-C analysis methods
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chromatin signatures [8, 10, 11], as well as for regions

bound by CTCF, a known factor implicated in chromatin

loops [29]. We reasoned that an interaction calling method

that found the greatest proportion of putative enhancers

and/or CTCF sites within a promoter CHi-C dataset was

most likely to have the best true positive detection rate.

Based on this, ChiCMaxima compares favorably to the

other two methods. It has a higher enrichment for interact-

ing regions containing CTCF, H3K27ac, and H3K4me1

(Fig. 3c), with a ~ 2-fold improvement over CHiCAGO and

~ 5-fold improvement over GOTHiC. The enrichment in

these functional hallmarks is decreased when the d param-

eter of ChiCMaxima is reduced to zero, but is still slightly

better than CHiCAGO. Chromatin interaction networks

mediated by Polycomb group proteins have also been well

described in embryonic stem cells [17, 22, 30, 31]. Reflect-

ing this, promoter-interacting regions called by ChiCMax-

ima and CHiCAGO are also comparably and highly

enriched in binding for core components of the two major

Polycomb repressive complexes, Ring1B and Suz12 (Fig. 3c).

Importantly, ChiCMaxima has a consistently higher enrich-

ment for interacting regions containing CTCF and enhan-

cer marks when different ChiCMaxima caller parameters

are used (increasing or decreasing w; increasing c), further

demonstrating the robustness of the tool (Additional file 1:

Figure S4a and Table S2). Since more than half of

ChiCMaxima-called interactions are not conserved with

CHiCAGO, we also asked whether combining both

methods would improve predictive power further. Indeed,

the enrichment in functional hallmarks is even higher

within the 5611 interactions that are conserved in both

tools (Additional file 1: Figure S4b), indicating that combin-

ing the two methods gives the most stringent,

highest-confidence interactions that are the most likely to

be functionally relevant. However, the high enrichment for

functional marks within ChiCMaxima-alone (and to a

lesser extent for enhancer marks, CHiCAGO-alone) inter-

actions implies that many functional interactions are also

likely to be missed by intersecting the two methods. This is

also apparent on visual inspection of called interactions

within CHi-C profiles (Additional file 1: Figure S4c).

Additionally, we assessed which of the 19,200 candi-

date mES enhancers (based on chromatin signatures

[32]) could be assigned to target promoters by the differ-

ent methods (Table 2; Additional file 1: Table S3). As ex-

pected, the proportion of assigned enhancers scaled with

the numbers of total called interactions (71.4% for

GOTHiC, 19.2% for CHiCAGO, 16.8% for ChiCMax-

ima). However, candidate enhancers comprised a much

higher proportion of the ChiCMaxima-called interaction

set than for the other two methods (~ 3-fold higher than

CHiCAGO; ~ 5-fold higher than GOTHiC), in line with

the relative enrichments for individual regulatory marks.

The interactions called by both ChiCMaxima and CHi-

CAGO only assign target genes to 4.8% of putative en-

hancers, with a modest increase in proportions of

putative enhancers within the interaction set. Interaction

sets called by ChiCMaxima with different parameters

contained very similar proportions of candidate en-

hancers (Additional file 1: Table S3).

ChiCMaxima performance in other CHi-C datasets

To test whether the tuned ChiCMaxima parameters are

more globally applicable, and to more comprehensively

benchmark the method, we applied ChiCMaxima with

the standard parameters (w = 20, s = 0.05, b = 30 kb, c =

1.5Mb, geometric mean filter) to other published CHi-C

datasets. Notably, whereas ChiCMaxima and CHiCAGO

were readily applied to these data, we were unable to im-

plement GOTHiC due to the very high memory require-

ment of the method. First, we called interactions from a

complementary mES promoter CHi-C dataset (two bio-

logical replicates), which used a different probe design

and a more frequently cutting restriction enzyme, MboI,

in the HiCap strategy [10]. These present an analytical

challenge, since they have been relatively less deeply se-

quenced, and are derived from a much more complex

mixture of Hi-C ligation products (~ 200-fold more pos-

sible pairwise restriction fragment combinations). Des-

pite this greater complexity, the same proportion of

HiCap interactions were reproduced across biological

replicates within d = 20 kb as for CHi-C (~ 40%). Perhaps

due to its reliance on calling interactions at the level of

single restriction fragments within a more complex pool

of products, CHiCAGO called ~ 5-fold more interac-

tions from the HiCap data than from CHi-C; ChiCMax-

ima actually called 1.5-fold fewer interactions

(Additional file 5: Table S4). However, visual inspection

of the different calls on HiCap profiles, assessment of

CTCF, enhancer and Polycomb mark enrichments, and

the proportions of candidate enhancers contained within

the interaction sets strongly indicate that ChiCMaxima

Table 2 Overview of putative mES enhancers found within CHi-C interactions called by different methods

Putative mES enhancers in called interaction set Total called interactions/interactions with putative enhancers

ChiCMaxima 16.8% (3235) 7.3

CHiCAGO 19.2% (3680) 25.6

GOTHiC 71.4% (13711) 40.0

ChiCMaxima + CHiCAGO 4.8% (930) 6.0
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is the more stringent, robust interaction calling method

(Fig. 4).

We then compared ChiCMaxima and CHiCAGO

interaction calling within deeply sequenced CHi-C data-

sets derived from nine different primary human

hematopoietic cell types (erythroblasts; M0, M1, and M2

macrophages; megakaryocytes; monocytes; naïve CD4

and CD8 T cells; neutrophils) [13]. An additional test of

the analytical methods came from the presence of

greater numbers of biological replicates (3–4). For all

pairwise combinations of biological replicates, at least

50% of interactions were maintained within d = 20 kb.

We found that extending the ChiCMaxima method for

handling two replicates (keeping only interactions that

are present in both replicates, within a threshold dis-

tance, d (usually 20 kb), of each other) to three or four

performed well (see Additional file 2 for operational de-

tails). Strictly requiring that interactions are present

within a fixed window of d for all of the replicates called

similar numbers of interactions as for the two replicates

of mES CHi-C; furthermore, applying this method to the

datasets with four biological replicates (megakaryocytes

and naïve CD4 T cells) did not drastically reduce the

numbers of called interactions as compared to those

A

B

C

Fig. 4 ChiCMaxima performance on mES HiCap data. a mES HiCap profile centered on the Sox2 promoter. The interaction with the Sox2 enhancer

called by ChiCMaxima is denoted as a gray stripe, and CHiCAGO-called interactions, including a large number of seemingly spurious ones, are denoted

as red points. Gene position (blue) and selected mES ChIP-seq profiles (dark green) are shown below the HiCap profile. b Bar charts showing fold

enrichment over genomic background for different ChIP-seq peaks within the promoter-interacting sequences determined by ChiCMaxima and

CHiCAGO. c Overview of putative mES enhancers found within HiCap interactions called by ChiCMaxima and CHiCAGO
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with three replicates (Fig. 5a; Additional file 6: Table S5,

Additional file 7: Table S6, Additional file 8: Table S7,

Additional file 9: Table S8, Additional file 10: Table S9,

Additional file 11: Table S10, Additional file 12: Table

S11, Additional file 13: Table S12, Additional file 14:

Table S13). As previously, ChiCMaxima more stringently

calls fewer, higher-confidence interactions, which are ap-

parent on visual inspection of CHi-C profiles (Fig. 5b

and Additional file 1: Figure S5), and consistently gave

higher enrichment for putative enhancers, marked by

H3K27ac and H3K4me1 (Fig. 5c, d). Stricter filtering

among replicates, setting d to 0, gave similar epigenomic

enrichments to CHiCAGO, with ChiCMaxima nearly al-

ways performing slightly better.

Although there is not a large overlap between interac-

tions called by the two methods (Fig. 3a; Additional file 1:

Figure S4c), the possibility remains that ChiCMaxima

does not call interactions fundamentally differently to

CHiCAGO and just sets a higher threshold than the de-

fault CHiCAGO score. To formally test this, we also

compared epigenomic enrichments between interacting

regions called by ChiCMaxima, and the matched num-

ber of interactions with the highest scores in CHiCAGO

(Additional file 1: Figure S6). The CHiCAGO threshold

scores were not identical in the different cell types, but

were much higher than the standard threshold of 5. Im-

portantly, ChiCMaxima gave consistently higher enrich-

ments for H3K27ac and, to a lesser extent, H3K4me1,

suggesting that the method does more than simply

modulate the threshold of existing interaction calling

tools. Overall, these results suggest that ChiCMaxima

provides a good compromise of stringency and coverage

when assigning target genes to putative cis-regulatory el-

ements, with a robust set of parameters that can be glo-

bally applied to different CHi-C datasets.

Chromatin assortativity analysis comparing CHiCAGO and

ChiCMaxima derived contact networks

Despite great progress in the experimental mapping of

chromatin organization inside the nucleus, many ques-

tions regarding the functional impact of its structure re-

main unanswered. It is thus difficult to estimate the

accuracy of any interaction calling algorithm beyond the

performance on the few regions of the genome that are

well characterized. Moreover, alongside the known role

of interactions in bringing enhancer regions close to

their target genes and grouping Polycomb-repressed

genes, there might be other functionally relevant 3D

chromatin structures which we still do not understand,

hence the need for finding complementary analytical

methods to study the panorama of genome-wide interac-

tions. A recent step in this direction was made by look-

ing at chromatin contact maps as networks and applying

methods from network theory to gain a comprehensive

understanding of nuclear organization (e.g., [22, 33–35]).

For example, appreciation of the chromatin interaction

network topology bolstered the link between spatial gene

co-associations and their co-expression patterns [33]. An

important concept that was recently applied to chroma-

tin interaction networks is assortativity—which indicates

the extent to which genomic regions sharing the same

chromatin mark(s) preferentially interact. This property

is not trivially related to the relative abundance of a

mark at interacting regions, and highly assortative chro-

matin features are more likely to be related to chromatin

interactions. A recent study of mES chromatin interac-

tions identified three major chromatin features that were

highly assortative: the abundant H3K4me1 mark, fea-

tures of transcriptional elongation (predominantly RNA

polymerase II phosphorylated on serine-2 of the

C-terminal repeat domain (RNAPII-S2P) and trimethyla-

tion of lysine-36 of histone H3 (H3K36me3)), and the

relatively low abundance Polycomb group proteins and

associated histone marks (e.g., trimethylation of

lysine-27 of histone H3 (H3K27me3) [22]. To further

test the utility of ChiCMaxima, we applied chromatin

assortativity (ChAs) analysis to the network of

ChiCMaxima-called interactions and directly compared

it to the one derived by CHiCAGO for promoter-other

end interactions (Fig. 6; Additional file 1: Figure S7). Al-

though the relative abundances of the different chroma-

tin features were very similar (Pearson correlation

coefficient 0.98), and the three aforementioned categor-

ies of assortative chromatin features were identified by

the two methods (Pearson correlation coefficient 0.87

for ChAs values obtained on the two networks), some

differences were apparent. In particular, transcriptional

elongation hallmarks are very strongly flagged by ChiC-

Maxima. In addition to RNAPII-S2P and H3K36me3,

other features enriched within active gene bodies in ES

cells, such as dimethylation of histone H3 lysine-79

(H3K79me2) and CBX3 (HP1γ; associated with tran-

scriptional elongation and stem cell identity [36, 37]),

were also revealed to be highly assortative by ChiCMax-

ima. These results demonstrate that ChiCMaxima-called

interactions can be used in informative network analyses

and highlight promoter-gene body contacts as a poten-

tially important architectural feature for active genes

(see the “Discussion” section).

ChiCBrowser

To enable visualization of promoter (and other sparse

bait) CHi-C results, alongside linear epigenomic profiles

and the interactions called by ChiCMaxima or other

methods, we also developed ChiCBrowser, an R-based

GUI browser. Unlike the WashU browser [38], which

displays all interactions simultaneously and can be diffi-

cult to interpret visually, ChiCBrowser displays virtual
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A

B

C

D

Fig. 5 ChiCMaxima performance on CHi-C data from human primary hematopoietic cells. a Numbers of interactions called by ChiCMaxima and

CHiCAGO on the different datasets (three biological replicates for all, except for those denoted by an asterisk, which had four biological replicates).

b Erythroblast CHi-C profile centered on the IGF1R promoter. Interactions called by ChiCMaxima are denoted as gray stripes, and those called by

CHiCAGO are denoted as red points. Gene position (blue) and the erythroblast H3K27ac ChIP-seq profile (dark green) are shown below the CHi-C

profile. c Bar charts showing fold enrichment over genomic background for H3K27ac peaks within the promoter-interacting sequences determined

by ChiCMaxima and CHiCAGO for the nine hematopoietic cell types. d Bar charts showing fold enrichment over genomic background for H3K4me1

peaks within the promoter-interacting sequences determined by ChiCMaxima and CHiCAGO for the nine hematopoietic cell types
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4C profiles, with the bait and display window defined by

the user via a graphical window (Fig. 7). Its major func-

tionalities are described below; a full user guide is given

in Additional file 2.

All CHi-C datasets which may be plotted together or

compared are made into one input file (see Additional file 2

for input format details), which only needs to be loaded

once into the memory for all subsequent plots to be made.

A

B

Fig. 6 Exploration of chromatin assortativity of different features on the ChiCMaxima-generated chromatin contacts derived from the mES CHi-C

data. a Scatter plot of abundance of different chromatin features within the interaction networks called by ChiCMaxima or CHiCAGO. b Scatter

plot of chromatin assortativity of different chromatin features within the interaction networks called by ChiCMaxima or CHiCAGO (restricted to

promoter-other end interactions). The class of the different chromatin features is color coded
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To allow fairer comparisons between datasets, all

CHi-C-derived virtual 4C profiles are quantile normalized

[39] before the running mean values are plotted. Since

CHi-C experimental designs usually include biological

replicates and different conditions to be compared, ChiC-

Browser provides flexibility (via the Conditions menu) to

define the plot levels of each single CHi-C dataset. For ex-

ample (shown in Additional file 1: Figure S8), biological

Fig. 7 Some functionalities of ChiCBrowser. a A screenshot of ChiCBrowser, showing the mES CHi-C profile for 500 kb up- and downstream of

the bait Sox2 promoter. Gene positions (blue) and selected mES ChIP-seq tracks (green) are shown below the profile. The main ChiCBrowser user

interface window is shown underneath (left), where the bait and plot window have been specified. A sub-window, called from the Tracks menu

(right), allows the color and level of the epigenomic profiles to be controlled by the user. Epigenomic tracks that are given the same level (for

instance, the same histone mark in different tissues) are scaled to the same level on the y-axis so that the profiles are visually comparable. b As

for a, a screenshot of the mES CHi-C profile for 1 Mb up- and downstream of the bait Zbtb10 promoter. Open red rectangles show the position

of interactions called by ChiCMaxima. The sub-menu on the bottom right, called from the Interactions menu, allows the user to control which

interaction lists to annotate on the CHi-C plot
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replicates can be allocated to different levels and plotted

side by side to compare experimental reproducibility, or

given the same plot level, so that the mean profile can be

plotted for comparison with other experimental condi-

tions. The user can assign names to these plot levels and

change their plotting colors.

The Tracks menu allows the user to load gene annota-

tions (as a modified bed file; see Additional file 2), which

are plotted as blue arrows to show transcriptional orien-

tation, and linear epigenomic profiles in bigWig or bed-

Graph formats. Similar to the Conditions, the user can

define plot levels for epigenomic profiles (Fig. 7a). In this

case, this defines which profiles are scaled to the same

level on the y-axis, for instance allowing fairer compari-

son between profiles of the same histone mark mapped

in different tissue types. The epigenomic profile plot

colors can also be modified by the user.

Ostensibly, the Interactions menu allows the user to

load sets of interactions called by ChiCMaxima (or CHi-

CAGO, whose output is in the same format) for them to

be highlighted on the CHi-C profile (Fig. 7b). However,

the input format of these interactions is essentially the

chromosomal coordinates of genomic regions associated

with a specific bait (see Additional file 2 for details), so

this plotting functionality can be adapted to highlight

any subset of the CHi-C dataset that the user designs

(e.g., interactions unique to one condition or tissue type

and not another). This flexibility in particular makes

ChiCBrowser very useful to explore different hypotheses

when browsing interactomes. As for other ChiCBrowser

functions, the user can alter the name and color of these

annotations, as well as select or de-select subsets of

them.

Discussion

We present two tools for processing and interpretation

of Chi-C datasets: ChiCMaxima for interaction calling

and ChiCBrowser for bait-specific visualization of inter-

action profiles. Both were developed to overcome the

currently identified unique challenges presented by these

data. Despite a clear improvement over conventional

Hi-C with limited sequencing throughput, the main

issue with CHi-C outputs is that they are greatly

under-sampled, creating problems of reproducibility

across biological replicates at the highest resolutions

(Additional file 1: Figure S1 and S3). The subsequent

paucity of bait-specific data confounds the generation of

powerful statistical models, so previous methods either

appear to have high false positive rates (e.g., GOTHiC;

see Fig. 2), and/or rely on combining data from multiple

baits (e.g., CHiCAGO) to avoid overfitting model param-

eters. ChiCMaxima uses a limited number of model pa-

rameters to be estimated by naively just searching for

local maxima in the virtual 4C profiles (Fig. 1), a logic

for calling chromatin loops that was used in some of the

first 3C studies [23, 40]. Application of an additional filter

was necessary to remove spurious local maxima in distal

regions of low signal, and we found satisfactory results

from a simple threshold based on geometric means of

reads stratified by interaction distance (Additional file 1:

Figure S2; Additional file 3). For single datasets, only four

parameters need to be defined in ChiCMaxima: the win-

dow for local maximum computation, the loess smoothing

span, the total genomic span over which maxima are com-

puted, and the bin width for stratifying the geometric

mean filter. Of these, interaction calling is only very

sensitive to the local maximum computation window

(Additional file 3), and in any case, we found improved

performance over existing methods for a wide range of pa-

rameters (Additional file 1: Figure S4a), indicating that

ChiCMaxima is fairly robust to parameter choice. A major

advantage of ChiCMaxima is thus that interactions can

simply be called without the need to control or estimate

multiple parameters, or choose arbitrary thresholds. How-

ever, this advantage also means that ChiCMaxima does

not return measurements of statistical significance inter-

pretable as the interaction “strength” of the called chro-

matin loops. When comparing chromatin interactions

between different tissues or conditions, we find that quan-

tile normalization allows fair visual comparisons (e.g.,

Additional file 1: Figure S1 and S3), but further work will

be required to better define and quantify interaction

strength differences.

As mentioned previously, another major challenge

resulting from the undersampling of CHi-C data is the

handling of biological replicates. Presumably because it

processes sliding windows rather than treating each

restriction fragment independently, ChiCMaxima has

superior reproducibility to CHiCAGO, but this is still

less than 10% at the single restriction fragment level

(Additional file 1: Figure S1). Since many interactions

are reproduced at slightly lower resolutions

(Additional file 1: Figure S3), ChiCMaxima has a built-in

flexibility whereby interactions can be filtered for those

that are conserved in all replicates, within a user-defined

distance. The optimal distance may be expected to vary

between experiments, particularly with sequencing depth

and complexity of the assessed genome. For this reason,

we provide tools to allow the user to explore the distri-

butions of closest distances between interactions called

in pairs of replicates and thus determine the optimal set-

ting. However, for all 11 CHi-C datasets we tested, these

distributions were very similar, with ~ 40% of interac-

tions within 20 kb of each other in replicate experiments.

We also note that such an approach is robust to inclu-

sion of more than two biological replicates and that

ChiCMaxima performance was still better than other

methods at the most restrictive condition of allowing no
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distance between reproduced interactions within repli-

cates (e.g., Figs. 3 and 5), albeit with reduced sensitivity.

Despite the simplistic approach of ChiCMaxima, it com-

pares favorably to GOTHiC and CHiCAGO in various dif-

ferent benchmarks in different CHi-C experimental

setups, suggesting that it is one of the more stringent call-

ing methods (thus likely reducing false positives) to suc-

cessfully call a high proportion of interactions that are

likely to be functionally relevant (Figs. 3, 4, and 5). This in-

cludes tests of the following: reproducibility between bio-

logical replicates; increased metrics of interaction strength

within ChiCMaxima-called interactions; enrichment for

putative enhancer marks, CTCF binding sites, and

Polycomb-bound regions within promoter-interacting re-

gions; assignment of putative enhancers to target genes;

proportion of putative enhancers within the called inter-

action set; reduced apparent false positive rate on visual

inspection of CHi-C profiles (e.g., Fig. 2). We note

that promoter interactions with non-enhancer/CTCF/

Polycomb-bound elements may certainly be frequent

and functionally significant, albeit poorly characterized so

far. Indeed, all three methods call many interactions of

this category. However, the greater enrichment of

ChiCMaxima-called interactions for promoter-enhancer

loops that have been so well described in the literature,

coupled with their overall higher interaction score metrics

as called by other methods, suggests that ChiCMaxima is

the most stringent interaction calling method, but also re-

liably identifies interactions most likely to be functionally

relevant. However, the apparent inconsistency in inter-

action calls between the three methods (Fig. 3a), coupled

with the good enrichment for regulatory marks in

CHiCAGO-only interactions, suggests that ChiCMaxima

has some false negatives which are correctly detected by

CHiCAGO (the inverse also seems to be the case). Indeed,

the highest-confidence interactions are conserved between

CHiCAGO and ChiCMaxima, but the false negative rate

seems very high when relying on this stringent approach.

Although we present multiple lines of evidence suggesting

that ChiCMaxima has a lower false positive rate (higher

specificity) than previous methods, it is much more diffi-

cult to assess if and to what extent ChiCMaxima may have

an increased false negative rate (reduced sensitivity), fail-

ing to call “true” interactions. Visual inspection of CHi-C

profiles shows many cases where ChiCMaxima failed to

call an apparently real interaction that was found by CHi-

CAGO and vice versa, but in the absence of comprehen-

sive prior knowledge of the promoter interactome, we are

unable to quantify the methods’ sensitivities. Overall, we

recommend using ChiCMaxima when looking for global

features of chromatin interactions, since the false positive

rate seems lower, but combinations of ChiCMaxima and

CHiCAGO may be required to comprehensively explore

the interactomes of specific baits of interest. We also note

that ChiCMaxima, due to its dependence on searching for

local maxima, is not suitable for assessing ultra-long-range

or trans interactions, where the background signal is too

sparse for local maxima to even be called. Bait-to-bait in-

teractions should also not be assessed by ChiCMaxima,

since these double-captured interactions are highly likely

to appear as “artificial” local maxima when flanked by

single-captured, bait-to-non-bait interactions within slid-

ing windows. Finally, CHi-C strategies using tiled oligonu-

cleotides to intensively cover a contiguous domain [9, 41]

are better analyzed with the suite of tools adapted to the

contact matrices generated by 5C or Hi-C (e.g., adapta-

tions of my5C [42] or Juicer [43]).

As a further demonstration of the utility of ChiCMax-

ima, network analysis of called chromatin interactions

also identified the Polycomb-mediated interactome that

has been previously described in ES cells [17, 22, 30, 31]

(Fig. 6). Interestingly, the ChiCMaxima network also in-

dicates frequent contacts between promoters and the

bodies of active genes, a phenomenon which was also

identified by the same analysis of the CHiCAGO net-

work, but to a lesser extent [22], and was also reported

in a recent study assessing multiplex chromatin interac-

tions [44]. It is currently unclear whether this may be an

indirect effect of transcriptional elongation on topology

of the chromosome fiber [45], or reflects more specific

mechanisms of gene expression control. For example,

enhancers have been described to initially contact pro-

moters, but to additionally track along the gene during

transcriptional elongation [46], and promoter and en-

hancer interactions with specific exons have been impli-

cated in splicing control [47, 48]. Further studies will be

required to determine the functional significance, if any,

of such intragenic chromatin looping events, but ChiC-

Maxima seems to be a very useful tool for studying them

via CHi-C studies.

The ChiCBrowser tool is a flexible, user-friendly GUI

to generate virtual 4C profiles, necessary for visual in-

spection of most CHi-C datasets. It has a built-in

flexibility to allow biological replicates or different com-

binations of biological conditions to be assessed in paral-

lel, and a similar flexibility is also built into the

management of gene annotations and epigenomic pro-

files that are plotted alongside the CHi-C data (Fig. 7).

Called interactions, whether by ChiCMaxima or other

methods, can be easily highlighted on the display, based

on a simple input format that can be adapted to high-

light any subset of the CHi-C subset that may be of

interest to the user. Overall, this browser will be of use

to anyone wishing to explore CHi-C data.

Conclusions
Capture Hi-C, particularly strategies with sparse baits

such as promoters, is a rapidly growing technique

Ben Zouari et al. Genome Biology          (2019) 20:102 Page 14 of 19



hampered by the limited tools available to meet the

unique challenges of analyzing the datasets produced.

ChiCMaxima adopts a simplistic approach, with minimal

prior assumptions on the data, and successfully calls

CHi-C interactions, performing favorably with existing

methods in various benchmarks. Most notably, ChiC-

Maxima provides the flexibility to deal with problems of

reproducibility across biological replicates at high resolu-

tions, a persistent but often overlooked challenge of

CHi-C. Combined with the user-friendly, flexible ChiC-

Browser, we provide a suite of tools for CHi-C analysis

and visualization which will be of use to many in the nu-

clear organization community.

Methods

Datasets used in this study

Mouse ES CHi-C [11] and HiCap [10] data were down-

loaded from ArrayExpress (E-MTAB-2414) [49] and GEO

(GSE60495) [50], respectively; human hematopoietic cell

CHi-C data [13] were downloaded as CHiCAGO data ob-

jects from the Open Science Framework (https://osf.io/

u8tzp/) [51]. Interactions previously called by CHiCAGO

and GOTHiC from the mES CHi-C data were down-

loaded from GEO (GSE81503) [52] and ArrayExpress

(E-MTAB-2414) [49] respectively. Mouse ES ChIP-seq

data [53–55] were all downloaded from GEO: CTCF and

H3K27ac (GSE29218) [56]; H3K4me1 (GSE47082) [57];

Ring1B and Suz12 (GSE42466) [58]. All human

hematopoietic cell ChIP-seq data were obtained from the

BLUEPRINT consortium (ftp://ftp.ebi.ac.uk/pub/data-

bases/blueprint/data/homo_sapiens/GRCh37/) [59]. The

list of putative mES enhancers was taken from Table S1 of

Chen et al. [32].

Sample pre-processing

For all mES (CHi-C and HiCap) datasets, raw sequencing

reads were processed by custom perl and R scripts, origin-

ally derived from the Hi-C analysis pipeline developed in

[60], which entails mapping the paired reads with Bowtie

[61], pairing, removing common Hi-C artifacts (PCR du-

plicates, circularized fragments, non-digested fragments),

and then converting from genomic coordinates to restric-

tion fragment space. Operationally, this generates only

tiny differences from outputs of HiCUP [62]. Custom perl

scripts, explained in Additional file 2 and available on

Github [63], were used to convert paired bed files to the

input format for ChiCMaxima. These scripts can also be

applied to outputs of other Hi-C analysis tools, such as

HiCUP [62], HiC-Pro [64], or Juicer pre-inputs [43]. For

the human hematopoietic cell CHi-C datasets, total CHi-

CAGO output files were downloaded as R objects [51].

These comprise the downstream results of HiCUP pro-

cessing of the data and CHiCAGO analysis (on merged

biological replicates), resulting in a table containing all the

fields required for ChiCMaxima analysis (see Add-

itional file 2 for details), for all bait-linked interactions

covered by sequencing reads. These tables were manipu-

lated in R to make separate tables for each replicate in a

format compatible with the ChiCMaxima scripts and to

remove interchromosomal and bait-to-bait interactions.

ChiCMaxima

The suite of scripts, made for R version ≥ 3.2, and its full

documentation (including package dependencies, found

on Bioconductor or CRAN), is available on Github

(https://github.com/yousra291987/ChiCMaxima) [63]. A

full description of its usage, and how it is run on supplied

test data, is also provided in Additional file 2. In brief,

ChiCMaxima_Caller identifies interactions as local max-

ima of loess smoothed bait-specific interaction profiles

within single CHi-C datasets. ChiCMaxima_RepAnalysis

determines the distributions of the closest distance be-

tween interactions called in pairs of datasets, allowing the

user to select an optimal threshold for filtering “main-

tained” interactions within biological replicates. ChiCMax-

ima_MergeRep2 or ChiCMaxima_MergeRepMany then

applies this set distance threshold to identify interactions

that are conserved in two or more biological replicates, re-

spectively. Finally, ChiCMaxima_Collate is a utility script

that generates one large table from multiple CHi-C data-

sets, convenient for input into ChiCBrowser. Except

where stated specifically in the text, ChiCMaxima_Caller

was run on each single CHi-C replicate with the parame-

ters window_size = 20, loess_span = 0.05, cis_window =

1,500,000, and binwidth = 30,000. ChiCMaxima_Mer-

geRep2 or ChiCMaxima_MergeRepMany was run on their

outputs with the parameter repdist = 20,000.

ChiCBrowser

The browser is run from an R environment (version ≥

3.2), and its full documentation (including package de-

pendencies, found on Bioconductor or CRAN) is also

available on Github (https://github.com/yousra291987/

ChiCMaxima) [63]. A full user guide is also presented in

Additional file 2, along with examples of its use on sup-

plied test data. This browser or small variants in the

code (e.g., to show raw data instead of after smoothing

by running means in Additional file 1: Figure S1b) were

used to generate all the screenshot images presented in

the article.

CHiCAGO and GOTHiC interaction lists

The previously called lists of interactions from both

mES CHi-C replicates using CHiCAGO (GSE81503_-

mESC_PCHiC_merge_final_washU_text.txt; CHiCAGO

score ≥ 5) or GOTHiC (ESC_promoter_other_significan-

t_interactions.txt; log (observed/expected) ≥ 10) were

downloaded directly from their repositories [49, 52].
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CHiCAGO-called interactions from human primary

hematopoietic cell CHi-C datasets were downloaded dir-

ectly from their repository [51], and then filtered to re-

move interchromosomal and bait-to-bait interactions. For

each cell type, the interactions were called as those with

a score ≥ 5. For interaction calling within individual

biological replicates by CHiCAGO, interactions with a

score ≥ 5 were used after running CHiCAGO with de-

fault parameters (maxLBrownEst = 1,500,000; minFra-

gLen = 150; maxFragLen = 40,000; minNPerBait = 250;

binsize = 20,000; removeAdjacent = TRUE; adjBait2bait

= TRUE; tlb.filterTopPercent = 0.01; tlb.minProxOE-

PerBin = 50,000; tlb.minProxB2BPerBin = 2500; tech-

Noise.minBaitsPerBin = 1000; brownianNoise.samples =

5; brownianNoise.subset = 1000; brownianNoise.seed =

NA; weightAlpha = 34.11573; weightBeta = − 2.586881;

weightGamma = − 17.13478; weightDelta = − 7.076092).

The same parameters were used for CHiCAGO inter-

action calls on the HiCap data (both replicates treated

simultaneously). Intersections of called interactions

across biological replicates (Additional file 1: Figure

S1a) were found by searches for called interactions with

identical Bait_name and ID_OE columns.

Tuning ChiCMaxima parameters and filter choices

See Additional file 3 for details.

Assessing distances between potentially conserved

interactions across biological replicates

This is performed by ChiCMaxima_RepAnalysis. Pairs of

interaction files (the output of ChiCMaxima_Caller) are

split according to their bait, and one set is defined as the

query and the other set as the subject. For each non-bait

fragment within the query, the genomic distance to the

closest non-bait fragment within the subject set is found

by the utilities within the R GenomicRanges package [65].

4C interaction validation

J1 mouse ES cells were grown on gamma-irradiated

mouse embryonic fibroblast cells under standard condi-

tions (4.5 g/L glucose-DMEN, 15% FCS, 0.1 mM

non-essential amino acids, 0.1 mM beta-mercaptoethanol,

1 mM glutamine, 500 U/mL LIF, gentamicin), then pas-

saged onto feeder-free 0.2% gelatin-coated plates for at

least two passages to remove feeder cells. Cells were de-

tached with trypsin, washed by centrifugation in PBS, and

then fixed with 2% formaldehyde in mES culture medium

for 10min at 23 °C. The fixation was quenched with cold

glycine at a final concentration of 125mM, then cells were

washed with PBS and permeabilized on ice for 1 h with

10mM Tris-HCl, pH 8, 100mM NaCl, 0.1% NP-40, and

protease inhibitors. Nuclei were resuspended in DpnII re-

striction buffer at 10 million nuclei/mL concentration,

and 5 million nuclei aliquots were further permeabilized

by treatment for 1 h with 0.4% SDS at 37 °C, then a further

1 h with 2.6% Triton-X100 at 37 °C. Nuclei were digested

overnight with 1000U DpnII at 37 °C, then washed twice

by centrifuging and resuspending in T4 DNA ligase buffer.

In situ ligation was performed in 400 μLT4 DNA ligase

buffer with 20,000U T4 DNA ligase overnight at 16 °C.

DNA was purified by reverse cross-linking with an over-

night incubation at 65 °C with proteinase K, followed by

RNase A digestion, phenol/chloroform extraction, and iso-

propanol precipitation. The DNA was digested with 5 U/

μg Csp6I at 37 °C overnight (for Dek) or 5 U/μg TaiI at 65

°C for 2 h (for Hoxc5), then re-purified by phenol/chloro-

form extraction and isopropanol precipitation. The DNA

was then circularized by ligation with 200 U/μg T4 DNA

ligase under dilute conditions (5 ng/μL DNA) and purified

by phenol/chloroform extraction and isopropanol precipi-

tation. Fifty-nanogram aliquots of this DNA were used as

template for PCR with bait-specific primers containing

Illumina adapter termini (primer sequences and optimal

PCR conditions available on request). PCR reactions were

pooled, primers removed by washing with 1.8x AMPure

XP beads, then quantified on a Bioanalyzer (Agilent) be-

fore sequencing with a HiSeq 4000 (Illumina). Sequence

reads were filtered and mapped to DpnII restriction frag-

ments, essentially as previously described [5, 66]. Raw and

processed 4C data are available on GEO (GSE129884)

[67]. For visualization of the 4C profiles, running means

of read counts across windows of 25 restriction fragments

are plotted against the genomic coordinate of the frag-

ment interacting with the bait (Fig. 2).

Comparing CHi-C calling methods

The intersections in interaction calling methods (Fig. 3a)

were computed using the R GenomicRanges package

[65] to find overlapping coordinates within the non-bait

regions from interaction sets with the same bait. Com-

parisons of the interaction scores from CHiCAGO or

GOTHiC-called interactions which were or were not

conserved with another method were computed by Wil-

coxon rank sum tests.

Assessing enrichment for epigenomic marks

For mES, ChIP-seq fastq files were aligned to the mm9

genome with bowtie2 [61], then peaks were called with

the Erange 4.0 ChIP-seq peak finder tools [68, 69], with

the settings --nodirectionality, --notrim and an FDR

threshold of 0.05. ChIP-seq peaks for human primary

hematopoietic cells were downloaded directly from their

repository [59]. Enrichment of each epigenetic feature

within an interaction set was computed by dividing the

proportion of interactions (non-bait component) over-

lapping with a feature peak within the interaction set by

the proportion of all mappable, non-bait restriction frag-

ments which overlap with a feature peak. These overlaps
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were found using bedtools [70] on the bed files of

non-bait interacting regions versus the bed files of called

ChIP-seq peaks. Overlaps of the set of putative mES en-

hancers [32] with non-bait regions within called interac-

tions were performed with GenomicRanges.

Chromatin assortativity

Interaction network analysis was performed exactly as

described in [22]. Briefly, 78 chromatin features were

taken from [71] and peak-calling/binarization was per-

formed as described there in 200-bp windows. For each

fragment, the overlapping windows of chromatin peaks

were identified and their values averaged to give a frac-

tion of presence of any feature in each fragment. The

abundance of a feature is defined as the average of that

feature value across all fragments in the network consid-

ered. ChAs of a specific chromatin feature is defined as

the Pearson correlation coefficient of the value of that

feature across all pairs of nodes that are connected with

each other. They are computed from the “assortativity”

function of the R package igraph. We created a network

of ChiCMaxima detected interactions (39,584 nodes,

23,583 edges). Interactions captured by ChiCMaxima

were assumed to be all involving a bait and a non-bait

(other end) region, but we observed that some of the

non-bait fragments captured were overlapping baits

(4754 fragments), effectively suggesting that some of the

interactions captured are promoter-promoter interac-

tions (6457 interactions involving 3895 promoters). The

method is not supposed to capture this type of interac-

tions as shown by the low percentage of contacts that

fall in this category and we therefore removed these in-

teractions in the following analysis, which was per-

formed with a network of promoter-other (PO) end

interactions (35,207 nodes and 20,100 interactions).

ChAs were computed from the total interaction network

derived by ChiCMaxima, which omits bait-to-bait inter-

actions. To avoid confounding effects of bait-to-bait in-

teractions present within the full CHiCAGO-called

network, ChAs computation was restricted to only the

promoter-to-other end (P-O) portion of the network.
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ters of ChiCMaxima. Figure S3. CHi-C interaction calling across biological

replicates. Figure S4. Epigenomic enrichments from alternative

interaction calling methods. Figure S5. Improved stringency of

ChiCMaxima over CHiCAGO when applied to human primary

hematopoietic cell CHi-C data. Figure S6. ChiCMaxima is not just a more

stringent version of CHiCAGO. Figure S7. Scatter plot of chromatin

assortativity against relative feature abundance for different chromatin

features within the ChiCMaxima-called interaction network derived from

the mES CHi-C dataset. Figure S8. Flexibility in handling replicates in
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